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 Don’t let fear get in the way and don’t be afraid to say “I don’t know” or “I don’t 
understand” – no question is a dumb question.

 —Margaret H. Hamilton
 
 
 
 

 Simplicity is a great virtue but it requires hard work to achieve it and education to 
appreciate it. And to make matters worse: complexity sells better.

 —Edsger Dijkstra
 
 
 
 

 Cu `un fa nenti `un sbagghia nenti.
 (Only those who try make mistakes)

 —Sicilian proverb
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foreword
Algorithms and data structures lie at the very heart of the intersection between the
beauty of theory and the excitement of cutting-edge technology. One can say that if
the body of the advancements in computation is hardware, then the mind is certainly
the study of algorithms and data structures. Many of the recent advances in technol-
ogy have come to life thanks to the effective use of computing resources to solve prob-
lems, and this is often due to the effective development and implementation of
algorithms and clever use of data structures.

 A computer scientist, a software developer, a data scientist, or anyone whose work
is dependent on the power of computation needs to be fluent in the language of algo-
rithms and data structures. It is for this reason that problems in this field are some of
the most common in interviews for companies in Silicon Valley or similar technology
sectors.

 It is quite difficult, even for experts, to learn and remember all the details of all the
algorithms in existence. However, it is important to have a good intuition about them
in such a way that one can use them as building blocks to create larger projects or to
solve problems. In order to master this intuition, one must develop a rigid theoretical
and mathematical base, solid programming knowledge, and a strong understanding
of the core concepts.

 Building this intuition is precisely what Advanced Algorithms and Data Structures does
so well. In this book, Marcello combines the rigidity of the theory with the versatility of
the practical application, painted with the strokes of a colorful narrative full of enjoy-
able stories and real-life examples.
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 Marcello also uses his extensive experience as a developer at some of the most
prominent technology companies and as a researcher in machine learning to give the
reader a very clear, concise, and thorough picture of some of the most important algo-
rithms and data structures used across industries and research fields. 

 With a one-size-fits-all approach, a friendly language, and fun analogies, Marcello
manages to lift the curtain and demystify complicated topics such as map reduce,
genetic algorithms, and simulated annealing, with the same ease as he exposes the
basics of trees and heaps. Certainly a must-read for anyone who wants to get a solid
understanding of the building principles of computer science. The only question in
my head after reading Advanced Algorithms and Data Structures was, “Where was this
book when I was preparing for my first Silicon Valley interview?”

 LUIS SERRANO, PHD

 RESEARCH SCIENTIST IN QUANTUM ARTIFICIAL INTELLIGENCE

 ZAPATA COMPUTING
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preface
Welcome to Advanced Algorithms and Data Structures

It’s great to have you on board for this journey into the world of data structures and
algorithms. I hope this will be as exciting a journey for you as it was for us.

 The topics discussed in this book have contributed to advancing software engineer-
ing and have changed the world around us. They still do make a difference, and on
average, you likely come in contact every day with dozens of devices and services using
these algorithms.

 The study of algorithms far predates the dawn of computer science: think about
the Euler algorithm and the whole field of graph theory, which are three centuries
old. But that’s nothing compared to the two millennia since the sieve of Eratosthenes
(used to make tables of prime numbers) was first conceived.

 And yet, for a long time in the computer era, algorithms were mostly relegated to
academia, with a few notable exceptions like Bell Labs, where between the 1950s and
the 1990s their R&D teams produced great advancements in the field, such as (to
name a few) dynamic programming, the Bellman-Ford algorithm, and convolutional
neural networks for image recognition.

 Luckily, many things have changed since those days. In the new millennium, math-
ematicians and computer scientists are increasingly sought by the largest software
companies, new fields like machine learning have emerged, others like Artificial Intel-
ligence (AI) and neural networks have regained interest after a long winter, and top
experts in these fields are now among the best paid positions in the entire software
engineering industry.
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 Personally, I became fascinated by algorithms in college—I had already studied
search and sorting algorithms in high school—but it wasn’t until I learned about trees
and graphs that I became aware of the difference they can make and how much I
liked these topics.

 It was the first time I had a feeling that writing code that worked was not the only
goal, nor the main goal. How it works, how efficiently it runs, and how clean it is can
be just as important, if not more so. (Unfortunately, I still had to wait a couple more
years to have the same epiphany about testing.)

 Writing this book was a lot of work, far more than I anticipated four years ago
when I first pitched the idea to an editor. The story of how it came to be published is
quite funny (well, at least in retrospect!), but I won’t bother you with it here. Just
know that while writing this book I went through four years, three jobs (and a half!),
two countries, and five different apartments!

 It took a great (team) effort, for sure, but it was also rewarding. First and foremost,
writing a book means starting a growth path, because it doesn’t matter how long you’ve
worked on a topic and how well you think you know it. To write about any topic, you’ll
be forced to question all you know about it, delve into details you might have over-
looked when you previously applied it, and spend a lot of time researching, digesting,
and processing the concepts until you are confident enough to explain them to some-
one who doesn’t know anything about the subject. Usually a good test is getting some-
one in your family who doesn’t work in that field and forcing them to listen to you while
you unravel your lecture. Just make sure you choose someone very patient.
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about this book
I can give you at least three good reasons to invest your time in learning algorithms:

1 Performance—Choosing the right algorithm can speed your application up dra-
matically. Just limiting to something as simple as search, we’ll see that there is a
huge gain going from linear search to binary search.

2 Security—If you choose the wrong algorithm, an attacker can use it to crash your
server, node, or application. Consider, for instance, the hash DoS attack,1 where
the use of a hash table as a dictionary to store variables sent with POST requests
was leveraged to overload it with a sequence causing a huge number of colli-
sions. This in turn would make a server unresponsive. Another interesting
example was how flawed random number generators2 allowed the hacking of
online poker sites.

3 Efficiency in designing code—If you already know that there are building blocks
for whatever you’d like to accomplish, you will be faster in developing it, and
the result will be cleaner (especially if you reuse code).

That said, why should you read this book? I believe one great reason is that we are striv-
ing to select and present in the same book a strategic pool of advanced algorithms
that will help developers improve their code and face some of the challenges of mod-
ern systems.

1 See http://ocert.org/advisories/ocert-2011-003.html.
2 See, for instance, Arkin, Brad, et al. “How we learned to cheat at online poker: A study in software security.”

The developer.com journal (1999), http://www.bluffnakedpoker.com/PDF/developer_gambling.pdf.

http://ocert.org/advisories/ocert-2011-003.html
http://www.bluffnakedpoker.com/PDF/developer_gambling.pdf
http://www.bluffnakedpoker.com/PDF/developer_gambling.pdf
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 Moreover, we are trying to use a different approach than the usual college textbook.
Like those books, we will explain the theory behind algorithms, but at the same time,
we will also try to give you some context about real-world applications that leverage each
algorithm we describe and situations where it is advisable to use them.

 In your daily work, you’ll often have to deal with small, specific parts of larger (pos-
sibly legacy) software. However, in your career, there will be moments in which those
large software applications need to be designed. That is the moment where you’ll need
most of the content discussed here, and we will try to provide you with insight about how
to write clean, fast code to solve some of the most relevant problems you could face. 

 By using a fresh approach, where for each chapter we enumerate problems that a
given data structure can help solve, we will offer a handbook, a helper tool that you
can refer to any time you need a suggestion on the best way to improve your applica-
tion’s performance.

 Last but not least, if you happened to have read Grokking Algorithms, by Aditya. Y.
Bhargava (Manning Publications, 2016), and you enjoyed it, then this book represents
the natural next step if you’d like to continue on your path of learning about algo-
rithms. If you haven’t read it yet, I warmly encourage you to take a look at that book:
it’s a great choice to get an introduction to these topics, explained clearly to all audi-
ences. It’s not by chance that it turned out to be a wildly popular book. We hope to
have made this book as enjoyable and clear.

Who should read this book?
Most of the chapters in this book are written for an audience that has already some
basic understanding of algorithms, programming, and math, but we also provide a
crash course in the appendices, if you need a refresher or a quick intro to these topics.

 Reading this book will be much easier if you are already familiar (or make yourself
familiar) with the following concepts:

■ Good foundations in math and algebra will help you understand the theory sec-
tions, but we will nonetheless include a short introduction to big-O notation
and asymptotic analysis in appendix B.

■ Likewise, if you have taken an introductory class in computer science, or even
algorithms, it’s likely you are already familiar with the basic data structures that
will be the basis for what we will build throughout the book.

■ The data structures discussed in this book require some basic prior knowledge
to be fully understood:
– Basic storage structures such as arrays and linked lists
– Hash tables and hashing
– Trees
– Containers (queues and stacks)
– The basics of recursion

■ If you need a refresher, we do provide a quick review of these structures in
appendix C.
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How this book is organized: a roadmap

The book starts in chapter 1, with a gentle introduction to the way topics are discussed
in this book, a preview of what you’ll find in the typical chapter.

 Starting from chapter 2, the rest of the book will be divided into three parts, plus
the appendices. Each part is focused on a theme that can be either an abstract goal or
a class of problems we aim to solve.

 Part 1 focuses on discovering advanced data structures that allow you to improve
some basic operations, for example, keeping track of things or groups of things. The
key point is to become accustomed to the idea that there are many ways to perform
operations on data, and the best way depends on the context and requirements.

 Chapter 1 defines algorithms and data structures, explains the differences between
them, and, through an example, explains the process of exploring different algo-
rithms to solve a problem and how they can be leveraged to find better solutions.

 Chapter 2 introduces an advanced variant of binary heaps, the d-way heap. It also
describes the structure we use in each chapter in this part to explain topics.

 Chapter 3 further explores advanced use of heaps with treap, a hybrid between a
binary search tree and a heap that can also help in different contexts.

 Chapter 4 switches to Bloom filters, an advanced form of hash table that can help
save memory while maintaining amortized constant-time search.

 Chapter 5 introduces a few alternative data structures used to keep track of disjoint
sets, a cornerstone needed to build countless advanced algorithms and used in several
practical real-world applications.

 Chapter 6 presents two data structures that outperform general-purpose contain-
ers when it comes to storing and searching strings: tries and radix tries, also known as
compact prefix trees.

 Chapter 7 leverages the data structures presented so far to build a composed data
structure, the LRU-cache, to efficiently handle caching. The LFU-cache variant is also
discussed at length, as well as the issues with synchronizing shared containers in multi-
thread environments.

 Part 2 introduces another special case in search: dealing with multi-dimensional
data, indexing this data and performing spatial queries. We will once again show how
ad-hoc data structures can provide drastic improvements over using basic search algo-
rithms. But this part also describes other important topics: clustering, heavily leverag-
ing spatial queries, and distributed computing, in particular with the MapReduce
programming model.

 Chapter 8 introduces the nearest neighbor problem.
 Chapter 9 describes k-d trees, a solution for efficient search in multi-dimensional

data sets.
 Chapter 10 presents more advanced versions of these trees, ss-trees and r-trees.
 Chapter 11 focuses on the applications of nearest neighbor search, with a use case

described in depth (finding the closest warehouse from which goods should be
shipped to customers).
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 Chapter 12 presents another real-world use case leveraging the efficient nearest
neighbor search algorithms presented so far: three clustering algorithms, k-means,
DBSCAN and OPTICS.

 Chapter 13 concludes this part by introducing MapReduce, a powerful computa-
tional model for distributed computing, and applying it to the clustering algorithms
discussed in chapter 12.

 Part 3 focuses on a single data structure, graphs, that will be the common thread in
introducing a few optimization techniques that drive today’s AI and big data efforts.

 Chapter 14 is a short introduction to graphs, condensing the basics for this funda-
mental data structure, needed to understand part 3. It also illustrates DFS, BFS, Dijks-
tra’s and the A* algorithms, and describes how to use them to solve the “minimum-
distance path” problem.

 Chapter 15 introduces graph embeddings, planarity, and a couple of problems we
will try to solve in the remaining chapters: finding the minimum crossing number
(MCN) embedding of a graph and drawing a graph nicely.

 Chapter 16 describes a fundamental algorithm in machine learning, gradient
descent, and shows how it can be applied to graphs and embeddings.

 Chapter 17 builds on the previous chapter and presents simulated annealing, a more
powerful optimization technique that tries to overcome gradient descent shortcom-
ings when we have to deal with non-differentiable functions or functions with multiple
local minima.

 Chapter 18, finally, describes genetic algorithms, an even more advanced optimiza-
tion technique that helps with faster convergence.

 Chapters follow a specific structure, guiding you on a path from a problem to
designing a data structure for its solution, to implementing that solution, and under-
standing its running time and memory needs.

 But enough for now; you’ll learn more about this structure in chapter 2.
 At the end of the book, there is an extra section for appendices, covering crucial

topics that are needed to navigate through the topics of this book. Appendices have a
different structure than chapters because they are not built around examples, but
rather present a summary of material that the reader should be familiar with before
embarking on the journey through the chapters. Most of the topics in the appendices
are covered in basic algorithm classes, and chapters have several references to the
appendices to help readers leverage them at the right time, but our suggestion is for
you to at least skim through them before going to chapter 2.

 Appendix A introduces the notation we use for our pseudo-code to describe
algorithms.

 Appendix B provides an overview of big-O notation and time-space analysis.
 Appendix C and appendix D offer a summary of the core data structures that are

used as building blocks of the advanced ones in this book.
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 Appendix E explains recursion, a challenging programming technique that often
allows for clearer and more concise definitions of algorithms—with some tradeoffs, as
we will see.

 Appendix F gives the definition of randomized algorithms, both Monte Carlo and Las
Vegas types, and introduces classification problems and metrics for randomized
solutions.

About the code

The algorithms in this book will be explained using pseudo-code, so you are not
required to have any prior knowledge of any specific programming language.

 It is, however, assumed that you have a certain familiarity with basic, language-
agnostic, programming concepts such as loops and conditionals, not to mention Bool-
ean operators and the concepts of variables and assignments.

 To help you go through the pseudo-code in this book, we provide a short guide in
appendix A describing the syntax (or rather, pseudo-syntax) that we’ll use throughout
the chapters. You might want to take a look at appendix A before starting with chapter
1, or if you feel more confident, you can start looking at code snippets and refer to
appendix A if or when you feel the syntax used is not immediately clear.

 Besides pseudo-code, if you do have knowledge of or an interest in a specific pro-
gramming language, or if you’d like to see these concepts implemented in real, exe-
cutable, code, we provide a repository on GitHub3 with implementations in a few
languages (starting with Java, Python, and JavaScript) for the data structures
described.

liveBook discussion forum

Purchase of Advanced Algorithms and Data Structures includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.
To access the forum, go to https://livebook.manning.com/book/algorithms-and-
data-structures-in-action/welcome/v-14. You can also learn more about Manning's
forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

3 See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction.

https://livebook.manning.com/book/algorithms-and-data-structures-in-action/welcome/v-14
https://livebook.manning.com/book/algorithms-and-data-structures-in-action/welcome/v-14
https://livebook.manning.com/#!/discussion
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction
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Introducing
 data structures

So, you want to learn about algorithms and data structures: excellent decision!
 If you are still deciding whether this is for you, I hope this introductory chapter

can dispel your doubts and spark your interest in this great topic. 
 Why should you learn about algorithms? The short answer is to try to become a

better software developer. Knowing about data structures and algorithms is like
adding a tool to your tool belt.

 Have you ever heard of Maslow’s hammer, aka the law of the instrument? It’s a
conjecture, driven by observation, about how people who only know one way to do
things tend to apply what they know to all kinds of different situations.

This chapter covers
 Explaining why you should learn about data 

structures and algorithms

 Understanding the difference between algorithms 
and data structures

 Abstracting a problem

 Moving from problems to solutions
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 If your tool belt only has a hammer, you will be tempted to treat everything as a
nail. If you only know how to sort a list, you will be tempted to sort your tasks list every
time you add a new task or have to pick the next one to tackle, and you will never be
able to leverage the context to find more efficient solutions.

 The purpose of this book is to give you many tools you can use when approaching
a problem. We will build upon the basic algorithms normally presented in a computer
science 101 course (or the like) and introduce you to more advanced material.

 After reading this book, you should be able to recognize situations where you
could improve the performance of your code by using a specific data structure and/or
algorithm.

 Obviously, your goal should not be to remember by heart all the details of all the
data structures we will discuss. Rather, we will try to show you how to reason about
issues, and where to find ideas about algorithms that might help you in solving prob-
lems. This book will also serve as a handbook, sort of like a recipe collection, with indi-
cations about some common scenarios that could be used to categorize those
problems and the best structures you could use to attack them.

 Keep in mind that some topics are quite advanced and, when we delve into the
details, it might require a few reads to understand everything. The book is structured
in such a way as to provide many levels of in-depth analysis, with advanced sections
generally grouped together toward the end of each chapter, so if you’d like to only get
an understanding of the topics, you are not required to delve into the theory.

1.1 Data structures
To start with our journey, we first need to agree on a common language to describe
and evaluate algorithms.

 Describing them is pretty much a standard process: algorithms are described in
terms of the input they take and the output they provide. Their details can be illus-
trated with pseudo-code (ignoring implementation details of programming lan-
guages) or actual code.

 Data structures (DS) follow the same conventions, but they also go slightly beyond.
We also have to describe the actions you can perform on a data structure. Usually each
action is described in term of an algorithm, with an input and an output, but in addi-
tion to those, for DSs we also need to describe side effects, the changes an action might
cause to the data structure itself.

 To fully understand what this means, we first need to properly define data
structures.

1.1.1 Defining a data structure

A data structure is a specific solution for organizing data that provides storage for
items and capabilities1 for storing and retrieving them.

1 Specifically, at least one method to add a new element to the DS, and one method either to retrieve a specific
element or to query the DS.
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 The simplest example of a DS is an array. For instance, an array of characters pro-
vides storage for a finite number of characters and methods to retrieve each character
in the array based on its position. Figure 1.1 shows how array = [‘C’, ‘A’, ‘R’] is
stored: an array of characters storing the characters C, A, and R, such that, for instance,
array[1] corresponds to the value ‘A’.

Data structures can be abstract or concrete:2

 An abstract data type (ADT) specifies the operations that can be performed on
some data and the computational complexity of those operations. No details
are provided on how data is stored or how physical memory is used.

 A data structure (DS) is a concrete implementation of the specification pro-
vided by an ADT.

Back to our array example, a possible ADT for a static array is, for example, a con-
tainer that can store a fixed number of elements, each associated with an index (the
position of the element within the array), and access any element by its position (ran-
dom access).

 Its implementation, however, needs to take care of details such as

 Will the array size be fixed at creation or can it be modified?
 Will the array be allocated statically or dynamically?

2 In modern architectures/languages, it is possible that an array element corresponds to a word of memory
rather than a byte, but for the sake of simplicity, let’s just assume an array of char is stored as an array of bytes.

C
0

0xFF00

A
1

0xFF01

R
2

0xFF02

3

0xFF03

Memory addresses

Indices
Array elements

Figure 1.1 The (simplified) internal representation of an array. 
Each element of the array in the picture corresponds to a byte of 
memory,2 whose address is shown below it. Each element’s index 
is shown above it. An array is stored as a contiguous block of 
memory, and each element’s address can be obtained by adding 
its index within the array to the offset of the first element. For 
instance, the fourth character of the array (array[3], empty in the 
figure), has address 0xFF00 + 3 = 0xFF03.

What is an ADT?
You can think about an ADT as the blueprint, while a DS is the translation of those
specifications into real code.

An ADT is defined from the point of view of the one who uses it, by describing its
behavior in terms of possible values, possible operations on it, and the output and
side effects of these operations.

A more formal definition would describe an ADT as a set of types, a designated type
from that type set, a set of functions, and a set of axioms.

In contrast, a data structure, which is a concrete representation of data, is described
from the point of view of an implementer, not a user.
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 Will the array host only elements of a single type or of any type?
 Is it going to be implemented as a raw chunk of memory or as an object? And

what attributes will it hold?

Even for such a basic data structure as arrays, different programming languages make
different choices with respect to the previous questions. But all of them make sure
their version of arrays abides by the array’s ADT we described earlier.

 Another good example to help understand the difference might be a stack. We will
describe stacks in appendices C and D, but I assume you have likely heard of stacks
before.

 A possible description of a stack as an ADT is the following: a container that can
store an indefinite number of elements, and can remove elements one at a time, start-
ing from the most recent, according to the inverse order of insertion.

 An alternative description could break down the actions that can be performed on
the container. A stack is a container that supports two main methods:

1 Insertion of an element.
2 Removal of an element. If the stack is not empty, the element that was added

most recently will be removed from the stack and returned.

It’s still a high-level description, but it’s clearer and more modular than the previous
one.

 Either description is abstract enough to make it easily generalizable, allowing you
to implement a stack in a wide range of programming languages, paradigms, and
systems.3

 At some point, however, we will have to move to a concrete implementation and
will need to discuss details such as

 Where are the elements stored? 
– An array?
– A linked list?
– A B-tree on disk?

 How do we keep track of the order of insertion? (Connected to the previous
question.)

 Will the max size of the stack be known and fixed in advance?
 Can the stack contain elements of any type or must all be the same type?
 What happens if removal is called on an empty stack? (For instance, returning

null versus throwing an error.)

And we could keep on going with questions, but hopefully you get the idea.

3 In principle, it doesn’t need to be anything related to computer science. For instance, you could describe as a
system a stack of files to be examined, or—a common example in computer science classes—a pile of dishes
to be washed.
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1.1.2 Describing a data structure

The crucial part of an ADT definition is to list the set operations that it allows. This is
equivalent to defining an API,4 a contract with its clients.

 Every time you need to describe a data structure, you can follow a few simple steps
to provide a comprehensive and unambiguous specification:

 Specifying its API first, with a focus on the methods’ input and output
 Describing its high-level behavior
 Describing in detail the behavior of its concrete implementation
 Analyzing the performance of its methods

We will use the same workflow for the data structures presented in this book after
describing a concrete scenario in which each data structure is actually used.

 Starting in chapter 2, with the description of the first data structure presented, we
will also explain in further detail the conventions we use for the API description.

1.1.3 Algorithms and data structures: Is there a difference?

No, they are not exactly the same thing; technically they are not equivalent. Neverthe-
less, we might sometimes use the two terms interchangeably and, for the sake of brev-
ity, use the term data structure to mean a DS and all its relevant methods.

 There are many ways to point out the difference between the two terms, but I par-
ticularly like this metaphor: data structures are like nouns, while algorithms are like
verbs.

 I like this angle because, besides hinting at their different behavior, it implicitly
reveals the mutual dependency between them. For instance, in English, to build a
meaningful phrase, we need both nouns and verbs, a subject (or object), and an
action performed (or endured).

 Data structures and algorithms are interconnected; they need each other:

 Data structures are the substrate, a way to organize an area of memory to repre-
sent data.

 Algorithms are procedures, a sequence of instructions aimed to transform data.

Without algorithms to transform them, data structures would just be bits stored on a
memory chip; without data structures to operate on, most algorithms wouldn’t even
exist.

 Every data structure, moreover, implicitly defines algorithms that can be per-
formed on it—for instance, methods to add, retrieve, and remove elements to/from
the data structure.

 Some data structures are actually defined exactly with the purpose of enabling one
or more algorithms to run efficiently on them. Think of hash tables and search by
key.5

4 Application programming interface.
5 You can find more on this topic in appendix C.
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 So, when we use algorithm and data structure as synonyms, it’s just because in that
particular context one implies the other. For instance, when we describe a DS, for that
description to be meaningful and accurate, we necessarily need to describe its meth-
ods (that is, algorithms).

1.2 Setting goals: Your expectations after reading this book
One question you might have by now is, “Will I ever need to write my own data
structures?”

 There is a good chance that you will rarely find yourself in a situation where you
don’t have any alternative to writing a data structure from scratch. Today it isn’t diffi-
cult to find libraries implementing the most common data structures in most pro-
gramming languages, and usually these libraries are written by experts who know how
to optimize performance or take care of security concerns. 

 The main goal of this book, in fact, is to give you familiarity with a broad range of
tools and train you to recognize opportunities to use them to improve your code.
Understanding how these tools work internally, at least at a high level, is an important
part of the learning process. But nevertheless, there are still certain situations in
which you might need to get your hands dirty with code; for example, if you are using
a brand new programming language for which there aren’t many libraries available,
or if you need to customize a data structure to solve a special case.

 In the end, whether you are going to write your own implementation of data struc-
tures really depends on many factors.

 First and foremost, how advanced is the data structure you need, and how main-
stream is the language you use?

 To illustrate this point, let’s take clustering as an example.
 If you are working with a mainstream language—for instance, Java or Python—it’s

very likely that you can find many trusted libraries for k-means, one of the simplest
clustering algorithms.

 If you are using a niche language, maybe experimenting with a recently created
one such as Nim or Rust, then it might be harder to find an open-source library imple-
mented by a team that has thoroughly tested the code and will maintain the library.

 Likewise, if you need an advanced clustering algorithm, like DeLiClu, it will be hard
to find even Java or Python implementations that can be trusted to run as part of your
application in production.

 Another situation in which you might need to understand the internals of these
algorithms is when you need to customize one of them; maybe because you need to
optimize it for a real-time environment, or you need some specific property (for
example, tweaking it to run concurrently and be thread-safe), or even because you
need a slightly different behavior.

 That said, even focusing on the first part, understanding when and how to use the
data structures we present will be a game changer, letting you step up your coding
skills to a new level. Let’s use an example to show the importance of algorithms in the
real world and introduce our path in describing algorithms.
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1.3 Packing your knapsack: Data structures meet the real world 
Congrats, you have been selected to populate the first Mars colony! Grocery stores on
Mars are still a bit short of goods . . . and hard to find. So, you will have to eventually
grow your own food. In the meantime, for the first few months, you will have goods
shipped to sustain you.

1.3.1 Abstracting the problem away
The problem is, your crates can’t weight more than 1000 kilograms, and that’s a hard
limit.

 To make things harder, you can choose only from a limited set of things, already
packed in boxes:

 Potatoes, 800 kgs
 Rice, 300 kgs
 Wheat flour, 400 kgs
 Peanut butter, 20 kgs
 Tomato cans, 300 kgs
 Beans, 300 kgs
 Strawberry jam, 50 kgs

You’ll get water for free, so no worries about that, but you can either take a whole
crate or not take it. You’d certainly like to have some choice, and not a ton of potatoes
(aka The Martian experience).

 But, at the same time, the expedition’s main concern is keeping you well sustained
and energetic throughout your stay, so the main discriminant to choose what goes
with you will be the nutritional values. Let’s say the total calories will be a good indica-
tor. Table 1.1 sheds a different light on the list of available goods.

Since the actual content is irrelevant for the decision (despite your understandable
protests, mission control is very firm on that point), the only things that matter are the
weight and total calories provided for each of the boxes.

Table 1.1 A recap of the available goods, with their weight and calories

Food Weight (kgs) Total calories

Potatoes 800 1,501,600

Wheat flour 400 1,444,000

Rice 300 1,122,000

Beans (can) 300 690,000

Tomatoes (can) 300 237,000

Strawberry jam 50 130,000

Peanut butter 20 117,800
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 Hence, our problem can be abstracted as “choose any number of items from a set,
without the chance to take a fraction of any item, such that their total weight won’t be over
1000 kgs, and in such a way that the total amount of calories is maximized.”

1.3.2 Looking for solutions
Now that we have stated our problem, we can start looking for solutions. You might be
tempted to start packing your crate with boxes starting from the one with the highest
calories value. That would be the potatoes box weighing 800 kgs.

 But if you do so, neither rice nor wheat flour will fit in the crate, and their com-
bined calorie count exceeds, by far, any other combination you can create within the
remaining 200 kgs left. The best value you get with this strategy is 1,749,400 calories,
picking potatoes, strawberry jam, and peanut butter.

 So, what would have looked like the most natural approach, a greedy6 algorithm
that at each step chooses the best immediate option, does not work. This problem
needs to be carefully thought through.

 Time for brainstorming. You gather your logistics team and together look for a
solution.

 Soon enough, someone suggests that, rather than the total calories, you should
look at the calories per kg. So you update table 1.1 with a new column, and sort it
accordingly. The result is shown in table 1.2.

Then you try to go top to bottom, picking up the food with the highest ratio of calo-
ries per unit of weight, ending up with peanut butter, rice, wheat flour, and strawberry
jam, for a total of 2,813,800 calories.

 That’s much better than our first result. It’s clear that this was a step in the right
direction. But looking closely, it’s apparent that adding peanut butter prevented us
from taking beans, which would have allowed us to increase the total value of the crate

6 A greedy algorithm is a strategy to solve problems that finds the optimal solution by making the locally optimal
choice at each step. It can only find the best solution on a small subclass of problems, but it can also be used
as a heuristic to find approximate (sub-optimal) solutions.

Table 1.2 The list in table 1.1, sorted by calories per kg

Food Weight (kgs) Total calories Calories per kg

Peanut butter 20 117,800 5,890

Rice 300 1,122,000 3,740

Wheat flour 400 1,444,000 3,610

Strawberry jam 50 130,000 2,600

Beans (can) 300 690,000 2,300

Potatoes 800 1,501,600 1,877

Tomatoes (can) 300 237,000 790
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even more. The good news is that at least you won’t be forced to follow The Martian’s
diet anymore; no potatoes go on Mars this time.

 After a few more hours of brainstorming, you are all pretty much ready to give up:
the only way you can solve this is to check, for each item, if you can get a better solu-
tion by including it or leaving it out. And the only way you know of doing so is enu-
merating all possible solutions, filtering out the ones that are above the weight
threshold, and picking the best of the remaining ones. This is what’s called a brute force
algorithm, and we know from math that it’s a very expensive one.

 Since for each item you can either pack it or leave it, the possible solutions are
27=128. You guys are not too keen on going through a hundred solutions, but after a
few hours, despite understanding why it’s called brute force, you are totally exhausted
but almost done with it.

 Then the news breaks: someone called from mission control, and following com-
plaints from some settlers-to-be, 25 new food items have been added to the list, includ-
ing sugar, oranges, soy, and marmite (don’t ask . . . ).

 After checking your numbers everyone is in dismay: now you’d have approximately
4 billion different combinations to check. 

1.3.3 Algorithms to the rescue

At that point, it’s clear that you need a computer program to crunch the numbers and
make the best decision.

 You write one yourself in the next few hours, but even that takes a long time to run,
another couple of hours. Now, as much as you’d like to apply the same diet to all the
colonists, it turns out some of them have allergies: a quarter of them can’t eat gluten,
and apparently many swear they are allergic to marmite. So you’ll have to run the
algorithm again a few times, each time taking into account individual allergies. To
make thing worse, mission control is considering adding 30 more items to the list to
make up for what people with allergies will miss. If that happens, we will end up with
62 total possible items, and the program will have to go over several billions of billions
of possible combinations. You try that, and after a day the program is still running,
nowhere close to termination.

 The whole team is ready to give up and go back to the potatoes diet, when some-
one remembers there is a person on the launch team who had an algorithms book on
his desk.

 You call them in, and they immediately see the problem for what it is: the 0-1 knap-
sack problem. The bad news is that it is an NP-complete7 problem, and this means it is
hard to solve, as there is no “quick” (as in polynomial with respect to the number of
items) known algorithm that computes the optimal solution.

7 NP-complete problems are a set of problems for which any given solution can be verified quickly (in polyno-
mial time), but there is no known efficient way to locate a solution in the first place. NP-complete problems,
by definition, can’t currently be solved in polynomial time on a classical deterministic machine (for instance,
the RAM model we’ll define in the next chapter).
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 There is, however, also good news: there exist a pseudo-polynomial8 solution, a solu-
tion using dynamic programming9 that takes time proportional to the max capacity of the
knapsack. Luckily, the capacity of the crate is limited: so the solution takes takes a num-
ber of steps equal to the number of possible values for the capacity filled multiplied by
the number of items, so assuming the smallest unit is 1kg, it only takes 1000 × 62 steps.
Wow, that’s much better than 262! And, in fact, once you rewrite the algorithm, it finds
the best solution in a matter of seconds.

 At this time, you are willing to take the algorithm as a black box and plug it in with-
out too many questions. Still, this decision is crucial to your survival . . . it seems like a
situation where you could use some deep knowledge of how an algorithm works.

 For our initial example, it turns out that the best possible combination we can find
is rice, wheat flour, and beans, for a total of 3,256,000 calories. That would be quite a
good result compared to our first attempt, right?

 You probably had already guessed the best combination, but if it seems too easy in
the initial example, where we only have seven items, try the same with hundreds of dif-
ferent products, in a setup closer to the real scenario, and see how many years it takes
you to find the best solution by hand!

 We could be happy with this solution; it’s the best we can find given the constraint.

1.3.4 Thinking (literally) outside of the box

But in our narration, this is the point when the real expert in algorithms comes in. For
instance, imagine that a distinguished academic is visiting our facilities while prepar-
ing the mission, and has been invited to help with computing the best route to save
fuel. During lunch break someone proudly tells her about how you brilliantly solved
the problem with packing goods. And then she asks an apparently naïve question:
Why can’t you change the size of the boxes?

 The answer will likely be either that “this is the way it has always been,” or that
“items come already packed from vendors, and it would cost time and money to
change this.”

 And that’s when the expert will explain that if we remove the constraint on the box
size, the 0-1 knapsack problem, which is an NP-complete problem, becomes the
unbounded knapsack problem, for which we have a linear-time10 greedy solution that
is usually better than the best solution for the 0-1 version.

8 For a pseudo-polynomial algorithm, the worst-case running time depends (polynomially) on the value of some
inputs, not just the number of inputs. For instance, for the 0-1 knapsack, the inputs are n elements (with weight
and value), and the capacity C of the knapsack: a polynomial algorithm depends only on the number n, while
a pseudo-polynomial also (or only) depends on the value C.

9 Dynamic programming is a strategy for solving complex problems with certain characteristics: a recursive struc-
ture of subproblems, with the result of each subproblem needed multiple times in the computation of the final
solution. The final solution is computed by breaking the problem down into a collection of simpler subprob-
lems, solving each of those subproblems just once, and storing their solutions.

10Linear-time, assuming the list of goods is already sorted. Linearithmic, otherwise.
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 Translated into human-understandable language, we can turn this problem into
one that’s easier to solve and that will allow us to pack the crates with the largest possi-
ble total of calories. The problem statement now becomes this:

 Given a set of items, choose any subset of items or fraction of items from it, such that
their total weight won’t be over 1000 kgs, and in such a way that the total amount of
calories is maximized.

 And yes, it is worth the time to go through the overhead of repacking everything,
because we get a nice improvement.

 Specifically, if we can take any fraction of the original weights for each product, we
can simply pack products starting from the one with the highest ratio of calories per
kg (peanut butter, in this example), and when we get to one box that would not fit in
the remaining available space, we take a fraction of it to fill the gap, and repack it. So,
in the end we wouldn’t even have to repack all the goods, just one.

 The best solution would then be peanut butter, rice, wheat flour, strawberry jam,
and 230 kilograms of beans, for a total of 3,342,800 calories.

1.3.5 Happy ending

So, in our story, the future Mars settlers will have greater chances of survival and won’t
go into depression because of a diet comprising only potatoes with a peanut butter
and strawberry dip.

 From a computational point of view, we moved from incorrect algorithms (the
greedy solutions taking the highest total, or highest ratio first), to a correct but unfea-
sible algorithm (the brute force solution enumerating all the possible combinations)
to, finally, a smart solution which would organize the computation in a more efficient
fashion.

 The next step, as important or even more so, brought us to thinking outside of the
box to simplify our problem, by removing some constraints, and thus finding an easier
algorithm and a better solution. This is actually another golden rule: always study your
requirements thoroughly, question them, and when possible, try to remove them if
that brings you a solution that is at least as valuable, or a slightly less valuable one that
can be reached with a much lower cost. Of course, in this process, other concerns
(such as laws and security, at all levels) must be taken into consideration, so some con-
straints can’t be removed.

 In the process of describing algorithms, as we explained in the previous section, we
would next describe our solution in detail and provide implementation guidelines.

 We will skip these steps for the 0-1 knapsack dynamic programming algorithm, both
because it’s an algorithm, not a data structure, and it is thoroughly described in litera-
ture. Not to mention that in this chapter its purpose was just illustrating the following:

 How important it is to avoid bad choices for the algorithms and data structures
we use

 The process we will follow in the next chapters when it comes to introducing a
problem and its solutions
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Summary 
 Algorithms should be defined in terms of their input, their output, and a

sequence of instructions that will process the input and produce the expected
output. 

 A data structure is the concrete implementation of an abstract data type, and it
is made of a structure to hold the data and a set of algorithms that manipulate it.

 Abstracting a problem means creating a clear problem statement and then dis-
cussing the solution to the problem.

 Packing your knapsack efficiently can be tough (especially if you plan to go to
Mars!), but with algorithms and the right data structure, (almost) nothing is
impossible! 



Part 1

Improving over basic
 data structures

The first part of this book lays the foundations for the more advanced sec-
tions that we’ll discuss later. It focuses on discovering advanced data structures
that provide an improvement over other more basic structures; for example,
how we can improve binary heaps or make trees balanced, and how we can solve
problems such as keeping track of things or groups of things?

 Through these examples, we’ll show that there are many ways to perform
operations on data, and as developers we need to get accustomed to the fact that
the best way we can choose depends on the context and requirements. We thus
need to look at requirements, examine the context, and learn to question our
knowledge when we solve a problem, in order to spot the best solution for the
specifics we are facing.

 Chapter 2 introduces an advanced variant of binary heaps, the d-way heap. It
also describes the structure we use, in each chapter in this part, to explain topics.

 Chapter 3 further explores the advanced use of heaps with treap, a hybrid
between a binary search tree and a heap that can also help in different contexts.

 Chapter 4 switches to Bloom filters, an advanced form of hash table that can
help save memory while maintaining amortized constant-time search.

 Chapter 5 introduces a few alternative data structures used to keep track of
disjoint sets, a cornerstone needed to build countless advanced algorithms and
that is used in several practical real-world applications.



 Chapter 6 presents two data structures that out-perform general-purpose contain-
ers when it comes to storing and searching strings: tries and radix tries, also known as
compact prefix trees.

 Chapter 7 leverages the data structures presented in the first six chapters to build a
composed data structure, the LRU-cache, to efficiently handle caching. The LFU-cache
variant is also discussed at length, as well as the issues with synchronizing shared con-
tainers in multi-thread environments.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15

Improving priority
 queues: d-way heaps

In the previous chapter we introduced some basic concepts about data structures
and programming techniques, described the structure of this book, and hopefully
raised your interest. You should now be aware of why developers need to know
about data structures.

 In this chapter, we will further develop those ideas and refine our narration.
This chapter is meant to be a soft introduction to what is presented in this book; we
have chosen a topic that should be familiar to readers with some background in

This chapter covers
 Solving the problem of serving tasks based on 

priority

 Using priority queues to solve our problem

 Implementing a priority queue with a heap

 Introducing and analyzing d-way heaps

 Recognizing use cases where heaps improve 
performance
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algorithms, while providing a review of heaps along with some new insight on branch-
ing factors.

 To this end, however, we assume that the reader is familiar with some basic concepts
traditionally taught in CS 101 courses: big-O notation, the RAM model, and simple data
structures such as arrays, lists, and trees. These building blocks will be leveraged
throughout the book to build increasingly complex structures and algorithms, and it’s
important that you familiarize yourself with such concepts in order to be able to go
through the next chapters. This is why we provided a recap of these fundamental topics
in the appendices at the end of the book; feel free to take a look or skim through them
in order to make sure you have a good understanding of the material. 

 Now that we have settled the basics, we will start with the core focus of this book,
and in section 2.1 we describe the structure that we will use for each of the remaining
chapters.

 Section 2.2 introduces the problem we are going to use in this chapter (how to effi-
ciently handle events with priority), while section 2.3 outlines possible solutions,
including priority queues, and explains why the latter are better than more basic data
structures.

 Next, in section 2.4 we describe the priority queue API,1 and we show an example
of how to use it as a black box, before delving into its internals in sections 2.5 and 2.6.
In the former we analyze in detail how a d-ary heap works, describing the functioning
of its methods. In section 2.6 we delve into the implementation of a d-way heap.

 Sections 2.7 and 2.8 describe use cases where heaps and priority queues make a dif-
ference and allow speeding up applications or other algorithms.

 Finally, the focus of section 2.9 is understanding the optimal branching factor for a
heap. Although it can be considered optional, I suggest you at least try to read it
through to gain a deeper understanding of how a heap works and why you might want
to choose a ternary heap instead of a binary heap, or vice versa.

 This is a long chapter, and it might look intimidating, but hang in there; we are
going to cover a lot of ground and lay the foundations for the whole book.

2.1 Structure of this chapter
Starting with the current chapter, we will embrace a schematic way to present our data
structures.

 Each chapter will be driven by a practical use case for its main topic, a real-world
problem showing how the data structure is used in practice, but also a step-by-step
explanation of how operations are performed. We also provide code samples showing
how to use the algorithms we will focus on next.

 So, first we are going to introduce a problem, one that is typically solved using the
main topic of the chapter.

 Then we present one or more ways to solve it. There might be several possible
solutions to the same problem, and if that’s the case, we explain when and why using a

1 Application Programming Interface (API).
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particular data structure is a good idea. At this point, usually, we still treat our data
structure as a black box: we focus on how to use it and ignore the details of its
implementation.

 Only in the next section do we start discussing how a data structure works. We
focus on describing the mechanism, using figures and pseudo-code examples to clar-
ify how it works.

 After the code section, we are going to discuss advanced theory topics such as per-
formance or mathematical proofs for the algorithms.

 Usually we also provide a list of additional applications that use the algorithms pre-
sented, although for most of these further examples we have to omit coding for the
sake of space.

2.2 The problem: Handling priority 
The first problem we are going to tackle is handling tasks based on priority. This is
something all of us are familiar with in some way.

 The problem can be described in these terms: given a collection of tasks with dif-
ferent priorities, determine which task should be executed next.

 We can find many examples in the real world where we apply, consciously or not,
techniques that help us decide what to do next. Our daily lives are full of tasks; usually
the order in which we run them is a result of time constraints and the importance we
assign to those tasks.

 A common example of an environment where tasks are executed by priority is an
emergency room, where patients are seen, not according to the order in which they
arrived, but instead depending on how urgent their conditions are. If we move closer
to our IT domain, there are many tools and systems that have the same behavior.
Think, for instance, about your operating system scheduler. Or maybe you are using a
mobile app to take a to-do list.

2.2.1 Priority in practice: Bug tracking

The example I’d like to use in this chapter, though, is a bug-tracking suite. You are
probably already familiar with such a tool. When you work in teams, you need a way to
track bugs and tasks so that no two people work on the same issue and duplicate
effort, while making sure issues are tackled in the right order (whatever that is,
depending on your business model).

 To simplify our example, let’s restrict it to the case of a bug-tracking tool where
each bug is associated with a priority, expressed as the number of days within which it
needs to be solved (lower numbers mean higher priority). Also, let’s assume that bugs
are independent, so no bug requires solving another bug as a prerequisite.

 For our example, let’s consider the following list of bugs (in sparse order) for a
single-page web application.

 Each bug will look like a tuple:

<task description, importance of missing the deadline>
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So, for instance we could have this.

Whenever resources (for example, developers) are limited, there comes the need to
prioritize bugs. Therefore, some bugs are more urgent than others: that’s why we asso-
ciate priorities to them.

 Now, suppose a developer on our team completes her current task. She asks our
suite for the next bug that needs to be solved. If this list were static, our suite’s soft-
ware could just sort the bugs once, and return them in order.2

As you can imagine, though, this is not the case. First, new bugs are discovered all the
time, and so new items will be added to the list. Say a nasty encryption bug is found—
you’d need to have it solved by yesterday! Moreover, priority for bugs can change over
time. For instance, your CEO might decide that you are going after the market share
that’s mostly using browser X, and you have a big feature launch next Friday, the 13th,
so you really need to solve that bug at the bottom within a couple of days.

Task description Severity (1-10)

Page loads take 2+ seconds 7

UI breaks on browser X 9

Optional form field blocked when using browser X 
on Friday the 13th

1

CSS style causes misalignment 8

CSS style causes 1px misalignment on browser X 5

Task description Severity (1-10)

UI breaks on browser X 9

CSS style causes misalignment 8

Page loads take 2+ seconds 7

CSS style causes 1px misalignment on browser X 5

Optional form field blocked when using browser X 
on Friday the 13th

1

2 Often bug-tracking suites associate lower numbers with higher priority. To keep things simple in our discus-
sion, we will instead assume higher numbers mean higher priority.

Task description Severity (1-10)

Unencrypted password on DB 10

UI breaks on browser X 9
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2.3 Solutions at hand: Keeping a sorted list
We could, obviously, update our sorted list every time we have an item inserted,
removed, or modified. This can work well if these operations are infrequent and the
size of our list is small.

 Any of these operations, in fact, would require a linear number of elements chang-
ing position, both in worst cases and in the average case.3

 For this use case, it could probably work. But if our list had millions or billions of
elements, then we would most likely be in trouble.

2.3.1 From sorted lists to priority queues
Luckily for us, there is a better solution. This is the perfect use case for one of the core
data structures. A priority queue will keep a partial ordering of the elements, with the
guarantee that the next element returned from the queue will hold the highest priority.

 By giving up the requirement of a total ordering (which we wouldn’t need in this
case, because we only consume tasks one by one), we gain in performance: each of the
operations on the queue can now require only logarithmic time.

 As a side note, this reminds us how important it is to get our requirements right
before implementing any solution. We need to make sure we don’t overcomplicate
our work and requirements: for example, keeping a list of elements sorted when all
we need is a partial ordering wastes resources and complicates our code, making it
harder to maintain and scale.

2.4 Describing the data structure API: Priority queues
Before delving into the topic of the chapter, let’s take a step back.

 As explained in appendix C, each data structure can be broken down into a few
lower-level components:

 API—The API is the contract that a data structure (DS) makes with external cli-
ents. It includes method definitions, as well as some guarantees about the meth-
ods’ behavior that are provided in the DS’s specification. For example, a
priority queue (PQ) (see table 2.1) provides these methods and guarantees:

Optional form field blocked when using browser 
X on Friday the 13th

8

CSS style causes misalignment 8

Page loads take 2+ seconds 7

CSS style causes 1px misalignment on browser X 5

3 With an array implementation, we could find the right position for our item in logarithmic time, using binary
search. But then we would need to move all the elements on the right of the insertion point to make room for
it, and this requires linear time on average.

Task description Severity (1-10)



20 CHAPTER 2 Improving priority queues: d-way heaps

– top()—Returns and extracts the element with the highest priority.
– peek()—Like top it returns the element with the highest priority, but with-

out extracting it from the queue.
– insert(e, p)—Adds a new element e with priority p to the PQ.
– remove(e)—Removes element e from the queue.
– update(e, p)—Changes the priority for element e and sets it to p.

 Invariants—(Optional) internal properties that always hold true throughout
the life of the data structure. For instance, a sorted list would have one invari-
ant: every element is not greater than its successor. The purpose of invariants is
making sure the conditions necessary to live up to the contract with the exter-
nal clients are always met. They are the internal counterparts of the guarantees
in the API.

 Data model—To host the data. This can be a raw chunk of memory, a list, a tree,
etc.

 Algorithms—The internal logic that is used to update the data structure while
making sure that the invariants are not violated.

In appendix C we also clarify how there is a difference between an abstract data struc-
ture and concrete data structures. The former includes the API and invariants, describing
at a high level how clients will interact with it and the results and performance of
operations. The latter builds on the principles and API expressed by the abstract
description, adding a concrete implementation for its structure and algorithms (data
model and algorithms).

 This is exactly the relationship between priority queues and heaps. A priority queue is
an abstract data structure that can be implemented in many ways (including as a
sorted list). A heap is a concrete implementation of the priority queue using an array
to hold elements and specific algorithms to enforce invariants.

Table 2.1 API and contract for priority queue

Abstract data structure: Priority queue

API class PriorityQueue {
  top() → element
  peek() → element
  insert(element, priority)
  remove(element)
  update(element, newPriority)
  size() → int
}

Contract with client The top element returned by the queue is always the element 
with highest priority currently stored in the queue
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2.4.1 Priority queue at work

Imagine you are provided with a priority queue. It can come from a third-party library
or from a standard library (many languages, such as C++ or Scala, provide an imple-
mentation for priority queues in their standard container lib).

 You don’t need to know the internals of the library at this point; you just need to
follow its public API and use it, confident it’s properly implemented. This is the black
box approach (figure 2.1).

 For instance, let’s suppose we add our bugs to our PQ in the same order we have
seen before.

If we returned the tasks in the same order as we inserted them, we would just imple-
ment as a plain queue (see figure 2.2 for a quick glance at how a queue works, and
appendix C for a description of basic containers). Instead, let’s assume that now we
have our priority queue containing those five elements; we still don’t know the inter-
nals of the PQ, but we can query it through its API. 

For instance, we can check how many elements it contains and even take a peek at the
one at the top (figure 2.1). Or we can directly ask it to return us the top element (the
one with the highest priority) and remove it from the queue.

 If, after inserting the five elements in figure 2.1, we call top, the element returned
will be “UI breaks on browser X” and the size of the queue will become 4. If we call
top again, the next element will be “CSS style causes misalignment” and the size will
become 3.

Task description Severity (1-10)

Page loads take 2+ seconds 7

UI breaks on browser X 9

Optional form field blocked when using browser X 
on Friday the 13th

1

CSS style causes misalignment 8

CSS style causes 1px misalignment on browser X 5

5?
Queue
Priority

top
peek
insert
remove
update

Figure 2.1 Representation of a priority queue 
as a black box. If we employ an implementation 
of a priority queue provided by a third-party 
library (or from standard libraries), and we trust 
this implementation to be correct, we can use 
it as a black box. In other words, we can ignore 
its internals, and just interact with it through 
its API.
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 As long as the priority queue is implemented correctly and given the priorities in
our examples, we can be sure those two elements will be the ones returned first, inde-
pendently of the order in which they are inserted. 

2.4.2 Priority matters: Generalize FIFO

Now the question is how we choose the priority of an element. Often, the natural
ordering given by how much time an element waits in a line can be considered the
fairest. Sometimes, however, there is something special about some elements that
might suggest they should be served sooner than others that waited longer. For
instance, you don’t always read your emails in the order you received them, but often
you skip newsletters or “funny” jokes from friends to read work-related messages first.
Likewise, in an emergency room, the next case treated is not necessarily going to be
one that has been waiting for the longest time. Rather, every case is evaluated at arrival
and assigned a priority, and the highest priority one is going to be called in when a
doctor becomes available.

 That’s the idea behind priority queues: they behave like regular, plain queues,
except that the front of the queue is dynamically determined based on some kind of
priority. The differences caused to the implementation by the introduction of priority
are profound, enough to deserve a special kind of data structure.

 But that’s not all: we can even define basic containers as bag or stack as special cases
of priority queues; appendix D explores how this is possible. This is an interesting
topic to help you gain a deeper understanding of how priority queues work, although
in practice those containers are usually implemented ad hoc, because we can achieve
better performance by leveraging their specific characteristics.

2.5 Concrete data structures
Let’s now move from abstract to concrete data structures. Knowing how the API of a pri-
ority queue works is good enough to use it, but often it is not enough to use it well. Espe-
cially on time-critical components or in data-intensive applications, we often need to
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Element Index

enqueue(2) enqueue(7)
2 3

4 2

2 1

11 0

7 4
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2 1
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dequeue()
output

Tail
Tail

Head

Tail

Head
7 3

2 2

4 1

2 0
Tail

Head
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Figure 2.2 Operations on a queue: elements are generic integers, but they could be any value here, 
because in plain queues priority is only given by the order of insertion (see appendix D). Insertion 
(enqueue) adds an element to the front of the queue. Deletion (dequeue) removes the last element 
in the queue and returns it. With some caution, both operations can be performed in constant time.
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understand the internals of the data structures and the details of its implementation to
make sure we can integrate it in our solution without introducing a bottleneck.4

 Every abstraction needs to be implemented using a concrete data structure. For
example, a stack can be implemented using a list, an array, or in theory even a heap
(although this would be silly, as will be clear in a few sections). The choice of the
underlying data structure used to implement a container will only influence the con-
tainer’s performance. Choosing the best implementation is usually a tradeoff: some
data structures speed up some operations but will make other operations slower.

2.5.1 Comparing performance

For the implementation of a priority queue, we will initially consider three naïve alter-
natives using core data structures discussed in appendix C: an unsorted array, where
we just add elements to its end; a sorted array, where we make sure the ordering is
reinstated every time we add a new element; and balanced trees, of which heaps are a
special case. Let’s compare, in table 2.2, the running times5 for basic operations
implemented with these data structures.

2.5.2 What’s the right concrete data structure?

From table 2.2 we can see that naïve choices would lead to a linear time requirement
for at least one of the core operations, while a balanced tree would always guarantee a
logarithmic worst case. Although linear time is usually regarded as “feasible,” there is
still a tremendous difference between logarithmic and linear: for a billion elements,
the difference is between 1 billion operations and a few dozens. If each operation
takes 1 millisecond, that means going from 11 days to less than a second.

4 Besides performance, there are other aspects we might need to check, depending on our context. For instance,
in a distributed environment, we must make sure our implementation is thread-safe, or we will incur race con-
ditions, the nastiest possible bugs that could afflict our applications.

5 You can find an introduction to algorithm analysis and big-O notation in appendix B.

Table 2.2 Performance for operations provided by PQs, broken bown by underlying data structure

Operation Unsorted array Sorted array Balanced tree

Insert O(1) O(n) O(log n)

Find-Minimum O(1) a O(1) O(1) a

aBy saving an extra value with the minimum and charging the cost of maintaining its value on insert
and delete.

Delete-Minimum O(n) b

bIf we use a buffer to speed up find-minimum, then we need to find the next minimum on delete.
Unfortunately, nothing comes for free. Alternatively, we could have constant-time delete by giving
up the buffer and swapping the deleted element with the last in the array, and linear time find-
minimum.

O(1) c

cStoring the array in reverse order, deleting the last element might just be a matter of shrinking
the size of the array, or somehow keeping track of what’s the last element in the array.

O(log n)
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Moreover, consider that most of the times containers, and priority queues in particular,
are used as support structures, meaning that they are part of more complex algorithms/
data structures and each cycle of the main algorithm can call operations on the PQ sev-
eral times. For example, for a sorting algorithm, this could mean going from O(n2),
which usually means unfeasible for n as large as 1 million, or even less, to O(n*log(n)),
which is still tractable for inputs of size 1 billion or more.6 However, this would come at
a cost, because the implementation of balanced binary trees is usually not trivial.

 Next, we present a way to efficiently implement a generic priority queue.

2.5.3 Heap

A binary heap is the most used version of priority queues. It allows elements to be
inserted and retrieved in either ascending or descending order, one at a time.

 While in reality an underlying array is used to store heap’s elements, it can concep-
tually be represented as a particular kind of binary tree, abiding by three invariants:

 Every node has at most two children.
 The heap tree is complete and left-adjusted. Complete (see figure 2.3) means

that if the heap has height H, every leaf node is either at level H or H-1. All the
levels are left-adjusted, which means that no right sub-tree has a height greater
than its left sibling. So, if a leaf is at the same height as an internal node,7 the
leaf can’t be on the left of that node. Invariant numbers 1 and 2 are the struc-
tural invariants for heaps.

 Every node holds the highest priority in the subtree rooted at that node.

6 Whether a problem is really tractable or not for a certain size of the input also depends on the kind of opera-
tions performed and on the time they take. But even if each operation takes as little as 1 nanosecond, if the
input has 1 million elements, a quadratic algorithm will take more than 16 minutes, while a linearithmic algo-
rithm would require less than 10 milliseconds.

7 A leaf is a tree node that doesn’t have any children. An internal node is a node that has at least one child or,
equivalently, a node that is not a leaf.

Figure 2.3 Two examples of complete binary trees. All levels in the tree have the maximum 
possible number of nodes, except (possibly) the last one. All leaves in the last level are left-
adjusted; at the previous level, no right subtree has more nodes than its left sibling.
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Properties (1) and (2) allow for the array representation of the heap. Supposing we
need to store N elements, the tree structure is directly and compactly represented
using an array of N elements, without pointers to children or parents. Figure 2.4 shows
how the tree and array representation of a heap are equivalent.

 In the array representation, if we are starting to count indices from 0, the children
of the i-th node are stored in the positions8 (2 * i) + 1 and 2 * (i + 1), while the
parent of node i is at index (i - 1) / 2 (except for the root, which has no parent).
For example, looking at figure 2.4, the node at index 1 (whose priority is 3) has two
children at indices 3 and 4, and its parent is at index 0; if we consider a node at posi-
tion 5, its parent is the element at index 2 and its children (not shown in the picture)
would be at indices 11 and 12.

 It might seem counterintuitive that we use an array to represent a tree. After all,
trees were invented to overcome array limitations. This is generally true, and trees
have a number of advantages: they are more flexible and, if balanced, allow for better
performance, with worst-case logarithmic search, insertion, and delete.

But the improvement we get with trees comes with a price, of course. First, as with any
data structure that uses pointers (lists, graphs, trees, and so on) we have a memory
overhead in comparison to arrays. While with the latter we just need to reserve space
for the data (plus maybe, depending on the implementation details, some constant
space for pointers and the node structure itself), every tree node requires extra space
for the pointers to its children and possibly to its parent.

 Without getting into too much detail, arrays also tend to be better at exploiting
memory locality: all the elements in the array are contiguous in memory, and this means
lower latency when reading them.

 Table 2.3 shows how a heap matches a priority queue for its abstract part, and what
its concrete data model and invariants are.

8 We use explicit parenthesis for the following expressions. In the rest of the book, we will generally omit redun-
dant parentheses, so that, for instance, we will write 2*i + 1.
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Array representation

Index of the 
element in
the array

Element’s
priority

Element’s
indexElement’s

priority

3 1

1 0
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Figure 2.4 A binary heap. Only priorities are 
shown for the nodes (elements are irrelevant 
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26 CHAPTER 2 Improving priority queues: d-way heaps

2.5.4 Priority, min-heap, and max-heap
When we stated the three heap’s properties, we used the wording “highest priority.” In
a heap, we can always say that the highest priority element will be at the top, without
raising any ambiguity.

 Then when it comes to practice, we will have to define what priority means, but if
we implement a general-purpose heap, we can safely parameterize it with a custom
priority function, taking an element and returning its priority. As long as our imple-
mentation abides by the three laws as stated in section 2.5.3, we will be sure our heap
works as expected.

 Sometimes, however, it’s better to have specialized implementations that leverage
the domain knowledge and avoid the overhead of a custom priority function. For
instance, if we store tasks in a heap, we can use tuples (priority, task) as elements,
and rely on the natural ordering of tuples.9

 Either way, we still need to define what highest priority means. If we assume that
highest priority means a larger number, that is, if p1 > p2 means p1 is the highest prior-
ity, then we call our heap a max-heap.

 At other times we need to return smallest numbers first, so we assume instead that
p1 > p2 means p2 is the highest priority. In this case, we are using a min-heap. In the rest
of the book, and in particular in the coding section, assume we are implementing a
max-heap.

 The implementation of a min-heap differs only slightly from a max-heap, the code
is pretty much symmetric, and you just need to exchange all occurrences of < and ≤ to
> and ≥ respectively, and swap min with max.

 Or, alternatively, it’s even easier if you have an implementation of one to get the
other by simply taking the reciprocal of priorities (either in your priority function or
when you pass priority explicitly).

Table 2.3 Underlying components for a heap

Concrete data structure: Heap

API Heap {
  top() → element
  peek()→ element
  insert(element, priority)
  remove(element)
  update(element, newPriority)
}

Contract with client The top element returned by the queue is always the element 
with highest priority currently stored in the queue.

Data model An array whose elements are the items stored in the heap.

Invariants Every element has two “children.” For the element at position i, 
its children are located at indices 2*i+1 and 2*(i+1).

Every element has higher priority than its children.

9 (a1, b1, c1,…) < (a2, b2, c2,…) if and only if a1 < a2 or (a1 == a2 and (b1, c1,…) < (b2, c2,…)).
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 To give you a concrete example, suppose you have a min-heap that you use to store
(age, task) pairs: a min-heap will return the task with smallest ages first. Because we
might instead be interested in having the oldest task returned first, we would rather
need a max-heap; it turns out we can get the same result without changing any code for
out heap! We just need to store elements as tuples (-age, task) instead. If x.age <
y.age, in fact, then -x.age > -y.age, and thus the min-heap will return first the tasks
whose age have the largest absolute value.

 For instance, if we have task A with age 2 (days) and task B with age 3, then we cre-
ate the tuples (-2, A) and (-3, B); when extracting them from a min-heap, we can
check that (-3, B) < (-2, A) and so the former will be returned before the latter.

2.5.5 Advanced variant: d-ary heap

One could think that heaps needs to be binary trees. After all, binary search trees are
the most common kind of trees, intrinsically associated with ordering. It turns out that
there is no reason to keep our branching factor10 fixed and equal to 2. On the contrary,
we can use any value greater than 2, and use the same array representation for the heap.

 For a branching factor 3, the children of the i-th node are at indices 3*i + 1, 3*i + 2
and 3*(i + 1), while the parent of node i is at position (i - 1)/3.

10The branching factor of a tree is the maximum number of children a node can have. For example, a binary
heap, which in turn is a binary tree, has a branching factor of 2. See appendix C for more details.

Figure 2.5 A three-way heap. Only priorities are shown for the nodes (values are irrelevant here). The 
smaller squares next to the elements show the indices of the heap elements in the array. Top: the tree 
representation for a min-heap. Notice how every parent is smaller than (or at most equal to) its children 
and, in turn, all elements in its subtree. Bottom: the same heap in its array representation.
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Figure 2.5 shows both the tree and array representation of a 3-ary heap. The same
idea holds for branching factors 4, 5, and so on.

 For a d-ary heap, where the branching factor is the integer D > 1, our three heap
invariants become

 Every node has at most D children.
 The heap tree is complete, with all the levels that are left-adjusted. That is, the

i-th sub-tree has a height at most equal to its siblings on its left (from 0 to i-1,
1 < i <= D). 

 Every node holds the highest priority in the subtree rooted at that node.

FUN FACT It’s worth noting that for D = 1, the heap becomes a sorted array
(or a sorted doubly linked list in its tree representation). The heap construc-
tion will be the insertion sort algorithm and requires quadratic time. Every
other operation requires linear time.

2.6 How to implement a heap
At this point we have a good idea of how a priority queue should be used and its inter-
nal representation. It’s about time we delve into the details of the implementation for
a heap.

 Before we go, let’s once again take a look at our API:

class Heap {
  top()
  peek()
  insert(element, priority)
  remove(element)
  update(element, newPriority)
}

These are just the public methods defining the API of our class. 
 But first things first. We will assume, hereafter, that we store all the (element,

priority) tuples added to the heap in an array named pairs, as shown in listing 2.1.

class DHeap
  #type Array[Pair]
  pairs 
  function DHeap(pairs=[])

This is the first time we see a code snippet in this book. It might be a good chance for
you to review appendix A, where we explain the syntax used. For instance, if we have a
variable p holding such a tuple, we embrace a specific syntax for destructured assign-
ment of its fields into two variables:

(element, priority) ← p

Listing 2.1 The DHeap class properties
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We also assume that the tuple’s fields are named, so that we can access, in turn,
p.element and p.priority, or create a tuple p with this syntax:

p ← (element=’x’, priority=1)

In many figures in this section, we will only show an element’s priorities or, to see it in
another way, we assume that elements and priorities are the same. This is just for the
sake of space and clarity in diagrams, but it also highlights an important characteristic
of heaps: in all their methods, we only need to access and move priorities. This can be
important when elements are large objects, especially if they are so large that they won’t
fit in cache/memory or for any reason they are stored on disk; then the concrete imple-
mentation can just store and access a reference to the elements and its priority.

 Now, before delving into the API methods, we need to define two helper functions
that will be used to reinstate the heap properties whenever a change is performed.
The possible changes for a heap are

 Adding a new element to the heap
 Removing the top element of the heap
 Updating an element’s priority

Any of these operations can cause a heap element to have higher priority than its par-
ent or a lower priority than (one of) its children.

2.6.1 BubbleUp

When an element has a higher priority than its parent, it is necessary to call the bubbleUp
method, as shown in listing 2.2. Figure 2.6 shows an example based on our task man-
agement tool: the priority of the element at index 7 is higher than its parent (at index
2) and thus these two elements need to be swapped.

function bubbleUp(pairs, index=|pairs|-1)
  parentIndex ← index                    
  while parentIndex > 0 do
    currentIndex ← parentIndex
    parentIndex ← getParentIndex(parentIndex) 
    if pairs[parentIndex].priority < pairs[currentIndex].priority then    
      swap(pairs, currentIndex, parentIndex)           
    else                   
      break

Listing 2.2 The bubbleUp method

We explicitly pass the array with all pairs and the 
index (by default the last element) as arguments. 
In this context, |A| means the size of an array A.

Start from the element at the index passed as 
argument (by default the last element of A).

Check if 
the current 
element is 
already at 
the root of 
the heap. If 
so, we are 
finished.

Compute the index of the parent of current 
element in the heap. The formula can vary 
with the type of implementation. For a heap 
with branching factor D and array’s indices 
starting at zero, it’s (parentIndex-1)/D.

If the parent has
 lower priority than the

current element p . . .
. . . then swaps

parent and children.
Otherwise, we are sure

that heap’s properties are
reinstated, and we can exit

the loop and return.
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As listing 2.2 shows, we keep swapping elements until either current element gets
assigned to the root (line #3), or its priority is lower than its next ancestor (line #6-#9).
This means that each call to this method can involve at most logD(n) comparisons and
exchanges, because it’s upper-bounded by the height of the heap.

Remember we are implementing a max-heap, so higher numbers mean higher prior-
ity. Then, as shown in figure 2.6 (A), the element at index [7] is out of place, because
its parent, “Optional form field blocked . . . ” at index [2], has priority 8 < 9.

 At this point, to fix things we need to call bubbleUp(pairs, 7). We enter the loop
at line #3, because parentIndex is 7 > 0, compute the new parent’s index, which is 2,
and hence the condition at line #6 is also true, so at line #7 the two elements will be
swapped. After the update, the heap’s array will look like figure 2.6 (B).

 At the next iteration of the loop (parentIndex is still 2 > 0, so the loop will be
entered at least once more), the new values for currentIndex and parentIndex will
evaluate, at lines #4-5, to 2 and 0, respectively.

 Since elements’ priorities are now, in turn, 9 and 10 for child and parent, the con-
dition at line #6 is not met anymore, and the function will break out of the loop and
return.
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Figure 2.6 The bubbleUp method in action on a ternary max-heap. (A) The element at index 7 has a higher 
priority (9) than its parent (whose priority is 8). (B) We swap element at index 7 with its parent at index 2. 
The element now at index 7 has certainly found its final position, while the one bubbled up needs to be 
compared to its new parent. In this case, the root has a higher priority, so bubbling up stops.
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Notice that this method, if the height of the tree is H, requires at most H swaps, because
each time we swap two elements, we move one level up in the tree, toward its root.
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Figure 2.7 Bubbling up of an element in a max-heap, using the method that reduces the number of 
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 This result is an important result, as we will see in section 2.7. Because heaps are
balanced binary trees, their height is logarithmic in the number of elements.

 But we can add a further improvement with just a small change. If you notice, we
are repeatedly swapping the same element with its current parent; this element, the
one on which bubbleUp is initially called, keeps moving toward the root. You can see
in figure 2.6 that it “bubbles up,” like a soap bubble floating toward the top of the
heap. Each swap requires three assignments (and the use of a temporary variable), so
the naïve implementation in listing 2.2 would require (at most) 3*H assignments.

 While both indices, the current and the parent node’s, change at each iteration,
the value of the current element is always the same.

 Figure 2.7 highlights the path that such an element has to travel. In the worst case
it travels up to the root, as shown in the picture, but possibly bubbling up could stop at
an intermediate node. It turns out that bubbling up an element in the path P to the
heap’s root is equivalent to inserting that element in the (sub)array obtained by only
considering those elements in P (see figure 2.7 (B)).

 Referring to figure 2.7, the first action needed is saving to a temporary variable the
element X that will move up (step 1). Then, starting with its parent, we compare all
elements in the path to the temporary variable and copy them over in case they have
lower priority (steps 1–3). At each time, we copy the parent element over its one child
that is on the path P. It’s like we filter out all the elements in the heap’s array that are
not part of P: this is highlighted in 2.7 (C).

 Finally, when we find an element Y along P that has higher priority than our tem-
porary, we can copy element X from the temporary variable to the one child of Y that
belongs to P (step 4).

 Now, this can be done efficiently, in the same way each iteration of the insertion
sort algorithm works. We initially save in a temporary variable a copy of the element to
bubble up (call it X), and then check the elements on its left in the array. We “move”
the elements to their right (check figure 2.7 (C)) by copying them to the next posi-
tion on their left, until we find an element with a priority higher than X’s. This can be
done with just (at most) H+1 assignments for a path of length H, thus saving about 66%
of the assignments.

 Listing 2.3 shows the improved version of the bubbleUp method. Notice how, at
some point, there will momentarily be two copies of the element originally at index
[3] (and later, of the element at index [1]). This is because rather than actually swap-
ping elements, we can just overwrite the current element with its parent at each itera-
tion (line #6) and write the element bubbling up just once at the end as the last action
in the method. This works because bubbling up an element is conceptually equivalent
to the inner loop of insertion sort, where we are looking for the right position to insert
the current element into the path connecting it to heap’s root.
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function bubbleUp(pairs, index=|pairs|-1)
  current ← pairs[index]     
  while index > 0 do                  
    parentIndex ← getParentIndex(index)  
    if pairs[parentIndex].priority < current.priority then 
      pairs[index] ← pairs[parentIndex]       
      index ← parentIndex
    else              
      break
  pairs[index] ← current

2.6.2 PushDown

The pushDown method handles the symmetric case where we need to move an element
down toward the leaves of the heap, because it might be larger than (at least) one of
its children. An implementation is shown in listing 2.4.

 There are two differences with the “bubble up” case:

 The triggering condition—In this case, the altered node doesn’t violate invariant 3
with respect to its parent but might violate it when compared to its children.
This would happen, for instance, when the root is extracted from the heap and
replaced with the last leaf in the array, or when a node priority is changed by
assigning it a lower priority.

 The algorithm—For every level the element we are pushing down goes through,
we need to find its highest-priority child, in order to find where the element
could land without violating any property.

function pushDown(pairs, index=0)
 currentIndex ← index 
  while currentIndex < firstLeafIndex(pairs) do 
    (child, childIndex) ← highestPriorityChild(currentIndex)  
    if child.priority > pairs[currentIndex].priority then 
      swap(pairs, currentIndex, childIndex)  

Listing 2.3 An optimization of the bubbleUp method

Listing 2.4 The pushDown method

We explicitly pass the array with all pairs 
and the index (by default the last element) 
as arguments.

Starts from the element at the index passed as 
argument (by default the last element of A)

Checks if 
the current 
element is 
already at 
the root of 
the heap. If 
so, we are 
finished.

Computes the index of the parent of current 
element in the heap. The formula can vary with 
the type of implementation. For a heap with 
branching factor D and array’s indices starting 
at zero, it’s (parentIndex-1) / D.

If the parent has 
lower priority than the 
current element . . .

. . . then moves the parent one 
position down (implicitly the 
current element goes one up).

Updates the index of the 
current element for next 
iteration

Otherwise, we have found the 
right place for current, and we 
can exit the loop.

At this point, index is the
right position for current.

Starts at the index passed as argument (by 
default at the first element of the array A)

Leaves have no children, so can’t be
pushed down anymore. firstLeafIndex

returns the index of the first leaf in the
heap. If D is the branching factor, and

array’s indices starting at zero, then it’s
(|pairs| - 2) / D + 1.

We need to identify the
 current node’s children with the

highest priority, because that will be
the only element that is safe to move
up without breaking heap properties.

If the highest priority child 
has higher priority than the 
current element p . . . 

. . . then swaps the current
element with the one among its

children with highest priority.
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      currentIndex ← childIndex
    else                        
      break

This method’s running time, while asymptotically equivalent to bubbleUp’s, requires a
slightly larger number of comparisons. In the worst case, D * logD(n), for a heap with
branching factor D and containing n elements. This is also the reason why increasing
the branching factor (the max number of children for each node) indefinitely is not a
good idea: we’ll see this in section 2.10.

To stick to our tasks example, let’s consider the case where the root’s priority is lower
than its children, shown in figure 2.8. Working on a ternary Heap, its first leaf is stored
at index 4.

 We call pushDown(pairs, 0) to fix the third heap’s property; helper function first-
LeafIndex at line #3 will return 3 (because the element at index [7], the last one in the
array, is a child of the node at index [2], which is the last internal node), and so we will
enter the loop.

 The children of element [0] are at positions [1], [2], and [3], and among them we’ll
choose the highest priority child of the root, at line #4. It turns out to be the element

Otherwise, the heap properties have 
been reinstated, and we can break out 
and exit the function.
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Figure 2.8 An example of applying the pushDown method to the root of a ternary heap. (A) The root of the 
tree violates heap’s properties, being smaller than one of its children. The algorithm finds the child with the 
highest priority, and then compares it to current node (the root, in this example). (B) We swapped the root 
with its highest-priority children: the node at index 1. Now, in turn, we compare the updated child with its 
children: since none of them has a higher priority than current node, we can stop.
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<Unencrypted password on DB, 10>. Its priority is higher than current element’s, so
at line #6 we will swap it with current element.

 Overall, after one iteration of the while loop, we have the situation illustrated by
sub-figure 2.8.B, and currentIndex is set to 1.

 Therefore, when we enter the loop for the second time, at line #3 currentIndex
evaluates to 1, which is still less than 3, the index of the first leaf. The children of the
element at index [1] are at indices [4], [5], and [6]. Among those elements we look
for the node with highest priority among the current node’s children, at line #4 in list-
ing 2.4; it turns out it is the element at index [4], <Page loads take 2+ seconds, 7>.

 Therefore, at line #5, we find out that this time, all children’s priorities are lower than
the current element’s, and we break out of the loop and return without any further change.

 Similar to bubbleUp, pushDown can be improved by simply keeping the current ele-
ment in a temporary variable and avoiding swaps at each iteration.

 Listing 2.5 shows the final improved version of the method. We encourage the
reader to work our example out line by line, similar to what we have done in the previ-
ous section for bubbleUp, to have a better grasp of how it works.

function pushDown(pairs, index=0)
  current ← pairs[index]     
  while index < firstLeafIndex(pairs) do  
       (child, childIndex) ← highestPriorityChild(index)
    if child.priority > current.priority then 
      pairs[index] ← pairs[childIndex]
      index ← childIndex
    else            
      break
  pairs[index] ← current  

Now that we have defined all the helper methods we need, we can finally implement
the API methods. As a spoiler, you will notice how all the logic about priority and max-
heap vs min-heap is encapsulated into bubbleUp and pushDown, so by defining these
two helper methods, we greatly simplify our life whenever it comes to adapting our
code to different situations.

2.6.3 Insert
Let’s start with insertion. Listing 2.6 describes the pseudocode for inserting a new
(element, priority) pair into a heap. 

 As mentioned at the end of the previous section, the insert method can be writ-
ten by leveraging our helper methods, and as such its code is valid independent of
whether we use a min-heap or a max-heap and of the definition of priority.

Listing 2.5 Optimizing the pushDown method

Starts at the index passed as argument (by 
default at the first element of the array A) Leaves have no children, so they 

can’t be pushed down anymore. 
firstLeafIndex returns the 
index of the first leaf in the heap.

We need to identify among 
the current node’s children 
the one with the highest 
priority, because that will 
be the only element that is 
safe to move up without 
breaking heap properties.

If the 
highest 
priority 
child has 
higher 
priority than 
the current 
element . . . 

. . . then moves 
that child one 
position up 
(implicitly 
current goes 
one down).

Otherwise, we have 
found the right place for 
the current element.

Arrived at this line, index is
the right position for current.
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function insert(element, priority)
  p ← Pair(element, priority)     
  pairs.append(p)                
  bubbleUp(pairs, |pairs| – 1) 

The first two steps in listing 2.6 are self-explanatory: we are just performing some
maintenance on our data model, creating a pair from the two arguments and append-
ing it to the tail of our array. Depending on the programming language and the type
of container used for pairs, we might have to manually resize it (statically dimen-
sioned arrays) or just add the element (dynamic arrays or lists).11

 The last step is needed because the new pair might violate the heap’s properties we
defined in section 2.5.3. In particular, its priority could be higher than its parent’s. To
reinstate heap properties, we then need to “bubble it up” toward the root of the heap,
until we find the right spot in the tree structure.

 Insert operations, just like delete or update, or even heap’s construction, will have
to make sure the heaps properties holds on completion.

 Because of the compact array implementation there will be no pointers to redirect,
and the structure will be guaranteed to be consistent with properties 1 (by construc-
tion) and 2 (unless you have bugs in your code, of course).

 So, we have to guarantee property 3, or in other words that each node is larger (for
a max-heap) than each one of its D children. To do so, as we mentioned in previous sec-
tions, we might have to push it down (on deletes, and possibly updates), or bubble it up
toward the root (on insert, and updates as well), whenever heap invariants are violated.

Listing 2.6 The insert method

11As we explain in appendix C, this doesn’t change the asymptotic analysis, because it can be proven that insert-
ing n elements in a dynamic array requires at most 2n assignments, so each insertion requires an amortized con-
stant time.

Creates a new pair holding 
our new element and priority

Adds the newly created pair at the end 
of our heap’s array, incrementing the 
array’s sizeAfter adding the new element, we need to make 

sure that the heap’s properties are reinstated.

What’s the running time for insertion?
How many swaps will we need to perform in order to reinstate the heap properties?
That depends on the concrete case, but since we move one level up at each swap,
it can’t be more than the heap’s height. And since a heap is a balanced complete
tree, that means no more than logD(n) swaps for a D-way heap with n elements.

The caveat here is that in any concrete implementation we need to expand the array
beyond its current size. If we use a fixed-size static array, we will need to allocate it
when the heap is created and set the max number of elements it can hold. In this
case, however, the method is logarithmic in the worst case.

If we use a dynamic array, then the logarithmic bound becomes amortized and not
worst-case, because we will periodically need to resize the array (see appendix C to
check out more on dynamic arrays performance).
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If we go back to our task management example, we can see how insert works on a ter-
nary max-heap. Suppose we have the initial state shown in figure 2.9 (A), describing
the heap right after a call to insert(“Add exception for Superbowl”, 9.5) to add
a particularly urgent task that marketing is pushing to have fixed by the end of the
day. (And yes, they do cheat using fractional numbers for priority! But that’s probably
not the first time you’ve seen someone changing requirements after you’ve pulled up
a lot of work, is it?). After executing line #3 in listing 2.6, in fact, the list would be in
this intermediate state (where heap properties are still violated).

 Line #4 is then executed to reinstate heap property number 3, as we saw in section
2.6.2, and the final result is shown in figure 2.9 (B). Notice the order in which the
children of the root appear in the array: siblings are not ordered, and in fact a heap
doesn’t keep a total ordering on its elements like a BST would. 

2.6.4 Top
Now that we have seen how to insert a new element, let’s define the top method that
will extract the heap’s root and return it to the caller.

 Figure 2.10 shows an example of a max-heap, highlighting the steps that are per-
formed in listing 2.7. 
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Figure 2.9 Adding a new element to a ternary max-heap. (A) The initial state of the heap; we first add the new 
element, with priority 9.5 at the end of the heap’s array. (B) Then we bubble it up until we find the right spot 
for it; that is, the first spot where it does not violate the heap’s properties.
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The first thing we do is check that the heap is not empty. If it is, we certainly can’t
extract the top element, so we need to issue an error.

 The idea is that since we will remove the root of the heap, and by doing so we leave
a “hole” in the array, we need to replace it with another element.

 We could “promote” one of its children as the new root, as shown in listing 2.7.
(One of them will certainly be the next-highest priority element; try to prove it as an
exercise.)
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Figure 2.10 Removing the top element from a binary heap. (A) From a valid ternary heap, we remove the root 
of the heap (storing it in a temporary location, in order to return it at the end). (B) We replace the old root with 
the last element in the array (which is also removed from its tail). The new root might violate heap’s properties 
(and it does, in this example), so we need to push it down, comparing it to its children to check that the heap’s 
properties are not violated. (C) We move the new root down toward the heap’s leaves, until we find a valid 
spot for it (that is, the first one that does not violate the heap’s properties).
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function top()
  if pairs.isEmpty() then error() 
  p ← pairs.removeLast()       
  if pairs.isEmpty() then     
    return p.element
  else  
   (element, priority) ← pairs[0] 
    pairs[0] ← p        
    pushDown(pairs, 0)        
    return element

However, we would then only move the problem to the subtree rooted at this node
that we moved to the root, and then to the next level, and so on.

 Instead, since we also have to shrink the array, and since it’s easier to add or
remove the array’s elements from its tail, we can simply pop the last element in the
array and use it to replace the root.

 The caveat is that this new root might violate heap’s properties. As a matter of fact,
being a leaf, the probability is pretty high that there is a violation. Therefore, we need
to reinstate them using a utility method, pushDown.

Back to our task management example. Let’s see what happens when calling top() on
the ternary heap shown at the end of figure 2.9 (B).

 First, at line #3 we remove the last element of the heap, at index [8], and save it to
a temporary variable; at line #4 we check whether the remaining array is empty. If that
had been the case, the last element in the array would also have been the top of the
heap (its only element!) and we could have just returned it.

 But this is clearly not the case in this example, so we move on to line #7, where we
store the first element of the heap, <Unencrypted password on DB, 10>, to a tempo-
rary variable, which will be returned by the method. At this point, we can imagine
the heap to be like what’s shown in figure 2.10 (A), three disconnected branches
without a root. To sew them together, we add a new root, using the element we had

Listing 2.7 The top method

We need to check that the heap is not empty. 
Otherwise, we throw an error (or return null).

Remove the last element in the pairs array 
and store it in a temporary variable.

Now check again whether there are more 
elements left; if not, just return p.

Otherwise we store the top pair (the first in 
the pairs array) in temporary variables . . . 

. . . and overwrite the first pair in the 
array with the previously saved p.

The last element was a leaf, so it likely had a low priority. Now that 
it sits at the root, it might violate the heap properties, so we need 
to move it towards the leaves, until both its children have a lower 
priority than it.

Running time for top()
Similar to what happens for insertion, the nature of the heap and the fact that we
move one step toward the leaves at every swap guarantee that no more than a loga-
rithmic number of swaps is required, in the worst case. 

In this case as well, concrete implementations have to deal with array sizing, and we
can only guarantee an amortized logarithmic upper bound (if we need a worst-case
logarithmic bound, we need to use static arrays with all the disadvantages they carry).



40 CHAPTER 2 Improving priority queues: d-way heaps

saved at line #3, the one entry that used to be the last in the array, at index [8]. Fig-
ure 2.10 (B) shows the situation at this point.

 This new root, however, is violating heap’s properties, so we need to call pushDown
at line #8 to reinstate them by swapping it with its second children, whose priority is 9.5,
and producing the heap shown in figure 2.10 (C); the pushDown method will handle
this phase, stopping when the right position for element <Memory Leak, 9> is found.

 To conclude this sub-section, it’s worth noting that the peek method returns the
top element in the heap, but it just returns it without any side effects on the data struc-
ture. Its logic is therefore trivial, so we will skip its implementation.

2.6.5 Update

This is arguably the most interesting of heap’s public methods, even if it’s not always
directly provided in implementations.12

 When we change an element, its priority could stay unchanged, and in that case,
we don’t need any further action. See listing 2.8. But it could also become lower or
higher. If an element’s priority becomes higher, we need to check that it doesn’t vio-
late the third invariant for its parents; if it becomes lower, it could violate the same
invariant for its children.

function update(oldValue, newPriority)
  index ← pairs.find(oldValue)    
  if index ≥ 0 then                 
    oldPriority ← pairs[index].priority
    pairs[index] ← Pair(oldValue, newPriority)
    if (newPriority < oldPriority) then  
      bubbleUp(pairs, index)       
    elsif (newPriority > oldPriority) then        
      pushDown(pairs, index)                      

In the former situation, we need to bubble up the modified element until we find a
higher-priority ancestor or until we reach the root. In the latter, we instead push it
down until all its children are lower priority, or we reach a leaf.

 As we saw, the first case can always be implemented more efficiently13 and luckily
for us, most algorithms only require us to reduce elements’ priority.

12For instance, in Java’s PriorityQueue, a class provided in standard library, you need to remove an element
and then insert the new one to perform the same operation. This is far from ideal, especially because the
removal of a random element is implemented inefficiently, requiring linear time.

Listing 2.8 The update method

13Using Fibonacci heaps, it could be implemented even in amortized constant time, at least in theory.

Get the position of the element to update. Check whether the element is actually 
stored in the heap, and update it with 
the new value/priority.

Check whether the new priority 
is higher than the old one.

If so,
bubble
up the

element
towards

the root.

Otherwise, push it down 
toward the leaves.
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2.6.6 Dealing with duplicates

So far, we’ve also assumed that our heap doesn’t hold duplicates. We will have to
tackle further challenges if this assumption doesn’t hold true. In particular, we will
need to figure out the order we use in case there are duplicates. To show why this is
important, we will abandon our example for an easier configuration, illustrated in fig-
ure 2.11. For the sake of space we will only show priorities in nodes.

We could have two duplicates—call them X and Y—one being the child of the other.
Let’s consider the case where X is a child of Y, and we call update to change their prior-
ity to a higher one. Inside update, after updating the two elements’ priorities, there
would have to be two calls to bubbleUp, one for X, and one for Y. The catch is that if
we run them in the wrong order, we will end with an inconsistent heap, which violates
the heap’s properties.

 Suppose we bubble up X, the children, first: then it will immediately find its parent
(which is Y) and stop (because it has the same value). When we call bubbleUp(Y), we
will discover that its parent now has lower priority, so we do need to move it toward
the root. Unfortunately, we will never check X again, so it will never be moved up
together with Y and heap’s property won’t be correctly reinstated.

Running time for update
From a performance point of view, the challenge of this method is in line #2: the
search for the old element can take linear time in the worst case, because on a failed
search (when the element is not actually in the heap), we will have to search the
whole heap.

To improve this worst-case scenario, it is possible to use auxiliary data structures
that will help us in performing searches more efficiently. For instance, we can store
a map associating each element in the heap with its index. If implemented with a hash
table, the lookup would only need an amortized O(1) time.

We will see this in further detail when describing the contains method. For now, let’s
just remember that if the find operation takes at most logarithmic time, the whole
method is also logarithmic.
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Figure 2.11 Updating an element in a binary max-heap with duplicates.
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 Figure 2.11 provides a step-by-step description of how the update method could
violate heap’s constraints if it’s not implemented in such a way to avoid duplicates:

 In step 1, we can see the initial max-heap.
 In step 2, all occurrences are changed from 4 to 8.
 In step 3, you see bubbling up the deepest node updated at index 3. It will stop

immediately because its parent has the same priority (it just updated together
with current node). The nodes involved in the call to bubbleUp are highlighted
with a red outline.

 In step 4, you see bubbling up the other node that was updated at index 1. This
time some swaps are actually performed as the node’s new priority, 8, is higher
than its parent’s (just 7). The node that was bubbled up first, at step 3, will
never be updated again, and so the heap’s properties will be violated.

How can we solve this issue? Following a left-to-right order for the calls to bubbleUp
will guarantee that the heap properties are properly reinstated.

 As an alternative, we could change the conditions in bubbleUp and pushDown, and
only stop when we find a strictly higher-priority parent and strictly lower-priority chil-
dren, respectively. Yet another alternative could be bubbling up (or pushing down)
the nodes as we update them. Both these solutions, however, would be far from ideal
for many reasons, not least performance-wise, because they would require a larger
bound for the worst-case number of swaps (the proof is easy enough if you count the
worst-case possible number of swaps in a path where all elements are the same—
details are left to the reader).

2.6.7 Heapify

Priority queues can be created empty, but they are also often initialized with a set of
elements. If that’s the case, and if we need to initialize the heap with n elements, we
can still obviously create an empty heap and add those elements one by one.

 To do so, we will need at most O(n) time to allocate the heap array, and then repeat
n insertions. Every insertion is logarithmic, so we have an upper bound of O(n log n).

 Is this the best we can do? Turns out that we can do better. Suppose that we initial-
ize the heap with the whole sets of n elements, in any order.

 As we have seen, each position of the array can be seen as the root of a sub-heap.
So, leaves, for example, are trivial sub-heaps, containing only one element. Being sin-
gletons, they are valid heaps. 

 How many leaves are there in a heap? That depends on the branching factor. In a
binary heap, half the nodes are leaves. In a 4-way heap, the last three-fourths of the
array contain leaves.

 Let’s stick to the case of a binary heap, for the sake of simplicity. We can see an example
of a min-heap in figure 2.12, where we can follow step by step how heapify works.

 If we start at the last internal node for the heap—let’s call it X—it will have at most
two children, both leaves, and hence both valid heaps.
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We can’t say yet if X is the root of a valid heap, but we can try to push it down and pos-
sibly swap it with the smallest of its children. Once we have done that, we are sure that
the sub-heap rooted at X is a valid heap. This happens because pushDown, by construc-
tion, reinstates the heap properties on a sub-heap where all children are valid heaps,
and only the root might be misplaced.

 If we now move one position left in the array, we can repeat the procedure, and
get another valid sub-heap. Continuing on, at some point we visit all internal nodes
that only have leaves as their children. And after that, we’ll start with the first inter-
nal node that’s the root of a sub-heap with height 2. Let’s name it Y. If we tackle ele-
ments in a right-to-left order in the array, we have the guarantee that Y’s children are
sub-heaps that

 Have at most height 1 and 
 Whose properties have already been fixed

Once again, we can use pushDown and be sure the sub-heap rooted at Y will be a valid
heap afterward.

 If we repeat these steps for all nodes until we reach the root of our heap, we have
the guarantee that we will end up with a valid heap, as shown in listing 2.9.
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Figure 2.12 Heapification of a small array. The boxes with rounded corners surround valid sub-heaps; 
that is, portions of the tree for which we have verified that they abide by the heap properties. Step 1: 
Initially, only leaves are valid min-heap; here, smaller numbers mean higher priority. Step 2: The element 
from which we start our iteration is the first internal node in the heap, at index 2 in our array. In the 
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Step 4: Finally, the whole array is heapified, by pushing down the temporary root (with priority 5) until 
we find its right place.
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function heapify(pairs)
  for index in {(|pairs|-1)/D .. 0} do 
    pushDown(pairs, index)                  

We leave the computation for a d-ary heap as an exercise. It is similar to the previous
one, replacing the branching factor.

2.6.8 Beyond API methods: Contains
One thing that heaps are definitely not good for is checking whether or not an ele-
ment is stored in them. We have no other choice than going through all the elements
until we find the one we were looking for, or we get to the end of the array. This
means a linear time algorithm. Compare it with a hash table’s optimal average con-
stant time, or even O(log(n)) for binary search trees (average) or balanced binary
search trees (worst case).

Listing 2.9 The heapify method

We start at the first internal node of the heap (D is 
the branching factor) and iterate until the root.

Ensures the sub-heap 
rooted at index is a 
valid heap

Running time for heapify
In total, in a binary heap, we will call pushDown n/2 times, with an initial estimate of
the upper bound of O(n*log(n)).

However, notice that the sub-heaps that only have leaves as children have a height
equal to 1, so they only need at most one swap to be fixed. And there is n/2 of them.
Likewise, sub-heaps with height 2 only need at most two swaps, and we have n/4 of
them.

Going up toward the root, the number of swaps increases but the number of calls to
pushDown decreases at the same rate. Finally, we’ll have only two calls for pushDown
that requires at most log2(n)–1 swaps, and only one call, the one on the root, that
requires log2(n) swaps in the worst case. 

Putting all these together, we see that the total number of swaps is given by

Since the last summation is limited by geometric series with seed 2, we have

and therefore, the total number of swaps is linear in the worst case (at most 2n).

So, our final analysis is that heapify’s complexity is O(n).
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 However, we also would like to support priority increment/decrement. As we saw
in section 2.6.5, it’s paramount for these operations to efficiently retrieve the element
whose priority needs to be changed. Therefore, when implementing heaps, we might
add an auxiliary field, a HashMap from elements to positions, that allows us to check
whether an element is in the heap (or get its position) in constant time, on average.
See a possible implementation of contains in listing 2.10.

function contains(elem) 
  index ← elementToIndex[elem]
  return index >= 0

The function uses an extra field elementToIndex we can add to our heap. This is pos-
sible under two assumptions:

 That elementToIndex[elem] by default returns -1 if elem is not stored in the
heap.

 That we don’t allow duplicate keys in the heap; otherwise, we will need to store
a list of indices for each key.

2.6.9 Performance recap

With the description of the contains method, we have concluded our overview of this
data structure. 

 We have presented several operations on heaps, so it feels like the right time to
order and recap their running time (table 2.4), and as importantly, show the amount
of extra memory they need.

Listing 2.10 The contains method

Table 2.4 Operations provided by heaps, and their cost on a heap with n elements

Operation Running time Extra space

Insert O(log(n)) O(1)

Top O(log(n)) O(1)

Remove O(log(n))a O(n)a

Peek O(1) O(1)

Contains (naïve) O(n) O(1)

Contains O(1)a

aUsing the advanced version of contains and maintaining an extra map from elements to
indices

O(n)a

UpdatePriority O(log(n))a O(n)a

Heapify O(n) O(1)
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As with most things in computer science, time versus space is often a tradeoff. Never-
theless, sometimes there is a tendency to neglect the extra memory factor in informal
analysis. With the volumes we’ve operated since the dawn of the era of big data, how-
ever, our data structures need to hold and process billions of elements, or even more.
Therefore, a fast algorithm that consumes quadratic space could be the best choice
for small volumes of data, but it becomes impractical for some real case scenarios
where you need to scale out. And so a slower algorithm using constant or logarithmic
space could be the choice of election as our dataset grows.

 The takeaway is that it’s even more important to take the memory factor into
account as early as possible when we design a system that needs to scale.

 For heaps, consider that we naturally need constant extra space per element, and
linear extra space in total, to host a map from elements to indices.

 We have closely examined all operations. Yet, it’s worth spending a few more words
on a couple of things.

 For insert and top, the running time guarantee is amortized, not worst case. If a
dynamic array is used to provide a flexible size, some calls will require linear time to
resize the array. It can be proven that to fill a dynamic array with n elements, at most 2n
swaps are needed. However, the worst-case logarithmic guarantee can be offered only
if the heap size is set from the beginning. For this reason, and for allocation/garbage
collection efficiency, in some languages (for instance, Java), it is advisable to initialize
your heaps to their expected size, if you have a reasonable estimate that will remain true
for most of the container’s life.

 The performance for remove and updatePriority relies on the efficient imple-
mentation of contains, in order to provide a logarithmic guarantee. To have efficient
search, however, we need to keep a second data structure besides the array for fast
indirection. The choice is between a hash table or a bloom filter (see chapter 4).

 In case either is used, the running time for contains is assumed to be constant,
with a caveat: the hash for each element needs to be computable in constant time.
Otherwise, we will need to take that cost into account in our analysis.

2.6.10 From pseudo-code to implementation
We have seen how a d-way heap works in a language-agnostic way. Pseudo-code pro-
vides a good way to outline and explain a data structure, without worrying about the
implementation details so you can focus on its behavior. 

 At the same time, however, pseudo-code is of little practical use. To be able to
move from theory to practice, we need to choose a programming language and imple-
ment our d-way heap. Independently of what platform we choose, language-specific
concerns will arise and different problematics need to be taken into consideration.

 We’ll provide implementations of the algorithms in this book, in an effort to give
readers a way to experiment and get their hands dirty with these data structures.

 The full code, including tests, can be found in our book’s repo on GitHub.14

14See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#d-ary-heap.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#d-ary-heap


47Use case: Find the k largest elements

2.7 Use case: Find the k largest elements
In this section we are going to describe how we can use a priority queue to keep track
of the k largest elements of a set.

 If we have the full set of n elements in advance, we have a few alternatives that
don’t need any auxiliary data structure:

 We could sort the input and take the last k elements. This naïve approach
requires O(n*log(n)) comparisons and swaps and, depending on the algo-
rithm, might require additional memory.

 We could find the largest element from the set and move it to the end of the
array, then look at the remaining n-1 elements and find the second to last and
move it to position n-2, and so on. Basically, this algorithm runs the inner cycle
of Selection Sort algorithm k times, requiring O(k) swaps and O(n*k) com-
parisons. No additional memory would be needed.

In this section we will see that by using a heap, we can achieve our goal using
O(n+k*log(k)) comparisons and swaps, and O(k) extra memory. This is a game-
changing improvement if k is much smaller than n. In a typical situation, n could be
on the order of millions or billions of elements, and k between a hundred and a few
thousand.

 Moreover, by using an auxiliary heap, the algorithm can naturally be adapted to
work on dynamic streams of data and also to allow consuming elements from the
heap.

2.7.1 The right data structure . . .

When your problem involves finding a subset of largest/smallest elements, priority
queues seem like a natural solution.

 In programming, choosing the right data structure can make a difference.15 That’s
not always enough, because you also need to use it correctly.

 Suppose, for instance, that we have a static set of elements available from the
beginning. We could use a max-heap, insert all n elements, and then extract the larg-
est k of them.

 We would need O(n) extra space for the heap, and then use heapify to create it
from the full set in linear time, O(n). Then we would call top k times, with a cost of
O(log(n)) for each call. The total cost for this solution would be O(n+k*log(n)) com-
parisons and swaps.

 That’s already better than the naïve solutions, but, if you think about it, if16 n>>k,
we are creating a huge heap just to extract a few elements. That certainly sounds
wasteful.

15Usually, though, the greatest concern is to avoid choosing the wrong data structure.
16n>>k is normally interpreted as “n is much larger than k.”
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2.7.2  . . . and the right use
So our goal should be having a small heap with k elements. Using a max-heap doesn’t
really work anymore. Let’s see why with an example.

 Suppose we want to find the largest three of the following numbers: 2, 4, 1, 3, 7, 6.
We add the first three and we have the following max-heap: [4, 2, 1]. Now we proceed
to the next number in the list, and it’s 3. It’s larger than two out of three elements cur-
rently in the heap, but we have no way of knowing this, because we can only peek at
the top of the heap. Then we can insert 3 into the heap, and we obtain [4, 3, 1, 2].
Now, if we want to keep the size of the heap at k elements, we need to remove one,
which is the minimum. How do we know where it is inside the heap? We only know
where the maximum is (at the top of the max-heap), and so the search for the min
could take up to linear time (even noting that the minimum will be in one of the
leaves, there are unfortunately a linear number of them, n/D).

 You can verify that even by inserting the elements in a different order, we often
find a similar situation.

 The catch is that when we want the k largest elements, at each step we are inter-
ested in understanding if the next number we evaluate is larger than the smallest of
the k elements we already have. Hence, rather than a max-heap, we can use a min-
heap bound to k elements where we store the largest elements found so far.

 For each new element, we compare it to the top of the heap, and if the new one is
smaller, we are sure it’s not one of the k largest elements. If our new element is larger
than the heap’s top (that is, the smallest of our k elements), then we extract the top from
the heap and then add our newly arrived. This way, updating the heap at each iteration
costs us only constant time,17 instead of the linear time bound if we used a max-heap.

2.7.3 Coding it up
That’s neat, right? And simple to implement. Since code is worth a thousand words,
let’s see our heap in action in listing 2.11.

function topK(A, k)
heap ← DWayHeap()  
for el in A do                     
  if (heap.size == k and heap.peek() < el) then   
    heap.top()    
  if (heap.size < k) then   
    heap.insert(el)       
return heap                                

17O(log(k)) to be precise, but since k in this context is a constant (much smaller than, and not depending on
n), then O(log(k))==O(1).

Listing 2.11 Top k elements of a list

Creates an 
empty min-heap

Iterates through the 
elements in the array A

If we have already added at least k 
elements, check if the current element 
is larger than the top of the heap.

In that case, we can safely remove and discard the 
heap’s top, because it won’t be among the k largest 
elements. After this, the heap will have k-1 elements.

If, at this check, the heap size is less than k . . . 

. . . we must add the current element.

Returns the heap with the largest k elements. We might as 
well use heapsort to return the elements in the right order, 
at a small additional cost.
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2.8 More use cases
The heap is one of the most universally used data structures. Together with stack and
queue, it is the basis of almost every algorithm that needs to process the input in a spe-
cific order.

 Replacing a binary heap with a d-ary heap can improve virtually any piece of code
that uses a priority queue. Before delving into a few algorithms that can benefit from
the use of a heap, make sure you are familiar with graphs, because most of these algo-
rithms will concern this data structure. To that end, chapter 14 provides a quick intro-
duction to graphs.

 Let’s now discuss some algorithms that can benefit from the use of a heap.

2.8.1 Minimum distance in graphs: Dijkstra

Priority queues are crucial to implementing Dijkstra
and A* algorithms, described in detail in chapter 14,
sections 14.4 and 14.5. Figure 2.13 shows a minimal
example of a graph, illustrating the concept of shortest
path between two vertices. As we will discuss in chapter
14, the running time of these fundamental algorithms
on graphs (which compute the minimum distance to a
target) heavily depends on the implementation chosen
for the priority queue, and upgrading from a binary to
a d-ary heap can provide a consistent speedup.

2.8.2 More graphs: Prim's algorithm

Prim’s algorithm computes the minimum spanning tree (MST) of an undirected, con-
nected graph G. 

 Suppose G has n vertices. The minimum spanning tree of G is

1 A tree (a connected, undirected, acyclic graph)
2 That is a subgraph of G with n vertices and
3 Whose sum of edges’ weights is the least possible among all of the subgraphs of

G that are also trees and span over all n vertices

Considering the graph in the example shown in section 2.8.1,
its minimum spanning tree would be the one in figure 2.14.

 Prim’s algorithm works exactly as Dijkstra’s, except

 Without keeping track of the distance from the source.
 Storing the edge that connected the front of the visited

vertices to the next closest vertex.
 The vertex used as “source” for Prim’s algorithm is

going to be the root of the MST.

B

A

D

C
7 2

6 4

Figure 2.13 A directed graph 
showing the shortest path 
between vertices A and C

A

B D

C

7

2

6

Figure 2.14 A spanning 
tree for the graph in fig-
ure 2.13
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It should be no surprise that its running time is similar to Dijkstra’s:

 O(V2) using arrays (sorted or unsorted) for the priority queue
 O(V*log(V) + E*log(V)) using binary or d-ary heap
 O(V*log(V) + E) using Fibonacci heap

2.8.3 Data compression: Huffman codes

Huffman’s algorithm is probably the most famous data compression algorithm, and
you have likely already heard of it if you took an “introduction to CS” course. It is a
simple, brilliant, greedy algorithm that, despite not being the state of the art for com-
pression anymore, was a major breakthrough in the ‘50s.

 A Huffman code is a tree, built bottom-up, starting with the list of different charac-
ters appearing in a text and their frequency. The algorithm iteratively

1 Selects and removes the two elements in the list with the smallest frequency
2 Then creates a new node by combining them (summing the two frequencies)
3 And finally adds back the new node to the list

While the tree itself is not a heap, a key step of the algorithm is based on efficiently
retrieving the smallest elements in the list, as well as efficiently adding new elements
to the list. You probably have guessed by now that, once again, that’s where heaps
come to the rescue.

 Let’s take a look at the algorithm itself in listing 2.12.

We assume the input for the algorithm is a text, stored in a string (of course, the
actual text might be stored in a file or stream, but we can always have a way to convert
it to a string18), and the output is a map from characters to binary sequences.

18Additional challenges can occur if the text is so large that either it can’t be contained in memory, or a map-
reduce approach is advisable: we encapsulate all that complexity in the ComputeFrequencies method.
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F 0.02E 0.05

0 1

ABCDEF

BCDEF 0.4A 0.6

CDEF 0.2B 0.2

CD 0.13

D 0.06C 0.07
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0

0

0

1

1
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1

Figure 2.15 A Huffman coding 
tree built from this character 
frequency table: A=0.6, B=0.2, 
C=0.07, D=0.06, E=0.05, and 
F=0.02
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 The first sub-task that we need to perform is to transform the text: we want to com-
pute some statistics on it to identify the most used and least used characters in it. To
that end, we compute the frequency of characters in the text.19

 The details of the ComputeFrequencies method at line #2 are both out of scope
and (at least in its basic version) simple enough, and there is no need to delve into
that helper method here.

 Once we have computed the frequency map, we create a new priority queue and
then at lines #4 and #5 we iterate over the frequency map, creating a new TreeNode
for each character and then adding it to the priority queue, as in listing 2.12. Obvi-
ously, considering the subject of this chapter, for the queue we use a heap, and in par-
ticular a min-heap, where the element at the top is the one with the smallest value for
the priority field. And in this case the priority field is (not surprisingly) the frequency
field of the TreeNode.

function huffman(text)
  charFrequenciesMap ← ComputeFrequencies(text)            
  priorityQueue ← MinHeap()                        
  for (char, frequency) in charFrequenciesMap do            
    priorityQueue.insert(TreeNode([char], frequency))       
  while priorityQueue.size > 1 do                    
    left ← priorityQueue.top()                    
    right ← priorityQueue.top()                    
    parent ← TreeNode(left.chars + right.chars,
                      left.frequency + right.frequency)        
    parent.left ← left                        
    parent.right ← right                        
    priorityQueue.insert(parent)                    
  return buildTable(priorityQueue.top(), [], Map())        

Each TreeNode, in fact, contains two fields (besides the pointers to its children): a set
of characters and the frequency of those characters in the text, computed as the sum
of the frequencies of individual characters.

 If you look at figure 2.15, you can see that the root of the final tree is the set of all
characters in our example text, and hence the total frequency is 1.

 This set is split into two groups, each of which is assigned to one of the root’s chil-
dren, and so each internal node is similarly split until we get to leaves, each of which
contains just one character.

 Back to our algorithm, you can see how the tree in figure 2.15 is constructed bot-
tom-up, and lines #2 to #5 in listing 2.12 take care of the first step, creating the leaves
of the tree and adding them to the priority queue.

19Instead of the actual frequency it might be easier, and equivalent for the algorithm, just counting the number
of occurrences of each character.

Listing 2.12 The Huffman coding algorithm
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Now, from line #6 we enter the core of the algorithm: until there is only one element
left in the queue, we extract the top TreeNode entries, in lines #7 and #8. As you can
see in figure 2.16 (B), those two elements will be the subtrees with the lowest frequen-
cies so far.

 Let’s call these subtrees L and R (the reason for these names will be apparent soon).
 Figure 2.16 (C) shows the actions performed in lines #9 to #11 of our pseudocode:

a new TreeNode is created (let’s call it P) by merging the two entries’ character sets
and setting its frequency as the sum of the old subtrees’ frequencies. Then the new
node and two subtrees are combined in a new subtree, where the new node P is the
root and the subtrees L and R are its children. 

 Finally, at line #12 we add this new subtree back into the queue. As it’s shown in fig-
ure 2.16 (D), it can sometimes be placed at the top of the queue, but that’s not always
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B 0.2

0.6
0.2
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Figure 2.16 The first step in the Huffman coding algorithm. As mentioned in the text, the algorithm will 
use two auxiliary data structures, a priority queue and a binary tree. Each tree node will have a value, a 
set of characters in the text, and a priority, the sum of the frequencies of those characters in the text. (A) 
Initially, we create one tree node for each character, associated with its frequency in the text. We also 
add each node into a priority queue, using the frequency as its priority (smaller frequency means higher 
priority hence we would use a min-heap). (B) We extract two elements from the top of the priority queue.
(C) We create a new tree node to which we add the two nodes extracted at step (B) as its children. By 
convention, we assume that the smallest node will be added as left child and the second-smallest as right 
child (but any consistent convention works here). The newly created node will hold the union of the set of 
characters in its children as value, and the sum of the two priorities as priority. (D) Finally, we can add the 
new root for this subtree back to the priority queue. Note that the nodes in the heap are showed in sorted 
order, but for the sake of simplicity the order in which nodes are stored inside a priority queue is an 
implementation detail, the contract for PQ’s API only guarantees that when we dequeue two elements, 
those will be the ones with the smallest frequencies.
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the case; the priority queue will take care of this detail for us (notice that here the pri-
ority queue is used as a black box, as we discussed in section 2.4).

function buildTable(node, sequence, charactersToSequenceMap)
  if node.characters.size == 1 then
    charactersToSequenceMap[node.characters[0]] ← sequence 
  else
    if node.left <> null then
      buildTable(node.left, 0 + sequence, charactersToSequenceMap) 
    if node.right <> null then
      buildTable(node.right, 1 + sequence, charactersToSequenceMap) 
  return charactersToSequenceMap

These steps are repeated until there is only one element left in the queue (figure 2.17
shows a few more steps), and that last element will be the TreeNode that is the root of
the final tree.

 We can then use it in line #13 to create a compression table, which will be the final
output of the huffman method. In turn, the compression table can be used to per-
form the compression of the text by translating each one of its characters into a
sequence of bits.

 While we won’t show this last step,20 we provide listing 2.13 with the steps needed
to create a compression table from the tree in figure 2.15. And even if this goes
beyond the scope of this chapter (because the method doesn’t use a priority queue),
providing a brief explanation should help those readers interested in writing an
implementation of Huffman coding.

 We wrote the buildTable method using recursive form. As explained in appendix
E, this allows us to provide cleaner and more easily understandable code, but in some
languages concrete implementations can be more performant when implemented
using explicit iterations.

 We pass three arguments to the method: a TreeNode node that is the current node
in the traversal of the tree, a sequence that is the path from the root to current node
(where we add a 0 for a “left turn” and a 1 for a “right turn”), and the Map that will
hold the associations between characters and bit sequences.

 At line #2, we check if the set of characters in the node has only one character. If it
does, it means we have reached a leaf, and so the recursion can stop. The bit sequence
that is associated with the character in the node is the path from root to current node,
stored in the sequence variable.

 Otherwise, we check whether the node has left and right children (it will have at least
one, because it’s not a leaf) and traverse them. The crucial point here is how we build the
sequence argument in the recursive calls: if we traverse the left child of current node, we
add a 0 at the start of the sequence, while if we traverse the right child, we add a 1.

Listing 2.13 The Huffman coding algorithm (building a table from the tree)

20It’s simply going to be a 1:1 mapping over the characters in the text, with extra attention needed to efficiently
construct the bits encoding in output.
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Table 2.5 shows the compression table produced starting from the tree shown in fig-
ure 2.15; the last column would not be part of the actual compression table, but it’s
useful to understand how the most used characters end up translated into shorter
sequences (which is the key to an efficient compression).

Looking at the sequences, the most important property is that they form a prefix
code: no sequence is the prefix of another sequence in the code.

 This property is the key point for the decoding: iterating on the compressed text,
we immediately know how to break it into characters.

Table 2.5 The compression table created from the Huffman tree in figure 2.15

Character Bit sequence Frequency

A 0 0.6

B 10 0.2

C 1100 0.07

D 1101 0.06

E 1110 0.05

F 1111 0.02
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Figure 2.17 The result of the next couple of steps in the Huffman coding algorithm. (A) We dequeue 
and merge the top two nodes on the heap, C and D. At the end of this step, EF and CD become the two 
smallest nodes in the heap. (B) Now we merge those two nodes into CDEF, and we add it back to the 
heap. Which node between CDEF and B will be kept at the top of the priority queue is an implementation 
detail, and it’s irrelevant for the Huffman coding algorithm (the code will change slightly depending on 
which one is extracted first, but its compression ratio will remain unchanged). The next steps are easy 
to figure, also using figure 2.15 as a reference.
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 For instance, in the compressed text 1001101, if we start from the first character,
we can immediately see that sequence 10 matches B, then the next 0 matches A, and
finally 1101 matches D, so the compressed bit sequence is translated into “BAD”.

2.9 Analysis of branching factor21

Now that we know how d-way heaps work, the next question we need to ask is this:
Wouldn’t we be just fine with a regular, binary heap? Is there an advantage in a higher
branching factor?

2.9.1 Do we need d-ary heaps?

Usually binary heaps are enough for all our programming needs. The main advantage
of this data structure is that it guarantees a logarithmic running time for each one of
the common operations. In particular, being a binary balanced tree, the main opera-
tions are guaranteed to require a number of comparisons proportional, in the worst
case, to log2(N). As we discuss in appendix B, this guarantees that we can run these
methods on much larger containers than if the running time was linear. Consider that
even with a billion elements, log2(N) just evaluates to about 30.

 As we have seen in the introduction, constant factors are irrelevant for the running
time, that is, O(c*N) = O(N), and we know from algebra that two logarithms with dif-
ferent bases only differ by a constant factor, in particular

logb(N) = log2(N) / log2(b)

So, in conclusion, we have

O(log2(N)) = O(log3(N)) = O(log(N)) 

When we move to the implementation, however, constant factors matter. They matter
so much that, in some edge cases, algorithms that would be better according to the
running time analysis actually are slower than a simpler algorithm with worse running
time, at least for any practical input (for instance, if you compare 2n and n*100100000,
then for the constant factor not to matter anymore, the input should be huge).

 A prominent example of this behavior is given by Fibonacci heap22: in theory they
provide amortized constant time for some crucial operations such as insert or priority
update, but in practice they are both complicated to implement and slow for any via-
ble input size.

 
 

21This section includes advanced concepts.
22The Fibonacci heap is an advanced version of priority queue that is implemented with a set of heaps. For a

Fibonacci heap, find-minimum, insert, and update priority operations take constant amortized time, O(1),
while deleting an element (including the minimum) requires O(log n) amortized time, where n is the size of
the heap. So, in theory, Fibonacci heaps are faster than any other heap, although in practice, being overly com-
plicated, their implementations end up being slower than simple binary heaps.
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 The constant factors, in general, are due to several different reasons that include

 Lag for reading/writing to memory (scattered vs localized readings)
 The cost of maintaining counters or to iterate loops
 The cost of recursion
 Nitty/gritty coding details that in the asymptotic analysis are abstracted away

(for instance, as we have seen, static vs dynamic arrays)

So, at this point it should be clear that in any implementation we should strive to keep
this constant multiplicators as small as possible.

 Consider this formula: 

logb(N) = log2(N) / log2(b)

If b > 2, it’s apparent that logb(N) < log2(N), and therefore if we have a logarithmic
factor in our algorithm’s running time, and we manage to provide an implementation
that instead of log2(N) steps will require logb(N), while all other factors stay
unchanged, then we will have provided a (constant-time) speed-up. 

 In section 2.10 we will further investigate how this applies to d-ary heaps. 

2.9.2 Running time

So the answer is yes, there is an advantage in tuning the heap’s branching factor, but
compromise is the key.

 The insertion will always be quicker with larger branching factors, as we at most
need to bubble up the new element to the root, with O(logD(n)) comparisons and
swaps at most.

 Instead, the branching factor will affect deletion and priority update. If you recall
the algorithms for popping elements, for each node we need to first find the highest
priority among all its children, then compare it to the element we are pushing down.

 The larger the branch factor, the smaller the height of the tree (it shrinks logarith-
mically with the branching factor). But, on the other hand, the number of children to
compare at each level also grows linearly with the branch factor. As you can imagine, a
branching factor of 1000 wouldn’t work very well (and it would translate into a linear
search for less than 1001 elements!).

 In practice, through profiling and performance tests, the conclusion has been
reached that in most situations, D=4 is the best compromise.

2.9.3 Finding the optimal branching factor

If you are looking for an optimal value for D that works in every situation, then you are
going to be disappointed. To a certain extent, theory comes to the rescue by showing
us a range of optimal values. It can be shown that the optimal value can’t be greater
than 5. Or, to put it another way, it can be mathematically proven that
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 The tradeoff between insert and delete is best balanced with 2 <= D <= 5.
 A 3-way heap is in theory faster than a 2-way heap.
 4-way heaps and 3-way heaps have similar performance.
 5-way heaps are a bit slower.

In practice, the best value for D depends on the details of the implementation and of
the data you are going to store in the heap. The optimal branching factor for a heap
can only be determined empirically, case by case. There is no overall optimal branch-
ing factor, and it depends on the actual data and on the ratio of insertions/deletions,
or, for instance, how expensive it is to compute priority versus copying elements,
among other things.

 In common experience, binary heaps are never the fastest, 5-way heaps are seldom
faster (for narrow domains), and the best choice usually falls between 3 and 4,
depending on nuances.

 So while I feel safe suggesting starting with a branching factor of 4, if this data
structure is used in a key section of your application and small performance improve-
ment can make a relevant difference, then you need to tune the branching factor as a
parameter.

2.9.4 Branching factor vs memory

Notice that I suggested the larger branching factor among the two best performing
ones for a reason. It turns out there is, in fact, another consideration to be made when
looking for the optimal branching factor for heaps: locality of reference.

 When the size of the heap is larger than available cache or than the available mem-
ory, or in any case where caching and multiple levels of storage are involved, then on
average a binary heap requires more cache misses or page faults than a d-ary heap.
Intuitively, this is due to the fact that children are stored in clusters, and that on
update or deletion, for every node reached, all its children will have to be examined.
The larger the branching factor becomes, the more the heap becomes short and wide,
and the more the principle of locality applies.

 D-way heap appears to be the best traditional data structure for reducing page
faults.23 New alternatives focused on reducing cache misses and page swaps have been
proposed over the years; for instance, you can check out splay trees.

 While these alternatives aren’t in general able to have the same balance between
practical and theoretical performance as heaps, when the cost of page faults or disk
access dominates, it might be better to resort to a linearithmic24 algorithm with higher
locality rather than sticking with a linear algorithm with poor locality.

23See http://comjnl.oxfordjournals.org/content/34/5/428.
24O(n*log(n)), for an input of size n.

http://comjnl.oxfordjournals.org/content/34/5/428
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2.10 Performance analysis: Finding the best branching factor
We’ve discussed the theory. Now let’s try to apply it to a real case and describe how to
profile the implementation of a data structure and an application.

 We have seen that priority queues are a key component in the Huffman compres-
sion pipeline. If we measure the performance of our heap’s methods as the number of
swaps performed, we have shown that we have at most h swaps per method call, if h is
the height of the heap. In section 2.5 we also showed that because the heap is a com-
plete balanced tree, the height of a d-ary heap is exactly logD(n).25

 Therefore, for both methods insert and top, it would seem that the larger the
branching factor, the smaller the height, and in turn the better heap performance
should be.

 But just limiting to swaps doesn’t tell us the whole story. In section 2.9 we delve into
the performance analysis of these two methods and take into consideration also the
number of array accesses, or equivalently the number of comparisons on heap elements
that are needed for each method. While insert accesses only one element per heap’s
level, method top traverses the tree from root to leaves, and at each level it needs to go
through the list of children of a node. Therefore, it needs approximately up to
D*logD(n) accesses on a heap with branching factor D and containing n elements.

 Tables 2.6 and 2.7 summarize the performance analysis for the three main meth-
ods in heaps’ API.

For method top, a larger branching factor doesn’t always improve performance,
because while logD(n) becomes smaller, D becomes larger. Bringing it to an extreme,
if we choose D > n-1, then the heap becomes a root with a list of n-1 children, and so
while insert will require just 1 comparison and 1 swap, top method will need n com-
parisons and 1 swap (in practice, as bad as keeping an unsorted list of elements).

 There is no easy26 way to find a value for D that minimizes function f(n) =

D*logD(n) for all values of n, and besides, this formula gives us just an estimate of the
maximum number of accesses/swaps performed. The exact number of comparisons
and swaps actually performed depends on the sequence of operations and on the
order in which elements are added.

25Where D is the branching factor for the d-ary heap under analysis. 

Table 2.6 Main operations provided by a d-ary heap, and the number of swaps (assuming n elements)

Operation Number of swaps Extra space

Insert ~logD(n) O(1)

Top ~logD(n) O(1)

Heapify ~n O(1)

26It is, obviously, possible to find a formula for f(D)’s minima using calculus, and in particular computing the
first and second order derivatives of the function.
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Then the question arises: How do we choose the best value for the branching factor?
 The best we can do here is profile our applications to choose the best value for this

parameter. In theory, applications with more calls to insert than to top will perform
better with larger branching factors, while when the ratio of calls between the two
methods approaches 1.0, a more balanced choice will be best.

2.10.1 Please welcome profiling

And so we are stuck with profiling. If you are asking yourself “What’s profiling?” or
“Where do I start?”, here are a few tips:

 Profiling means measuring the running time and possibly the memory con-
sumption of different parts of your code.

 It can be done at a high level (measuring the calls to high level functions) or a
lower level, for each instruction, and although you can set it up manually (mea-
suring the time before and after a call), there are great tools to aid you—usually
guaranteeing an error-free measurement.

 Profiling can’t give you general-purpose answers: it can measure the perfor-
mance of your code on the input you provide.

 In turn, this means that the result of profiling is as good as the input you use,
meaning that if you only use a very specific input, you might tune your code for
an edge case, and it could perform poorly on different inputs. Also, another key
factor is the data volume: to be statistically significant, it can be nice to collect
profiling results on many runs over (pseudo)random inputs.

 It also means that results are not generalizable to different programming lan-
guages, or even different implementations in the same language.

 Profiling requires time. The more in depth you go with tuning, the more time it
requires. Remember Donald Knuth’s advice: “premature optimization is the
root of all evil.” Meaning you should only get into profiling to optimize critical
code paths. Spending two days to shave 5 milliseconds on an application that
takes 1 minute is frankly a waste of time (and possibly, if you end up making your
code more complicated to tune your app, it will also make your code worse).

If, in spite all of these disclaimers, you realize that your application actually needs
some tuning, then brace yourself and choose the best profiling tool available for your
framework.

Table 2.7 Cost of main operations provided by heaps as a number of comparisons (assuming n elements)

Operation Number of comparisons Extra space

Insert ~logD(n) O(1)

Top ~D*logD(n) O(1)

Heapify ~n O(1)
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 To perform profiling, obviously we will have to abandon pseudocode and choose
an actual implementation; in our example, we will profile a Python implementation of
Huffman encoding and d-ary heap. You can check out the implementation on our
repo27 on GitHub.

 Code and tests are written in Python 3, specifically using version 3.7.4, the latest
stable version at the time of writing. We are going to use a few libraries and tools to
make sense of the profiling stats we collect:

 Pandas
 Matplotlib
 Jupyter Notebook

To make your life easier, if you’d like to try out the code I suggest you install the Ana-
conda distribution, which already includes the latest Python distribution and all the
packages listed.

 To do the actual profiling, we use cProfile package, which is already included in
the basic Python distro.

 We won’t explain in detail how to use cProfile (lots of free material online covers
this, starting from the Python docs linked previously), but to sum it up, cProfile
allows running a method or function and records the per-call, total, and cumulative
time taken by every method involved.

27See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#huffman-compression.

Figure 2.18 Printing Stats after profiling Huffman encoding function.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#huffman-compression
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Using pStats.Stats, we can retrieve and print (or process) those stats; the output of
profiling looks something like what’s shown in figure 2.18.

 Now, to reduce the noise, we are only interested in a few methods, specifically the
functions that use a heap: in particular _frequency_table_to_heap, which takes the
dictionary with the frequency (or number of occurrences) of each character in the
input text and creates a heap with one entry per character, and _heap_to_tree, which
in turn takes the heap created by the former function and uses it to create the Huff-
man encoding tree.

 We also want to track down the calls to the heap methods used: _heapify, top, and
insert. Instead of just printing those stats, we can read them as a dictionary, and filter
the entries corresponding to those five functions.

 To have meaningful, reliable results, we also need to profile several calls to the
method huffman.create_encoding, and so processing the stats and saving the result
to a CSV file seems the best choice anyway.

 To see the profiling in action, check out our example28 on GitHub. The example pro-
files several calls to the method creating a Huffman encoding over an ensemble of large
text files29 and a bitmap image. The bitmap needs to be duly pre-processed in order to
make it processable as text. The details of this pre-processing are not particularly inter-
esting, but for the curious reader we encode image bytes in base64 to have valid characters.

2.10.2 Interpreting results

Now that we’ve stored the results of profiling in a CSV file, we just need to interpret them
to understand what’s the best choice of branching factor for our Huffman encoding
app. At this point it should look like a piece of cake, right?

 We can do it in many ways, but my personal favorite is displaying some plots in a
Jupyter Notebook: take a look here at an example.30 Isn’t it great that GitHub lets you
already display the Notebook without having to run it locally?

 Before delving into the results, though, we need to take a step back: because we
will use a boxplot31 to display our data, let’s make sure we know how to interpret these
plots first. If you feel you could use a hint, figure 2.19 comes to the rescue!

 To make sense of the data our example notebook uses Pandas library, with which
we read the CSV file with the stats and transform it into a DataFrame, an internal Pan-
das representation. You can think about it as a SQL table on steroids. In fact, using
this DataFrame we can partition data by test case (image versus text), then group it by
method, and finally process each method separately and display results, for each

28https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/tests/
huffman_profile.py.

29We used copyright-free novels downloaded from Project Gutenberg, http://www.gutenberg.org (worth check-
ing out!).

30Disclaimer: There are many possible ways to do this, and possibly better ways too. This is just one of the possible
ways. https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/
notebooks/Huffman_profiling.ipynb.

31https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/tests/huffman_profile.py
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/tests/huffman_profile.py
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/tests/huffman_profile.py
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/notebooks/Huffman_profiling.ipynb
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/notebooks/Huffman_profiling.ipynb
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Python/mlarocca/notebooks/Huffman_profiling.ipynb
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.boxplot.html
http://www.gutenberg.org
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method, grouped by branching factor. Figure 2.20 shows these results for encoding a
large text, comparing the two main functions in Huffman encoding that use a heap.

 If we look at those results, we can confirm a few points we mentioned in section 2.9:

 2 is never the best choice for a branching factor.
 A branching factor of 4 or 5 seems a good compromise.
 There is a consistent difference (even -50% for _frequency_table_to_heap)

between a binary heap and the d-ary heap with best branching factor.

There is, however, also something that might look surprising: _frequency_table_
to_heap seems to improve with larger branching factors, while _heap_to_tree has a
minimum for branching factors around 9 and 10.

 As explained in section 2.6, which shows the pseudocode implementation of heap
methods (and as you can see from the code on GitHub), the former method only calls
the_push_down helper method, while the latter uses both top (which in turn calls
_push_down) and insert (relying on _bubble_up instead), so we would expect to see
the opposite result. Anyway, it is true that even _heap_to_tree has a ratio of two calls
to top per insert.

Figure 2.19 Explaining how to read an example boxplot. Boxplots show the distribution of samples using a 
nice and effective chart. The main idea is that the most relevant samples are those whose values lie between 
the first and third quartile. That is, we find three values, Q1, Q2 (aka the median), and Q3 such that 25% of 
the samples are smaller than Q1; 50% of the samples are smaller than Q2 (which is the very definition of 
median, by the way); and 75% of the samples are smaller than Q3. The box in the boxplot is meant to clearly 
visualize the values for Q1 and Q3. Whiskers, instead, shows how far from the median the data extends. To 
that end, we could also display outliers, that is, samples that are outside the whiskers’ span. Sometimes 
outliers, though, end up being more confusing than useful, so in this example we will not use them.
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Let’s now delve into the internals of these high-level methods, and see the running time
per call of heap’s internal method _heapify (figure 2.22), and of API’s methods top and
insert and their helper methods _push_down and _bubble_up (figures 2.21 and 2.23).

Figure 2.20 The distribution of running times for the two high-level functions in Huffman.py using a heap. 
(Top) Mean running time by branching factor. (Bottom) Boxplots for the distribution of running times for 
each branching factor. All charts are created using data about the running time per single call for the 
compression of an ensemble of text files.

Figure 2.21 The distribution of recorded running times per call for insert and _bubble_up
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Before digging into the most interesting part, let’s quickly check out the insert
method. Figure 2.21 shows there are no surprises here; the method tends to improve
with larger branching factors, as does _bubble_up, its main helper.

The _heapify method, as expected, shows a trend similar to _frequency_table_to_heap,
because all this method does is create a heap from the frequency table. Still, is it a bit sur-
prising that _heapify‘s running time doesn’t degrade with larger branching factors?

 Now to the juicy part. Let’s take a look at top in figure 2.23. If we look at the running
time per call, the median and distribution clearly show a local minimum (around D==9),
as we would have expected, considering that the method’s running time is
O(D*logD(n)), confirming what we have previously discussed and summarized in table
2.7. Not surprisingly, the _push_down helper method has an identical distribution.

 If we look at listings 2.7 and 2.4 and sections 2.6.2 and 2.6.4, it’s clear how pushDown
is the heart of the top method, and in turn the largest chunk of work for pushDown is
the method that at each heap’s level retrieves the child of current node. We called it
highestPriorityChild.32 

32In our Python implementation, the names become respectively _push_down and _highest_priority_
child, to follow Python naming conventions.

Figure 2.22 The distribution of recorded running times per call for heapify.
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And if then we look at the running time per call for _highest_priority_child (fig-
ure 2.24 (A)), we have a confirmation that our profiling does make sense, because the
running time per call increases with the branching factor. The larger D is, the longer
the list of children for each node, which this method needs to traverse entirely in
order to find which tree branch should be traversed next.

 You might then wonder why _push_down doesn’t have the same trend. Remember
that while the running time for _highest_priority_child is O(D), in particular with
D comparisons, _push_down performs (at most) logD(n) swap sand D*logD(n) com-
parisons, because it calls _highest_priority_child at most logD(n) times.

The larger the branching factor D, the fewer calls are made to _highest_priority_
child. This becomes apparent if, instead of plotting the running time per-call for
_highest_priority_child, we use the total cumulative time (the sum of all calls to
each method), as shown in figure 2.24 (B). There we can see again how this composite
function, f(D) = D*logD(n), has a minimum at D==9.

Figure 2.23 The distribution of recorded running times per call for top and _push_down

Figure 2.24 (A) The distribution of recorded running times per-call for _highest_priority_child. 
(B) The distribution of cumulative running times for _highest_priority_child.
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2.10.3 The mystery with heapify

Summing up, _heapify keeps improving even at larger branching factors, although
we can also say it practically plateaus after D==13, but this behavior is not caused by the
methods top and _push_down, which do behave as expected.

 There could be a few explanations for how the _heapify running time grows:

1 It’s possible that, checking larger branching factors, we discover that there is a
minimum (we just haven’t found it yet).

2 The performance of this method heavily depends on the order of insertions:
with sorted data it performs way better than with random data.

3 Implementation-specific details make the contribution of calls to _push_down
less relevant over the total running time.

But . . . are we sure that this is in contrast with theory? You should know by now that I
like rhetorical questions; this means it is time to get into some math. 

 And indeed, if we take a closer look at section 2.6.7, we can find out that the num-
ber of swaps performed by _heapify is limited by:

As you can imagine, analyzing this function is not straightforward. But, and here is the
fun part, now you can certainly plot the function using your (possibly newly acquired)
Jupyter Notebook skills. It turns out that, indeed, plotting this function of D for a few
values of n, we get the charts in figure 2.25, showing that, despite the fact that the sin-
gle calls to _push_down will be slower with a higher branching factor, the total number
of swaps is expected to decrease.

n
D
--- h

Dh
------

h 0=

logD n( )

⋅

Figure 2.25 The upper bound for 
the number of swaps needed by the 
heapify method, as a function of 
the branching factor D. Each line is a 
different value of n. Notice that the 
y axis uses a logarithmic scale.
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So, mystery solved; _heapify does behave as expected. And good news, too: it gets
faster as we increase the branching factor.

2.10.4 Choosing the best branching factor

For a mystery solved, there is still a big question standing: What is the best branching
factor to speed up our Huffman encoding method? We digressed, delving into the
details of the analysis of heaps and somehow left the most important question behind. 

 To answer this question, there is only one way: looking at figure 2.26, showing the
running time for the main method of our Huffman encoding library.

 It shows three interesting facts:

 The best choice seems to be D==9.
 Choosing any value larger than 7 will likely be as good.
 While the max gain for _frequency_table_to_heap is 50%, and for _heapify

even up to 80%, we merely get to a 5% here.

Notice how the chart for create_encoding looks more similar to the method _heap_
to_tree than to _frequency_table_to_heap. Also, considering the third point, the
explanation is that the operation on the heap only contributes to a fraction of the run-
ning time, while the most demanding methods needs to be searched elsewhere. (Hint:
for create_frequency_table, the running time depends on the length of the input
file, while for the other methods it only depends on the size of the alphabet.)

You can check out the full results, including the other examples, on the notebook on
GitHub. Keep in mind that this analysis uses a limited input, and as such is likely to be
biased. This is just a starting point, and I highly encourage you to try running a more
thorough profiling using more runs on different inputs.

 You can also pull the full profiling and visualization code and delve even deeper
into the analysis.

Figure 2.26 Distribution of 
per-call running time for the method 
huffman.create_encoding
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 To wrap up, I’d like to highlight a few takeaways:

 D-ary heaps are faster than binary ones.
 If you have parametric code, profiling is the way to tune your parameter. The

best choice depends on your implementation as well as on input.
 Be sure to run your profiling on a representative sample of your domain. If you

use a limited subset, you will likely optimize for an edge case, and your results
will be biased.

As a general rule, make sure to optimize the right thing: only profile critical code, and
perform high-level profiling first to spot the critical section of code whose optimiza-
tion would give you the largest improvement, and verify that this improvement is
worth the time you’ll spend on it.

Summary
 The theory behind the functioning and analysis of d-way heaps makes heavy use

of the basic structures and tools we describe in appendices A to F.
 There is a difference between concrete and abstract data structures, where the

latter are better served to be used as black boxes, during the design of an appli-
cation or algorithm using them.

 When we move from abstract data structures to their concrete implementations
in a programming language, we need to pay attention to those nitty-gritty
details that are specific to the language we chose, and make sure we don’t slow
down our methods by choosing the wrong implementation.

 A heap is conceptually a tree, but it’s implemented using an array for the sake
of efficiency.

 Changing the branching factor of a heap won’t affect asymptotic running time
for its methods, but will still provide a constant factor improvement that matters
when we move from pure theory to applications with a massive amount of data
to manage.

 For several advanced algorithms we make use of priority queues to improve
their performance: BFS, Dijkstra, and Huffman codes are just some examples.

 When high performance is paramount, and the data structures we use allow
parameters (such as branching factor for heaps), the only way to find the best
parameters for our implementation is profiling our code.
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Treaps:
 Using randomization to

 balance binary search trees

In chapter 2 we saw how it is possible to store elements and retrieve them based on
their priorities by using heaps, and how we can improve over binary heaps by using
a larger branching factor. 

 Priority queues are especially useful when we need to consume elements in a
certain order from a dynamically changing list (such as the list of tasks to run on a

This chapter covers
 Solving the problem of indexing data according to 

multiple criteria

 Understanding the treap data structure

 Keeping a binary search tree balanced

 Using treaps to implement balanced binary 
search trees (BST)

 Working with Randomized Treaps (RT)

 Comparing plain BSTs and RTs
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CPU), so that at any time we can get the next element (according to a certain crite-
rion), remove it from the list, and (usually) stop worrying about fixing anything for
the other elements. The difference with a sorted list is that we only go through ele-
ments in a priority queue once, and the elements already removed from the list won’t
matter for the ordering anymore.

 Instead, if we need to keep track of the ordering of elements and to possibly go
through them more than once (such as a list of objects to render on a web page), priority
queues might not be the best choice. Moreover, there are other kinds of operations that
we might need to perform; for example, efficiently retrieving the minimum or maxi-
mum element of our collection, accessing the i-th element (without removing all ele-
ments before it), or finding the predecessor or successor of an element in our ordering.

 In appendix C we discuss how trees are the best compromise when we care about
all these operations, in addition to insertion and removal. If a tree is balanced, we can
perform any of these actions in logarithmic time.

 The issue is that trees in general and binary trees in particular are not guaranteed
to be balanced. Figure 3.1 shows how, depending on the order of insertion, we might
have very balanced or very skewed trees. 

 In this chapter, we are going to explore a way to use heaps’ properties to be (rea-
sonably) sure we have balanced binary trees.

 To explain how this works we will
introduce treaps, a hybrid between
trees and heaps; however, we are
going to take a different approach to
treaps that is somewhat unusual in the
literature on this data structure.

 But first, as always, let’s start by
introducing a problem that we would
like to solve.

3.1 Problem: Multi-indexing
Your family runs a small grocery shop, and you’d like to help your parents keep up
with the inventory. To impress your family and show everyone those computer science
classes are worth the effort, you embark on the task of designing a digital inventory
management tool, an archive for stock keeping, with two requirements:

 Be able to (efficiently) search products by name so you can update the stock.
 Get, at any time, the product with the lowest items in stock, so that you are able

to plan your next order.

Of course, you could just buy an off-the-shelf spreadsheet, but where would the fun be
in that? Moreover, would anybody be really impressed with that? So, here we go, design-
ing an in-memory data structure that can be queried according to two different criteria.

 Clearly, real-world scenarios are more complex than this. You can imagine that
each product requires a different time to be shipped to you, that some products are
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Figure 3.1 All possible layouts for BSTs of size 3. The 
layout depends on the order in which elements are 
inserted. Notice how two of the sequences produce 
identical layouts: for [2, 1, 3] and [2, 3, 1] we 
get the same final result.
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ordered from the same vendors (and therefore you might want to group them in the
same order to save on shipment costs), that a product’s price may and will vary with
time (so you can choose the cheapest brand for, say, brakes or suspensions), and even
that some products might be unavailable sometimes.

 All this complexity, however, can be captured in a heuristic function, a score that is
computed keeping in mind all the nuances of your business. Conceptually, you can
handle that score in the same exact way as the simple inventory count, so you can
keep things simple in our example and just use that.

 One way to handle these requirements could be by using two different data struc-
tures: one for efficient search by name, for instance a hash table, and a priority queue
to get the item which most urgently needs to be resupplied.

 We will see in chapter 7 that sometimes combining two data structures for a goal is
the best choice. This is not the time yet; for now you need to keep in mind the issues
in coordinating two such containers, and also that you will likely need more than twice
the memory.

 Both considerations are kind of worrying; wouldn’t it be nice if there was a single
data structure that could handle both aspects natively and efficiently?

3.1.1 The gist of the solution

Let’s be clear about what we are seeking here: it’s not just a matter of optimizing all
the operations on a container, like we discuss in appendix C. Here each bit of data,
each entry in the container, is made of two separate parts, and both can be “mea-
sured” in some way. There are the names of each product, which can be sorted alpha-
betically, and the number of items we have in stock, that’s also associated with each
product: quantities that can be compared to each other to determine which products
are scarcer and most urgent to resupply.

 Now, if we sort the list of entries according to one criterion—for example, the
name—we need to scan the whole list to find a given value for the other criterion, in
this case the quantity in stock.

 And if we use a min-heap with the scarcer products at its top, then (as we learned
in chapter 2) we will also need linear time to scan the whole heap looking for a prod-
uct to update.

 Long story short, none of the basic data structures we describe in appendix C, nor
a priority queue, can single-handedly solve our problem.

3.2 Solution: Description and API
Now that we have an idea of what our ideal container should do (but we still don’t
know how it should do it), we can define an abstract data structure (ADT) with the
appropriate API. As long as our implementations will abide by this API, we can use any
of them seamlessly in an application, or as part of a more complex algorithm, without
having to worry about breaking anything (see table 3.1).
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To that end, we can imagine an extension of priority queues that also keeps its ele-
ments sorted. In the rest of the chapter, we will use the term key to refer to elements,
and associate a priority to each element.

 With respect to the PriorityQueue ADT that we introduced in chapter 2, this
SortedPriorityQueue class has a few new methods: a search method to find a given
key in the container and two methods returning the minimum and maximum key
stored.

 If you look at appendix C, you can see that these three operations are usually imple-
mented by many basic data structures, such as linked lists, arrays, or trees (some of them
in linear time and others with better performance, offering logarithmic methods).

 Thus, we can think about our SortedPriorityQueue as a melting pot between two
different containers, integrating both data structures’ characteristics and providing
methods from both of them. For instance, it could be thought of as a fusion between
heaps and linked lists, or . . . 

3.3 Treap
. . . between a tree and a heap! 

 Treap1 is just the portmanteau2 of tree and heap. Binary search trees, in fact, offer
the best average performance across all standard operations: insert, remove, and
search (and also min and max).

 Heaps, on the other hand, allow us to efficiently keep track of priorities using a
tree-like structure. Since binary heaps are also binary trees, the two structures seem
compatible; we only need to find a way to make them co-exist in the same structure,
and we could get the best of both.

Table 3.1 API and contract for SortedPriorityQueue

Abstract data structure: SortedPriorityQueue

API class SortedPriorityQueue {
  top() → element
  peek() → element
  insert(element, priority)
  remove(element)
  update(element, newPriority)
  contains(element)
  min()
  max()
}

Contract with client Entries are kept sorted by element (aka key), but at any time the top() 
and peek() methods can return the element with the highest priority.

1 Treaps were introduced in the paper “Randomized search trees,” by Cecilia R. Aragon and Raimund C. Seidel,
30th Annual Symposium on Foundations of Computer Science. IEEE, 1989. Although the title of the paper
might be misleading, we will see later in this chapter how treaps are related to randomized search trees.

2 A portmanteau is a blend of two or more words, where parts of each word are combined into a new word.
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 It’s easier said than done, however! If we have a set of unidimensional data, we
can’t enforce BST’s and heap’s invariants at the same time: 

 Either we add a “horizontal” constraint (given a node N, with two children L, its
left child, and R, its right child, then all keys in the left subtree—rooted at L—
must be smaller than N’s key, and all keys in the right subtree—rooted at R—
must be larger than N’s key).

 Or we add a “vertical” constraint: the key in the root of any subtree must be the
smallest of the subtree.

Anyway, we are in luck, because each of our entries has two values: its name and the
stock inventory. The idea, therefore, is to enforce BST’s constraints on the names, and
heap’s constraint on the quantities, obtaining something like figure 3.2.

 In this example, product names are treated as the keys of a binary search tree, so
they define a total ordering (from left to right in the figure).

 The inventory quantities, instead, are treated as priorities of a heap, so they define
a partial ordering from top to bottom. For priorities, like all heaps, we have a partial
ordering, meaning that only nodes on the same path from root to leaves are ordered
with respect to their priority. In figure 3.2 you can see that children nodes always have
a higher stock count than their parents, but there is no ordering between siblings.
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Figure 3.2 An example of a treap, with strings as BST keys and integers as heap priorities. Note that 
the heap, in this case, is a min-heap, so smaller numbers go on top. For a few links close to the root, 
we also show the range of keys that can be hosted in the tree’s branch rooted at the node they point to.
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This kind of tree offers an easy way to query entries by key (by the product names, in
the example). While we can’t easily run a query on priorities, we can efficiently locate
the element with the highest priority.3 It will always be at the root of the tree!

 Extracting the top element however . . . it’s going to be more complicated than
with heaps! We can’t just replace it with a heap’s leaf and push it down, because we
need to take into account the BST’s constraints as well.

 Likewise, when we insert (or delete) a node, we can’t just use the simple BST algo-
rithm. If we just search for the position that the new key would hold in the tree and
add it as a leaf, as shown in figure 3.3, the BST constraint will still be abided by, but the
new node’s priority might violate the heap’s invariants.

Listing 3.1 introduces a possible implementation for the treap’s main structure. We
will use an auxiliary class to model the tree’s nodes, and this will be instrumental in
our implementation. You might have noticed we are using explicit links to the node’s
children, differently from what we did with heaps in chapter 2. We’ll go back to dis-
cussing this choice in more detail in section 3.3.2.

 

3 As we discussed in chapter 2, “higher priority” is an abstraction that can mean lower or higher values, depend-
ing on the type of heap we are using. Here we are dealing with a min-heap, and higher priority means “lower
inventory count,” so smaller values go to the top. The code also assumes we are implementing a min-heap.
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Figure 3.3 An example of the insertion of a node in a treap, based on the keys ordering only. 
The priority of the new node, however, violates the heap constraints.
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class Node
  key
  #type double
  priority
  
  #type Node
  left
  #type Node
  right
  #type Node
  parent

  function Node(key, priority)         
    (this.key, this.priority) ← (key, priority)
    this.left ← null
    this.right ← null
    this.parent ← null

  function setLeft(node)                            
    this.left ← node
    if node != null then
      node.parent ← this

class Treap
  #type Node
  root

  function Treap()
    root ← null

In this implementation, the Treap class is mostly a wrapper for the root of the actual tree;
each node of the tree holds two attributes for a key (that can be of any type, as long as
there is a total ordering defined on the possible values) and a priority, that we’ll
assume to be a double precision number in this case. (An integer or any type with a total
ordering could work too, but we’ll see in the next section that a double works better.)

 Moreover, nodes will hold pointers (or references) to two children, left and right,
and their parent.

 The constructor for a node will just set the key and priority attributes from its argu-
ments, and initialize left and right pointers to null, effectively creating a leaf. The two
branches can then be set after construction, or, alternatively, an overloaded version of
the constructor also taking the two children can be provided.

3.3.1 Rotations

How do we get out of the impasse? There is one operation on binary search trees that
can help us: rotations. Figure 3.4 illustrates how rotations can heal (or break!) the
constraints on a treap. Rotations are common operations on many versions of BSTs,
such as red-black trees or 2-3 trees.4

Listing 3.1 Class Treap

4 Red-black and 2-3 trees are fancy versions of balanced BSTs. We’ll talk more about them in a few sections.

The constructor for the class Node 
sets the key and priority to the 
arguments and null for all links.

Updates the left child of a Node. This also takes care 
of updating the parent reference for the children. 
Method setRight, not shown for the sake of space, 
works symmetrically.
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A rotation, in a binary search tree, is a transformation whose goal is inverting the
parent-child relation between two nodes of the tree, Y and X in figure 3.4. We want the
child node to become the parent node and vice versa, but we can’t just swap those two
nodes: otherwise, in the general case where the keys of the two nodes are different, we
would end up violating the ordering of keys.

 Instead, what we need to do is remove the whole subtree rooted at the parent,
replace it with the (smaller) subtree rooted at the child, and then find a way to plug
back in the removed nodes in this new subtree.

 How are we going to do that? As you can see in figure 3.4, first we need to distin-
guish two cases, depending on whether the child node is a left or a right child. The
two cases are symmetrical, so we’ll mainly focus on the former.

 Listings 3.2 and 3.3 show the pseudocode for right and left rotations, explicating
the details of the operations we described a few lines prior. Figure 3.5 illustrates the
steps needed for right rotations, where the child node X, the pivot of the rotation, is
the left child of its parent Y.

 We need to remove Y from the tree, update Y’s parent P (lines #4–11), replacing Y
with node X as its child (either left or right, see lines #8-#11); at this point, Y is discon-
nected from the tree, and with Y its whole right subtree.

function rightRotate(treap, x)
  if x == null or isRoot(x) then
    throw

Listing 3.2 Right rotation
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Figure 3.4 Left and right rotations illustrated on an example. The treap on the left violates heap’s 
invariants, and a right rotation on the node marked as X can fix it. Conversely, if we apply a left 
rotation to the node marked with Y in the heap on the right, the result will break heap’s constraints. 
Notice how right rotation is always applied to left children, and left rotation to right children.

Method rightRotate takes a Treap node 
x and performs a right rotation. It returns 
nothing, but it has side effects on the treap.

Checks if x is null or the root of the tree. If it is, 
there is an error. Arguably, we can just return instead 
of throwing, but swallowing exceptions is usually not 
a good idea. Method isRoot is left to the reader to 
implement. (It’s easy, since the root is the only node 
in a tree without a parent.)
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  y ← x.parent
  throw-if y.left != x  
  p  ← y.parent             
  if p != null then       
    if p.left == y then 
      p.setLeft(x)
    else
      p.setRight(x)
  else               
    treap.root ← x
  y.setLeft(x.right)   
  x.setRight(y) 

Y’s left subtree, instead, is empty because we disconnected X and moved it. We can
then move X’s right subtree and assign it to Y’s left child (line #14), as shown in the
lower-left section of figure 3.5. This certainly doesn’t violate the key ordering, because

Uses a convenience variable for x’s 
parent. Since x is not the root of the 
tree, y won’t be null (so, no need 
for an extra check).

We can only perform a right rotation on a 
left child; so if x is y’s right child, there is 
an error.

Uses a convenience 
variable for y’s parent

This time we 
don’t know 
if p is null 
or not, so 
we need to 
check.

Once we know p is not null, we still 
don’t know if y is its left or right child.

If there is a parent for y, we need to update it, replacing y 
with x. Methods setLeft and setRight take care of 
updating all the links, as shown in listing 3.1.

If, instead, p is null, it means that y was the treap’s root, 
so we need to update the tree, making x its new root.

Now that a reference to x is stored (either as p’s child or as the 
new root), we can update y’s left subtree, that will now point to 
x’s former right subtree.

Finally, we reconnect y to the tree 
by setting it as x’s new right child.

Figure 3.5 The algorithm for performing a right rotation on a BST illustrated
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(assuming there was no violation before the rotation) key[Y]>=key[Y.left] and
key[Y]>=key[Y.left.right]. In other words, since X was the left child of node Y,
then the right subtree of node X is still in Y’s left subtree, and all keys in a node’s left
subtree are smaller, or at most equal, to the node’s own key. You can also use figure 3.2
as a reference.

 All that’s left to do now is reconnect Y to the main tree: we can assign it to X’s right
child (line #15), and we won’t have any violation. In fact, we already know that Y (and
its right sub-tree) have larger keys than X’s, and for what concerns Y’s left subtree, it
was constructed using the former right subtree of X, and by definition all those keys
too are larger than X’s.

 We saw how to perform a rotation. It’s nothing fancy; it’s just about updating a few
links in the tree. The only mystery at this point might be, why is it called a rotation? 

 Figure 3.6 tries to answer this question, interpreting the steps we saw in listing 3.2
and figure 3.5 from a different point of view. Let me remark that this is just an infor-
mal way to illustrate how a rotation works. When you are going to implement this
method, you’d better refer to listing 3.2 and figure 3.5.

function lefttRotate(treap, x)
  if x == null or isRoot(x) then
    throw         
  y ← x.parent 
  throw-if y.right != x 
  p ← y.parent   
  if p != null then   
    if p.left == y then   
      p.setLeft(x) 
    else
      p.setRight(x)
  else             
    treap.root ← x
  y.setRight(x.left) 
  x.setLeft(y) 

First, let’s assume we call rotate on node X, and node Y is X’s parent. Once again, we
analyze right rotation, so X is a left child of Y.

 If we consider the subtree rooted at Y, we can visually “rotate” it clockwise (hence
“right rotation”), pivoting on node X, until X looks like the root of this tree; hence, all
other nodes appear to be below X, as shown in figure 3.6.

Listing 3.3 Left rotation

Method leftRotate takes a Treap node 
x and performs a left rotation. It returns 
nothing but it has side effects on the treap.

Checks if x is null or the root of 
the tree. If so, there is an error.

Uses a convenience variable for 
x’s parent. Since x is not the root 
of the tree, y won’t be null.

We can only perform a left rotation on a right 
child. If x is y’s left child, there is an error.

Uses a 
convenience 
variable for 
y’s parent

We don’t know if p is null or not, so we need to check.

Once we know p is not null, we still 
don’t know if y is its left or right child.

If there is a parent for y, we need to update it, replacing 
y with x. Methods setLeft and setRight take care of 
updating all the links, as shown in listing 3.1.

If, instead, p is null, it means that y was the treap’s root, 
so we need to update the tree making x its new root.

Now that a reference to x is stored (either as p’s 
child or as the new root), we can update y’s right 
subtree to point to x’s former left subtree.

Finally, we reconnect y to the tree
by setting it as x’s new left child.
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The result should look something like the top-right quadrant of figure 3.6. Of course,
in order for this to be a valid BST rooted at node X, we need to make a few changes.
For instance, there seems to be an edge from a child to its parent, from Y to X: but
that’s not allowed in trees, so we need to revert the direction of the edge. If we just did
that, though, X would end up with three children, and that’s also not allowed in a
binary tree; to fix it, we can transfer the link between X and its right child to Y. Both
changes are shown in the bottom-left portion of figure 3.6.

 At this point, the subtree is structurally fixed, and as a last step we can just enhance
its visual representation to make it also look a little better.

 You can imagine the tree structure like some kind of bolt and strings dangling
structure, and then the whole operation can be described as grabbing the tree by
node X and letting all the other nodes dangle from it, with the caveat that we need to
also move X’s right child to node Y.
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Figure 3.6 A more intuitive interpretation of the rightRotate operation that helps explain its 
name and also helps with memorizing its steps
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 Before closing the discussion on rotations, it’s important to note that rotations
always preserve BST constraints, but they do not preserve heap’s invariants. Rotations,
in fact, can be used to fix broken treaps, but if applied to a valid tree, they will break
the priority constraints on the node to which they are applied.

3.3.2 A few design questions

Treaps are heaps, which in turn are special trees with a dual array representation. As
we saw in chapter 2, we can implement a heap using an array, a more space-efficient
representation that also exploits locality of reference.

 Can we also implement a treap using an array? I encourage you to take a minute
and think about this question, before moving on and reading the answer. What would
be the pros and cons of using an array versus a tree, and what could be the pain points
of using a tree?

 The issue with the array representation is that it’s not particularly flexible. It works
well if we only swap random elements and remove/add only from the array’s tail; if,
instead, we need to move elements around, it’s a disaster! For instance, even inserting
a new element in the middle of the array causes all the elements after it to be moved,
for an average O(n) swaps (see figure 3.7).

The key point with heaps is that they are complete, balanced, and left-aligned trees,
which is possible because heaps don’t keep a total ordering on keys, so we can add
and remove elements from the tail of the array, and then bubble up/push down a sin-
gle element of the heap to reinstate the heap’s properties (see chapter 2).

 Treaps, on the other hand, are also binary search trees, which do keep a total
ordering on keys. That’s why we need rotations when we insert or delete new elements
from a treap. As we described in section 3.2.1, a rotation implies moving a whole sub-
tree from the right subtree of a node X to the left subtree of its parent Y (or vice
versa). As you can imagine, this is the kind of operation that is easily performed in
constant time when using pointers on a tree’s nodes, but it can become excruciatingly
painful on arrays (like, linear-time painful).

 And that’s why the array representation is not used for treaps (or for BSTs).

2 4 6 7 8 9
0 1 2 3 4 5 6

insert(3)
Shift existing elements

2 3 4 6 7 8
0 1 2 3 4 5

9
6

Figure 3.7 When a new element is inserted in an ordered array, all the elements 
larger than the new one must be shifted one position toward the tail of the array 
(provided there is still room). This means that if the array has n elements and the 
new value will be stored at index k (that is, it will be the (k+1)-th element in the 
array), then n-k assignments will be needed to complete the insertion.
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 Another design question you might ask (and also should ask) before getting on with
the implementation concerns the branching factor for the heap. We saw in chapter 2
that heaps can have branching factors other than 2, and in section 2.10 we also saw that
a heap with a branching factor of 4 or higher sensibly outperforms a binary heap (at
least in our example application). Can we also implement a treap with a generic
branching factor greater than 2?

 Unfortunately, it’s not that simple. First and foremost, we are using binary search
trees, so a tree with a branching factor of 2: if the heap’s branching factor didn’t
match the BST’s, it would be a mess!

 Then you might suggest using ternary search trees, or their generalization; how-
ever, that would make the rotation operations much more complicated, which means
the code of the implementation would become terribly complicated and unclean
(which likely also means slower!). Moreover, we would have a harder time keeping the
tree balanced, unless we use something like a 2-3 tree, but that’s already guaranteed to
be a balanced tree in the first place.

3.3.3 Implementing search

Now that we have a better idea of how a treap is going to be represented in memory
and how rotations work, we can move to the implementation of the main API’s meth-
ods. You can also find a Java implementation of treaps in the book’s repo on GitHub.5

 We can start from the search method that’s the easiest to describe. In fact, it’s just
the plain search method implemented in binary search trees: we traverse the tree
from the root until we find the key we are looking for or reach a leaf without find-
ing it.

 As with plain BSTs, we only traverse one branch of each subtree, going left or right
depending on how the target key compares to the current node’s key.

 Listing 3.4 shows the implementation of the internal method taking a node as
input and traversing its subtree; this version uses recursion (a technique described in
appendix E). It’s worth repeating that although recursion often results in cleaner
code when applied to iterative data structures such as trees, recursive methods can
cause stack overflow if the depth of the recursion is significant. In this particular case,
some programming languages’ compilers will be able to apply tail call optimization
and transform recursion into an explicit loop, while translating the code into machine
language.6 Generally, however, it might be worth considering directly writing the
explicit loop equivalent even in the higher level language, especially if you are not
sure about your compiler support for tail recursion optimization, or the conditions
where it can be applied.

 
 
 

5 See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#treap.
6 You can read more about the issue with stack overflow and tail call optimization in appendix E.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#treap
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function search(node, targetKey)
  if node == null then    
    return null
  if node.key == targetKey then
    return node
  elsif targetKey < node.key then   
    return search(node.left, targetKey) 
  else
    return search(node.right, targetKey)  

The API method contains for the Treap class just calls method search on the root
and returns false or true depending on whether the result is null or not.

3.3.4 Insert

While searching a key in a treap is relatively easy, inserting a new entry is a completely
different story. As we mentioned in section 3.3.1, using BST insertion won’t work in
the general case, because while the new entry’s key would end up in the right place in
the tree, its priority might violate the heap’s invariants, being larger than its parent
(figure 3.8).

 There is no reason to despair, though! We have a way to fix the heap’s invariants,
and we have actually already seen the solution: performing a rotation on the node vio-
lating the priority constraints.

 At a high level, the insert method has just two steps: insert the new node as a leaf,
and then check if its priority is higher than its parent. If that’s the case, we need to
bubble the new node up, but we can’t just swap it with its parent, like we would in a
heap.

 Using figure 3.6 as a reference, we need to take the subtree rooted in the new
node’s parent and then rotate it so that the new node becomes the root of this subtree
(because it’s certainly going to be the node with the highest priority).

 
 
 
 
 
 
 
 
 
 

Listing 3.4 Method search

Method search takes a treap’s node and the 
key to search. It returns the node holding 
the key, if found; otherwise null.

If this node is null, returns null 
to indicate the key wasn’t found.

If the node’s key matches the target 
key, we have found our target: just 
return current node.

Checks how the target key 
compares to the current node’s

If it’s smaller than current node’s key, 
we need to traverse the left branch.

Otherwise, the target key can only be stored in 
the right branch, and we need to traverse it.



83Treap

Flour

10

Water

32

Butter

76

Milk

55

Eggs

129

Bacon

77

Pork

56

Cabbage

159

Beer

20

P

X

Heap 
violation

P.setRight(X)

Flour

10

Water

32

Butter

76

Milk

55

Eggs

129

Bacon

77

Pork

56

Cabbage

159

Beer

20

New entry

Be
er
 <
 F
lo
ur

Be
er
 <
 B
ut
te
r

Beer > Bacon

P

X

search(Beer)

Figure 3.8 First steps of inserting a new entry. We search the new entry’s key to spot the 
right place to add a new leaf in the tree. Now we must check if the new node violates the heap’s 
invariants. Unfortunately, in this example it does, so we need to correct the situation by performing 
a left rotation (shown in figure 3.9).
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Listing 3.5 describes the pseudocode for the insertion method, while figures 3.8 and
3.9 illustrate an example of inserting a new entry to add “Beer” to the inventory with
20 units in stock.

function insert(treap, key, priority)
  node ← treap.root                                   
  parent ← null
  newNode ← new Node(key, priority) 
  while node != null do                 
    parent ← node          
    if node.key <= key then        
      node ← node.left 
    else             
      node ← node.right
  if parent == null then                               
    treap.root ← newNode   
    return
  elsif key <= parent.key then
    parent.left ← newNode
  else         
    parent.right ← newNode
  newNode.parent ← parent      
  while newNode.parent != null
      and newNode.priority < newNode.parent.priority do
    if newNode == newNode.parent.left then
      rightRotate(newNode)
    else
      leftRotate(newNode)       
  if newNode.parent == null then 
    treap.root ← newNode

Listing 3.5 Method Node::insert

Method insert takes a treap instance, the key 
and the priority to insert; the method doesn’t 
return anything but it has side effects. Duplicates 
are allowed (added to a node’s left subtree).

Initializes two temporary variables, for current 
node (initially the treap’s root) and its parent.

Creates a new node for the key and priority passed 
(just out of convenience, we create it in a single 
place).

Traverses the tree until it gets to a null node 
(when this happens, parent will point to a leaf).

Updates 
parent, 
since 
current 
node is 
not null

Checks how the new key compares to current node’s 
key; if it’s not larger, we take the left branch.

Otherwise, we go right. Now we are outside the while loop, so node==null, 
but we also need to check that parent is not null. 
It will be null only if the root of the tree is itself 
null; that is, if the tree is empty.

If the treap was empty, we never entered the while 
loop, and we just need to create a new root. Once that’s 
assigned to the treap’s internal field, we are finished.We need 

to check if 
we should 
add the 
new key 
as the left 
or right 
child of 
parent.

Either way, we need to set the correct 
parent link for the newly added node.

Now we need to check 
heap’s invariants. Until they 
are reinstated or we get to 
the root, we need to bubble 
up current node.

If this node 
is a left child, 
then we 
need to use 
rightRotate.

Otherwise, we will rotate newNode left.In case at the end of the cycle newNode bubbled 
up to the root, we need to update the root 
property of the treap.
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First, we need to find the right place to insert the new entry in our existing inventory.
This is done with a traversal of the tree, exactly like what happens with search, only
keeping track of the parent of the current node in order to be able to add the new
leaf. Notice that we implemented this traversal using an explicit loop here, instead of
recursion, to show to our readers how this approach works.

 As we can see in the top half of figure 3.8, the first step is traversing the tree to
search the right spot where we can add the new node as a leaf. We go left when we tra-
verse “Flour” and “Butter,” then right at “Bacon” (lines #5–10 of listing 3.5).

 Notice that for brevity we used a contracted naming notation in the figure. The
newly added node, corresponding to variable newNode in listing 3.5, is denoted as X in
the figures, and its parent with P.

 At this point, when we exit the while loop, the temporary variable parent points to
the node with key “Bacon”; therefore the conditions at lines #11 and #14 are false, and
we add the new node as a right child of parent, as shown in the bottom half of fig-
ure 3.8.

 Looking at the example, we can also notice how the new node has a higher priority
(a lower number of units in stock) than its parent; therefore, we enter the loop at line
#19, and perform a left rotation. After the first iteration of the loop and the left rota-
tion, the “Beer” node still has higher priority than its new parent, “Butter,” as shown in
the top half of figure 3.9. Therefore, we enter a second iteration of the loop, this time
performing a right rotation, because node X is now a left child of P.

 Since now (bottom half of figure 3.9) no invariant is violated anymore, we can exit
the loop. And since the new node wasn’t bubbled up all the way to the root, the check
at line #24 fails, and we don’t need to do anything else.

 What’s the running time for insert? Adding a new leaf requires O(h), because we
need to traverse the tree from its root to a leaf. Then we can bubble up the new node
at most to the root, and at each rotation we move the node one level up, so we can
perform at most h rotations. Each rotation requires a constant number of pointers to
be updated, so that bubbling up the new node and the whole method finally requires
O(h) steps.

 
 
 
 
 
 
 
 
 



86 CHAPTER 3 Treaps: Using randomization to balance binary search trees

Flour

10

Water

32

Butter

76

Milk

55

Eggs

129

Beer

20

Pork

56

Cabbage

159

Bacon

77

Heap 
violation

X

P'

Flour

10

Water

32

Beer

20

Milk

55

Eggs

129

Butter

76

Pork

56

Cabbage

159

Bacon

77

X

leftRotate(X)

rightRotate(X)

Figure 3.9 Insertion (continued). To fix the heap’s invariants, we needed to perform a right rotation 
on the treap at the end of figure 3.8. This action bubbles up the new node one level, and the result is 
shown at the top of this figure. The heap’s invariants are still violated, so we need to perform a further 
rotation (left, this time).
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3.3.5 Delete

Deleting a key from a treap is a conceptually simpler operation, although it requires a
completely different approach with respect to BSTs. In binary search trees, we replace
the removed node with its successor (or predecessor), but this approach wouldn’t work
in treaps, because this replacement could have a smaller priority than its new children,
and in that case, it would need to be pushed down. Moreover, in the general case for
BSTs, the successor of a node is not a leaf, and so it needs to be recursively removed.

 A simpler approach consists of preemptively pushing down the node to be
removed, all the way until it reaches a leaf. As a leaf, it can then be disconnected from
the tree without any effect.

 Conceptually, it’s like assigning the lowest possible priority to the node to be
removed, and fixing the heap’s invariants by pushing down the node. The operation
won’t stop until the node with an infinite (negative) priority reaches a leaf.

 This is illustrated in figure 3.10 and described in listing 3.6.

function remove(treap, key)
  node ← search(treap.root, key) 
  if node == null then 
    return false
  if isRoot(node) and isLeaf(node) then 
    treap.root ← null
    return true
  while not isLeaf(node) do  
    if node.left != null 
        and (node.right==null 
          or node.left.priority > node.right.priority) then 
      rotateRight(node.left)
    else
      rotateLeft(node.right)
    if isRoot(node.parent) then                   
      treap.root ← node.parent      
  if node.parent.left == node then  
   node.parent.left ← null
  else
   node.parent.right ← null
  return true    

In listing 3.6, in particular, we see why it was useful to have method search return the
node where the key was found. We can reuse it now to write the remove method,
whose first step is indeed searching the key to remove and then, if it was found, this
method will take over from the node that needs to be pushed down.

Listing 3.6 Method Treap::remove

Method remove takes a treap instance and the key 
to be removed. The method returns true if the key 
was removed, or false if it couldn’t be found. It also 
has side effects on the treap passed as argument.

Searches 
for the 
key in the 
treap

If search returned null, then there is no such 
key stored, and hence it can’t be deleted.

If the treap only contained one node, then 
removing it will just leave an empty tree. We 
can check that by either testing if the treap’s 
size is 1, or equivalently if node is both a leaf 
and the root.

Otherwise, 
we need to 
push down 
this node all 
the way to 
the leaves 
level.

Checks which of node’s two children should replace it. It will
have at least one child (because it’s not a leaf), and if it has both

children, we will need to choose the one with the highest
priority (that is, lowest value, in our example, because we are

implementing a min-treap).

If we chose the left 
child, we need a 
right rotation.

Otherwise,
we need

 a left
rotation.

We have to be careful in case node was the 
root. If that’s the case, we need to update 
treap’s property. This check can be true only 
on the first iteration of the cycle, so it might 
make sense, if performance is crucial, to 
break the cycle down and handle the first 
iteration separately.

After exiting the while loop, node is now a leaf, 
and certainly not the root anymore. We can just 
disconnect it by nulling the pointer from its parent.Returns true, because the key was removed
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Special care, as always, needs to be paid to be sure we remove the root.
 Let’s follow how the algorithm works using our example. Suppose we want to

remove “Butter” from our inventory (for instance, because we won’t sell it anymore or
we sold all of it).

 The first step, shown in figure 3.10 (A), is searching for the key “Butter” in the
tree (line #2 in listing 3.6). Once we find the node (that’s obviously not null, line #3),
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Figure 3.10 Deleting the key Butter from our example treap. The first step is finding the node holding the 
key to remove. Then, we set its priority to the lowest possible priority and push it down to a leaf. To do so, we 
need to find out which one of its children has the highest priority and rotate it. Finally, once the node reaches 
a leaf, we can just unplug it from the tree without violating any invariant.
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as usual marked with X in the figures, we verify that it’s neither the root nor a leaf
(hence, the check at line #5 returns false), so we can enter the while loop at line #8.

 At line #9, we choose X’s left child, denoted with L in the figure, as its highest-priority
child, so we perform a right rotation (line #10), which produces the tree shown in fig-
ure 3.10 (B).

 Here in the figure we changed the priority of the node being pushed down to +∞,7

but in the code we don’t actually need to do that; we can just push down the node
without checking priorities, until it becomes a leaf.

 At this point X is not yet a leaf, although it just has one child, its (also former) right
child R; therefore, we will enter another iteration of the while loop, and this time per-
form a left rotation, producing the tree shown in figure 3.10 (C). One more left rota-
tion, and X finally becomes a leaf.

 At this point we exit the while loop, and at line #15 we are sure that node is not the
root (otherwise, we would have caught this case at line #5), so it will have a non-null
parent. We still need to disconnect the node from the tree by removing the pointer
from its parent, and to do so we need to check whether it was a left or right child.

 Once the right link has been set to null, we are done and the key was successfully
removed.

 If we compare this method with the plain BST’s version, the positive aspect is that
we don’t have to call remove recursively on the successor (or predecessor) of the node
that will be removed. We just perform one removal, although possibly with several
rotations. And that’s actually one negative aspect: if we delete a node close to the root,
we will need to push it down for several layers until it reaches a leaf.

 The worst-case running time for the remove algorithm is, in other words, O(h),
where h is the height of the treap. As a consequence, it becomes particularly import-
ant, as you can imagine, that the height of the tree is kept as small as possible.

 As you can see from our examples, using the treap for storing both keys and mean-
ingful priorities might tend to produce an unbalanced tree, and removing a node
might make the tree even more unbalanced, because of the many rotations starting
from an already bad situation.

3.3.6 Top, peek, and update

The remaining methods in class Treap’s API are easier to implement. Method peek is
trivial to implement; it’s exactly the same as for regular heaps, the only difference
being in how we access the heap’s root.

 If we also need to implement method top, to make sure our treap can seamlessly
replace a heap, we can leverage the remove method and write almost a one-liner, as
shown in listing 3.7.

 
 

7 In our example, the lowest priority corresponds to the highest availability in stock, and so +∞ is the highest
possible value for the units in stock.
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function top(treap)   
  throw-if treap.root == null  
  key ← treap.root.key        
  remove(treap, key) 
  return key    

Besides validating the treap’s status, checking that it’s not empty, we just need to
retrieve the key stored in the root and then remove it from the treap.

 Similarly, if we need to update the priority associated with a key, we can follow the
same logic as for plain heaps, bubbling up the updated node (when increasing prior-
ity, or pushing down, when we lower priority). The only difference is that instead of
just swapping nodes we need to perform rotations to move the updated node. Imple-
mentation of this method is left as an exercise (or you can check it out on the book’s
repo).

3.3.7 Min, max

The last methods left to implement in our API are min and max, returning the mini-
mum and maximum key stored in the treap.

 These keys are stored respectively in the left-most and right-most nodes of the tree.
Be careful, though; these nodes are not necessarily going to be leaves, as shown in fig-
ure 3.11.

Listing 3.8 shows a possible implementation of method min. Exactly as in BSTs, we
just traverse the tree, always taking the left branch until we reach a node whose left

Listing 3.7 Method Treap::top

Method top takes a treap instance and 
returns its top-priority element, unless 
the treap is empty.

If the treap was empty, we 
need to throw an error.

Stores the key at the 
root of the treap

Removes the top key from the treap

Returns the key
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Figure 3.11 How to find minimum 
and maximum keys in a treap (or, in 
general, in a binary search tree): the 
minimum is stored in the left-most 
node, and the maximum in the right-
most node. Notice how these nodes 
aren’t necessarily tree leaves.
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child is null. Method max is symmetric; you just need to replace node.left with
node.right.

function min(treap)   
  throw-if treap.root == null
  node ← treap.root                 
  while node.left != null do 
    node ← node.left 
  return node.key  

3.3.8 Performance recap

This concludes our discussion on the implementation of treaps. In the next sections,
we’ll discuss applications of treaps and analyze them in more detail.

 For now, let’s recap the running time of the treap’s methods, shown in table 3.2.
Notice that

 All operations only depend on the height of the tree, rather than on the num-
ber of elements. Of course, in the worst case, O(h)=O(n) for skewed trees.

 We omitted the space analysis, because all these methods only require constant
extra space.

3.4 Applications: Randomized treaps
So, we are now able to implement our inventory, keep track of the products in stock,
and extract the ones closest to running out of stock. That would certainly impress
everyone at the next family reunion!

Listing 3.8 Method Treap::min

Table 3.2 Operations provided by treaps, and their cost for a tree with n keys and height h

Operation Running time Worst case

Insert O(h) O(n)

Top O(h) O(n)

Remove O(h) O(n)

Peek O(1) O(1)

Contains O(h) O(n)

UpdatePriority O(h) O(n)

Min/Max O(h) O(n)

Method min takes a treap instance and 
returns its top-priority element, unless 
the treap is empty.

If the treap was empty, we need to throw 
an error (it would have no min, obviously).

Initializes the temporary variable node with the 
tree’s root (not null, because of the check at line 2)

Until we reach the left-most node, 
keep traversing the left branch.

Returns the node’s key
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 Hopefully, our example helped you understand how treaps work, but . . . I have a
confession to make: treaps are not really used as a way to index multidimensional
data.

 We’ll see in the next chapters, and in particular in chapter 7, when we talk about
cache, that there are better ways to address problems equivalent to the example we
presented in this chapter.

 Let me be clear: using treaps as both trees and heaps is possible, perfectly legal,
and can even offer decent performance, under certain conditions, although in the
general case we have seen that keeping data organized by both criteria will likely pro-
duce an unbalanced tree (which means linear-time operations).

 But that’s not why treaps were invented, nor is it the main way they are used today.
In the end, the point is that there are better ways to index multidimensional data and
better ways to use treaps. Instead, we’ll see that we can use treaps as a building block
to implement a different, and efficient, data structure.

3.4.1 Balanced trees

One aspect that we stressed is that unbalanced treaps tend to have long paths, whose
length can be, in the worst-case scenario, in the order of O(n) nodes.

 Conversely, when discussing heaps, we saw that balanced trees, like heaps, have
logarithmic height, making all operations particularly convenient to run.

 With heaps, however, the catch is that we trade the benefit of balanced trees in
exchange for restricting to a limited set of operations. We can’t efficiently search a
heap for an element’s key, or retrieve the maximum or minimum key,8 or delete or
update a random element (without knowing beforehand its position in the heap) in
sublinear running time.

 Nevertheless, there are, in algorithm literature, many other examples of balanced
trees, data structures that guarantee that the height of the tree will be logarithmic,
even in the worst case. Some examples that we mentioned in section 3.2 are 2-3 trees9

(shown in figure 3.12) and red-black trees10 (figure 3.13).
 The algorithms to maintain the constraints for these trees, however, tend to be

quite complicated, so much so that many textbooks on algorithms, for instance, omit
the delete method altogether.

 Turns out, quite surprisingly, that we can use treaps, which seems quite unbal-
anced, to obtain tendentially balanced11 binary search trees using a set of easier and
cleaner algorithms (in comparison to red-black trees and the like).

8 Remember that in a heap, elements are partially ordered by priority, but not ordered at all by key. We can get
the element with the highest priority, but to get the smallest (or largest) key, we need to check all elements.

9 Aho, Alfred V., and John E. Hopcroft. The design and analysis of computer algorithms. Pearson Education India,
1974.

10Guibas, Leo J., and Robert Sedgewick. “A dichromatic framework for balanced trees.” 19th Annual Symposium
on Foundations of Computer Science (sfcs 1978). IEEE, 1978. 

11Meant as balanced, with a high probability.
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As we saw in the introduction to this chapter, plain BSTs also suffer this same problem,
having their structure depend on the order in which elements are inserted.

 And if we go back to the last section, we saw treaps can be skewed if the particular com-
bination of keys and priorities, and the order in which elements are inserted, is particularly
unlucky, because rotations can cause the tree to get even more unbalanced (see figure 3.9).
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Flour Rice  Water

K1

K1
K2

K1 K2

Left child Right child
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Figure 3.12 A 2-3 tree containing the keys we used in our grocery store example. Nodes in 2-3 trees 
can contain one or two keys, sorted ascendingly, and respectively 2 or 3 links. Besides left and right 
children, 3-nodes also have a middle child. All keys K in the subtree pointed to by a middle link must 
obey this condition: K1 > K >= K2, where K1 and K2 are the first and second key, respectively, of 
the 3-node. 2-3 trees are guaranteed to be balanced by the way insertion is performed: keys are added 
to the leaves, and when a leaf grows to three elements, it’s split and the middle element is bubbled 
up to the parent node (which is also possibly recursively split). It is guaranteed that the height of a      
2-3 tree with n keys is between log2(n) and log3(n).
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Figure 3.13 Red-black containing the same keys of our example. Red-black trees are one of the 
simplest implementations of 2-3 trees. A red-black BST is like a regular BST, except that the links 
between nodes can be of two different kinds: red links (dashed lines), and black links (solid lines). 
Red links connect keys that, in the corresponding 2-3 tree, would belong to the same 3-node. Black 
links, instead, would be the actual links of a 2-3 tree. There are two constraints: (1) No node has two 
red links connected to it (either in- or out-going); this encodes the fact that in a 2-3 tree there are 
only 2-nodes and 3-nodes. (2) All paths from the root to a leaf have the same number of black links. 
Equivalently, nodes can be marked as red or black. Here, we used red (shaded) and white (unshaded) 
for clarity. There can’t be two consecutive red nodes in any path. Together, these constraints 
guarantee that the longest possible path in a red-black BST, alternating red and black links, can at 
most be twice as long as the shortest possible path in the tree, containing only black links. In turn, 
this guarantees that the height of the tree is logarithmic. These invariants are maintained by 
appropriately using rotations, after insertions and deletions.
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So here is the idea: we can use rotations to rebalance the tree. If we strip priorities
from their meaning (in our example, forget about the units in stock for each prod-
uct), we can, in theory, update the priority value of each node so that fixing the heap’s
invariants will produce a more balanced tree.

 Figure 3.14 illustrates the process. The right branch of the tree is not balanced,
and by updating the second-to-last-level node, we can force a right rotation that will
bring it up one level, rebalancing its subtree, and in this simple example, the whole
tree.

We need to be clear now: By dis-
carding the meaning of the prior-
ity field, we are implementing
something different than what we
had in section 3.3. In particular,
this new data structure will no lon-
ger adhere to the priority queue
public interface, and it will not
offer any top or peek method.
Instead, it will just be a binary
search tree that internally uses the
concepts we developed for treaps
to maintain its structure balanced. Table 3.3 shows the methods and contract for BSTs.
The data structure we are about to introduce will adhere to this API.

3.4.2 Introducing randomization

If getting better results using simpler algorithms sounds too good to be true to you . . .
well, you might be partially right, meaning that there is a price to pay for simplicity.
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Figure 3.14 Rebalancing a treap by carefully updating its priorities. If we change the priority of the node with 
key “Milk” to a value smaller than its parent (but larger than the root, in this case), we can fix the heap 
invariants with a right rotation. Incidentally, by doing so we will get a perfectly balanced tree.

 

Table 3.3 API and Contract for BinarySearchTree (BST)

Abstract data structure: Binary search tree

API class BST {
  insert(element)
  remove(element)
  contains(element)
  min()
  max()
}

Contract with client Entries are kept sorted by element 
(aka key).
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 Updating priorities to keep the tree balanced seemed easy on our small example,
but doing it systematically on a large tree becomes difficult and expensive.

 Difficult because it becomes like solving a puzzle: every time we rotate an internal
node, we potentially cause lower levels in the subtrees pushed down to become more
unbalanced, so it’s not trivial to come up with the right order of rotations to obtain
the best possible tree structure.

 Expensive, because we need to keep track of the height of each subtree, and
because coming up with a sequence of rotations requires extra work.

 In the previous section, we used the term tendentially balanced to describe the result we
can get. This has probably already revealed a key point to the eyes of the most observant
readers: we are talking about introducing a randomized element in our data structures.

 Randomness will be a constant factor in this first part of the book. We’ll see several
data structures leveraging it, including Bloom filters. To help all readers be comfort-
able with the topic, we prepared a short introduction to randomized algorithms in
appendix F; feel free to take a look before delving into this section.

 In the original work by Aragon and Raimund, treaps were introduced as a means
to obtain “randomized balanced search trees.” They used the same idea we described
in section 3.4.1, leveraging priorities to force a balanced tree structure, but they
avoided all the complexity of manually setting these values by using a uniform ran-
dom numbers generator to choose the values for the nodes’ priorities.

 Figure 3.15 shows a more balanced version of the tree produced at the end of fig-
ure 3.9, by replacing those priorities with randomly generated real numbers. It’s also
possible to use random integers for priorities, but using real numbers reduces the pos-
sibility of ties and improves the final result.
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Figure 3.15 An example of a Randomized Treap (RT) for the keys in the treap shown in figure 3.9 
(after inserting the key “Beer”). Priorities are random numbers between 0 and 1. This is just one 
possible structure for the keys, corresponding to one random choice of the priorities.
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We will see in section 3.5 that, if the priorities are drawn from a uniform distribution,
the expected height of the tree is logarithmic in the number of nodes.

 The best part is that we have already written almost all the code needed to imple-
ment this new data structure. We can internally use a treap (listing 3.9) and all its API
methods will just be wrappers for treap’s methods, except for insert; that’s the only
one for which we need to write an extra line of code.

class RandomizedTreap
  #type Treap
  treap
  
  #type RandomNumberGenerator
  randomGenerator

  function RandomizedTreap()
    this.treap ← new Treap

As it’s shown in listing 3.10, all we need to do is generate a random priority when we
insert a new key in our Randomized Treap.

 You can find a Java implementation for RTs on the book’s repo on GitHub.12

function insert(key)
  return this.treap.insert(key, this.randomGenerator.next())

3.4.3 Applications of Randomized Treaps

As we saw in the last section, Randomized Treaps are the main application for treaps.
Now the question is, what are the most common applications for Randomized Treaps?

 In general, we can use a Randomized Treap everywhere we would use a BST. In
particular, they are indicated for situations where we need a balanced tree, but we are
fine with having guarantees on the average case only, not on the worst case.

 Another aspect to consider is that, as always when randomization and “average
case” bounds are involved, the guarantees are more likely to hold when the number of
entries is larger, while for smaller trees, it’s easier to obtain skewed structures. (For
small trees, however, the performance difference between slightly skewed and bal-
anced trees will also be less relevant, obviously.)

 BSTs, in turn, are often used to implement dictionaries and sets. We will see more
about these structures in chapter 4.

Listing 3.9 Class RandomizedTreap

Listing 3.10 Method RandomizedTreap::insert

12See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#treap.

Method insert takes the key to insert into 
the tree. It doesn’t return anything but has 
side effects on the tree.

We insert a new entry in the treap: the key
will be the method’s argument, while the

priority will be a random real number.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#treap
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 Other examples include keeping data read from a stream sorted, counting the
number of elements smaller (larger) than any given element of a dynamic set, and in
general all applications where we need to keep a dynamic set of elements in sorted
order, while supporting fast search, insertion, and removal.

 Practical examples of real-world code using BSTs are, for instance, managing a set
of virtual memory areas (VMAs) in operating system kernels and keeping track of
packet IP verification IDs. For the latter, a hash table would be faster, but it would also
be vulnerable to worst-case input attacks, where an attacker could send packets from
IPs hashing to the same value: this would degenerate the hash table into an unsorted
list (if concatenation13 is used), transforming the hash table in a bottleneck and possi-
bly slowing down packet resolution or the whole kernel.

3.5 Performance analysis and profiling
As we saw in section 3.3, all API methods on Randomized Treaps require time propor-
tional to the height of a tree. As we know (see the introduction to this chapter and
appendix C), in the worst case the height of a binary tree can be linear in the number
of elements and, in fact, one of the problems with BSTs is that there are specific
sequences of insertions that will certainly cause a tree to be skewed. This issue makes
binary search trees particularly vulnerable to attacks when used as dictionaries,
because all an attacker needs to degrade the data structure’s performance is to send
an ordered sequence, which will cause the tree to degenerate into a linked list, having
a single path from the root to a leaf containing all the elements.

 Randomized Treaps offer a two-fold improvement. First and foremost, introducing
randomness in the assignment of priorities prevents14 attackers from being able to
exploit known sequences. But also, as we promised in section 3.4, it will give us on
average a more balanced tree than plain binary search trees.

 What does “on average” mean? And how much of an improvement can we get?
There are two ways to answer these questions. From a theoretical point of view, we can
analyze the expected height of a Randomized Treap, and mathematically prove that,
on average, the height will be logarithmic.

 But also, from a practical angle, we can just run a simulation to verify that what we
expect is true and compare the height of a BST versus a Randomized Treap with the
same elements.

3.5.1 Theory: Expected height
To analyze the expected height of a random data structure, we need to introduce
some concepts about statistics.

 First and foremost, we will need to use the concept of expected value for a random
variable V. We can informally define it as the mean value (not the most likely value)
that variable will assume over a large set of occurrences.

13See appendix C for a recap on hashing.
14It goes without saying that this holds if the pseudo-random generators are implemented properly and within

the limits caused by the fact that a classic computer can’t offer true randomness. Either way, we make the
attackers’ job a little harder. 
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 More formally, if V can assume values in a finite, countable set {v1, v2, . . . vM}, each
with probability {p1, p2, . . . , pM}, then we define the expected value of V as

For our Randomized Treap, we will define a random variable Dk for the depth of a
given node Nk, where the index k ϵ {0, . . . n-1} denotes the index of the node’s
key in the sorted set: Nk has the k-th smallest key in the tree. 

 In simple terms, Dk counts how many ancestors there are for the node holding the
k-th smallest key, Nk. Yet another way to see this number is the following: How many
nodes are in the path from the tree’s root to Nk?

 Formally:

We can denote the event “Ni is an ancestor of Nk” with the indicator (a binary variable)
Ak

i: this way, given any pairs of nodes Ni and Nk, Aki == 1 means that Ni is in the path
between Nk and the root, while Aki == 0 means that either they are in different
branches or, at most, Ni is a descendent of Nk.

 Then the expected value for Dk becomes

To compute the probability P(Aki), we need to introduce a new variable, and a lemma
(an intermediate result).

 We define N(i,k) = N(k,i) = {Ni, Ni+1, . . . Nk-1, Nk} as the subset of treap
nodes whose keys are between the i-th and k-th smallest15 of the whole tree.

 Obviously, N(0,n-1) = N(n-1,0) contains all the nodes in the treap. Figure 3.16
shows a few examples of these subsets to help you visualize them.

 Notice that the successor and predecessor of any node N are always on a path
between N and the root, or N and a leaf. In other words, to find the predecessor—or
successor—of a node, you only need to look either in the subtree rooted at N, where
this node will be the left-most, or right-most for successors, or in the path between N
and the root.

 
 
 

15Assuming i < k; otherwise, if i > k, we refer the subset {Nk, Nk+1, … Ni-1, Ni}.
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It can be proved that the following lemma holds:

For all i k, 0≤i,k≤n-1, Ni is an ancestor of Nk if and only if Ni has the smallest
priority among all nodes in N(i,k).

We will not prove this lemma here. If you’d like to take the challenge, it can be easily
proven by induction.

 So, armed with the lemma, we can compute the probability that the node with the
i-th smallest key becomes an ancestor of the node with the k-th smallest key. Since we
assume that the priorities are drawn from a uniform continuous set, as with all real
numbers between 0 and 1, then each node in a subset of nodes is equally likely to hold
the smallest priority.

 Therefore, for each i k we can write the probability of i being an ancestor of k as

while for i=k, instead, the probability is simply 0 (a node can’t be its own ancestor).
 Replacing these values in the formula for the expected value of Dk, we get

The middle term of the sum obviously evaluates to 0, while for the first term of the
sum, we notice that when i=0, the denominator becomes equal to k-1, and it dimin-
ishes of 1 unit as i increases until, for i=k-1, it becomes equal to 2.
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Figure 3.16 A few examples of the subsets of nodes N(i,k) defined in this section.

P Ak
i( )i k≠

1
N i, k( )
------------------- 1

k i– 1+
----------------------= =

E Dk[ ] P Ak
i( ) 1

k i– 1+
------------------- 0 1

i k– 1+
-------------------

i k 1+=

n 1–

+
i k=

k

+
i 0=

k 1–

=
i 0=

n 1–

=



100 CHAPTER 3 Treaps: Using randomization to balance binary search trees

 Similar considerations can be made for the last term of the formula, giving us:

The two summations in the previous formula are, in fact, both partial sums of the har-
monic series, denoted as Hn; Hn<ln(n), where ln is the natural logarithm. We finally
obtain

This result guarantees that, over a large number of attempts, the mean value for the
height of a Randomized Treap is O(log(n)), logarithmic in the number of keys stored
(independently of the order keys are added or removed, and on the distribution of keys).

3.5.2 Profiling height

You could object that it’s just a guarantee on the average among several attempts.
What if we get really unlucky on a crucial run? To get better insight into the actual
performance of this data structure, we can run a little profiling, just like we did in sec-
tion 2.10 for d-heaps. This time, we’ll use a profiling tool for Java, JProfiler.16

 We could even omit using a profiling tool, because our tests are going to compare
an implementation of a plain BST versus a Randomized Treap, and after performing
the same sequence of operations on two instances of those two containers, they’ll
check how the heights of the two trees compare.

 This measure will give us the gist of the asymptotic improvement of balanced trees
over BSTs, because, as we discussed, operations on binary trees (balanced or not)
require a number of steps proportional to the height of the tree.

 We also know, however, that asymptotic analysis discards the constant coefficients,
hiding the code complexity that usually comes with more advanced algorithms; there-
fore, having an indication of the actual running time will provide more thorough infor-
mation that can help us choose the best implementation for our applications.

 In the tests that you can find on the book’s GitHub repo,17 we try three different
scenarios:

 We create large trees of increasing (random) size, whose keys are random inte-
gers, with an initial sequence of insertions, followed by random removals and
insertions (with a rate of 1:1). 

 We proceed similarly to the previous step, but the possible key values are limited
to a small subset (for instance, just 0 . . . 100, forcing several duplicates in the tree).

 We insert an ordered sequence of numbers into the trees.

16JProfiler is a commercial tool. You can find open-source alternatives that will also get the job done.
17https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Java/tests/org/mlaroc

ca/containers/treap/RandomizedTreapProfiling.java.
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The results of the first test we ran are shown in figure 3.17. You can see that the height
of both trees is growing logarithmically. At first this seems rather discouraging, as there
seems to be no improvement given by using Randomized Treaps over plain BSTs.

 We need, however, to make a couple of considerations.
 First, let’s clarify the rules of the game: given a target size for the tree, n, then we

add (to both containers) the same n integers, chosen at random, without any limit.
After these insertions, we perform another n operations. Each of them can remove an
existing key (randomly chosen) or add a new random integer to it. Obviously, we
repeat this test for growing sizes.

 We used an efficient implementation of BSTs (you can find it on the book’s repo18)
that limits the skewing effect of removing elements.19 This expedient already improves
the balance of BSTs and reduces the gap with balanced trees.

18https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Java/src/org/mlarocca/
containers/tree/BST.java.

19The standard implementation of the remove method in BSTs, when the node N to remove has both children,
uses the node’s successor to replace the key to delete (and then recursively delete this successor). Over a long
number of removals, this causes the tree to become skewed, left-leaning. A solution to mitigate this effect is
randomly deciding, with a 50% probability, to use the predecessor of a key instead of its successor.

Figure 3.17 The height of a Randomized Treap versus a BST. On both data structures the 
same operations were performed, and the keys are random integers. Notice that the y axis 
uses a logarithmic scale.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Java/src/org/mlarocca/containers/tree/BST.java
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Java/src/org/mlarocca/containers/tree/BST.java
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/Java/src/org/mlarocca/containers/tree/BST.java


102 CHAPTER 3 Treaps: Using randomization to balance binary search trees

Finally, there is one consideration to make. In our experiment, we add completely
random keys since the range of values is so large compared to the number of elements
in the container. The expected number of duplicates is negligible, and we can assume
that all sequences of keys to insert will be drawn with the same probability. In this
scenario, it’s unlikely that an adversarial sequence, causing the height to be super-
logarithmic, will be chosen (the chances are beyond slim already for n ~= 100).

 Basically, we are using the same concept of Randomized Treaps, moving the ran-
domness into the generator of the sequences of keys to insert; unfortunately, however,
we don’t always get to choose the data to add to our containers!

 And so, in order to verify this hypothesis, we can run a different experiment,
reducing the influence of the random generator by limiting the set of possible keys.
The results of limiting the keys to values in the range 0 . . . 1000 are shown in figure
3.18. Now we can immediately notice a difference between the two data structures: the
BST grows linearly, with a slope of approximately 10-3, while the Randomized Treap
still shows logarithmic height.

There are two reasons for this difference:

 Having a high duplicates rate (larger and larger as n is growing) produces
sequences of insertions with longer streaks of sorted data.

 BSTs are naturally left-leaning when duplicates are allowed. As you can also see
in listing 3.5, we need to break ties when inserting new keys, and we decided to
go left every time we find a duplicate. Unfortunately, in this case we need a
deterministic decision. We can’t use the same workaround as for deletions, and
so when input sequences contain a large number of duplicates, as in this test,
BSTs become tangibly skewed.

This is already a nice result for treaps, because real-world inputs can easily contain sev-
eral duplicates in many applications.

Figure 3.18 The height of a Randomized Treap versus a BST, when possible keys are randomly extracted from 
the set of integers between 0 and 1000. The charts show the same data, on the left with linear scale and on 
the right using logarithmic scale for heights.
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 But what about those applications that don’t allow duplicates? Are we safe from
adversarial sequences in those situations? Truth to be told, we haven’t clarified how
important the role of ordering is. What better way to do it than trying the worst possi-
ble case—a totally ordered sequence? Figure 3.19 shows the results for this test. Here
we stripped out all randomness and just added to the containers all integers from 0 to
n-1, no calls to remove performed.

As expected, for BSTs the height is always not just linear in the number of nodes, but
equal to the number of nodes (this time the slope is exactly 1), because the tree
degenerates to a linked list, as expected.

 Randomized Treaps, instead, keep performing well with logarithmic height, just
like for the other tests, even in the most unfavorable case.

 We can then conclude that if the parameter to improve is the height of the tree,
Randomized Treaps do have an advantage in comparison to BSTs, and it is true that
they keep a logarithmic height in all situations; therefore, their performance is com-
parable to more complex data structures such as red-black trees.20

20Stack overflow, its relation with recursion, and how to avoid such crashes is explained in appendix E.

Figure 3.19 The height of a Randomized Treap versus a BST, after inserting the sequence 0, 1, . . . , 
n-1. The charts show the same data, on the left with linear scale and on the right using logarithmic scale for heights.

Dangers of recursion
The degeneration of BSTs in this test caused the recursive implementation of the add
method, provided on our repo, to crash with a stack overflow18 for n~=15K elements.

This should remind you, once again, how important it is to be careful when writing
recursive methods and, at the same time, how important it is to use the right data
structure. In theory, while treaps could also cause stack overflows, since their height
is logarithmic, we would need to add ~215000 = 105000 elements to cause a stack over-
flow (which is way more than it’s possible to allocate on any computer’s RAM anyway,
so it’s unlikely you’ll ever get a crash from a recursive treap).
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3.5.3 Profiling running time

The height of the tree, however, is not the only criteria we are interested in. We want
to know if there is a catch, and what’s the price we have to pay in terms of running
time and memory usage (figure 3.20).

To find out this, we run a proper profiling of the first test (with unbounded integers as
keys, so with low or no duplicates) using JProfiler and recording the CPU time. The
profiling used the implementations of BSTs and Randomized Treaps provided in the
book’s repo. It’s worth noting that this profiling only gives us information on the
implementations we examine, but we could get different results on optimized or dif-
ferently designed software.

 The results for our profiling run are shown in figure 3.20, where we can see that for
insertion (method add) the cumulative running time spent for Randomized-Treap is
almost twice as much as for BST::add; for method remove; instead, the ratio becomes
3.5 times.

 From this first test, it seems that we pay a high price, in the general case, for the
overhead due to the greater complexity of Randomized Treaps. This result is some-
how expected, because when the height of the trees is approximately the same, the
code for treaps is substantially more complex than for BSTs.

 Should we just throw away our RandomizedTreap class? Well, not so fast. Let’s see what
happens when we profile the second test case introduced in section 3.5.2, the one where
we still add random integers to the containers, but limited to the range [0, 1000].

 In the previous section, we saw that, in this case, BST’s height grows linearly, while
for Randomized Treaps we still have a logarithmic growth.

Figure 3.20 Profiling CPU usage when inserting/removing random unbounded integers in a BST and 
Randomized Treap
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 Figure 3.21 shows the result of this profiling. We can immediately see that the situ-
ation has radically changed, and BSTs perform tremendously worse now. So much
worse that BST::add takes 8-fold the running time of RandomizedTreap::add. For the
method remove the ratio is even worse; we are talking about almost a 15-fold speed-up
using Randomized Treaps—that’s exactly the situation where we would want to use
our new, fancy, balanced data structure!

For the sake of completeness, let’s also take a look at the worst-case scenario for BSTs.
Figure 3.22 shows the profiling of the last test case introduced in section 3.5.2, where
we insert an ordered sequence in our containers. In this case, I believe that the results
don’t even need to be commented, because we are talking about thousands of seconds
versus microseconds (we had to test on a smaller set because BSTs performance was so
degraded as to be unbearably slow).

 All things considered, these results would suggest that if we are not sure about how
uniform and duplicates-free the data we have to hold are, we should consider using
Randomized Treaps. Instead, if we are sure the data will have lots of duplicates or

Figure 3.21 Profiling CPU usage when inserting/removing random integers between 0 and 1000 in a BST and 
Randomized Treap

Figure 3.22 Profiling CPU usage when adding ordered sequences to a BST and Randomized Treap
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possibly be close to sorted, then we definitely want to avoid using plain BSTs and
resort to a balanced tree.

3.5.4 Profiling memory usage
So much for CPU usage, you might say, but what about memory usage? Because
maybe Randomized Treaps are faster in some situations, but they require so much
space that you won’t be able to store them in memory for large datasets.

 First, we make a consideration: memory usage will be approximately the same for
all the test cases we have introduced in the previous sections (when comparing con-
tainers of the same size, of course). This is because the number of nodes in both trees
won’t change with their height; these trees do not support compression, and balanced
and skewed trees will always need n nodes to store n keys.

 Once we have established that, we can therefore be happy by profiling memory
allocation for the most generic case, where the two trees are both approximately bal-
anced. Figure 3.23 shows the cumulative memory allocated for the whole test for
instances of the two classes. 

We can see that RandomizedTreap requires slightly more than twice the memory of
BST. This is obviously not ideal, but is to be expected, considering that each node of a
treap will hold a key (an Integer, in this test), plus a Double for the priority.

 If we try a different kind of data for the keys—for instance, String—we can see
that the difference becomes much smaller, as shown in figure 3.24. It’s just a ratio of
1.25 when storing strings between four and ten characters as keys.

Figure 3.23 Cumulative memory allocation for BST and RandomizedTreap, in the most generic case, with 
random insertions and removals

Figure 3.24 Cumulative memory allocation for BST and RandomizedTreap when storing strings between 4 
and 10 characters.
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3.5.5 Conclusions

The analysis of the comparative performance and height of BSTs and Randomized
Treaps suggests that, while the latter requires slightly more memory and can be slower
in the generic case, when we don’t have any guarantee on the uniform distribution of
keys or on the order of the operations, using BSTs carries a far greater risk of becom-
ing a bottleneck.

 If you remember, when we introduced data structures in chapter 1 we made it
clear: knowing the right data structure to use is more about avoiding the wrong
choices than finding the perfect data structure. This is exactly the same case. We (as
developers) need to be aware of the situations where we need to use a balanced tree
to avoid attacks or just degraded performance.

 It’s worth reiterating that the first part of the analysis, focusing on the height of the
trees, has general value21 and is independent of the programming language used. The
analysis of running time and memory usage, instead, only has value for this implemen-
tation, programming language, design choices, and so on. All these aspects can, in
theory, be optimized for your application’s specific requirements.

 My advice, as always, is to carefully analyze requirements, understand what’s critical
in your software and where you need certain guarantees about time and memory, and
then test and profile the critical sections. Avoid wasting time on non-critical sections;
usually you’ll find that the Pareto principle holds for software, and you can get an
80% performance gain by optimizing 20% of your code. Although the exact ratio may
vary, the overall principle that you can get a significant improvement by optimizing
the most critical parts of your application will likely hold.

 Try to get a balance between clean code, time used to develop it, and efficiency.
“Premature optimization is the root of all evil,” as stated by Donald Knuth,22 because
trying to optimize all of your code will likely distract your team from finding the criti-
cal issues, and produce less-clean, less-readable, and less-maintainable code.

 Always make sure to try to write clean code first, and then optimize the bottlenecks
and the critical sections, especially those on which you have a service-level agreement,
with requirements about time/memory used.

 To give you a concrete example, the Java implementation we provide on the book’s
repo makes heavy use of the Optional class (to avoid using null, and provide a nicer
interface and a better way to handle unsuccessful searches/operations), and conse-
quently also a lot of lambda functions.

 If we profile in more detail the memory usage, disabling the filter on the package
(to speed-up profiling, you usually want to avoid recording standard libraries, etc.),
the final result is quite surprising, as we can see in figure 3.25.

21Assuming the algorithms are implemented verbatim, it’s also not dependent on the specific implementation.
22“The real problem is that programmers have spent far too much time worrying about efficiency in the wrong

places and at the wrong times. Premature optimization is the root of all evil (or at least most of it) in program-
ming.” Knuth, Donald Ervin. The art of computer programming. Pearson Education, 1997.
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You can see that most space is used by instances of Optional and lambdas (implicitly
created in Optional::map, etc.).

 A complementary example for performance could be supporting multi-threading.
If your application does not involve (ever) sharing these containers among different
threads, you can avoid making your implementation thread-safe and save the over-
head needed to create and synchronize locks.

Summary
 Binary search trees offer good performance on all the typical container’s meth-

ods, but only if they’re kept balanced. Depending on the order of insertion of
its keys, however, a BST can become skewed.

 The edge case is when an ordered sequence is added to a BST, that will then
contain a single path of length n, de facto degenerating in a linked list.

 Treaps are a hybrid between BSTs and heaps, abiding by BST’s invariants for
keys, and heap’s invariants for priorities.

 If we randomly assign priorities, drawing them from a uniform continuous set
(such as, but not limited to, all real numbers between 0 and 1), we can mathe-
matically guarantee that for large enough values of n, the tree will store n ele-
ments and maintain a height not greater than 2*log(n).

Figure 3.25 Memory allocation by class for our test, without any filtering on the package

Clean or optimized code?
If performance and memory usage are critical for your application, you will probably
want to write a different, optimized version of this code where these fancy language
features are not used. You will also likely want to avoid using recursion and write
explicit loops instead.

But if low-level optimization is not critical, you might prefer sticking with cleaner and
more maintainable code, using better interfaces and APIs, because in the long run
having readable code will make your life (and the job of future team members) much
easier.
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 Besides the theoretical guarantees, it’s possible to verify (as we did with Java
implementations) that Randomized Treaps will keep a logarithmic height even
in the worst-case scenarios for BSTs.

 Moreover, the performance in term of CPU running time and memory usage is
comparable for both data structures in the general case, and much better for
Randomized Treaps in the edge cases where BSTs struggle.
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Bloom filters:
 Reducing the memory

 for tracking content

Starting with this chapter we’ll be reviewing less common data structures that solve,
as strange as it might seem, common problems. Bloom filters are one of the most
prominent examples; they are widely used in most industries, but not as widely
known as you would expect for such a cornerstone.

This chapter covers
 Describing and analyzing Bloom filters

 Keeping track of large documents using little memory

 Showing why dictionaries are an imperfect solution

 Improving the memory print by using Bloom filters

 Recognizing use cases where Bloom filters improve 
performance

 Using metrics to tune the quality of Bloom filters’ 
solutions
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 In section 4.1 we introduce the problem that will be our North Star in this chapter:
we need to keep track of large entities with the smallest memory print possible.

 In section 4.2 we continue our narration by discussing a few increasingly complex
solutions, showing their strengths and weaknesses; the latter, in particular, ought to be
considered chances for improvement and fertile ground for algorithms designers.

 As part of this discussion, we introduce the dictionary, an abstract data type that we
discuss in depth in section 4.3, while section 4.4 switches to concrete data structures
that implement dictionaries: hash tables, binary search trees, and Bloom filters.

 You have probably guessed that we are particularly interested in the latter, because
it is the topic of this chapter. We describe in section 4.5 the principles governing how
a Bloom filter works; then we delve into each of its methods in section 4.6, showing
the pseudo-code for the crucial parts.

 Section 4.7 closes the first part of the chapter with a discussion of some typical use
cases for Bloom filters: from distributed databases and file systems to rooters, this
technology is pervasive.

 In order to reach this goal, we keep a practical approach with an emphasis on
enabling readers to recognize opportunities to use Bloom filters and giving them the
instruments to do so.

 Starting with section 4.8, the focus shifts to theory, providing a background for the
interested reader who wants to understand not just how, but why, Bloom filters work.
To facilitate understanding of these sections, readers can go through appendix F (as
well as appendices B and C, if needed) to review randomized algorithms, big-O nota-
tion, and basic data structures prior to starting with section 4.8.

 The next few sections will then closely examine the performance of our data struc-
ture, including running time and memory print (section 4.9), as well as the accuracy
of the algorithm (section 4.10).

 Finally, section 4.11 describes some of the most advanced variants of Bloom filters
used to provide new features or lower the false-positive rate.

4.1 The dictionary problem: Keeping track of things
Let’s go over a hypothetical scenario: you work for a company that is large enough to
maintain its own email service. This is a legacy service, providing basic features only.
After the last reorganization, the new CTO1 decides that you need to reinvent the
email service to be aggressive on the market segment, and she puts your new manager
in charge of the product redesign.

 They want a brand-new, modern client with features like a contacts list and cool
tricks. For instance, when you add a new recipient to an email, your application should
check whether it’s already in the contacts list, and if it’s not, a popup (like the one
shown in figure 4.1) should appear asking you if you’d like to add the new recipient.

 And, needless to say, you are the lucky one who gets to be responsible for imple-
menting this feature.

1 Chief Technology Officer.
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 Of course, the resources allocated for the project are scarce, so you are only going
to do a refactoring of the client, while on the server side you’ll have to make do with
legacy code and legacy services running on proprietary machines.

Calling the database every time you need to check an email address against your con-
tacts list is out of the question: you are stuck with this legacy machine that can’t scale
up, and you didn’t get funds for refactoring and scaling it out.2 Your DB could not
support more than a few calls per second, and your management’s projection is in the
hundreds of emails written per second (they are very optimistic, and a bit reckless, but
let’s not worry about that for now!). Your first instinct would be to ask for a remote dis-
tributed cache, like Memcached, Cassandra, or Redis. A roundtrip to the cache server
alone would take in the range of a hundred milliseconds, best case scenario, which
would be good. But neither spinning up a new server for the cache, nor buying it as a
cloud service is feasible for you, budget-wise.

 In the end, you decide you only have one way to solve this: asynchronously get your
contacts list when you log in (or, more lazily, the first time you click on Compose
during the current browser session), save the contacts list in your web page’s session
storage space, and check the local copy of that data every time you look for existing
contacts.

 So far for the application design, figure 4.2 shows a possible architecture for our
minimum viable product. Now you just need an efficient way to browse a contacts list
and check if an email belongs to it.

 Looking through a list for a certain entry is a common problem in computer sci-
ence, known as the dictionary problem.

2 Scale up means moving your application to a more powerful, more expensive machine, while with scale out we
usually refer to redesigning an application to run in a distributed architecture over several cheaper machines.
While there is an upper limit to the possibility of scaling up (the most powerful machine that can be bought
by your company—and price grows exponentially in the higher end), with proper design it is possible, in the-
ory, to scale out indefinitely.

Figure 4.1 Our email 
application prompting 
the user to add a new 
contact after an 
unsuccessful search
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4.2 Alternatives to implementing a dictionary
The name shouldn’t be surprising; it’s exactly like when you need to look up a word in
a dictionary (and by dictionary I mean one of those old gigantic paper books that have
been almost entirely replaced by online dictionaries and search engines) or even in a
phone book (which had no better luck after the third computer revolution). 

 To recap, our contacts web app needs to

 Download the list of contacts from a server
 Create a local copy for fast lookup/storage
 Allow looking up for a contact
 Provide the option to add a new contact if lookup is unsuccessful
 Sync with the server when a new contact is added (or an existing one modified)

What we really need is a data structure that is specialized in these kinds of operations;
we need it to support fast insertion, and at the same time it needs to provide a way to
look up an entry by value.

 To be clear, when we use a plain array, we don’t have an efficient array’s method
that tells us the index of an element X, nor an efficient (as in sublinear) method to tell
us if an element is in the array or not. The only way we have to tell if an element is in
the array is by going through all the array’s elements, although in a sorted array we
could use binary search to speed up the search.

 For example, we could store the strings [“the”, “lazy”, “fox”] in an array, and
to search for “lazy”, we would skim through the whole array, element by element.

 An associative array, instead, by definition has a native method that efficiently
accesses the stored entries with a lookup by value. Usually this structure allows storing
(key, value) pairs. For instance, we would have a list like <(“the”, article), (“lazy”,

Web
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Internet
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(legacy)

Write-ahead
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local
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Figure 4.2 A possible architecture for the “save new contact (with suggestion)” feature. On the client side, 
the web app receives the contacts list from the web server, and with those data creates a dictionary on the 
session storage. Whenever the user adds a recipient on an email, the web app checks the dictionary. If the 
contact is not in the list, a popup is shown to the user, who can then decide to save it. In that scenario, to 
save the new contact another HTTP call is made to the web server, and at the same time the dictionary is 
updated with the new value (although without going through the server).
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adjective), (“fox”, noun)>. We could search for “lazy” and the associative array
would return adjective.

 Another difference with regular arrays would be that the order of insertion in an
associative array doesn’t matter; it’s not even well defined. That’s the price you pay to
speed up lookup by value.

 To really understand how efficiently we can solve this problem, we need to get into
the details of implementations. Using the dictionary abstraction, however, allows us to
discuss how to solve a problem (for instance, finding whether an email belongs to a
list of contacts) without having to deal with the details of the data structure’s represen-
tation, hence leaving us free to focus on the task itself.

4.3 Describing the data structure API: Associative array
An associative array (also referred to as dictionary,3 symbol table, or just map), is com-
posed of a collection of (key, value) pairs, such that

 Each possible key appears at most once in the collection.
 Each value can be retrieved directly through the corresponding key.

The easiest way to grasp the essence of associative arrays is to think about regular
arrays as a special case: the keys are just the set of indices between 0 and the size of the
array minus 1, and we can always retrieve a value by providing its index, so that the
(plain) array [“the”, “lazy”, “fox”] can be interpreted as a dictionary storing the
associations (0, “the”), (1, “lazy”) and (2, “fox”).

 Associative arrays generalize this concept, allowing keys to be drawn from virtually
any possible domain.

With this API defined, we can sketch a solution for our initial problem.
 When users log in to their email, our client receives a list of contacts from the

server and stores them in a dictionary that we can keep in memory (having so many
contacts that it won’t fit the browser’s session storage would be an exceptional situa-
tion even for an Instagram rock star!). If the user adds a new contact to our address

3 We used the term associative array here to avoid confusion between the dictionary problem and the dictionary
abstract data type. Though the two terms are connected, they are not the same thing.

Abstract data structure: Associative array (aka dictionary)

API class Dictionary {
  insert(key, value)
  remove(key) → value
  contains(key) → value
}

Contract with client A dictionary permanently stores all the pairs added by the 
client(s). If a pair (K,V) was added to the dictionary (and 
not removed afterward), then contains(K) will return V.
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book, we perform a call to insert on the dictionary; likewise, if users remove an exist-
ing contact, we just keep the dictionary in sync by calling remove. Whenever a user
writes an email and inserts a recipient, we first check the dictionary, and only if the
contact is not in the address book do we show a popup asking users if they would like
to save the new contact.

 This way, we never do an HTTP call to our server (and in turn to the DB) to check
whether a contact is on our address book, and we only read from the DB once on
startup (or the first time during a session that we write an email).

4.4 Concrete data structures
So far, so good with the theory, but of course, implementing associative arrays to be
used on real systems is a completely different thing.

 In theory, if the domain (the set of possible keys) is small enough, we can still use
arrays by defining a total ordering on the keys and using their position in the order as
the index for a real array. For instance, if our domain is made of the words {“a”,
“terrible”, “choice”}, we could sort keys lexicographically, and then we would store
the values in a plain string array; for instance, {“article”, “noun”, “adjective”}.
If we need to represent a dictionary that only contains a value for key “choice”, we
could do that by setting the values corresponding to missing keys to null: {null,
“noun”, null}.

 Usually, however, this is not the case, and the set of possible values for the keys is
large enough to make it impractical to use an array with an element for any possible
key’s value; it would just require too much memory, which would remain largely
unused.

 To overcome this issue with the memory, we present two naïve implementations,
and three of the most widely used alternatives.

4.4.1 Unsorted array: Fast insertion, slow search

Even if you have never seen one of those paper dinosaurs (a dictionary), you ought to
at least be familiar with print books, like this one (unless, of course, you bought the
e-book version!).

 Suppose you need to look for a specific word in this book—maybe a name—like
Bloom, and note all the places where it occurs. One option you have is to go through
the book starting from the first page, word by word, until you encounter it. If you
need to find all the occurrences of the word Bloom, you will have to go through the
book from cover to cover.

 A book taken as a collection of words, in the order they are printed, is like an
unsorted array. Table 4.1 summarizes the performance of the main operations needed
using this approach with unsorted arrays.

 Unsorted arrays have the advantage of no extra work needed on creation, and add-
ing a new entry is pretty easy, provided you have enough capacity.
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4.4.2 Sorted arrays and binary search: Slow insertion, fast(-ish) search

That’s not exactly practical, as you can imagine. If, after going through the whole
book, you need to search a second word, like “filter,” you would have to start all over
and do a second pass through the hundreds of thousands of words in the book. That’s
why most books have what’s called an index, usually toward the end of the book; there
you can find an alphabetically ordered list of the most uncommon words (and names)
used in the book. Common words don’t make it onto this list because they are used
too frequently (articles like “the” and “a” are probably used on every single page) to
be worth being listed, since the value of finding places where they are used would be
minimal. Conversely, the rarer a word is in English (and names are the perfect exam-
ple here), the greater importance it has when it’s used in your text.4

 So, you can check the index and look for the name Bloom. Being in lexicographi-
cal order, you could go through it from the start until you catch the word you are look-
ing for; it shouldn’t be too long with Bloom. You wouldn’t be that lucky with terms like
hashing or, even worse, tree, which will be toward the end of the index.

 That’s why, naturally, we do lookups in sorted lists by subconsciously using binary
search:5 with a phone book, you open it at a random page around the middle (or
closer to the beginning or end, if you have an idea where the name you are looking
for might be), then look at the first letter of the first word on that page, and jump
either before or after the current page depending on what you are looking for. For
example, if you are still looking for Bloom, and you open a phone book to a page
where the first surname is Kurtz, then you know you can discard every page after that,
and look only at the pages before. You randomly open another page (to the left of the

Table 4.1 Using unsorted arrays as dictionaries

Operation Running time Extra memory

Creating the structure O(1) No

Looking up an entry O(n) No

Insert a new entry O(1) a No

Remove an entry O(1) No

aAmortized time.

4 This reasoning is also the basis for the TF-IDF metric used in text search and text analysis. Short for term
frequency–inverse document frequency, TF-IDF is computed as the ratio of raw occurrences of a term in a document
(TF), over the logarithm of another fraction, the total number of documents in a corpus divided by the number
of corpus documents in which the term appears (IDF). This means that TF-IDF will be large when a term
appears often in a document but rarely in the corpus, and small when, conversely, the term is used frequently
in many documents.

5 Binary search takes its name from the fact that you always search the middle of a list, splitting it into two parts:
one before the search location, and one after it. Depending on how the element you are looking for compares
to the one in the search location, you then might recursively check the first half or the second half of your list
(or neither, if you just found what you were looking for).
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one with Kurtz) and the last name on that page is Barrow; then you know Bloom will
be on a page after the one with Barrow and before the one with Kurtz.

 Going back to our problem with the contact list, one approach could be sorting
your contacts and searching them using binary search.

 As you can see from table 4.2, in terms of running time, both the initial cost (to
sort the list) and the cost for adding a new entry are pretty high. Also, linear extra
memory might be needed if we need to make a copy of the original list, to preserve
the original order.

4.4.3 Hash table: Constant-time on average, unless you need ordering

We introduced hash tables and hashing in appendix C. The main take away for hash
tables is that they are used to implement associative arrays where the possible values to
store come from a very large set (for instance, all possible strings or all integers), but
normally we only need to store a limited number of them. If that’s the case, then we
use a hashing function to map the set of possible values (the domain, or source set) to
a smaller set of M elements (the codomain, or target set), the indices of a plain array
where we store the values associated to each key. (As we explained in appendix C, we
get to decide how big M is depending on some considerations on the expected perfor-
mance.) Typically, the set of values in the domain is referred to as keys, and the values
in the codomain are indices from 0 to M-1.

 Since the target set of a hashing function is typically smaller than the source set,
there will be collisions: at least two values will be mapped to the same index. Hash
tables, as we have seen in chapter 2, use a few strategies to resolve conflicts, such as
chaining or open addressing.

 The other important thing to keep in mind is that we distinguish hash maps and
hash sets. The former allows us to associate a value6 to a key; the latter only to record the
presence or absence of a key in a set. Hash sets implement a special case of dictionary,
the Set. With respect to our definition of dictionary as an abstract data structure, given
at the beginning of this section, a set is a specialization of a dictionary, where the value
type is set to Boolean; the second parameter to insert becomes redundant, as the
value associated with a key in the hash set will be implicitly assumed to be true.

Table 4.2 Using sorted arrays as dictionaries

Operation Running time Extra memory

Creating the structure O(n*log(n)) O(n)

Looking up an entry O(log(n)) No

Add a new entry O(n) No

Remove an entry O(n) No

6 Not to be confused with the index generated by the hashing function.
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As we explain in appendix C, all operations in a hash table (and hash set) can be per-
formed in amortized O(1) time.

4.4.4 Binary search tree: Every operation is logarithmic 

Binary search trees (BSTs) are another old acquaintance of ours; we met them in
chapters 2 and 3, and they are also discussed in appendix C.

 A BST is a special kind of binary tree that can store keys on which it defined a total
ordering: this means that for each pair of keys, it must be possible to compare them
and decide which one is smaller, or if they are equal. A total ordering benefits from
reflexive, symmetric, and transitive properties.

BSTs use these properties to make sure that the position of a key in the tree can be
determined just by looking at a single path from the root to a leaf.

 When we insert a new key, in fact, we compare it to the tree’s root. If it’s smaller, we
take a left turn, traversing the root’s left subtree; otherwise, we go on the right sub-
tree. At the next step, we repeat the comparison with the subtree’s root, and so on
until we get to a leaf, and that’s exactly the position where we need to insert the key.

 If you remember what we saw in chapter 2 regarding heaps (or if you had a chance
to refresh your memory, in appendix C), all operations in a BST take time
proportional to the height of the tree (the longest path from root to a leaf). In
particular for balanced BSTs, all operations take O(ln(n)) time, where n is the
number of keys added to the tree.

Abstract data structure: Set

API class Set {
  insert(key)
  remove(key)
  contains(key) → true/ false
}

Contract with client A set maintains a set of keys. If a key K was added to the 
set (and not removed afterward), then contains(K) will 
return true; otherwise it will return false.

Ordering relations
Given a set S on which we defined an ordering relation ≤, this relation is a total order-
ing if, for any three keys x, y, z, the following properties hold:

Reflexive: x ≤ x

Symmetric: if x ≤ y, then y ≤ x

Transitive: if x ≤ y and y ≤ z then x ≤ z
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 Of course, compared to the O(1) amortized running time of hash tables, even bal-
anced BSTs don’t seem like a good choice for implementing an associative array. The
catch is that while their performance on the core methods is slightly slower, BSTs allow
a substantial improvement for methods like finding the predecessor and successor o
key, and finding minimum and maximum: they all run in O(ln(n)) asymptotic time
for BSTs, while the same operations on a hash table all require O(n) time.

 Moreover, BSTs can return all keys (or values) stored, sorted by key, in linear time,
while for hash tables you need to sort the set of keys after retrieving it, so it takes O(M +
n*ln(n)) comparisons.

 Now that we have described the basic data structures most commonly used to
implement dictionaries, it feels like a good time to recap what we have described so
far. Table 4.3 gathers the running times of the main operations on the possible imple-
mentations of dictionaries we mentioned.

Looking at table 4.3, it’s evident that if we don’t have to worry about any operation
that involves the order of the element, or the order they were inserted, then the amor-
tized time of hash tables is the best. If n~=M (and there are approximately as many
buckets as elements), then a hash table can perform insertion, removal, and look-up
in amortized constant time.

4.4.5 Bloom filter: As fast as hash tables, but saves memory (with a catch)

We haven’t officially met this data structure yet in the book, but there is a good chance
you have already heard of Bloom filters. They are a data structure named after Burton
Howard Bloom, who invented them in the 1970s.

Table 4.3 Running time of operations on dictionaries for different implementations

Operation Unsorted arrays Sorted arrays BST Hash table

Create the DS O(1) O(n*log(n)) O(n*log(n)) O(n)

Look-up an entry O(n) O(log(n)) O(log(n)) O(n/M) a

Add a new entry O(1) a

aAmortized time.

O(n) O(log(n)) O(n/M) a

Remove an entry O(1) O(n) O(log(n)) O(n/M) a

Sorted List O(n*log(n) O(n) O(n) O(M+n*log(n))

Min/Max O(n) O(1) O(1) b

bBy storing max/min separately and amortizing the time to replace them on insert/delete.

O(M+n)

Prev/Next O(n) O(1) O(log(n)) O(M+n)
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 There are three notable differences between hash tables and Bloom filters:

 Basic Bloom filters don’t store data; they just answer the question, is a datum in
the set? In other words, they implement a hash set’s API, not a hash table’s API.

 Bloom filters require less memory in comparison to hash tables; this is the main
reason for their use.

 While a negative answer is 100% accurate, there might be false positives. We will
explain this in detail in a few sections. For now, just keep in mind that some-
times a Bloom filter might answer that a value was added to it when it was not.

 It is not possible to delete a value from a Bloom filter.7

There is a tradeoff between the accuracy of a Bloom filter and the memory it uses.
The less memory, the more false positives it returns. Luckily, there is an exact formula
that, given the number of values we need to store, can output the amount of memory
needed to keep the rate of false positives within a certain threshold. We’ll go into the
details for this formula in the advanced sections toward the end of the chapter.

4.5 Under the hood: How do Bloom filters work?
Let’s now delve into the details of Bloom filter implementation. A Bloom filter is
made of two elements:

 An array of m elements
 A set of k hash functions

The array is (conceptually) an array of bits, each of which is initially set to 0; each hash
function outputs an index between 0 and m-1.

 It is crucial to clarify as soon as possible that there is not a 1-to-1 correspondence
between the elements of the array and the keys we add to the Bloom filter. Rather, we
will use k bits (and so k array’s elements) to store each entry for the Bloom filter; k
here is typically much smaller than m.

 Note that k is a constant that we pick when we create the data structure, so each
and every entry we add is stored using the same amount of memory, exactly k bits.
With string values, this is pretty amazing, because it means we can add arbitrarily long
strings to our filter using a constant amount of memory, just k bits.

 When we insert a new element key into the filter, we compute k indices for the
array, given by the values h0(key) up to h(k-1)(key), and set those bits to 1.

 When we look up an entry, we also need to compute the k hashes for it as
described for insert, but this time we check the k bits at the indices returned by the
hash functions and return true if and only if all bits at those positions are set to 1. 

 Figure 4.3 shows both operations in action.
 

7 At least not from their basic version, but we’ll see that some variants have been developed to also handle ele-
ment removal.
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Ideally, we would need k different independent hash functions, so that no two indices
are duplicated for the same value. It is not easy to design a large number of indepen-
dent hash functions, but we can get good approximations. There are a few solutions
commonly used:

 Use a parametric hash function H(i). This meta-function, which is a generator
of hash functions, takes in as input an initial value i and outputs a hash func-
tion Hi=H(i). During the Bloom filter’s initialization, we can create k of this
functions, H0 to Hk-1, by calling the generator H on k different (and usually ran-
dom) values.

 Use a single hash H function but initialize a list L of k random (and unique)
values. For each entry key that is inserted/searched, create k values by adding
or appending L[i] to key, and then hash them using H. (Remember that

0 0 0 0 0 0
0 1 2 3 4 5

0 0 0 0 0 0
6 7 8 9 10 11

0 0 0
12 13 14

0 0 1 0 0 0
0 1 2 3 4 5

1 0 0 0 1 1
6 7 8 9 10 11

0 0 1
12 13 14

0 0 1 0 0 0
0 1 2 3 4 5

1 0 0 0 1 1
6 7 8 9 10 11

0 0 1
12 13 14

(A)

(B)

(C)

X1 X2

Y2Y1

Figure 4.3 An example of a Bloom filter. (A) Initially the filter is an array of zeroes. (B) To store 
an item Xi, it is hashed k times (in the example, k=3), with each hash yielding the index of a 
bit; then these k bits are all set to 1. Notice how the two triplets of indices generated by X1 and 
X2 partially overlap (they both point to the sixth element). For a more detailed example of how 
insertion works, see figure 4.5. (C) Likewise, to check if an element Yi is in the set, it’s hashed 
k times, obtaining just as many indices; then we read the corresponding bits, and if and only if 
all of them are set to 1, we return true. In the bottom drawing, element Y1 appears to be in the 
set (but we can’t exclude that the filter is returning a false positive), while element Y2 can’t be 
in the set because one of the indices generated from its hashing holds a 0. Check figure 4.4 for 
further insight into how lookup works.
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well-designed hash functions will produce very different results for small
changes in the input.)

 Use double or triple hashing.8

While the latter won’t guarantee independence among the hash functions generated,
it has been proven9 that we can relax this constraint with a minimal increase in the
false positive rate. To keep things simple, in our implementation we use double hash-
ing with two independent hash functions: Murmur hashing10 and Fowler-Noll-Vo11 (fnv1)
hashing.

 The general format of our i-th hash function, for i between 0 and k-1, will be

hi(key) = murmurhash(key) + i * fnv1(key) + i * i

4.6 Implementation
Enough with the theory; now it’s time to once again get our hands dirty! As usual, in
the next sections we’ll show pseudo-code snippets and comment the key sections. Triv-
ial methods will be omitted. On the book’s repo on GitHub,12 you can also find an
implementation with the full code along with unit tests.

4.6.1 Using a Bloom filter

Back to our contacts application: How would we use a Bloom filter to make it faster?
Well, as mentioned, we need to use it as a dictionary, so we are going to create a new
Bloom filter when our email application starts, retrieve all the contacts from the server,
and add them to the Bloom filter. Listing 4.1 summarizes this initialization process.

function initBloomFilter(server, minSize)
  contactsList ← server.loadContacts() 
  size ← max(2 * |contactsList|, minSize)  
  bloomFilter ← new BloomFilter(size)  
  for contact in contactsList do  
    bloomFilter.insert(contact)
  return bloomFilter

8 Double hashing is a technique used to resolve hash collisions (see appendix C, sections C.2.2-C.2.3). When a
collision occurs, it adds an offset to the initial position computed by using a secondary hash of the key. Triple
hashing computes the offset by using a linear combination of two auxiliary hash functions. 

9 Dillinger, Peter C., and Panagiotis Manolios. “Fast and accurate bitstate verification for SPIN.” International
SPIN Workshop on Model Checking of Software. Springer, Berlin, Heidelberg, 2004.

10See https://sites.google.com/site/murmurhash/.
11See http://www.isthe.com/chongo/tech/comp/fnv/index.html.
12See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#bloom-filter.

Listing 4.1 Starting up an email application

Method initBloomFilter takes an interface to a 
server (a façade object) and the minimum size that 
should be used to initialize the Bloom filter; it 
returns the newly created Bloom filter.

On startup, it optionally loads the list of contacts 
from a server that takes care of durable storage.

The size of the Bloom filter should be at least 
twice the current contact list’s, but at least 
equal to minSize, a minimum value that can 
be passed as an argument.

Creates an empty Bloom filter with the right size

Cycles through the list of contacts

For each contact, adds it to the Bloom filter

https://sites.google.com/site/murmurhash/
https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#bloom-filter
http://www.isthe.com/chongo/tech/comp/fnv/index.html
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Once we set up our directory application, we have two operations that we are mainly
interested in: checking if a contact is on the list and adding a new contact to the
directory.

 For the former operation, shown in listing 4.2, we can check the Bloom filter, and
if it says the contact has never been added, then we have our answer; the contact is not
in the system. If, however, the Bloom filter returns true, then it might be a false posi-
tive, so we need to contact the server to double-check.

function checkContact(bloomFilter, server, contact) 
  if bloomFilter.contains(contact) then      
    return server.contains(contact)   
  else
    return false

For adding new contacts, we always have to sync to our permanent storage,13 as shown
in listing 4.3. Since this likely implies a remote connection through a network, there is
a non-negligible probability that the call to the server fails; therefore, we need to han-
dle possible failures and make sure the remote call succeeds before also updating the
Bloom filter.

 To be thorough, in real implementations we should also synchronize the access to
the server and Bloom filter, using a locking mechanism (see chapter 7), and using a
try-catch around the whole operation, rolling back (or retrying) if the call on the
Bloom filter fails.

function addContact(bloomFilter, server, contact) 
  if server.storeContact(contact) then          
    bloomFilter.insert(contact)       
    return true         
  else 
    return false                           

Listing 4.2 Checking an email

13We could, of course, check our local Bloom filter for the contact, but even when it returns true, without check-
ing the server we have no way to know if it’s a false positive!

Listing 4.3 Adding a new contact

Method checkContact verifies if an email contact 
is stored in the application. It takes a Bloom filter, a 
server façade, and the contact to check. It returns 
true if contact is already in our contacts book. Checks the Bloom filter 

for the contact passed 
to the method

If the Bloom filter returned true, we need to 
check if the server actually stores the contact, 
because it could be a false positive.Otherwise, since Bloom filters don’t have false negatives 

(but only false positives), we can return false.

Method addContact adds a new contact to the 
system; it takes a Bloom filter and a server object, in 
addition to the new contact to add. It returns true if 
and only if the operation succeeds. Try to add the contact 

to the server, and if it 
succeeds . . . 

. . . then add it to the Bloom filter as well.... . . and return true.

Otherwise, the insertion failed, so return false.
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4.6.2 Reading and writing bits

Now, let’s move to the implementation of a Bloom filter, starting, as usual, with the
helper methods that will give us the basic blocks to build the implementation of our
API.

 In particular, we need

 Some way to read and write bits at any location in our filter’s buffer
 A mapping between a key in input and the bits’ indices in the buffer
 A set of deterministically generated hash functions that will be used to trans-

form keys into a list of indices

If we are using Bloom filters to save memory, it wouldn’t make sense to store bits inef-
ficiently. We will need to pack bits into the smallest integer type available in the pro-
gramming language we choose; therefore, both reading and writing a bit forces us to
map the index of the bit to be accessed into a couple of integers.

 In modern programming languages, in fact, you can typically speed up these oper-
ations by using fixed-size numerical arrays of primitive types and vector algebra. The
price to pay is that when we get a request to access the i-th bit in the filter, we need to
extract two coordinates from index i: the array element that is storing the i-th bit and
the offset of the bit we need to extract with respect to that element.

 Listing 4.4 shows what this means and how it can be computed.

function findBitCoordinates(index)
  byteIndex ← floor(index / BITS_PER_INT)
  bitOffset ← index mod BITS_PER_INT 
  return (byteIndex, bitOffset) 

Once we have those two indices, we can easily read or write any bit; it just becomes a
matter of bitwise arithmetic. For instance, listing 4.5 shows the readBit method tak-
ing care of the reading part.

 
 
 
 
 
 

Listing 4.4 findBitCoordinates

Function findBitCoordinates is a utility method 
that, given the index of a bit in a bit array, returns 
the index of the array and the offset of the bit with 
respect to the array’s element at that index.

Given the index of the bit to retrieve, we 
extract the byte index; that is, which element 
of the array buffer contains the bit to extract. 
BITS_PER_INT is a (system) constant whose 
value is the number of bits used to store an 
int in the programming language used (for 
most languages it’s 32).

Extract the bit offset inside the buffer’s byte. In 
other words, to extract the local index of the bit 
by performing a modulo operation, we need the 
rest of the division performed at line #2.

Returns the byte index and bit offset as a couple of 
values. Note that some programming languages allow 
native structures for tuples; in other languages, you can 
make do by returning an array with two elements.
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function readBit(bitsArray, index)
  (element, bit) ← findBitCoordinates(bitsArray, index) 
  return (bitsArray[element] & (1 << bit)) >> bit     

Listing 4.6 shows the writing counterpart, method writeBit. You might be surprised
to see that we don’t pass the value to write, but since (this version of) Bloom filter
doesn’t support deleting elements, we can only write a 1; we never write zeros.

function writeBit(bitsArray, index) 
  (element, bit) ← findBitCoordinates(bitsArray, index)
  bitsArray[element] ← bitsArray[element] | (1 << bit)     
  return bitsArray

Let’s go through an example for readBit and writeBit. Suppose we have this buffer:
B=[157, 25, 44, 204], with BITS_PER_INT=8.

 We call readBit(B, 19); then we have: element==2, bit==3.
 Therefore

 bitsArray[element]                (evaluates to 44)
 (1 << bit)                        (8)

 bitsArray[element] & (1 << bit)   (8)

And the returned value will be 1.
 If, instead, we call writeBit(B, 15), then we have: (element==1, bit==7).
 Therefore

 bitsArray[element]                       (evaluates to 25)

 (1 << bit)                               (128)

 bitsArray[element] | (1 << bit)          (153)

And the buffer will be updated to B=[157, 153, 44, 204].

Listing 4.5 Method readBit

Listing 4.6 Method writeBit

Method readBit extracts the index-th bit from the 
bits array passed as first argument. It returns the 
value of the bit, so either 0 or 1. Retrieves the element 

index and offset for the 
bit in the bits array

Some bitwise algebra to return the value. First retrieve the buffer element, then put it in AND with a mask 
that extracts a single bit (at the right position); finally, it shifts the extracted value back so that the result 
will either be a 0 or a 1. We could save a left shift by preparing a constant array of BITS_PER_INT masks, 
and use bit as an index to decide which mask should be applied.

Method writeBit takes the bits arrays and the 
index of the bit where a 1 should be written; it 
returns the bits array after modifying it. Retrieves the element 

index and offset for the 
bit in the bits array

Some more bitwise algebra to store the value. Put the current buffer’s byte in OR with a mask having a single 1 
in the position where we need to write, and then store the result back on the buffer. If the buffer already had a 
1 at the index-th bit, then it won’t change; otherwise, only that bit will be updated. We are assuming, here, 
that we only write ones, never zeroes (because our version of Bloom filter does not support the delete 
operation).
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4.6.3 Find where a key is stored

To generate all the indices for the bits used to store a key, we go through a two-step
process, described in listing 4.7.

 Keep in mind that our ultimate goal is to transform a string into k positions,
between 0 and m - 1.

 First, we use two hash functions on strings very different from each other: murmur
hashing and fnv1 hashing. The chances that, for a given string, both of them produce
the same result are beyond slim.

 Then, for each of the k bits we have to store, we retrieve the corresponding hash
function in our pool. For each position i between 0 and k-1 we have generated (on
initialization) a double hashing function hi. The i-th bit will therefore be returned by
hi(hM, hF), where hM is the result of murmur hashing on the input key and hF the
result of fnv1 hashing.

 Although the highest level of randomization would be obtained with a random
seed for each run, we need to have a way to force a deterministic behavior both for
tests and to recreate a Bloom filter that can make sense of a given buffer, in case the
filter is serialized, or to support quick restart over failure. Therefore, we should also
leave the option to pass the seed to the Bloom filter’s constructor.

function key2Positions(hashFunctions, seed, key)
  hM ← murmurHash32(key, seed)            
  hF ← fnv1Hash32(key)                         
  return hashFunctions.map(h => h(hM, hF))    

4.6.4 Generating hash functions

In listing 4.7 we described how, in the key2Positions method, we pass an array of
hash functions and use it to transform a key into a list of indices: the positions in the
filter’s bits array where we store the key. Now it’s time to see in listing 4.8 how we ini-
tialize these k hash functions needed to map each key (already transformed into a
string) into a set of k indices, pointing to the bits that will hold the information about
a key (stored vs not stored).

 The set of functions will be created by using double hashing to combine the two
arguments in k different ways. With respect to linear or quadratic hashing, double
hashing will increase the number of possible hashing functions that we can obtain,

Listing 4.7 Method key2Positions

Method key2Positions takes an array of hash functions as 
input, together with a seed to initialize these functions and the 
key that will be hashed. It returns the set of bit indices that 
needs to be updated in the Bloom filter to read/write key.

Applies murmur hashing to 
the key, with a given seed

Applies fnv1 hashing 
to the key

We use a functional programming notation here. We create a lambda function taking a hash function h as 
input and applying h to the two values generated by murmur and fnv1 hashing. Then we map this lambda 
function to every element of the hashFunctions array. This operation transforms an array of hash 
functions (taking two integers as arguments and producing an integer as result) into an array of integers.
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from O(k) to O(k2). Still, this is far from the ideal O(k!) guaranteed by uniform hash-
ing, but in practice it is close enough to have good performance (meaning a low colli-
sion rate).

function initHashFunctions(numHashFunctions, numBits) 
  return range(0, numHashFunctions).map(i => ((h1, h2) 
  ➥ => (h1 + i * h2 + i * i) mod numBits))                   

4.6.5 Constructor

Let’s move on to the public API, which will mirror the API for set that we defined in
section 4.3.3. Let’s start from the constructor method.

 As it happens most of the times, the task for our constructor is mostly boilerplate
code to set up all the internal state of a Bloom filter. In this case, however, there is also
some non-trivial math to work out in order to compute the resources to allocate in
order for the container to live up to the accuracy required by the client. 

 Listing 4.9 describes the code for a possible constructor. Notice, in particular, at
lines #5 and #8 how we compute respectively the number of bits and the number of
hash functions needed to have a ratio of false positives within the tolerance specified
by maxTolerance (and consequently, at line #9, the number of array elements needed
to store the filter). Here we assume that we use an array whose elements are integers,
and BITS_PER_INT is a system variable that gives us the size, in bits, of integers. Clearly,
for those languages supporting multiple numerical types, we can also choose to have
arrays of bytes, when available.

function BloomFilter(maxSize, maxTolerance=0.01, seed=random())
  this.size ← 0                                    
  this.maxSize ← maxSize 
  this.seed ← seed      
  this.numBits ← -ceil(maxS * ln(maxTolerance) / ln(2) / ln(2)) 
  if numBits > MAX_SIZE then  
    throw new Error(“Overflow”)   
  this.numHashFunctions ← -ceil(ln(maxTolerance) / ln(2))

Listing 4.8 Method initHashFunctions

Listing 4.9 Bloom filter’s constructor 

Method initHashFunctions takes the number of 
desired functions and the number of bits held by the Bloom 
filter and creates and returns a list of double hashing 
functions, taking two values and returning their hash.

We again use functional notation,
applying a lambda function to an array.
For convenience, we map from integers
0 to numHashes-1 (included) into a

list of equally many double
 hashing functions.

Signature of the constructor method. Argument maxTolerance has a 
default value of 0.01; seed is by default initialized to a random integer. Not 
all programming languages provide an explicit syntax for default values in 
function signatures, but there are workarounds to cope with those that don’t.

Initially no 
element is stored 
in the filter, so the 
size is initialized 
to 0.

We store in class variables the (local) 
arguments for the constructor.

Computes the 
optimal number 
of bits needed: 
m = - n * ln(p) / 
ln(2)2; ceil(x) 
is the standard 
ceiling function 
returning the 
smallest integer 
larger or equal to x

Checks
that the
size will

fit in
memory
without

issues

We throw an error that can 
be handled by the client.

Computes the optimal number of hash functions needed. Equivalently, as we’ll 
see, this can be written in terms of size of the array versus the maximum size 
of the Bloom filter as: k = m/n * ln(2).
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  numElements ← ceil(numBits / BITS_PER_INT)
  this.bitsArray ← 0 (∀ i ϵ {0, …, numElements-1}) 
  this.hashFunctions ← initHashFunctions(numHashFunctions, maxSize)

On creation, we need to provide only the maximum number of elements that the fil-
ter will be expected to contain. If at any time we realize that we stored in the filter
more than maxSize elements, the good news is that we won’t run out of space, but the
bad news is that we can no longer guarantee the expected precision.

 Speaking of which, we can pass an optional second parameter to set the expected
accuracy. By default, the threshold for the probability of a false positive (maxTolerance)
is set to 1%, but we can aim for better accuracy by passing a smaller value, or settle for
worse accuracy as a tradeoff for a lower amount of memory needed by passing a higher
value.

 The last optional parameter is needed, as explained in the previous section, to
force a deterministic behavior for the filter. When omitted by the caller, a random
value is generated for the seed.

 After validating the arguments received (omitted in listing 4.9), we can start setting
a few base fields. Then comes the trickiest part; given the number of elements and the
expected precision, compute how large our buffer needs to be. We use the formula
described in section 4.10, but we need to verify that the size of the buffer is still safe to
be held in memory.

 Once we have the size of the buffer, we can compute the optimal number of hashes
needed to keep the rate of false positives as low as possible.

4.6.6 Checking a key

We can now start composing the helper methods presented so far to build the Bloom
filter’s API methods. One note of caution: we assume keys are going to be strings, but
they can also be serializable objects. If that’s the case, you will need a consistent serial-
ization function that turns equivalent objects (for instance, two sets containing the
same elements) into the same string; otherwise, no matter how good your implemen-
tation of the Bloom filter (or any other dictionary you might use) is, your application
won’t work properly.

NOTE Data massaging and preprocessing are often as important, or more
important, than the actual algorithms run on it.

With all the helper functions we already defined, checking the Bloom filter for a key
becomes a piece of cake. We just need to retrieve the positions where the bits for the

The number of elements for the (integer) buffer 
is computed by dividing the number of total bits 
needed by the number of bits per int. Notice how 
we use the ceiling function here. Creates the buffer that will 

store the filter’s bits, all 
initialized to 0

Creates and stores the hash functions that 
will be used to get the bit indices for a key
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key would be stored, and check that those bits are all 1. To review the whole process,
you can take a look at figure 4.4, and find the pseudo-code for the method in list-
ing 4.10. 

function contains(key, positions=null) 
  if positions == null then                
    positions ← key2Positions(this.hashFunctions, this.seed, key) 
  return positions.all((i) => readBit(this.bitsArray, i) != 0)   

Listing 4.10 Method contains

0 0 0 0 1 0
0 1 2 3 4 5

1 0 0 0 1 1
6 7 8 9 10 11

0 0 1
12 13 14

(A)

(E)

duffy@acme.com

H1(T) = 6
H0(T) = 9 H2(T) = 2

<9, 6, 2>

<0, 1, 0>

False

roger@acme.com

H1(T) = 14
H0(T) = 10 H2(T) = 4

<10, 14, 4>

<1, 1, 1>

True

(B)

(C)

(D)

(F)

Figure 4.4 Checking if an entry is in a Bloom filter, step by step. (A) We start with the email we would 
like to check, “duffy@acme.com”. (B) The key (our email) is processed through our set of hash 
functions. In our example, we assume k=3, so we’ll have three different hash functions, H0, H1, and H2. 
(C) Each hash function produces an index for our binary array. In this case, the three indices might be, 
for instance, <9, 6, 2>. (D) We access the elements of the binary array at those indices. (E) The 
first element, at index 2, is 0. The other bits are 0 and 1 respectively. (F) Since not all the bits we 
checked were equal to 1, it means that “duffy@acme.com” is not stored in the Bloom filter, and we 
will return false. The same workflow is followed for “roger@acme.com”, on the right. Because all 
three bits checked are set to 1, we return true: this means that “roger@acme.com” might have been 
stored in the Bloom filter, with a certain degree of confidence.

Function contains takes a key and returns true if and only if all bits 
corresponding to the key are set to 1. It is possible to pass explicitly 
the array of positions. Some operations on the filter require multiple 
accesses to a location, and this allows saving some computations. In 
languages allowing private methods and overloading, passing the 
second parameter should only be allowed for internal methods.

Checks if the array of positions 
has been passed. If so, avoids 
computing it again.

Retrieves the bit
indices corresponding

to current key

Returns true if and only if all bits read are not 0. This line also uses a functional 
notation, with the all method that is similar to map, except it takes a predicate (a 
particular lambda function that returns a Boolean), applies it to every element in 
the list, and its result is true only if the predicate is true for all elements.
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You might have noticed that in contains we check that the value returned by readBit
isn’t 0. While it would technically suffice to check that the bit we read is equal to 1, this
would force us to use an extra right-shift bitwise operation. If our bit is stored in the
i-th element of the array as its j-th bit (from the right), in fact, we should in theory shift
the result of our bitwise extraction process j bits to the right, or compare it with a mask
made of a single 1 shifted j positions to the left. This way we don’t need to, and we can
trim off a few milliseconds (per operation) from our implementation.

 Also notice that the method takes an optional second parameter. The reason will
become clear in the next section.

4.6.7 Storing a key

Storing a key is pretty similar to checking it, only we need a little extra effort to keep
track of the number of elements added to the filter and to use write instead of read.
Figure 4.5 shows a step-by-step example, putting together all the little pieces we have
coded so far.

0 0 0 0 1 0 1 0 0 0 1 1 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(A)

(E)

(B)

(C)

(D)

0 0 1 0 1 0 1 0 0 1 1 1 0 0 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

duffy@acme.com

H1(T) = 6
H0(T) = 9 H2(T) = 2

<9, 6, 2>

Figure 4.5 Adding a new entry to a Bloom filter, step by step. (A) We start with the email we would 
like to store, “duffy@acme.com”. (B) The key (our email) is processed through our set of hash 
functions: in our example we assume k=3, so we’ll have three different hash functions, H0, H1, and H2. 
(C) Each hash function produces an index for our binary array. In this case the three indices might be, 
for instance, <9, 6, 2>. Notice how these indices are the same as in figure 4.4: hash functions are 
deterministic, though their results might seem random. (D) We access the elements of the binary array 
at those indices. The first element, at index 2, is 0. The other bits are 0 and 1 respectively. (E) We 
flip the bits that were still set to 0: (in this example, the ones at indices 2 and 9). Now all the bits 
to which “duffy@acme.com” hashes to are set to 1, so any future lookup will return true.
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Note that in this implementation for insert, shown in listing 4.11, when we compute
the size of the filter, we keep track of the number of unique elements added to the fil-
ter, rather than the total number of times the add method is called.

function insert(key)      
  positions ← key2Positions(key) 
  if not contains(key, positions) then  
    this.size ← this.size + 1      
    positions.map((i) => writeBit(this.bitsArray, i)); 

This is because the precision of the filter would not be altered by adding the same key
twice, thrice, or an infinite number of times. To all extents, it would count as if the key
was added once.

 There is a twist, though. If we add a new unique key x for which all bits’ indices clash
with locations already set to 1, it will be treated as a duplicate key and the data structure’s
size won’t be incremented. Again, this makes perfect sense if you consider that in that
situation and before actually adding the new colliding key, a call to contains(x) would
have returned a false positive anyway.

 In listing 4.11 you can see the reason why, when we wrote method contains, we
added the possibility to pass it an array with the pre-computed bit indices for the cur-
rent key. Inside insert, we perform a read closely followed by a write. The operation
to compute all the indices for the bits of a key can be expensive, so to avoid repeating
this operation twice at a short distance, we need a way to pass its result to contains. At
the same time, we don’t want to add this option to our API, since this is internal magic
that clients don’t need to know about. If your programming language supports poly-
morphism and private methods, restricting the optional parameter to a private ver-
sion of contains (internally called by the public one) would be wise.

 Another possible approach to save this duplicated effort could be having writeBit
check whether the bit overridden was already set to 1 and return a Boolean to state if
the bit’s value has changed. Then insert could check to see if at least one bit was

Listing 4.11 Method insert 

Function insert takes a key and 
stores it in the Bloom filter

Transforms the string representation of the 
key to add into a sequence of k bit indices

Before incrementing the size of the filter and storing 1 in each of the bits corresponding to the bits, 
we check that the key is not already contained by the filter. This is more than just optimization: 
size is crucial to estimating the filter’s false positive ratio, so we need to accurately count the 
elements actually stored. Notice how we pass the positions array as a second argument to 
contains. As mentioned in the previous section, this allows us to avoid computing it again in 
contains, and to perform this expensive operation only once for each call to insert.

For each index, we need to write a 1 in our
buffer (here, using functional notation, we

can leverage map, just ignoring its result, or
use a more appropriate functional operator

like reduce or forEach).
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flipped. This alternative implementation will be provided in our repo.14 It’s up to you
to decide which one you consider the cleanest.

 Either way, striving to count unique keys added to the filter is going to be costly.
Will the overhead be justified? That depends: if you don’t expect many duplicate keys
added to your filter, then it’s probably not worth it. But just know that you need it to
have an accurate estimate of the current probability to get a false positive.

4.6.8 Estimating accuracy

In fact, our last task is to provide a method to estimate the probability of a false posi-
tive based on the current status of the filter; that is, on the number of elements cur-
rently stored in the filter, compared to its maximum capacity. 

 As we will see in section 4.10, this probability is roughly15

Listing 4.12 briefly illustrates the pseudo-code that computes this method.

function falsePositiveProbability()
    return pow((1 - pow(E, this.numHashes * this.size / this.numBits)), 
    ➥ this.numHashes)

This concludes the current section about how to implement a Bloom filter. Before we
delve into the theoretical part explaining the mathematical basis of this data struc-
ture, let’s first review some of the many applications for Bloom filters.

4.7 Applications
I’d like to let you think about this consideration: it is pretty likely that some software
you are using right now is leveraging Bloom filters. In fact, if you are reading the digi-
tal version of this book, then it’s 100% sure that its download leveraged Bloom filters,
because it’s common for internet nodes to use them for their routing tables.16

4.7.1 Cache

With caching we refer to the process of storing some information retrieved on a fast
storage system A, in order to have it ready in case we need to read it again in the near

14https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction/blob/master/JavaScript/src/bloom
_filter/bloom_filter.js

15Here e is Euler’s number; we’ll see it again in section 4.10.

Listing 4.12 Method falsePositiveProbability

16Bloom filters also are or have been used for a long time in browsers for “safe browsing,” basically keeping a
blacklist of malicious sites. Chromium engine, for instance, replaced it with compressed PrefixSets only a
few years ago. 
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future. The data might have been previously retrieved from a slow(er) storage system
B or be the result of a CPU-intensive computation.

 For web applications, scalability is a major concern, probably the one aspect that is
most debated in design reviews for any product that aspires to become viral.

 One of my favorite books tackling design and scalability, Scalability Rules (by Martin
L. Abbot and Michael T. Fisher, Addison-Wesley Professional, 2016), has a chapter
titled “Use Caching Aggressively,” where it is shown how caching at all levels of a web
app is fundamental to allowing its scaling.

 Cache is often the only thing saving databases from literally catching fire—or at
least crashing. But even your laptop has several levels of caching, from fast L1-cache
inside its CPU to in-memory cache used to process big files. Your very operating sys-
tem caches memory pages in and out of RAM, swapping them to disk, in order to have
a larger virtual address space and give you the impression that it has more memory
available than is actually installed on your machine.

 In other words, caches are one of the foundations of modern IT systems. Of
course, since fast storage is costlier, there is only a limited amount of it, and the major-
ity of the data will have to be left out of the cache.

 The algorithm used to decide what data stays in the cache determines the behavior
of the cache and the rate of cache hit (when the data searched for is already in the
cache) and miss. Some of the most used algorithms are LRU (Least Recently Used),
MRU (Most Recently Used), and LFU (Least Frequently Used). Chapter 7 gets into the
details of these algorithms, but for now it is enough to note that they, as well as many
other cache replacement policies, all suffer from “one-hit wonders.” In other words,
they struggle with objects, memory locations, or web pages requested just once, and
never again (in the average lifetime of the cache). This is particularly common for
routers and Content Delivery Networks (CDNs), where an average of 75% of the requests
for a node are one-hit wonders.

 Using a dictionary to keep track of requests allows us to only store an object in
cache when it’s requested for the second time, filtering out one-hit wonders and
improving the cache hit ratio. Bloom filters allow performing such lookups using
amortized constant time operations and with limited space, at the cost of accepting
some painless false positives. For this application, the only result of false positives,
however, would be a tiny reduction of the cache performance gain we get by using the
Bloom filter in the first place (so, no harm done).

4.7.2 Routers
Modern routers have limited space and, with the volume of packets they process per
second, they need extremely fast algorithms. They are thus the perfect recipient for
Bloom filters, for all those operations that can cope with a small rate of errors.

 Besides caching, routers often employ Bloom filters to keep track of forbidden IPs
and to maintain statistics that will be used to reveal DoS (Denial of Service) attacks.17

17“Utilizing Bloom filters for detecting flooding attacks against SIP based services.”, Geneiatakis, Dimitris, Nikos
Vrakas, and Costas Lambrinoudakis, Computers & Security 28.7 (2009): 578-591.
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4.7.3 Crawler

Crawlers are automated software agents scanning a network (or even the entire web)
and looking for content, parsing, and indexing anything they find.

 When a crawler finds links in a page or document, it is usually programmed to fol-
low them and recursively crawl the link’s destination. There are some exceptions: for
instance, most file types will be ignored by crawlers, as will links created using <a> tags
with an attribute rel="nofollow".

TIP It is actually recommended that you mark in this way any anchor with a
link to an action having side effects. Otherwise, search engines’ crawlers, even
if they respect this policy, will cause unpredictable behavior.

What can happen is that if you write your own crawler and you are not careful, it
might end up in an endless loop between two or more pages with mutual links (or
chain of links) to each other.

 To avoid such loops, crawlers need to keep track of pages they already visited.
Bloom filters, again, are the best way to do so, because they can store URLs in a com-
pact way and perform checking and saving of the URLs in constant time.

 The price you pay here for false positives is a bit higher than for the previous
examples, because the immediate result will be that the crawler will never visit a URL
that caused a false positive.

 To overcome this issue, it is possible to keep a complete list of the URLs visited in a
proper dictionary (or another kind of collection) stored on disk, and if and only if the
Bloom filter returns true, double-check the answer in the dictionary. This approach
doesn’t allow any space saving, but it provides some savings on the execution time if
there is a high percentage of one-hit wonders among the URLs.

4.7.4 IO fetcher

Another area where Bloom filter-based caching helps is reducing the unnecessary
fetching/storage of expensive IO resources. The mechanism is the same as with crawl-
ing: the operation is only performed when we have a “miss,” while “hits” usually trig-
ger a more in-depth comparison (for instance, on a hit, retrieving from disk just the
first few lines or the first block of a document, and comparing them).

4.7.5 Spell checker

Simpler versions of spell checkers used to employ Bloom filters as dictionaries. For
every word of the text examined, a lookup on a Bloom filter would validate the word
as correct or mark it as a spelling error. Of course, the false positive occurrences
would cause some spelling error to go undetected, but the odds of this happening
could be controlled in advance. Today, however, spell checkers mostly take advantage
of tries: these data structures provide good performance on text searches without the
false positives.
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4.7.6 Distributed databases and file systems

Cassandra uses Bloom filters for index scans to determine whether an SSTable has
data for a particular row.

 Likewise, Apache HBase uses Bloom filters as an efficient mechanism to test
whether a StoreFile contains a specific row or row-col cell. This in turn boosts the
overall read speed, by filtering out unnecessary disk reads of HFile blocks that don’t
contain a particular row or row-column.

 We are at the end of our excursus on practical ways to use Bloom filters. It’s worth
mentioning that other applications of Bloom filters include rate limiters, blacklists,
synchronization speedup, and estimating the size of joins in DBs.

4.8 Why Bloom filters work18

So far, we have asked you to take for granted that Bloom filters do work as we
described. Now it’s time to look more closely and explain why a Bloom filter actually
works. Although this section is not strictly needed to implement or use Bloom filters,
reading it might help you understand this data structure in more depth.

 As already mentioned, Bloom filters are a tradeoff between memory and accuracy.
If you are going to create an instance of a Bloom filter with a storage capacity of 8 bits
and then try to store 1 million objects in it, chances are that you won’t get great perfor-
mance. On the contrary, considering a Bloom filter with an 8-bit buffer, its whole buffer
would be set to 1 after approximately 10-20 hashes. At that point, all calls to contains
will just return true, and you will not be able to understand whether or not an object
was actually stored in the container. Figure 4.6 shows an example of such a situation.

 If, instead, we allocate sufficient space and choose our hash functions well, then
the indices generated for each key won’t clash, and for any two different keys the over-
lap between the lists of indices generated will be minimal, if any.

18This section, as well as the following ones, are theory-intensive and feature advanced concepts.
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Figure 4.6 Bloom filter saturation. In the 
example, m=10, so the bloom filter has 10 
bits, and k=4, so each element is stored 
with 4 bits. We can saturate the filter by 
adding three elements, setting all bits to 
1. Then even if we look up Y1 and Y2, which 
were not added to the filter, we still get a 
false positive. Although the example is an 
extremization (with k unrealistically too 
large for the value of m), it illustrates the 
mechanism that leads to saturation or to 
degraded precision.
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But how much space is sufficient? Internally a Bloom filter translates each key into a
sequence of k indices chosen out of m possible alternatives:19 the trick is that we store
keys efficiently by flipping these k bits in the filter’s buffer, a bit-array.

 If you have brushed up on your school algebra recently, you might have guessed
that we can only represent mk different sequences of k elements drawn from m values;
we need, however, to make two considerations:

1 We actually can’t even use all these sequences. We would like all indices associ-
ated to a key to be different (otherwise, we would actually store less than k bits
per key), so we strive for all lists of k indices to be duplicate-free.

2 We are not really interested in the order of these k indices. It’s completely irrel-
evant if we first write the bit at index 0 and then the bit at index 3, or vice versa.
We can thus consider sets instead of sequences.

All considered, we only (at least in theory) allow a fraction of all the possible sets of
exactly k (distinct) indices drawn from the range 0..m-1, and the number of all these
possible (valid) sets is given by

The binomial coefficient20 in this formula expresses the number of ways we can
extract k (unique) elements from a set of size m, and hence it tells us how many sets
with exactly k distinct indices our k hash functions can return.

 If we want each key to map to a different set of k indices, then given k and n, the
number of keys to store, we can compute a lower bound for m, the size of the buffer, by
using the formula above.

 Another way to look at the question is that given a sequence of m bits (the buffer),
we can only represent 2m different values, so at a given time the Bloom filter can only
be in one of 2m possible states; however, this only gives us a loose (although easier to
compute) bound on n, because we would not take into consideration that we will store
k bits per key (2m becomes an exact bound only for k==1).

 We’ll see in section 4.10 how to choose the number of hash functions and the size
of the array in order to optimize the ratio of false positives for a Bloom filter capable
of storing a given number of keys.

4.8.1 Why there are no false negatives . . .

In the simplest version of Bloom filters, deletion is not allowed. This means that if a
bit is flipped when a key is stored, it will never ever be set to 0 again.

 At the same time, the output of the hash functions is deterministic and constant in
time.

19Assuming m is the size of the filter’s buffer.
20m choose k is a binomial coefficient; see https://en.wikipedia.org/wiki/Binomial_coefficient. 
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TIP Remember to pay attention and abide by these properties in your imple-
mentation if you need to serialize Bloom filters and deserialize them later.

So, if a lookup finds out that one of the bits associated with a key X is set to 0, then we
know for sure that X was never added to the filter; otherwise, all the bits to which X is
hashed would be 1.

4.8.2 . . . But there are false positives

The reverse, though, doesn’t hold up, unfortunately! An example will help you under-
stand why. Suppose we have a simple Bloom filter with 4 bits and 2 hash functions. Ini-
tially our buffer is empty: 

B = [0, 0, 0, 0]

First, we insert the value 1 into the Bloom filter. Assume we had chosen our hash func-
tions such that h0(1) = 0 and h1(1) = 2, so the key 1 maps to indices {0,2}. After
updating it, our buffer now looks like this:

B = [1, 0, 1, 0]

Now we insert the value 2, and it turns out that h0(2) = 1 and h1(2) = 2. Therefore,
we now have:

B = [1, 1, 1, 0]

Finally, suppose that h0(3) = 1 and h1(3) = 0. If we perform a lookup for the value 3
after those two insertions, both bits at indices 1 and 0 will have been set to 1 even if we
never stored 3 in our instance of the filter! Therefore, 3 would give us a false positive.

 On the other hand, if we had a different mapping from the hash functions, for
instance, h0(3) = 3 and h1(3) = 0, since the fourth bit hadn’t been set yet (B[0]==0),
a lookup would have returned false.

 Of course, this is a simplistic example intentionally crafted to prove a point: false
positives are possible, and they are more likely to happen if we don’t choose the
parameters of our Bloom filter carefully. In section 4.10, we’ll learn how to tune these
parameters, based on the number of elements we anticipate we will store and on the
precision we need.

4.8.3 Bloom filters as randomized algorithms

Appendix F introduces the taxonomy of randomized algorithms, and in particular the
dichotomy between Las Vegas and Monte Carlo algorithms. 

 If you don’t have a clear idea of the difference between these two classes or what
randomized algorithms are, this would be a good time to check appendix F.

 Once those definitions are clear to you, it should not be hard to make an educated
guess: Which category do our Bloom filters belong to?
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 As you might have already figured out, Bloom filters are an example of a Monte
Carlo data structure. Method contains, the algorithm that checks if a key is stored in
a Bloom filter, in particular, is a false-biased algorithm. In fact, it might return true for
some keys never added to the filter, but it always correctly returns true when a key was
previously added, so there are no false-negatives (that is, every time it answers false,
we are sure the answer is correct).

NOTE Bloom filters are also a tradeoff between memory and accuracy. The
deterministic version of a Bloom filter is a hash set.

4.9 Performance analysis
Before starting on Bloom filter analysis, I suggest a deep dive into metrics for classifi-
cation algorithms in appendix F.

 We have seen how and why Bloom filters work; now let’s see how efficient they are.
First, we’ll examine the running time for the most important operations provided by a
Bloom filter. Next, in section 4.10, we will tackle the challenge of predicting the preci-
sion of method contains, given a Bloom filter with a certain structure (in particular,
its size and the number of hash functions used will matter).

4.9.1 Running time

We have already hinted at the fact that Bloom filters can store and look up a key in
constant time. Technically, this is only true for constant-length inputs; here we will
examine the most generic case, when keys stored are strings of arbitrary length.21

 But let’s start from the beginning: the very construction of a Bloom filter. After-
wards we’ll examine in detail insert and contains.

4.9.2 Constructor

Construction of a Bloom filter is pretty easy; we just have to initialize an array of bits,
with all its elements set to 0, and generate the set of k hash functions. We have seen
that the implementation also involves some computation, but it’s safe to mark that
part as constant time.

 Creating and initializing the array requires, obviously, O(m) time, while generating
each of the hash functions typically requires constant time; hence O(k) time overall is
needed to generate the whole set.

 The whole construction can be ultimately finished in O(m+k) steps.

4.9.3 Storing an element

For each key to store, we need to produce k hash values, and flip a bit in each of the
elements of the array indexed by those results.

 We’ll make the following assumptions:

21Any object or value can be serialized to a string (for instance, a binary string).
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 Storing a single bit requires constant time (possibly including the time needed
for bitwise operations in case we use compressed buffers to save space).

 Hashing a key X requires T(X) time.
 The number of bits used to store a key doesn’t depend on the key’s size, or on

the number of elements already added to the container.

Given these assumptions, the running time for insert(X) is O(k*T(|X|)). For each of
the k hash functions we need, in fact, to generate a hash value from the key and store
a single bit. If keys are numbers—for instance, integers or doubles—then |X|=1 and
T(|X|) = O(1), meaning that we can typically generate a hash value in constant time.

 If, however, our keys are of variable length—for example, strings—then computing
each hash value requires linear time in the length of the string. In this case, T(|X|) =
O(|X|), and the running time will depend on the length of the keys we add. 

 Now, suppose we know that the longest key will have at most z characters, where z
is a constant. Remembering our assumption about the length of keys being indepen-
dent of anything else, we can then still argue that running time for insert(X) is
O(k*(1+z)) = O(k). Thus, this is a constant time operation, no matter how many ele-
ments have been already added to the container.

4.9.4 Looking up an element

The same considerations hold true for the lookup of a key: we need to transform keys
into a set of indices (done in time O(z*k)), and then check each bit at those indices
(O(k) time for all of them). So, lookup is also a constant time operation, under the
assumption that keys’ lengths are bounded by a constant.

4.10 Estimating Bloom filter precision22

Before we start, we need to fix some notations and make a few more assumptions:

 m is the number of bits in our array.
 k is the number of hash functions we use to map a key to k different positions in

the array.
 Each of the k hash functions we use is independent from the others.
 The pool of hash functions from which we extract our k functions is a universal

hashing set.

If these assumptions hold, then it can be proven that a good approximation for the
false positive probability after n insertions is given by

where e is Euler’s number, the base of natural logarithms.

22This section includes advanced, math-intensive content.
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 Now we have a formula to estimate the probability of a false positive! That’s nice
per se, but what’s even better is that it allows us to tune m and k, our Bloom filter
parameters. This way we can decide the size of the Bloom filter’s buffer and the num-
ber of hash functions needed to have optimal precision.

 There are three variables in the formula for p(n, m, k):

 m, the number of bits in the buffer
 n, the number of elements that will be stored in the container
 k, the number of hash functions

Of those three, k is the one that seems less meaningful to us. Or, from another point
of view, it is the one less coupled with our problem. In fact, n is probably going to be a
variable that can we can estimate, but we can’t fully control. We might need to store as
many elements as we get requests for, but most of the time we can anticipate the vol-
ume of requests and make estimates pessimistic, to be on the safe side.

 We might be limited in the choice of m as well, since we could have memory con-
straints; maybe we can’t use more than m bits.

 For k, instead, we have no constraint on it, and we can tune it to get optimal preci-
sion, meaning, as we explained in appendix F, minimal probability of false positives.

 Luckily finding the optimal value for k, given m and n, isn’t even that hard—it’s just
a matter of finding the minimum for the function:

Note that n and m are constants in the formula.
 We will go into the details of finding the minimum for f(k) in the next section; for

now (or if you are more interested in the result), just know that the optimal value is

Now that we have a formula for k*, we can substitute it in our previous formula, the
one for p(n, m, k), and after a some algebraic manipulation, we obtain an expres-
sion for the optimal value for m (let’s call it m*):

This means that if we know in advance the total number n of unique elements that we
will insert in the container, and we set the probability p of a false positive to the largest
value that is acceptable, then we can compute the optimal size of the buffer (and the
number of bits per key we need to use) in order to guarantee the desired precision.

 Two aspects are significant when looking at the formulas we derived:
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 The size of the Bloom filter’s buffer is proportional to the number of elements
being inserted.

 At the same time, the required number of hash functions only depends on the
target false positive probability p (you can see this by substituting m* into the for-
mula for k*, but don’t worry, we’ll discuss the math in the next section).

4.10.1 Explanation of the false-positive ratio formula

In this section we’ll explain in more detail how the formulas to estimate a Bloom fil-
ter’s precision are derived; first, let’s see how we obtain the estimate for the false prob-
ability ratio. 

 After a single bit has been stored in a Bloom filter with a capacity of m bits, the
probability that a specific bit is set to 1 is 1/m; then the probability that the same bit is
set to 0 after all k bits used to store an element have been flipped (assuming the hash
functions will always output k different values for the same input23) is therefore

If we consider the events of flipping any specific bit to 1 as independent events, then
after inserting n elements, for each individual bit in the buffer the probability that the
bit is still 0 is given by

To have a false positive, all the k bits corresponding to an element V must have been
set to 1 independently, and the probability that all of those k bits are 1 is given by

Which is, lo and behold, the probability formula we gave at the beginning of this
section.

 At this stage, as we mentioned in the last section, we can consider n and m as con-
stants. It makes sense because in many cases we know how many elements we need to
add to the Bloom filter (n) and how many bits of storage we can afford (m); what we
would like to do is trade performance for accuracy by tuning k, the number of (uni-
versal) hash functions we use.

23In other words, as we have seen in the previous sections, we assume the hash functions are drawn from a set of
universal hash functions.
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 This is equivalent to finding the global minimum of function f, defined as

If you know some calculus, you probably have already guessed that we need to com-
pute the derivatives of f with respect to k. (If you don’t know calculus, don’t worry;
you can skip the next few lines and resume on the next page, where we will be using
the result of this computation.)

 To make our job easier, we can rewrite f by applying natural logarithm and expo-
nentiation,24 so that we get

This function is minimal when its exponent is minimal, so we can define function g

and compute the derivatives of g instead, which is easier to work with.
 The first order derivative of g(k) is

and it becomes equal to 0 for k=ln(2)*m/n.
 To make sure this is a minimum for the function, we still need to compute the sec-

ond order derivative and check that it returns a negative value when computed on the
zero of g’:

We’ll skip this step for the sake of space, but you can double check that it’s indeed
true.

 It’s worth noting that

 The formula for k gives us a single, exact value for the optimal choice of the
number of hash functions.

 k must obviously be an integer, so the result needs to be rounded.

24ex and ln(x) are inverse functions, so that for x>0, ln(ex) = eln(x) = x; that holds true even if x is a function
(as long as it’s always positive).
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 Larger values for k mean worst performance for insert and lookup (because
more hash functions need to be computed for each element), so a compromise
with slightly smaller values of k can be preferred.

If we use the best value for k as computed previously, this means that the rate of false
positives f becomes

By replacing the value k in the formula for p(n,m,k), we can get a new formula that
links the number of storage bits to the (maximum) number of elements that can be
stored, independently of k (the value for k can be computed later) to guarantee a
false-positive probability smaller than a certain value p:

Taking the base 2 logarithm of both sides

and then solving for m finally gives us

This means that if we know in advance the total number n of unique elements that we
will insert in the Bloom filter, and we set the false positive probability p to the largest
value that is acceptable, then we can compute the optimal size of the buffer that guar-
antees the desired precision. We will also have to set k accordingly, using the formula
we derived for it:

For instance, if we would like to have a precision of 90%, and so at most 10% false pos-
itives, we can plug in the numbers and get 
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4.11 Improved variants
Bloom filters have been around for almost 50 years, so it’s natural that many variations
and improvements have been proposed in the meantime. Let’s examine some of
them, with a focus on those that improve accuracy.

4.11.1 Bloomier filter
As we hinted at, Bloom filters corresponds to faster, lighter versions of HashSets, since
they can only store whether a key is present/absent.

 The leaner counterpart of HashTables has been introduced only recently: Bloomier
filters25 allow associating values to keys. When the key/value pair has actually been
stored in the Bloomier filter, then the value returned is always correct. There are still
false positives; that is, keys that were not actually stored in the data structure but for
which a value is returned.

4.11.2 Combining Bloom filters
By storing the same key in two or more different Bloom filters, possibly with different
buffer sizes, but most importantly with a different set of hash functions for each one,
we can arbitrarily lower the probability of false positives.

 Of course, this is not for free, so the space needed grows proportionally, and the
time needed to store or check for a key in theory would double as well. 

 At least for the running time, though, there is a silver lining: each of the compo-
nent filters can actually be queried in parallel on a multicore hardware! So, besides
maintaining the O(k) constant time bound, even actual implementations could possi-
bly be as fast as regular Bloom filters (in other words, the constant factor remains
approximately the same).

 The way this structure works is the following: for insert, each of the components
stores the key independently. For calls to contains, the answer is the combination of
all answers: true is returned only if all the components return true.

 What’s the accuracy of such an array of filters? It can be proven that the precision
of a single Bloom filter using m bits is the same as the precision of j Bloom filters using
m/j bits each.

 However, when using a parallel version of the ensemble algorithm, the running
time can be just a fraction of the original one, 1/j.

4.11.3 Layered Bloom filter

A layered Bloom filter26 (LBF) also uses multiple Bloom filters, but organized in layers.
Each layer is updated for a key only after the previous layer has already stored the same

25Chazelle, Bernard; Kilian, Joe; Rubinfeld, Ronitt; Tal, Ayellet (2004), “The Bloomier filter: An efficient data
structure for static support lookup tables,” Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (PDF), pp. 30–39.

26Zhiwang, Cen; Jungang, Xu; Jian, Sun (2010), “A multi-layer Bloom filter for duplicated URL detection”, Proc.
3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010), 1, pp. V1–
586–V1–591, doi:10.1109/ICACTE.2010.5578947
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key. Layered Bloom filters are normally used to implement a counting filter: an LBF with
R levels can count up to R insertions of the same key. Often deletion is also supported.

 Each call to contains starts by checking the layers, from the closest to the deepest,
and returns the index of the last layer where the key was found, or -1 (or, equivalently,
false) if the key is not stored in the first layer.

 When storing a key, the insert method stores it in the first layer for which con-
tains returns false.

 Assuming that each layer has a false-positive ratio equal to PF, and that all layers use
different sets of hash functions, then if an element has been stored c times on the filter

 The probability that contains returns c+1, a counter 1 unit larger than the real
number of times a key was stored, is approximately PF.

 The probability of returning c+2 is PF2.
 Similarly, for c+d, the probability becomes PFd.

Those, however, are approximate (optimistic) estimates, because the assumptions
about the universality and independence of the hash functions are hard to guarantee.
To compute the exact probabilities, we would need to take into account the depth and
the number of layers.

 On an LBF with L layers, each using k bits per key, the running time for both
insert and contains becomes O(L*k), but since both L and k are predetermined
constants, it’s still equivalent to O(1) and independent of the number of items added
to the container.

4.11.4 Compressed Bloom filter
When used in web caches, the main issue with Bloom filters is not with the RAM they
use, but rather, since these filters need to be transferred between proxies, it’s the size
of data transmitted on the network.

 While at first you might think that’s a moot point, if we plan to compress the
Bloom filters before transmitting them through a network, then it does actually have
practical relevance. It turns out we can optimize the values of the filter’s parameters,
which in turn regulate the size of the bit array, and as a result get a larger uncom-
pressed Bloom filter that could be compressed more efficiently.

 That’s the idea behind compressed Bloom filters,27 where the number of hash
functions k is chosen in such a way that the number of bits with value 1 in the bits
array is kept below m/3, where m is the size of the array. As a consequence, at least 2/3
of the buffer’s bits will always be set to 0, and we can take advantage of this fact to com-
press the bit array more efficiently.

 Each proxy would then have to decompress the Bloom filter before looking up ele-
ments. Clearly now we have another target to optimize. We need to find a compromise
between the uncompressed size of the bits array, m, and its compressed size, which we
want to keep as small as possible.

27Mitzenmacher, Michael. “Compressed Bloom filters.” IEEE/ACM Transactions on Networking (TON) 10.5
(2002): 604-612.
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 The uncompressed size, in fact, determines the running time of lookups (through
the formulas we developed in section 4.10), while the compressed size determines the
transfer ratio.

 Since router tables will be updated periodically, decompressing the whole filter
could be a heavy overhead for nodes. A good compromise is breaking the filter into
pieces and compressing each piece independently. This makes the overall compres-
sion rates slightly worse, but when updates are frequent (compared to lookups), it
reduces the overhead for decompression even more, since each proxy, between two
updates, won’t decompress the whole bits array, but only the chunks it needs.

4.11.5 Scalable Bloom filter

A scalable Bloom filter is yet another combination of several Bloom filters, working sim-
ilarly to a layered Bloom filter. Only this time the different layers have increasing capacity
(and hence smaller false positives ratio). This allows the container to adapt dynamically
to the number of elements stored and keeps the probability of false positives low.

Summary
 We can choose the best abstract data structure (ADT) to perform certain opera-

tions, but we can also choose among different implementations, or concrete
data structures (CDT) of an ADT, and that choice also makes a difference.

 Many common problems in computer science revolve around keeping track of
values. It might be URLs browsed by a crawler, documents examined by an
indexer, or values to store in a cache, just to name a few.

 Depending on the context, there are different additional constraints for the
implementation of a set that we might want to use. 

 Randomized algorithms are a subset of algorithms whose execution might
depend on randomization, and therefore running a randomized algorithm
twice on the same input does not always return the same result.

 Randomized algorithms are divided into Monte Carlo and Las Vegas algo-
rithms, depending on where the uncertainty lies.

 For Bloom filters, we use the precision metric to estimate the ratio of false positives.
 If we know in advance the maximum number of items that will be stored in a

Bloom filter at the same time, we have an exact formula for computing the total
amount of memory needed to achieve an arbitrarily low ratio of false positives.
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Disjoint sets: Sub-linear
 time processing

In this chapter we are going to introduce a problem that seems quite trivial—so triv-
ial that many developers wouldn’t even consider it worth a performance analysis, so
they’d just implement the obvious solution to it. Nevertheless, if the expression

This chapter covers
 Solving the problem of keeping a set partitioned 

into disjoint sets and merging partitions dynamically

 Describing an API for a data structure for disjoint 
sets

 Providing a simple linear-time solution for all 
methods

 Improving the running time by using the right 
underlying data structure

 Adding easy-to-implement heuristics to get quasi-
constant running time

 Recognizing use cases where the best solution is 
needed for performance
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“wolf in sheep’s clothing” was applied to data structures, this would be the best heading
for this chapter.

 We will use a disjoint set every time that we would like to account for the partition-
ing of an initial set of objects into disjoint groups (that is, subsets without any element
in common between them). For instance, we might start with a list of wines, which
would be the initial set, and partition those wines depending on their flavor, creating
a disjoint set where wines with a similar flavor are grouped together, and groups have
no intersections with each other. Or we could group foods based on their nature and
properties, grouping vegetables, fruit, processed food, and so on. This would be a triv-
ial example of a disjoint set, shown in figure 5.1. 

We will tackle this problem starting with its definition, then cover the most basic (and
naïve) algorithms, to give readers an understanding of what an actual solution looks
like. Once that’s clear, we will be ready to delve into making our solutions more effi-
cient, and show how to use them as part of more complex algorithms. By the end of
the chapter you will be able to code the best possible solution for disjoint sets and
employ it to improve the performance of higher-level applications.

5.1 The distinct subsets problem
For instance, imagine this: you are running a new, recently created, e-commerce web-
site, and for your launch, you’d like to provide non-personalized recommendations to
your users. If it helps you feel like this is a real situation, you might imagine owning a
time-machine and being back in 1999. Or more realistically, you can think about
opening a geographically localized website with stronger ties to your country’s retail-
ers; or maybe you open a specialized retail website focusing on niche products. Either
way, this can be a very interesting exercise.

 So, non-personalized recommendations, we were saying. You might ask what that’s
about. Allow me to take a short detour to explain this: personalized recommendations
are targeted on individual customers, based on the data we have about them (past
purchases or metadata that shows similarity with other users). But sometimes we don’t
have this data at all: for instance, when we start a new website, or even when we get a
new customer about which we know nothing at all. That’s why many websites, such as

Sweets

Vegetables

Fruit

Food

Figure 5.1 An example of a disjoint set. The whole 
set, the so-called Universe, is the set of “Food.” 
Three partitions are shown: Fruit, Vegetables, and 
Sweets. The key point is that these subsets have no 
intersections with each other.
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Twitter, Pinterest, Netflix, and MovieLens, ask you questions on sign-up to understand
your tastes and be able to provide some rough personalized recommendations based
on users with similar profiles.

 Non-personalized recommendations, on the other hand, are not targeted to you,
the customer, and are the same for all customers. They might be hardcoded associa-
tions, if you have no data at all, or based on purchases made by all other customers,
for example.

 And that’s exactly what we are going to do: whenever customers add something to
their cart, we would like to provide them with a recommendation about something
else they might want to buy along with it. Our goal is finding products that are fre-
quently bought together; sometimes we are going to find reasonable associations,
such as milk and bread bought together. Other times, the result might be more sur-
prising: you probably have already heard about the research performed at Walmart
linking the purchase of diapers and beer, since it’s one of the most quoted data sci-
ence anecdotes.

 Figure 5.2 illustrates what we would like to achieve. Initially, since we have no data
at all, we consider every product as a group of its own, or if you prefer, no two prod-
ucts will have an association.

 When customers frequently buy two products together, we then establish a link
between them, considering both to be part of the same group. To keep things simple,
imagine that the rule set by the data science team is that if item X and item Y are
bought together more than a fixed threshold during the last hour, then their two cat-
egories are merged.

 For instance, it might be that if, during the last hour, phones and tablets are
bought together more than 500 times (or for more than 1% of total purchases), then
they should be in the same group, so we merge their groups.

 Then if a customer buys a product X, we can suggest to them a random item from
the same group.

 This process described is pretty common in data science. Some of you might have
recognized that it’s nothing less than hierarchical clustering. If that doesn’t ring a
bell, do not worry; we will expand on clustering in section 5.7.3.

 This is, obviously, an extreme simplification. In a real non-personalized recom-
mender system, we would track associations between products, measuring the strength
of the link as the confidence that when X is bought, Y is also. For that, we may compute
the number of purchases where both appear, divided by the total number of purchases
where at least Y appears. That would give us better insight about what goes with what,
we could define a threshold on the confidence for merging groups, and instead of pick-
ing a random item in the same group, show the top five strongest associations.

 Nevertheless, clustering items in groups will probably be a smart move, because it
will help performance, allowing us to run some algorithms on each group of items
separately rather than on the whole catalog.
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Figure 5.2 An example of an application of a disjoint set. (A) In this scenario, an e-commerce website is 
trying to understand what products sell well together in order to provide better recommendations to its 
customers. (B) Initially, each item on sale is in a different category. (This would also work if we started 
from already predefined categories, such as SSD disks or blenders, and grouped categories of objects selling 
together. But for the sake of simplicity, bear with me and imagine there is only one product of each category 
on sale.) (C) Items frequently bought together, such as laptops and external disks, or tennis rackets and 
tennis balls, are grouped together. (D) After a while, things tend to stabilize and steady groups are formed. 
Now, the next time a customer adds a football to her cart, we can suggest a pair of skis as a follow-up purchase.

User’s
browser

E-commerce server
Catalog

People buy some items together.

k-th group

(B)

(C)

(D)

Item

Category 1 2 3 4 5 6 7

Each item is in
its own category.

Alice

Bob

Carol

Item

Category 5 2 3 5 5 K 2

Now some items
are grouped together.

Some combinations are more popular than others.
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If you are interested in knowing more about non-personalized (and personalized) rec-
ommender systems, we suggest you look at Practical Recommender Systems (by Kim Falk,
Manning Publications, 2019), a fine and thorough guide to the topic.

 Back to our example: the gist is that we would need to start from this huge set of
items and partition them into disjoint groups. And of course, new items are added to
the catalog all the time, and relations are dynamic, so we would need to be able to
update both the list of items and the groups.

5.2 Reasoning on solutions
In this and the following sections, we will mainly use the term partition to refer to dis-
joint groups. However, group and set can also appear as synonyms.

 We will also restrict to the aggregative case; in other words, two partitions can be
merged in a single, bigger set; the opposite, however, is not allowed. That is, a parti-
tion can’t be split into two subsets.

 Now imagine that there was a design discussion between your data science team
and your support engineering team, and one engineer fiercely stood up and
exclaimed, “Well, that’s easy! You keep an array (a dynamic array or a vector) for each
subset.”

 You don’t want to be that person, believe me, and one of the goals of this book is
making sure you don’t find yourself in that situation. Because the next thing to hap-
pen, hopefully, is that somebody else points out how, by using arrays, understanding
whether two elements are in the same set could potentially require going over all the
elements of all the subsets. Likewise, just understanding which subset an element
belongs to could require the same number of element checks; that is, search could be
linear in the total number of elements.

 This would be a real performance concern, and it seems obvious we should be able
to do better. 

 The next idea in this brainstorming could involve adding a map from elements to
subsets, together with the list of subsets explained previously. This is a slightly better
improvement for some operations; although, as we will see, it still forces operations
such as merging two sets to potentially require O(n) assignments.

 Performance, however, is not the main concern with that design. Using two inde-
pendent data structures is a terrible idea, because you will have to manually sync them
every time you face this problem in your application. This is very error-prone.

 An already better solution is to provide a wrapper class that internally uses those
two structures: it gives you encapsulation and isolation and as a result, you are able to
write only once the code that syncs both structures on, say, add or merge (and so you
gain reusability). Even more important, you are able to unit test your class in isolation
and hence have a reasonable guarantee that it’s going to do its job without experienc-
ing bugs every time you use it in your application (that is, provided you do write good
and thorough unit tests, acing the edge cases and challenging the behavior of your
class in all possible contexts).
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So, let’s assume we agree on the need to write a class that takes care of the whole prob-
lem, keeping track of which (disjoint) subset an element belongs to, and encapsulat-
ing all the logic in it. We are going to delay the discussion on implementation for now:
before focusing on the details, let’s discuss its public API and behavior.

 Depending on the size of the catalog, we could even fit such a data structure in
memory, but let’s instead assume that we set up a REST service (illustrated in figure
5.3) based on a persisted Memcached-like storage,1 something like Redis. Durability
of the data is important in this case, because in our example, the monitoring activity
over the items will last for years, and we don’t want to recompute the whole disjoint set
structure every time there is a change or a new product is added.

Alternatively, if the size of the universe2 is small enough to fit in memory, it could be
possible to imagine a synchronization mechanism that periodically serializes our in-
memory data structure into a persistent database.

1 A (no-SQL) key-value store used as a distributed object caching system.
2 The set of all possible items—traditionally denoted as Universe (U) in set theory.
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Figure 5.3 A possible design for an application using disjoint set. The disjoint set client can be anything 
ranging from a library to a REST client. The purpose of the (thin) client here is to be an interface between 
the in-memory storage (the Memcached node in the picture) and the server, which has persistent storage. 
The server can be a web server, but it could also just be another native application storing data on a disk. 
The disjoint set client will run on the same intranet, possibly even on the same machine, as the e-commerce 
server. It will have a cron job to keep the persistent storage in sync with the in-memory version (this could 
happen every few seconds or asynchronously after each operation). Moreover, it will respond to calls from 
the e-commerce site, querying the in-memory storage or, when needed, calling the web server (and, in case 
not all the data will fit in memory, it will also take care of swaps).
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5.3 Describing the data structure API: Disjoint set
In our design, our data structure needs to offer only a few, though crucial, operations.

First, we’d like, obviously, to initialize our instance on construction. Without any loss of
generality, we can restrict to the case where the Universe U, that is, the set of all possible
elements, is known in advance and static. We also assume that initially every element is
in its own partition. Workarounds to support violations to these assumptions are easily
achievable by making wise use of dynamic arrays and the class’s very own methods.

 Finally, throughout this chapter we assume the elements of our Universe U are the
integers between 0 and n-1. This is not a real restriction, because we can easily associ-
ate an index to each of the actual elements of U.

 Initialization, therefore, just takes care of allocation of the basic fields needed by
the class and assigns each element into its own partition.

 The findPartition method, when called on an element x of U, will return the par-
tition to which x belongs. This output might not be meaningful outside of the
instance of our data structure: think of this method mostly as a protected method3 for the
class, or even consider restricting its visibility to private.

Abstract data structure: DisjointSet

API class DisjointSet {
  init(U);
  findPartition(x);
  merge(x, y);
  areDisjoint(x,y);
}

Contract 
with client

A disjoint set keeps track of the mutual relations between elements in a universe U.

The relation is not explicitly defined by the data structure; it is left to the client to define it.

However, it is assumed that such a relation ® has the reflexive, symmetric and transitive 
properties; this means that given x, y, z elements of U

 x®x
 if x®y, then y®x
 if x®y and y®z then x®z

The guarantees provided by the class are

 It’s possible to add a relation between any two elements.
 If two elements at any point are merged (that is, a relation between them is added), they

will be part of the same disjoint set.
 If there is a chain of elements x1, x2, …, xn such that x1 has been merged to x2, x2 has

been merged with x3 and so on, then x1 and xn will be in the same partition.
 If two elements are not in the same partition, then there is no other element belonging

to both elements’ disjoint sets.

3 Definition of protected visibility varies depending on the programming language. Here, we assume a protected
method or attribute is only visible to the class declaring it and its sub-classes. A private method, conversely, is
not visible to any classes inheriting from the one in which it is declared.
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 The two main operations that we’d like to perform are 

 Given two elements x and y, both belonging to U, we’d like to check if they
belong to different partitions (areDisjoint). 

 Given two elements x and y, we’d like to merge their partitions into a single one
(merge).

5.4 Naïve solution4

The most immediate solution for our problem is
to represent each partition with a list (or array),
as illustrated in figure 5.4. For each element, we
need to keep track of the pointer to the head of
the list.

 To find out if two elements are in the same
partition, we need to retrieve the list for one ele-
ment, and check if it is the same list as for the
other.5

 To merge two partitions, P1 and P2, modeled
with two lists, L1 and L2, we need to update the
next pointer6 of the last element in L1 so that it
points to the head of L2 (or vice versa, with the
last element of L2 pointing to the head of L1).
This operation, which is shown in figure 5.5, can
be done in constant time by keeping an extra
(constant space) pointer to the tail of each list.
Unfortunately, though, we aren’t done just yet:
for every element in L2, we also need to update
its list pointer in our map to point to the head of the new merged list.

 This operation requires linear time in the worst case, because we might have to
update up to n-1 elements (where n is the total number of elements in the Uni-
verse U).

 There is one way to slightly improve the expected number of assignments we have
to perform: by always appending the shortest of the two lists, we will make sure that we
won’t have to update more than n/2 elements’ pointers. Unfortunately, this does not
improve the asymptotic execution time.7

 Let’s delve into code to better explain how this works.

4 This is a theory-intensive section.
5 As an implementation detail, we likely need to use referential equality here when comparing lists.
6 For a refresher on linked lists, or if you are not sure what the next pointer is, check out appendix C.
7 Remember that constant factors are irrelevant in big-O analysis, so O(n/2) = O(n).
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Figure 5.4 Representing a disjoint set 
with lists. Each array element stores a 
pointer to the head of a linked list. Each 
linked list, in turn, represents a set. 
Here sets are numbered arbitrarily, as 
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information on the set (nor can it be 
retrieved).
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5.4.1 Implementing naïve solution

Let’s start with the pseudo-code for the constructor, and the class definition (see
listing 5.1). All methods in the next sections will be assumed to be class methods for
DisjointSet.

class DisjointSet
  #type HashMap[Element, List[Element]]
  partitionsMap

function DisjointSet(initialSet=[]) 
    this.partitionsMap ← new HashMap() 
    for elem in initialSet do                         
      throw-if (elem == null or partitionsMap.has(elem))) 
      partitionsMap[elem] ← new Set(elem)  

Initialization is simple: we will check that the list passed as argument contains no
duplicates and initialize the disjoint set with its elements.

 In a real implementation, you should worry about how elements are compared.
Depending on the programming language, it can use referential equality, an equality
operator, or a method defined on the elements’ class. The following code is only
meant to illustrate how a basic solution works, so we won’t worry about the details.

 First, we initialize the associative array that is going to index the elements and map
them to the partition they belong to (line #2).

 Next, we just go through initialSet’s elements, one by one, check they are defined
and that there is no duplicate, and then initialize their partition to the singleton con-
taining the element itself (initially each element is disjoint from every other element).

Listing 5.1 Naïve solution, constructor
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Figure 5.5 Merging two partitions. On the left: one of the two lists is appended to the other by adding a new 
edge tail-to-head and removing links from the array to the second list. On the right is shown the result after 
the merge, with all head-pointers for array elements belonging to the appended list (elements 1 and 5 in the 
example) updated.

The constructor takes a list of elements as 
argument, but by default initializes the 
disjoint set with an empty set.

Creates a new map from elements to sets

Goes over each element in the argument list

Throws an exception 
if the element is 
null or a duplicateAdds a mapping between current element and a 

new singleton set containing current element only
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 Now that we have taken care of initializing our disjoint set, we can provide a couple
of useful methods. For example, we can add a size public property, simply defined as
the number of entries stored in the local partitions map.8 9

 You can find examples of such methods implemented in our repo. Here, instead,
we will focus on the main API methods, starting with the add method, illustrated in
figure 5.6, whose pseudo-code is shown in listing 5.2.

function add(elem)  
  throw-if elem == null       
  if partitionsMap.has(elem) then                     
    return false
  partitionsMap[elem] ← new Set(elem)              
  return true

This method is used to allow the Universe to grow, with new (unique) elements that
can be added at any time. Every time we add a new element, we just add a brand-new
partition containing that element alone. But, of course, we need to check that the
argument passed to add is well-defined, so that it’s not null and not a duplicate of
another element already in our Universe.

8 Abbreviation for “if and only if.”
9 A singleton is a set with exactly one element.

Listing 5.2 Naïve solution, add

Takes an element and returns true iff8 the element 
was added successfully, false otherwise

Checks that the 
element is valid

If the element is already in the 
data structure, returns false 
without updating anything

Otherwise just adds a mapping between the 
element and a newly created singleton9 set 
and returns true
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Figure 5.6 Adding a new element to the container. Provided the new element is not a duplicate of any 
element currently in our container, we can add it by creating a new singleton partition, which will only 
contain the newly added element.
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 Now we get to the really interesting stuff: first and foremost, the findPartition
method, shown in listing 5.3.

function findPartition(elem) 
  throw-if (elem == null or not partitionsMap.has(elem)) 
  return partitionsMap[elem]

In this basic implementation, the method is particularly trivial: after the usual valida-
tion (including checking that the element is actually stored in the disjoint set), we just
need to return the partition containing elem.

 As we mentioned, this implementation of the findPartition method only
requires constant time (assuming that the hash for elem can be computed in constant
time).

 Another easy-to-implement method, shown in listing 5.4, is the one checking if two
elements belong to the same partition.

function areDisjoint(elem1, elem2)
  p1 ← this.findPartition(elem1)        
  p2 ← this.findPartition(elem2)    
  return p1 != p2  

We just need to reuse findPartition, call it for both elements, and check whether
both calls return the same partition. Note that by reusing findPartition, we can
make sure that the implementation of areDisjoint won’t need to change, no matter
how our elements are stored or findPartition is implemented (as long as its inter-
face remains the same, and partitions can be compared with the inequality operator).

 Moreover, we decided to implement a check for elements belonging to different
partitions rather than for elements belonging to the same one: this is because of how
disjoint sets are normally used. We are normally interested in checking whether two
elements don’t belong to the same partition, and if that’s the case, we merge the two
partitions. But depending on the way you are going to use this container, it is possible

Listing 5.3 Naïve solution, findPartition

Listing 5.4 Naïve solution, areDisjoint

Takes an element and returns a Set, the partition 
(aka disjoint set) to which the element belongs

Checks that the 
element is valid

Returns the Set containing the argument

Takes two elements and returns true iff the elements are valid but 
don’t belong to the same partition, false iff the elements are valid but 
do belong to the same partition. Notice that if either element is null 
or hasn’t been added to this container, then this method will throw an 
error (because in turn findPartition will throw an error).

Retrieves the disjoint set to which 
elem1 belongs. If the argument is 
invalid or not found, this call will 
throw an error.

Repeats the same operation for elem2

Compares the two sets, and checks if they are the same, 
and hence if the elements belong to the same partition
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that the other way around is more convenient, and there is nothing preventing you
from defining a samePartition method instead.

 All the methods we have seen so far run in constant time with respect to the size of
the container. Now, it’s time to implement the method merging two partitions, shown
in listing 5.5 (and illustrated in figure 5.5). As we have seen, the merge method
requires O(n) assignments in the worst case.

function merge(elem1, elem2)
  p1 ← this.findPartition(elem1)   
  p2 ← this.findPartition(elem2)   
  if p1 == p2 then                
    return false
  for elem in p1 do    
    p2.add(elem)  
    this.partitions[elem] ← p2                          
  return true

This method is more complex than the previous ones. And yet, by reusing findParti-
tion, it still looks quite simple.

 We first check if elements belong to the same partition by calling findPartition
on both and checking the result. Those calls also take care of validating the input.

 Once we’ve established that we actually need to perform an action, we proceed
and merge the two sets, correcting the pointers in the partitions map when needed. If
the partitions were implemented with linked lists instead of Set, we could have just
appended the head of a list to the tail of the other. Sets, instead, force us to actually
add elements one by one. An extra linear number of assignments is needed (worst
case), but this doesn’t change the order of the function’s runtime; we still need to
update the references for elements of one of the two lists (that is, sets) anyway.

 Here, we show the simplest code, always pouring the first partition’s elements into
the second one. On our repo on GitHub10 you can find a slightly better version that
checks which set is smaller and adds its elements to the larger sets; however, this is just
a constant-time improvement on the simplest version and the running time remains
linear in the minimum of the sets’ sizes.

Listing 5.5 Naïve solution, merge

10See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#disjoint-set.

Takes two elements, merges their partitions, and 
returns true iff the two elements were in two 
different partitions that now are merged, or false 
if they were already in the same partition

Retrieves the partitions to which elem1 
and elem2 belong. If the argument is 
invalid or not found, these calls will throw.

Compares p1 and p2, and if they are the same, 
there is nothing left to do. The elements are 
already in the same partition, and so no merge 
happens: false is returned.

Loops over the elements in the first 
partition. For each element in p1 do:

. . . add the element to p2 . . .

. . . then update the mapping for that 
element, which now belongs to p2.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#disjoint-set
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5.5 Using a tree-like structure11

To recap what we attained with our basic implementation, we managed to write a
constant-time findPartition method and a worst-case linear-time merge method.

 Now, can we do any better than linear, not just for findPartition, but for all the
operations on a disjoint set? Well, turns out that yes, we can!

5.5.1 From list to trees
The idea is simple: instead of using lists to represent each partition, we will use trees,
as shown in figure 5.7. Each partition is then uniquely identified by the root of the
tree associated with the partition. The advantage of trees over lists is that if the tree is
balanced, any operation on the tree is logarithmic (instead of linear, as for a list).

When we merge two partitions, we will set one tree root as the child of the root of the
other tree; see figure 5.8 to see an example. 

11This section is theory-intensive and features advanced concepts.

0

1

2

3

4

5

0

2 3

1

54

Tree 0

Tree 1
Tree 4

1:1 Element - Tree node

Figure 5.7 Representing a disjoint set with trees. Trees are 
named after their root, because we use the tree root as a unique 
identifier for the partition (we can do so under the assumption 
that elements are unique). Each element in the array points to a 
tree node: in the naïve implementation there is a 1:1 mapping 
between elements and tree nodes. This means that to get to the 
root of the tree, we might need to climb up the whole tree (and, 
on average, half of the height of the tree).

Tree 0

Tree 4

0

1

2

3

4

5

0

2 3 1

5

4

0

1

2

3

4

5

0

2 3

1

54

Tree 0

Tree 1
Tree 4

Figure 5.8 Merging two sets when using the tree representation. It only requires creating one new link 
(plus some tree traversing). In the figure on the left, we add one edge from the root tree of Tree 1 to the 
root of Tree 0, to merge them. On the right, we show how this changes the data structure: now we only 
have two trees, but the height of tree 0 is now larger than before the merge.
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This is a huge improvement over the naïve solution, because we won’t have to update
the partition map for any of the other elements in the partitions merged. Instead,
each node in the tree will maintain a link to its parent (we don’t need to save links to
children, because they are of no use in this case).

 The roots of the tree, as mentioned, uniquely identify each partition. So, when we
need to find out which partition an element belongs to, we just retrieve the tree node
it’s pointing to and walk up to the root of its tree. In method areDisjoint, if we do
the same for both elements and then compare the roots found, we can easily see if two
elements belong to the same partition (if and only if the two
roots are equal).

 So, merging two partitions now requires a constant num-
ber of changes, plus the number of look-ups needed to find
the two roots. Finding the set to which an element belongs
(or seeing if two elements belong to the same partition)
requires logarithmic time on average (remember when we
introduced trees?12) but linear time in the worst case. That’s
because when merging partitions, we might get unlucky
with the choice of which tree’s root we set as child of the
other. By randomly choosing each time which root is going
to be used as a child of the other, we can make this worst-
case scenario unlikely . . . but it would still be possible
(although extremely unlucky) to find ourselves in an edge
situation such as the one depicted in figure 5.9. This means
that our worst-case scenario for merge still requires O(n)
lookups and, what’s worst, now even findPartition has lin-
ear running time.

 Before seeing how we can improve this further, let’s
check out some code for our improved version.

5.5.2 Implementing the tree version

Let’s see in detail how this improved implementation works. Most code remains
unchanged from the previous section, so we won’t show it here. In the methods that
have changes with respect to the naïve version, we will underline those changes to
help readers quickly compare the two versions.

 Instead of mapping to an actual set, elements in the partition map point to each
element’s parent in the tree. That’s why, as you can see in the book’s repo, we can
rename our partitionsMap to parentsMap to make its purpose explicit.

 At initialization, we conveniently set each element as its own parent. Trust me on
that one; we’ll see why later.

 The same change applies to the add method, which otherwise stays unchanged.

12Check out appendix C, section C.1.3.

0

1

2

3

4

5

0

2

3

1

5

4

Figure 5.9 Worst case 
scenario for naive tree 
implementation: the 
height of the final tree 
is equal to n, the total 
number of elements, 
because the tree 
degenerated into a list.



161Using a tree-like structure

 The findPartition method (described in listing 5.6) needs quite a bit of tuning
to work properly. Two notes on its implementation: 

 With respect to the basic implementation, in this case we won’t return a list any-
more, but rather the element at the root of the partition’s tree. 

 The return value of findPartition might not immediately make sense to an
external caller, and in fact this method will mostly be used internally when
called by merge and areDisjoint methods.

class DisjointSet
  #type HashMap[Element, Tree[Element]]
  parentsMap

function findPartition(elem)           
  throw-if (elem == null or not parentsMap.has(elem)))
  parent ← this.parentsMap[elem]                
  if parent != elem then          
    parent ← this.findPartition(parent)
  return parent         

After getting the element’s parent, we check to see if it’s the element itself. If an ele-
ment is its own parent, then we know this means we’ve reached the root of the parti-
tion’s tree, because of the way we initialize this field, and because, in merge, we never
change a root’s parent.

 Otherwise, if the current element does have a parent, we walk up the tree toward
its root and perform a recursive call to findPartition, returning its result (line #5).

 This new implementation of findPartition, as we already mentioned, is not running
in constant time anymore. We will have as many recursive calls as the height of the parti-
tion’s tree. Since we can’t make any assumption about the trees so far, this means that we
possibly have a number of calls proportional to the number of elements in the Universe
U, although this is the worst case and, on average, we can expect far better performance.

 It might seem so far that we have only made our data structure’s performance
worse. We need to define our new implementation of the merge operation, shown in
listing 5.7, to see the advantage of using trees.

function merge(elem1, elem2)
  p1 ← this.findPartition(elem1)          
  p2 ← this.findPartition(elem2)          

Listing 5.6 Tree-based solution, findPartition

Listing 5.7 Tree-based solution, merge

Takes an element and returns another element, 
the one element at the root of the tree for the 
partition to which elem belongs

Checks 
that the 
element 
is valid

Retrieves the parent 
of the element

If the current element’s parent is elem itself, 
then we’ve already gotten to the root of the 
tree; otherwise . . . 

. . . we need to climb up recursively to the 
root, by looking for parent’s partition.

At this point, parent stores the root of the tree for 
the partition containing elem, so we can return it.

Takes two elements, merges their partitions, and returns true iff 
the two elements were in two different partitions that now are 
merged, false if they were already in the same partition Retrieves the partitions to which elem1 

and elem2 belong to. If the argument is 
invalid or not found, this call will throw.
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  if p1 == p2 then 
    return false
  this.parentsMap[p2] ← p1
  return true

By comparing the two implementations you can immediately see that this is simpler,
although only the last few lines changed. The good news is that we no longer need to
iterate through a list of elements! To merge two partitions, we simply need to get to
both trees’ roots, and then set one root as the parent of the other. We still need to find
those tree roots, though.

 The new line we added only requires constant time, so the method runtime is
dominated by the two calls to findPartition. As we have seen, they require time pro-
portional to the height of the tree they are called on, and in the worst case this can
still be linear. However, in the average case, and especially in the early stages after ini-
tialization, we know the height of the trees will be much smaller.

 So, in summary, with this implementation we have a disjoint set for which all the
operations still require linear time in the worst case, but on average will only need log-
arithmic time—even for those operations that were constant-time in the naïve imple-
mentation. Admittedly, that doesn’t sound like a great result if we focus on worst
cases. Nevertheless, if you look at it from a different perspective, we’ve already man-
aged to have a more balanced set of operations on our disjoint set, which is especially
nice in those contexts where merge is a common operation (while in read-intensive
applications, where merge is only executed rarely, the naïve implementation could
overall be preferable).

 Just read through the next section before dismissing the tree solution; it will be
worth it.

5.6 Heuristics to improve the running time13

The next step in our quest for optimal performance is to make sure findPartition is
logarithmic even in the worst-case scenario. Luckily, this is pretty easy! We discussed
balanced trees in appendix C; feel free to check it out if you feel you could use a
refresher.

 Long story short, here we can easily keep track of the rank (aka size) of each tree,
using linear extra space and performing constant-time extra operations in method
merge, where we will update rank only for trees’ roots.

 When we merge two trees, we will make sure to set as child the tree with the small-
est number of nodes, as shown in figure 5.10.

13This section is theory-intensive and features advanced concepts.

Compares p1 and p2, and if they are the same there 
is nothing left to do. The elements are already in the 
same partition, and so no merge happens: false is 
returned.

Sets the parent of p2 to be equal to 
p1, so that now both p1 and p2 
have the same parent, but also all 
elements in p2 will ultimately 
share p1 as the root of their tree
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It can be proven by induction that this tree will also be the one with the smallest
height: this means the new tree will either have the same height as the old one, or just
have its height increased by 1. It is also provable that the height of a tree can’t be
increased more than a logarithmic number of times.

 As a logarithm grows really slowly (for instance ln(1000) ~= 10, ln(1000000) ~= 20),
this is, in practice, already a good result, sufficient for most applications.

 However, if you are writing some really critical core code, such as a kernel or firm-
ware code, you might want to do even better. 

 Why? Well, because you can. And sometimes also because you need to. If you shave
0.001ms over an operation you will repeat a billion times, you’ve already saved 16 min-
utes of computation.

NOTE Most of the time, in our job as developers, performance isn’t the only
metric to consider regarding this kind of improvement. First, it depends on
whether you are saving those 16 minutes over a computation taking an hour
or a day (needless to say, in the latter situation the gain would be irrelevant).
But it also depends at what price you get the savings. If it makes your code ter-
ribly more fragile, more complicated, and harder to maintain, or just requires
weeks of development time, you will have to weigh the pros and cons before
going down this path. Luckily for disjoint sets, this is not the case, and path
compression is easy to implement, while it gives a big gain.

Let’s see how we could have this further improvement before delving into code.
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5.6.1 Path compression

As hinted in the previous section, we can do even better than just having balanced
trees and logarithmic-time methods.

 To improve our results further, we can use a heuristic called path compression. The
idea, shown in figure 5.11, is even simpler: for each node in the trees, instead of stor-
ing a link to its parent, we can store one to the root of the tree. After all, we don’t
really need to keep track of the history of the merges we performed; we just need to
know at the current time what the root is for an element’s partition—and find that out
as quickly as we can.

Now, if you were to update all the root pointers as part of merge, it wouldn’t be a loga-
rithmic method anymore; we would need linear time to update each node in the tree.

 But let’s see—what happens if we don’t update immediately the parent pointers in
the nodes of the tree set as child? Simply put, next time we run findPartition on one
of the elements in that tree—call it x—we need to walk the tree from x up to its old
root xR, and then from xR to the new root R.

 Keep in mind that the pointers for the elements in the old tree could have been in
sync before the merge (and then we would just need two hops to get to the new root;
see figure 5.12), or they might have never been updated.

 Because we will have to walk up the tree anyway, we can then retrace our steps from
the top, R, down to x and update the root pointers for all those elements. This won’t
influence our asymptotic performance for findPartition, since by retracing the
same path we just double the number of steps (and constant factors are irrelevant in
asymptotic analysis; see appendix B).
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representation, dashed arrows are parent links, 
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But as a consequence of these extra steps that we take, next time we call findPartition
on any elements in the path from x to root(x), we know for sure that those pointers will
be up to date and we will just need one single step to find their root.

 At this point, we would like to understand how many times we will need to update
the root pointers, on average, for a single operation or, in amortized analysis, over a
certain number k of operations. This is where the analysis of the algorithm gets a bit
complicated. 
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 We won’t go into its details. Just know that it is proven that the running amortized time
for m calls to findPartition and merge on a set of n elements will require O(m * Ack(n))
array accesses.

 Here Ack(n) is an approximation of the inverse Ackermann function, a function
growing so slowly that it can be considered a constant (its value will be lower than 5
for any integer that can be stored on a computer).

 So, we managed to obtain an amortized constant bound for all the operations on
this data structure! If you are not impressed by this result . . . you should be!

 It is not yet known if this is the lowest bound for the Union-Find data structure. It
has been proven,14 though, that O(m * InvAck(m, n)) is a strict lower bound, where
InvAck(m, n) is the true inverse Ackermann function. 

 I know, this is a lot to take in. But do not despair; it turns out that we only need a
few small changes to implement the path compression heuristic.

5.6.2 Implementing balancing and path compression

We will now discuss the final implementation of our disjoint set structure, including
both the “tree balancing by rank” and “path compression” heuristics.

 For each element, we’ll have to store some information about its subtree. There-
fore, we’ll use a helper (private) class Info to gather all the info together, as shown in
listing 5.8.

class Info
  function Info(elem)    
    throw-if elem == null
    this.root ← elem 
    this.rank ← 1     

class DisjointSet
  #type HashMap[Element, Info]
  parentsMap  

This Info class models (the info associated with) a node of the partitions’ tree. It is, to
all purposes, just a container for two values: the root of the tree and the rank (that is,
size) of the tree rooted at the current element.

 In the root property, we won’t store references to other nodes. Instead, we will
directly store the (index of) the element itself, that we then use as a key to a HashMap,
exactly as we have shown in the previous sections.

14It is possible to find plenty of literature on the subject. Be aware, though, that it’s very interesting reading, but
challenging.

Listing 5.8 Class Info

The constructor for the Info class just 
takes an element of the disjoint set.

Validates the argument

Initially, an element is assigned to the 
singleton tree rooted at the element itself.

The rank of the subtree is initially 1, 
because it only contains one element.
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 If we were actually modeling a tree data structure, this design would result in
imperfect encapsulation. But we are just using the Info class as a tuple to gather all
the properties associated with an element.

 Most implementations for disjoint set would use two arrays for this. Since our
implementation does not restrict keys to integers and we are using hash maps, we
could define two Maps for the element’s roots and ranks. In doing so, however, we
would store each element three times: twice as a key of each map and once as a root of
some tree (this last entry could store, of course, some keys several times and some oth-
ers not once).

 By using this extra wrapper and a single “info” map, we make sure to store ele-
ments only once as keys.

 While objects would be stored as reference, with minimal overhead, immutable val-
ues, and especially strings, would be stored by value. Therefore, even avoiding store-
ing each element once more can lead to consistent memory saving.

 We could, in theory, do even better by storing each element in object wrappers and
using those wrappers as keys. This way, we would only store each key once, and use
wrappers’ references all the time, both as keys for our map(s) and as values.

 Is the overhead and increased complexity of the wrapper solution worth it? This
depends on the assumptions you can make on the type and size of the keys. In most
cases, it is probably not, so be sure to properly profile your application and analyze
your input before embarking on such optimizations.

 To go back to our implementation: once again, changes are minimal. In both con-
structor and add, we just need to update the very last line:

parentsMap[elem] = new Info(elem)

We use the constructor for Info and create a new instance associated with each
element.

 Things definitely get more interesting when we move to findPartition, imple-
mented in listing 5.9.

function findPartition(elem) 
  throw-if (elem == null or not parentsMap.has(elem))) 
  info ← this.parentsMap[elem]  
  if (info.root == elem) then                         
    return elem
  info.root ← this.findPartition(info.root) 
  return info.root

Listing 5.9 Tree-with-heuristics solution, findPartition

Takes an element and return another element, the 
one element at the root of the tree for the partition 
to which elem belongs

Checks that the 
element is valid

Retrieves 
the info 
node 
stored for 
current 
element

If the element’s root is the element itself, 
then we already got to the root of the tree, 
and we can return it.

Otherwise, we need to climb up recursively to the
root, but meanwhile we can update the root link

for the current element so that it points to the
actual root of the tree.
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As described at the beginning of the section, when using the path compression heuris-
tic, we don’t update the root of all elements on merge, but we do update it on find-
Partition. So, the main difference from the older version is that we save the result of
the recursive calls to findPartition at line #6, and we use it to update the current
element’s root. Everything else remains exactly the same.

 It goes without saying that the largest portion of changes will be implemented in
the merge method, as shown in listing 5.10.

function merge(elem1, elem2) 
  r1 ← this.findPartition(elem1)  
  r2 ← this.findPartition(elem2)  
  if r1 == r2 then           
    return false
  info1 ← this.parentsMap[r1]
  info2 ← this.parentsMap[r2]
  if info1.rank >= info2.rank then          
    info2.root ← info1.root;
    info1.rank += info2.rank;
  else
    info1.root ← info2.root;     
    info2.rank += info1.rank;  
 return true

We still retrieve the elements at the roots of the trees as before, and still check that
they are not the same.

 But after that, we actually have to retrieve the info for both roots, and we check
which tree is larger: the smaller one will end up as the child, and we will reassign its
root. Moreover, we need to update the rank for the larger tree’s root; its subtree will
now also contain all the elements in its new child.

 If you’d like to look at some code for the heuristics implementation, we have an
example on GitHub.

 This is all we need to change in order to achieve a tremendous boost in perfor-
mance. The simplicity of the code shows you how clever this solution is, and in the
next sections we will also see why it is so important to get it right.

5.7 Applications
Applications for disjoint set are ubiquitous, and the reason they have been studied at
length is exactly due to the number of cases where they prove useful.

Listing 5.10 Tree-with-heuristics solution, merge

Takes two elements, merges their partitions, and 
returns true iff the two elements were in two 
different partitions that now are merged, false 
if they were already in the same partition

Retrieves the roots of the trees to which elem1 and 
elem2 belong to. If its argument is invalid or not 
found, these calls will throw.

Compares r1 and r2, and if they are the same there 
is nothing left to do. The elements are already in the 
same partition, and so no merge happens: false is 
returned.

At this point, we know we need to merge the 
two partitions, so it looks for the info nodes 
for both roots.

Checks if the first tree has a larger rank 
(more elements) or vice versa. The 
smallest tree will become a subtree of 
the root of the largest tree.

Sets the root of 
the smallest tree 
to the other root

Updates the rank of the root (of both trees, now). It’s 
not worth updating the rank of the other (former) 
root, because it will never be checked again.



169Applications

5.7.1 Graphs: Connected components

For undirected graphs, there is a simple algorithm that uses disjoint sets to keep track of
their connected components, that is, areas of the graph that are interconnected.

 While connected components are usually computed using Depth First Search
(DFS), we can use a disjoint set to keep track of the components while we scan all the
graph’s edges. An example is shown in listing 5.11.

 disjointSet = new DisjointSet(graph.vertices)
 for edge in graph.edges do               
   disjointSet.merge(edge.source, edge.destination) 

At the end, each partition of vertices in disjointSet will be a connected component.
 It’s worth noting that this algorithm can not be used for directed graphs and

strongly connected components.

5.7.2 Graphs:15 Kruskal’s algorithm for minimum spanning tree

A spanning tree for a connected undirected graph G is a tree whose nodes are the vertex
of the graphs, and whose edges are a subset of G’s edges. If G is connected, then it cer-
tainly has at least one spanning tree—possibly many, if it also has cycles (see figure 5.13).

 Among all possible spanning trees, a minimum spanning tree (MST) is the one for
which the sum of edges’ weights is minimal.

Listing 5.11 Computing connected components of a graph with a disjoint set

15For an introduction to graphs, see appendix G.

Creates a new disjoint set where each vertex of 
the graph is initially in a different partition

Loops over each edge in the graph

Merges the partitions 
to which source and 
destination vertices 
belong to

Figure 5.13 An example of a graph with 
several spanning trees. (A) An 
undirected, connected graph, containing 
cycles. (B) Since the graph has cycles, 
there are several spanning trees covering 
all nodes. A few examples are shown, 
each of them selecting only the smallest 
set of edges (the thick ones) that “span” 
all vertices. (C) For each set of edges, 
several trees can be obtained, depending 
on the root of the tree and the order of the 
children. (Only a few examples are 
shown. Notice, though, how they are not 
limited to binary trees.)
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 Kruskal’s algorithm is beyond the scope of this book. Here it suffices to say that it
constructs the MST for a graph by

1 Starting with each vertex in a difference set.
2 Keeping a disjoint set of the graph vertices.
3 Going through the graph’s edges in order of increasing weight.
4 For each edge, if its extremes are not in the same partition, merge their

components.
5 If all vertices belong to the same component, stop.

The MST will be defined by the list of edges that triggers, at point (4), merge calls for
the disjoint set.

5.7.3 Clustering

Clustering is the most-used unsupervised learning16 algorithm. The problem here is
that we would like to get a partitioning of a set of points into a few, usually disjoint sub-
sets, as shown in figure 5.14.

 There are several types of clustering algorithms. Although a taxonomy of cluster-
ing is beyond the scope of this chapter (we will devote chapter 12 to this topic), here
we will mention one particular class of these algorithms. 

Agglomerative hierarchical clustering starts with each point in its own cluster (partition)
and continuously merges two points (and their clusters) until all clusters are merged
into one; figure 5.15 shows an example of how it works. The algorithm keeps a history
of this process, and it is possible to get a snapshot of the clusters created at any of the
steps. The exact point where this snapshot is taken is controlled by a few parameters
and determines the result of the algorithm.

 The description of the algorithm should ring a bell: at each step we need to find
two points belonging to two different clusters. You can easily imagine what the best

16Unsupervised machine learning deals with making sense of “unlabeled” data (that is, data that has not been
classified or categorized), with the goal of finding a structure in the raw data.

Figure 5.14 An example of clustering. On the left, we have a raw dataset of 2-D points. We have no 
extra information about the points or the relationships between them. After clustering the dataset, on 
the right we can see that we have inferred some relationships between the points, and in particular we 
grouped them in three subsets whose points seem to show higher correlation.
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data structure is to compute and find that information. In chapter 13, we’ll see a prac-
tical application of disjoint set as part of a distributed clustering algorithm.17

5.7.4 Unification

Unification is the process of solving equations between symbolic expressions. One of
the ways of solving such an equation is finding terms on both sides that are equivalent,
and removing them from the equation.

 Of course, solution strategies depend on which expressions (terms) can appear in
the equation and how you can compare them or when they are considered to be
equal. For instance, they might be evaluated and considered equal if they have the
same value, or they might be symbolic and considered equal if they are equivalent,
possibly net of some variable substitution.

 As you can imagine, the disjoint set data structure is perfect for high-performance
algorithms solving this problem.

Summary
 The beauty of a disjoint set is that we can build increasingly complex and effi-

cient solutions to solve it, just adding small incremental changes.
 We can sometimes settle for a sub-optimal implementation if that’s efficient

enough and performance is not critical.

17A dendrogram (from Greek dendro “tree” and gramma “drawing”) is a tree diagram specifically used to illus-
trate the arrangement of the clusters produced by hierarchical clustering.

Figure 5.15 An example of hierarchical clustering. On the left, the dataset (a collection of 2-D points) 
is shown with progressive grouping shown as ellipses. From the figure, it can be inferred that, for 
instance, A and B are grouped together before C is added to the two of them to form a larger cluster. 
Hence, the relationship between A and B is inferred to be stronger than the one between A and C or B 
and C. On the right, the same process is shown using a dendrogram.17 Note that both figures could be 
the result either of agglomerative or divisive clustering: the former produces the dendrogram starting 
from the bottom, the latter starting from the top.
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 Probably we could settle for the naïve linear time solution, but it is such a fun-
damental part of many graph algorithms that we just need to optimize it as
much as possible.

 We do know a theoretical lower bound for the running time of operations of a
disjoint set, but we don’t know if there exists an algorithm that runs with that
bound, or even any other algorithm faster than the ones we know.

 The inverse Ackermann function, whose value won’t be greater than 5 for any inte-
ger that could fit on a computer, models the order of magnitude of the running
time for the merge operation on disjoint sets. Merging two subsets will, on aver-
age, only require at most five swaps.
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Trie, radix trie:
 Efficient string search

How many times have you sent a text or an email or tweeted in a hurry, only to real-
ize a second later that you made a typo? For me, it was too many times! Lately, how-
ever, we’ve had a precious ally on our side in email clients and browsers in general:
spell-checkers! If you’d like to know more about how they work and how to imple-
ment them efficiently, this chapter is the right place to start.12

This chapter covers
 Understanding why working with strings is different

 Introducing trie1 for efficient string search and 
indexing

 Introducing radix tree2 as a memory-efficient 
evolution of trie

 Using prefix trees to solve string-related problems

 Leveraging tries to implement an efficient spell-
checker

1 Also known as prefix tree.
2 Also known as radix trie or compact prefix tree.
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 In chapter 3 we described balanced trees, which offer the best compromise when it
comes to containers and are ideal for efficiently storing dynamically changing data on
which we need to perform frequent searches. In appendix C we discussed and com-
pared the options we have for containers providing fast lookup, fast insertion, or fast
removal, and trees offer the best tradeoff between all the operations. 

 Balanced trees, in particular, guarantee logarithmic running time in the worst-case
for all the main operations. In the general case, when we don’t know anything about
the data we need to store and (later) search, this is really the best we can hope.

 But what happens when we know that we will only store certain types of data in a
container? Turns out there are several cases where if we have more information on the
kind of data we need to handle, we can leverage better algorithms than the general-
purpose ones.

 Take, for instance, sorting: if we know that keys are integers in a limited range, we
can use RadixSort, which means achieving better-than-linearithmic performance, defy-
ing the lower bound for sorting by comparison.3

 Likewise, if we know that we need to sort strings, there are several specialized algo-
rithms, such as the 3-way string quicksort, that are optimized for this kind of data and
perform better than plain, general-purpose quicksort (or any comparison-based sort-
ing algorithm).

 In this chapter, we will analyze a particular sub-class of containers, string contain-
ers, and investigate how we can optimize them both with respect to memory and run-
ning time by introducing new, specialized data structures: tries and radix tries. Then
we’ll use those containers to implement an efficient spell-checker.

6.1 Spell-check
But first, let’s introduce the problem that we will solve in this chapter: spell-checking.

 Not that the problem really needs any introduction, right? We would like to have a
piece of software that can take words as inputs and return true or false, respectively,
whether the input is a valid English word4 or not.

 That’s a bit of a vague description that leaves the door open to many possible (and
possibly inefficient) solutions; we need more context to clarify our requirements. Let’s
assume that we are developing a new client for a social network on a client with low
resources (for instance, on a mobile OS) and we need to add a live spell-checker that
produces the classic red wavy underline below a misspelled word. Every time we type a
word (and every time we type a word separator, like a space, commas, and so on) we
need to check whether there is a typo.

3 It has been proven that it’s not possible to sort a list of n elements with less than O(n*log(n)) operations if
the method used is exclusively based on comparisons. RadixSort can get as low as O(n * log(k)) for sorting
n integers that can take any of k possible values. For large values of k, when k~=n, the algorithm behaves no
better than the generic linearithmic bound.

4 Obviously, it’s possible to write spell checkers for any language; choosing English is just a matter of
convenience.



175Spell-check

 Due to scarce resources, we need our spell-checker to be fast and lightweight; we
need to reduce its impact as much as possible, both in terms of CPU and memory
usage.

 But we would also like our spell-checker to be able to learn—for instance, so users
can add their names or the name of their town/club/favorite artists and so on.

6.1.1 A prncess, a Damon, and an elf walkz into a bar

Have you noticed the typos in this section’s title?5 Typos are always around the corner
when you need to send a message in a hurry (regardless of the medium used) and
unfortunately, once these messages are sent out, there is no going back—you can’t
edit them anymore.6

 That’s why a spell-checker that clearly highlights typos comes in handy, and today
it’s often included natively in browsers.

 In the end, the design of our spell-checker is pretty simple: it is a wrapper around a
dictionary,7 and the client’s method that checks spelling just calls the container
contains method, and if the result is a miss, adds the visual feedback to show the
error.

 In turn, the design of our container’s API is also simple. It’s a generic container
supporting search, like the API of binary search trees or Randomized Treaps
(described in section 3.4).

 We can already think about how to implement this container with the tools that we
learned. For instance, if we knew that we had to support fast lookups on a static set,
then we would have chosen a hash table or, if we could trade saving some memory for
a certain loss of precision, we could even resort to a Bloom filter. Since the require-
ment is maintaining an open, dynamic set, however, the one data structure providing
the best compromise for all the operations would be a tree.

 A simple binary tree could, of course, be enough to support all the operations pro-
vided by dictionaries. Figure 6.1 shows a possible representation of what these trees
could look like, where we chose to show only a small part of the subtree containing a
few similar words (we’ll see why this is relevant in a few lines).

 How fast can operations on such a tree be? Assuming the tree is balanced, its
height will be logarithmic in the number of words it contains, so for each call to
contains, insert, remove, and so on, we’ll need to traverse on average (and at most)
O(log(n)) nodes.

 So far, however, when we’ve analyzed trees, we’ve assumed their keys were either
integers or could be checked in constant time and require a constant space.

5 Ring a bell? It should . . .  
6 With tweets, of course, you can now delete them—if you are fast enough—even before someone notices.
7 Here the term refers to the abstract data structure called a dictionary that, incidentally but not surprisingly, is

used to model the digital equivalent of actual dictionaries. See appendix C and chapter 4 for more details.
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For generic strings, this assumption is not realistic anymore. Each node will need to
store a string of unbounded length, so the total memory needed to store the tree will
be the sum, for each node, of all the keys’ lengths:

If we assume that the average length of the strings held by the tree is L, the expected
value for S(n), the space needed to store the tree, is proportional to n*L. If the maxi-
mum length for strings is denoted with m, then S(n) = O(n*m) is a strict upper bound
for the worst case.

 Likewise, if we look at the running time of the search method, we see that we can’t
ignore the strings’ lengths anymore. For instance, a call to search(“antic”) on the
tree in figure 6.1 would start from the root and compare “antic” to “anthem”, which
would require at least four characters to be compared before verifying the two words
are not the same. Then we would move to the right branch and again compare the
two strings, “antic” and “antique” (five more character-to-character comparisons),
and since they don’t match, traverse the left subtree now, and so on.

 Therefore, a call to search would require, worst case, T(n) = O(log(n)*m) com-
parisons.

6.1.2 Compression is the key

This quick analysis shows that using a tree is not ideal, either space-wise or performance-
wise. If we look more closely at the tree in figure 6.1, we can see that there seems to be
a lot of overhead: all words start with the character “a”, but this is stored once for every
node of the subtree in the illustration, and for each step in the traversal of the tree, it
will be compared with the text that is being searched (or inserted).

 Looking at the path to search for the word “antic”, all the four nodes shown and tra-
versed share the same prefix, “ant”. Wouldn’t it be nice if we could somehow compress
these nodes and only store the common prefix once with the deltas for each node?
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Figure 6.1 A BST storing (part of) 
a dictionary, and the steps to 
search the word “antic”. In this 
example, it’s a miss because the 
word was not stored in the tree 
shown.
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6.1.3 Description and API

The data structure that we are going to introduce in the next section was created to
answer these needs, and also to offer an efficient way to solve another operation: find
all the keys in the container that start with the same prefix.

 From our example in the previous sub-section, you can already see that if we were
able to somehow store the common prefixes of strings only once, we should be able to
quickly access all strings starting with those prefixes.

 Table 6.1 shows the public API for an abstract data structure (ADT) that supports the
usual container basic operations, plus two new ones: retrieving all the strings starting
with a certain prefix and finding the longest prefix of a string stored in the container.

 From what we saw in the previous example, PrefixTree could be a good name for
this data structure, although StringContainer is more generic (as an abstract data
structure, we don’t care if it’s implemented using a tree or some other concrete coun-
terpart.) It conveys the gist of this container: being specific for strings. The fact that
prefix search is supported is almost a natural consequence of designing a container
for strings.

Now that we have fixed an API and described the ADT that we will use to solve our
spell-check problem, we are ready to delve into more details and see a few concrete
data structures that could implement this ADT.

6.2 Trie
The first implementation of StringContainer that we will illustrate is the trie ; inciden-
tally, all the other data structures that we will show in the next sections are based on
tries, so we couldn’t choose to start anywhere else.

 The first thing you should know about trie is that it’s actually pronounced “try.” Its
author,8 René de la Briandais, chose this term because it was similar to tree, but also

Table 6.1 API and contract for StringContainer

Abstract Data Structure: StringContainer

API class StringContainer {
  insert(key)
  remove(key)
  contains(key)
  longestPrefix(key)
  keysStartingWith(prefix)
}

Contract with client Besides all the operations of a regular, plain container, this structure allows us 
to search for the longest prefix of a string that is stored in it and return all the 
stored strings that start with a certain prefix.

8 De La Briandais, Rene. “File searching using variable length keys.” Papers presented at the March 3-5, 1959,
western joint computer conference. ACM, 1959.
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because it’s part of the word retrieval, which is the main purpose of this container; its
peculiar pronunciation is partly meant as an indented pun, and partly meant to avoid
confusion with “tree.”

 Tries were originally developed as a compact, efficient way to search strings in files;
the idea behind this data structure is, as we saw in the previous section, providing a
way to reduce redundancy by storing common prefixes of strings just once.

 This couldn’t be achieved using a plain binary search tree, or with just a binary
tree, so a paradigm shift was needed: de la Briandais then used n-ary trees, where
edges are marked with all the characters in an alphabet, and nodes just connect paths. 

 Nodes also have a small but crucial function: they store a tiny bit of information
stating if the path from root to current node corresponds to a key stored in the trie.

 Let’s take a look at figure 6.2 before moving to a more formal description. It shows
the structure of a typical trie, containing the words “a”, “an”, “at”, and “I”.

If you feel that figure 6.2 is a bit confusing, you are right. In their classic implementa-
tion, a trie’s nodes have one edge for each possible character in the alphabet used:
some of these edges point to other nodes, but most of them (especially in the lower
levels of the tree) are null references.9

 Nevertheless, this specific representation of tries looks terrible on paper: too many
links and too many nodes that result in chaos.

 That’s why we will use an alternative representation, shown in figure 6.3. We’ll only
show links to actual trie nodes, omitting links to null.

9 As we’ll shortly see, this happens for all characters c for which there is no suffix of the current node whose next
character is c.

I
b

y
a z

x

n y
a zt

Root
(empty string)

Link to
next character 

Intermediate node

Key node

Null link

Figure 6.2 The structure of a trie. Words are encoded in the tree using edges, each edge corresponds 
to a single character, and each node n is associated with a single word, the one obtained by joining the 
characters associated with the edges in the path from the root to n. The root node corresponds to the 
empty string (because no edge is traversed), the leftmost leaf corresponds to “aa”, and so on. Not all 
the paths make meaningful words, and not all the nodes store the word associated with them. Only 
filled, black nodes (called “key nodes”) mark words stored in the trie, while hollow nodes, aka 
“intermediate nodes,” correspond to prefixes of words stored in the trie. Notice that all leaves should 
be key nodes.
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Formally, given an alphabet  with ||=k symbols, a trie is a k-ary10 tree where each
node has (at most) k children, each one marked with a different character in ; links
to children can point to another node, or to null.

 Unlike k-ary search trees, though, no node in the tree actually stores the key associ-
ated with it. Instead, the characters held in the trie are actually stored in the edges
between a node and its children.

 Listing 6.1 illustrates a possible implementation of a Trie class (in object-oriented
pseudo-code); you can also take a look at a full implementation on the book’s repo on
GitHub.11

#type Char[]
Alphabet

class Node

10Although we’d usually talk about n-ary trees, we also usually reserve n to denote the number of entries in a
container (or, in general, the input size for a problem). To avoid confusion, then, we will use k for the size of
the alphabet and, consequently, the term k-ary.

Listing 6.1 Class Trie

11See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#trie.
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  #type boolean
  keyNode
  
  #type HashMap<Char, Node>
  children

  function Node(storesKey)
    for char in Alphabet do
      this.children[char] ← null
    this.keyNode ← storesKey

class Trie
  #type Node
  root

  function Trie()
    root ← new Node(false)

In the simplest version, trie’s nodes can only hold a tiny piece of information, just
true or false. When marked with true, a node N is called a key node because it means
that the sequence of characters in the edges of the path from the root to N corre-
sponds to a word that is actually stored in the trie. Nodes holding false are called
intermediate nodes because they correspond to intermediate characters of one or more
words stored in the trie.

 As you can see, tries go beyond the usual duality between leaves and inner nodes,
introducing another (orthogonal) distinction. It turns out, though, that all leaves in a
well-formed, minimal trie are key nodes: a leaf would make no sense as an intermedi-
ate node, as we will see.

 The fact that words are stored in paths means that all the descendants of a node
share a common prefix: the path from the root to their common parent. For instance,
if we look at figure 6.3, we can see that all nodes share the prefix “an”, and all but one
node share “ant”. These two words, incidentally, are also stored in the trie, because
the nodes at the end of their path are key nodes.

 The root is, to all extents, an intermediate node associated with the empty string; it
would be a key node only if the empty string belonged to the corpus contained in the trie.

 While for spell checkers storing a Boolean in each node could be enough (after
all, we only need to know whether a word is in a dictionary), tries are often used to
store or index words in texts. If that’s the case, we often need to know either how
many occurrences of a word appear in the text or the positions where they appear. In
the former situation we can store a counter in each node and only key nodes will have
a positive value. In the latter we will instead use a list of positions, storing the index in
the text where each occurrence starts.

6.2.1 Why is it better again?

Let’s address space first: why is the trie in figure 6.3 better than the binary search tree
in figure 6.1?
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 Let’s do some quick math! But first, we need to make some assumptions:

 We only consider ASCII strings and characters, so we have to account for 1 byte
for each char (Unicode wouldn’t change much; rather, it would make the sav-
ings obtained by using the cheapest option even greater) plus, in BSTs, 1 byte
for each string’s terminator.

 We only explicitly store links to actual nodes in tries and account for a fixed
number of bytes for null-pointers in BSTs (the same space taken by non-null
references).

 As we mentioned, each node in a trie has || links, where || is the alphabet
size. This means that in tries, and especially in nodes in the lower levels, most
links are null, and indeed in listing 6.1 it’s also possible to see how all those
links are initialized in Node’s constructor.

 For each node in a trie, we account for a fixed amount of space to store the chil-
dren list (we can imagine that we use a hash table to store the link to children),
plus a variable amount depending on the number of actual children.

 Each link in a tree will require 8 bytes (64 bit references), and each link in a trie
will require 9 bytes (8 for the reference plus 1 for the character to which it’s
associated).

 Each node in the BST will require as many bytes as the number of characters in
its key, plus 4 bytes12 for the Node object itself.

 Each node in the trie requires 1 bit (to hold the Boolean) plus the same con-
stant amount as for the BST; let’s round up to 5 bytes.

Given these premises, we note that the BST in figure 6.1 has 9 nodes (whose keys are
strings) and consequently 2*9=18 links, while the trie in figure 6.3 has 19 nodes and
18 links. For the BST, the root node contains the key “anthem” and requires 27 bytes
(4 for the Node itself, 7 for the string, 2*8 for the links). Likewise, its left child, with
key “an”, requires 23 bytes. You see how it’s computed; it’s 21 bytes per node, plus the
length of the string. For the whole tree, considering it has 9 nodes and requires a total
of 47 bytes for the keys, we need 227 bytes.

 Let’s now check the trie: each node requires 5 bytes, and each link 9 bytes—a total
of 257 bytes.

 So, in practice, this trie might require a little more memory than the corresponding
BST. These quantities depend on many factors; first of all, the overhead for objects.
Since this trie has more nodes, the more this overhead is, the larger the delta will be.

 Obviously, however, the shape of the tree and the actual number of nodes also play
a big role. In the example in figure 6.3, only a short prefix is shared among the keys. It
turns out that tries are more efficient when holding keys with a large shared prefix. The
example in figure 6.4 shows how the balance can be in favor of tries in these cases. As

12This quantity is completely arbitrary; real objects in programming languages have an overhead, which can be
way larger than 4 bytes (for instance, usually between 8 and 16 bytes in Java or C++).
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you can see, in figure 6.4 most trie nodes are black (key nodes), and when the ratio of
key nodes versus intermediate nodes is higher, intuitively it means that the efficiency of
the trie is also higher, because when a path has more than one key node, we are storing
at least two words in a single path (one of which is a prefix of the other). In a BST they
would require two BST nodes storing both of the strings separately.

Another sign of more-efficient storage is when there are deep nodes branching out.
In that case, the trie is “compressing” the space needed for two strings with a common
prefix by storing the common prefix only once.

 In the end, with just nine words stored in this second example, using the same
assumptions as shown previously, the difference becomes 220 bytes versus 134 bytes,
with tries saving almost 40% of the space. If we
consider an 8-byte overhead for nodes, the dif-
ference would be 256 versus 178 bytes, and the
savings would be around 30%, which is still
impressive. For large trees containing dictio-
naries or indexing large texts, we would be
talking about hundreds of megabytes.

 Figure 6.4 shows the best-case scenario for
tries, but obviously things are not always look-
ing this good. Figure 6.5 shows a different edge
case, close to the worst-case scenario, where the
longest prefix in a (degenerate) trie is the
empty string. In cases like this, information

9 nodes -> 45 bytes
31 characters -> 31 bytes
18 links -> 144 bytes

Total: 220 bytes

11 nodes -> 44 bytes
10 links -> 90 bytes

Total: 134 bytes
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Figure 6.4 Comparing BST and trie approaches on a different example. When the keys in the 
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Figure 6.5 A degenerate trie, where no 
string shares a prefix with another string
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ends up being stored very inefficiently; luckily, however, these edge cases are incredibly
unlikely in real-world applications.

 So much for space consumption. At worst, tries can be considered comparable to
binary search trees. What about their running time? We will answer this question while
looking at the individual methods in order to develop an understanding of how these
results are derived.

6.2.2 Search

Let’s start with search. Assuming we have built a proper trie, how do we check whether
it contains a certain key?

 Turns out, it’s not too difficult, compared to a BST. The main difference is that we
need to walk the tree one character (of the searched key) at a time, following the link
that is marked precisely with that character.

 Both strings and tries are recursive structures, whose unit of iteration is the single
character; each string, in fact, can be described as either

 The empty string, “”
 The concatenation of a character c and a string s’: s=c+s’, where s’ is a string

one character shorter than s and can possibly be the empty string

NOTE In most programming languages single quote characters wouldn’t be
allowed in variable names, so we use tail in listing 6.2 as a substitute name
for s’, which denotes the tail of current string s in the figures.

For instance, the string “home” is made of the character ‘h’ concatenated to the
string “ome”, which in turn is ‘o’ + “me”, and so on, until we get to “e”, which can be
written as the character ‘e’ concatenated to the empty string “”. 

 A trie, on the other end, stores strings as paths from the root to key nodes. We can
describe a trie T as a root node connected to (at most) || shorter tries. If a sub-trie
T’ is connected to the root by an edge marked with character c (c ϵ ), then for all
strings s in T’, c + s belongs to T.

 For instance, in figure 6.3, the root has only one outgoing edge, marked with ‘a’;
considering T’ as the only sub-trie of the root, T’ contains the word “n”, and this
means that T contains ‘a’ + “n” = “an”.

 Since both strings and tries are recursive, it’s natural to define the search method
recursively. We can consider just the case where we search the first character of a string
s=c+s’ starting from the root R of the trie T. If c, the first character of s, matches an out-
going of R, then we can search s’ in the (sub)trie T’. We assume the root of the sub-trie
is not null (as we’ll see shortly, it’s a reasonable assumption).

 If at any point s is the empty string, then we have traversed the whole path in the
trie corresponding to s. We then need to check the current node to verify whether
our string s is stored in the tree.

 If, instead, at some point the current node doesn’t have an outgoing edge match-
ing current character c, then we are sure string s is not stored in the trie.
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We’ll illustrate these examples in figures 6.6 and 6.7, but first, let’s take a look at the
implementation of the search method that we will then use as a reference while
describing these examples.

 In listing 6.2 we show a recursive implementation of the search method. At each
call, we need to check if the first character in the substring searched matches an out-
going edge of the current node, and then recursively search the tail of the current
string in the subtree referenced by that edge. Figures 6.6 and 6.7 shows the parallel
between moving “right” in the string searched and traversing down the trie.

 The same method can obviously be implemented using explicit loops. This imple-
mentation of the search method is likely suitable for a compiler’s tail-call optimiza-
tion,13 but as discussed in appendix E and chapter 3, if you are not comfortable with
recursion or are not sure that your compiler will apply tail-call optimization, my advice
is to write the iterative version of these methods to avoid stack overflow.

function search(node, s)
  if s == “” then              
    return node.keyNode         

13As explained in appendix E, whenever in a method defined using recursion the recursive call is limited to the
very last operation, compilers can optimize the target machine code by rewriting code using explicit loops
instead of function calls. The caveat is that not all compilers provide this optimization.

Listing 6.2 Method search
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Figure 6.6 An unsuccessful search in a trie. At each step, we break the key to search, the string s, 
into c+s’: the concatenation of its first character and the rest of the string. Then we compare c to the 
current node’s outgoing edges, and if we find a match, we go ahead traversing the tree. In this example, 
the search fails because the last character in the string doesn’t match any outgoing edge.

Method search, a standalone function, takes a trie node and the 
string key s to be searched. It returns true if s is stored in the trie, 
and false otherwise. We assume that node is never null, which is 
a reasonable assumption if this method is implemented as a private 
method internally called by the trie’s API search method.

Checks if the string searched is empty. If it 
is, since this method is implemented using 
recursion, we know it has traversed the 
whole path in the trie.

We are at the target node for the 
target key; the trie stores it only 
if the current node is a key node.
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  c, tail ← s.splitAt(0)   
  if node.children[c] == null then 
    return false
  else
    return search(node.children[c], tail)  

Listing 6.3 shows the trie’s API counterpart, which in turn will call the method in list-
ing 6.2. We will omit these wrapper methods for the other operations when they are as
trivial as for search.

function Trie::search(s) 
  if this.root == null then      
    return false
  else
    return search(this.root, s) 

As already mentioned, there are two possible cases of unsuccessful search in tries: in
the first one, shown in figure 6.6, we traverse the trie until we get to a node that
doesn’t have an outgoing edge for the next character. In the example, a call to
trie.search(“any”), this happens when we get to the key’s last character, ‘y’ (as
shown in the right diagram in figure 6.6). In listing 6.2, this corresponds to the condi-
tion in the if at line #5 returning true.

 The other possible case for an unsuccessful search is that we always find a suitable
outgoing edge until we recursively call search on the empty string. When this hap-
pens, it means we’ve reached the trie’s node whose path from the root spells out the
searched key. For instance, in figure 6.7 we traverse the tree link by link and check the
string key character by character, until the condition at line #2 of listing 6.2 returns
true and we go to line #3.

 The result of line #3 is the only difference between a successful and an unsuccessful
search. Looking at the example in figure 6.7, a successful search for the word “ant”
would follow the exact same steps, with the only difference being that the final node
(denoted with T in the rightmost diagram) would have to be a key node.

 Notice that in listing 6.3, we can avoid checking for empty tries or handling the
root as a special case, because in the trie constructor in listing 6.1, we create the root
as an empty node. This (together with careful implementation of all the methods) will
also support our assumption that the node argument in search (and all the other
methods) is never null.

Listing 6.3 Method Trie::search

Since s is not the empty string, it can be broken 
into a head character, c (the first character of s) 
and a tail, the rest of the string.

If there is no outgoing edge in node for the 
character c, it means that we cannot traverse 
the trie any further, so that s is not stored in 
the subtree rooted at node.

Otherwise, we recursively 
search tail into the subtree 
referenced by children[c].

Method search (for class Trie) takes a string 
key s to be searched; it returns true if s is 
stored in the trie, and false otherwise.

Checks if the trie’s root is null. If 
so, no string is stored in the trie, 
and we can return false.

Otherwise, we forward 
the call to the root’s 
search method.
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The search method is the most important method for tries, because all the other
methods will be based on it. Search is so crucial to those implementations that we pro-
vide (in listing 6.4) a variant, searchNode, that returns the node found, rather than
just true or false. We’ll see in the next sections how this can be used to implement
remove.

function searchNode(node, s)
  if s == “” then 
      return node
  c, tail ← s.splitAt(0)  
  if node.children[c] == null then 
    return null
  else
    return search(node.children[c], tail)

Performance-wise, how fast is search? The number of recursive calls we make is lim-
ited by the smaller of two values: the maximum height of the trie and the length of the
search string. The latter is usually shorter than the former, but either way, for a string
of length m we can be sure that no more than O(m) calls are going to be made, regard-
less of the number of keys stored in the trie. 

 The key is, then, how long each step takes. It turns out there are three factors influ-
encing this cost:

 The cost of comparing two characters: this can be assumed to be O(1).
 The cost of finding the next node: for an alphabet  of size k, this can be,

depending on the implementation:

Listing 6.4 Method searchNode
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– Constant (amortized or worst-case14), O(1), using hash tables for edges
– Logarithmic worst-case O(log(k)), using a balanced tree
– Linear worst-case O(k), using plain arrays

Amortized constant time can reasonably be assumed in most cases.
 The cost of following a link and of splitting a string into head+tail. This point

is the one where we need to be really careful. The naïve approach of extracting
a substring for each node would be a performance disaster in most program-
ming languages. Strings are usually implemented as immutable objects, so
extracting a substring would require linear time and extra space, O(m), for each
call. Luckily, the solution is simple: we can pass to the recursive call a reference
to the beginning of the string and the index of the next character. This way,
even this operation can be considered O(1).

Since each call can be implemented in such a way as to require amortized constant
time, the whole search takes O(m) amortized running time.

6.2.3 Insert

Like search, insert can be better defined recursively. We can identify two different
scenarios for this method:

 The trie already has a path corresponding to the key to be inserted. If that’s the
case, we only have to change the last node in the path, making it a key node (or,
if we are indexing a text, adding a new entry to the list of indices for the word).

 The trie only has a path for a substring of the key. In this case, we will have to
add new nodes to the trie.

Figure 6.8 illustrates an example of the former situation, where a call to
insert(“anthem”) on the trie in figure 6.7 will result in adding a new branch to one
of the leaves of the tree.

 The method, as shown in listing 6.5, mainly consists of two steps. In the first step, we
traverse the tree, following links corresponding to the next character in the key to add,
until we either have consumed the whole input string, or we get to a node where there
is no outgoing edge matching the key’s next character.

 Using listing 6.5 as a reference, we can see that the first step of the algorithm is
implemented in lines #1 to #7, where we keep traversing the tree using the characters
in the key to insert to choose the next branch to traverse. This is exactly the same as
for search, with one difference: if we consume all characters in the input string
(meaning that we traversed the whole path from the root, and reached the target trie
node) we just have to set the node at the end of the path to a key node. This corre-
sponds to the first scenario described at the beginning of the section (not shown in
figure 6.8).

14Since the set of keys for the hash table, that is, the alphabet, is static and known in advance, it is possible to use
perfect hashing and obtain worst-case constant time lookup. See appendix C for more details.
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When we reach the status shown in the last diagram of the left half of figure 6.8, it
means that the condition at line #6 of listing 6.5 has become false. If that’s the case,
we need to jump to line #9 and add a brand new branch to the tree for the remaining
characters in the string: by doing so, we are adding a suffix to the string matching the
path from root to current node (in the example, we will add the suffix “hem” to the
string “ant” already in the trie).

function insert(node, s)  
  if s == “” then                  
    node.keyNode ← true
    return                      

Listing 6.5 Method insert
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Figure 6.8 An example of method insert. In a call to trie.insert(“anthem”), we first search the 
longest prefix of s in the trie (“ant”); then, as a second step, from the node corresponding to the longest 
common prefix we add a new path for the remainder of s (“hem”).

Method insert takes a trie node and the string key s to be 
inserted. It returns nothing but has side effects on the trie. 
Again, we assume that node is never null: this is a reasonable 
assumption if this method is implemented as a private method, 
internally called by the trie’s API insert method.

Checks if the string searched is empty. If it 
is, since this method is implemented using 
recursion, we know it has traversed the 
whole path in the trie.

We are at the target node for the 
target key. We set current node to 
a key node to ensure it will store s.
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  c, tail ← s.splitAt(0)      
  if node.children[c] != null then    
    return insert(node.children[c], tail) 
  else
    return addNewBranch(node, s)

This last operation is implemented in a different utility method that is shown in listing
6.6 using (surprise!) recursion.

 The definition of the method is quite straightforward. As shown in the right half of
figure 6.8, we just consume one character of the remaining string, create a new edge
marked with this character and a brand new, empty node N at the other side of the
edge, and then recursively add the tail of the string to the tree T rooted at N.15

function addNewBranch(node, s) 
  if s == “” then                
    node.keyNode ← true      
    return         
  c, tail ← s.splitAt(0)         
  node.children[c] ← new Node(false)
  return addNewBranch(node.children[c], tail)

Similarly to what we did for search, we can prove that insert also takes O(m) amor-
tized time, if the creation of a new node can be performed in constant time (which is
the case if we use hash tables for edges, but not if we use plain arrays).

6.2.4 Remove

When it comes to removing a key from a trie, we are in the position to choose. We can
go for an easier, cheaper algorithm that will cause the tree to grow beyond what’s nec-
essary, or we can implement the full method, more complicated and possibly slower in
practice, but with the lowest impact on memory.

Listing 6.6 Method addNewBranch

15Notice that, since we just created this node N, it will be the only node in its subtree.

Since s is not the empty string, it can be broken 
into a head character, c (the first character of s) 
and a tail, the rest of the string.

If there is an outgoing edge in node for 
the character c, we can keep recursively 
traversing the tree.

Following the recursive definition of this 
method, we need to insert tail in the 
subtree referenced by the edge marked 
with character c.

Otherwise, it means that we cannot traverse the trie any further: now 
we have to add the remaining characters in s as a new branch. (Be 
careful: not just the ones in tail! We also need to include character c.)

Method addNewBranch takes a trie node and the 
string key s for the new branch. As always, we 
assume that node is never null.

Checks if the string to add is empty. If it is, we’ve 
added all the edges needed to the new branch, and 
current node is the last node in the path.

Therefore, to complete the insertion, we 
just need to set current node to a key node.

Since s is not the empty string, it 
can be broken into a head character, 
c (key first character of s) and a 
tail, the rest of the string.

We add a new outgoing edge to current node, marked with character 
c. At the other end of the edge, we create a new empty node. We recursively add the characters in 

tail as a new branch of children[c].
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The difference between the two alternatives is that the first one simply unmarks a key
node, making it an intermediate node, and doesn’t worry about the tree structure.
This can be easily implemented reusing the searchNode method in listing 6.4, shown
in listing 6.7.

function Trie::remove(s) 
  node ← searchNode(this.root, s)       
  if node == null or node.keyNode == false then  
    return false        
  else 
    node.keyNode ← false                              
    return true

What’s the issue with this method? Take a look at figure 6.8. If we just transform a key
node N into an intermediate node, we can have two possible situations:

 N is an inner node, so it will have children storing keys that can only be reached
by passing through N itself.

 N is a leaf, which means that there is no key stored in the trie that can only be
reached through N.

The case where N is a leaf is illustrated in figure 6.9. After “unmarking” the key node at
the end of the path, we can see that the trie has a “dangling” branch that contains no
key. While it is perfectly fine to leave such a branch, because all the methods for manip-
ulating tries will still work, if data is dynamic and there is a large ratio of deletions on
the trie, the amount of memory wasted in dangling branches can become significant.

Listing 6.7 Method Trie::remove (no pruning)

Method remove (for class Trie) can be implemented naively 
for the Trie class using search. Here it takes the key to 
remove and returns a Boolean conveying the information 
about whether the key has been found and deleted.

Performs a search on the trie and 
gets the node for s (if present)

If node is null, or it’s not a key node, 
it means that the key was not stored 
in the trie, so we return false.

Otherwise, we mark the node as an 
intermediate node, and return true.
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Figure 6.9 An example of method delete. (1) Find the key to delete. (2) Mark the node at the end 
of the path as “intermediate node.” (3) Prune the tree to remove dangling branches.
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The solution, in these cases, is implementing a pruning method that will remove dan-
gling nodes while backtracking the path traversed during search. If we have the guar-
antee that the trie is “clean,” meaning there were no dangling branches before
removing the current node, there are just two conditions for which we would stop
pruning while backtracking:

 We reach a key node. Obviously, we can’t remove a node holding a key.
 We reach an inner intermediate node. After removing the last edge in the path

being backtracked, if the current node becomes a leaf, it can be removed; oth-
erwise, if this node has other children, then all its sub-branches will hold at least
a key (because of our premise) and therefore the current node corresponds to
an intermediate character in one or more strings stored in the trie, and it can’t
be deleted.

Listing 6.8 shows the implementation of this method performing deletion + pruning.
Using figure 6.9 as a reference, you can see that, after turning it to an intermediate
node (line #4), the node at the end of the path “anti” becomes a worthless leaf. We
backtrack to its parent and remove the edge marked with ‘i’ (lines #9 to #12 in list-
ing 6.8), and then the node at the end of the path for “ant”, which also is an interme-
diate node, becomes a leaf too, and can thus be removed.

 When we backtrack once more, we can see that its parent is both a key node, and
has another child, so we can’t prune the tree anymore.

function remove(node, s)
  if s == “” then                 
    deleted ← node.keyNode
    node.keyNode ← false                    
    return (deleted, node.children.size == 0) 
  c, tail ← s.splitAt(0)                      
  if node.children[c] != null then
    (deleted, shouldPrune) ← remove(node.children[c], tail)
    if deleted and shouldPrune then                        
      node.children[c] ← null      
      if node.keyNode == true or node.children.size > 0 then 

Listing 6.8 Method remove (with pruning)

Method remove (stand-alone version) takes a node and the string 
to delete from the sub-tree rooted at node. It returns a couple of 
Booleans. The first one tells the caller if the key has been 
successfully deleted; the second one is true if the last link 
followed becomes a dangling empty branch and should be pruned.

Checks if the string searched is empty. If it is,
we traversed the whole path till the final node

for the string to delete. We make sure that current node is 
marked as an intermediate node.

Search is over, so return to the caller, 
reporting if the operation was successful 
(we had saved the value deleted a couple 
of lines prior) and if this node is to be 
pruned (in case it’s a leaf).

Since s is not the empty string, it can be 
broken into a head character, c (key first 
character of s) and a tail, the rest of the 
string. (Remember that, performance-
wise, you should be careful about how 
you implement this operation.)

If there is
 an outgoing

edge in
node for the
character c,
we can keep

recursively
traversing

the tree.
Recursively

call remove
on tail
and save

the result.

If the key was 
removed, and 
the next node in 
the path now can 
be pruned.

First, remove the edge for 
character c . . . 

Then, if this node is either a
key node or an inner node

(that is, if it does have at least
one other child left) . . .
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        shouldPrune ← false  
    return (deleted, shouldPrune)
  else
    return (false, false)              

This version of removal obviously needs a different implementation of the trie
method than the naïve one shown in listing 6.7. In this case, though, the API method
is even simpler than the one shown in listing 6.7; basically, it just becomes a wrapper.

 Performance-wise, the same considerations made for search and insert apply for
remove. If we implement the method with pruning, the number of operations on the
tree is at worst 2*m, twice as much as for the naïve version without pruning, for which
at most m edges are traversed. Execution time is also probably going to be more than
two-fold, because, as you can see from the code, the delta in code complexity is relevant.

 The tradeoff for faster running time, however, is that the tree can grow signifi-
cantly if we don’t prune dangling branches; the best choice depends on your require-
ments and context. If you have a dynamic set and expect many calls to delete, you’d
better use pruning. If, instead, the ratio of insertion/removal is low, or you expect to
have to add back deleted strings frequently or shortly after, then you are better off
with the faster (though messier) removal shown in listing 6.7.

6.2.5 Longest prefix

With remove, we completed our overview of the classic operations on containers. As
we mentioned, though, tries can also provide two new kind of operations, which are
the most exciting parts of this data structure.

 In this section we’ll focus on the method that returns the longest prefix of the
searched string; given an input string s, we traverse the trie following the path corre-
sponding to characters in s (as long as we can), and return the longest key we found.

 Sometimes, even if a key wasn’t stored in our trie, we are just interested in getting
its longest prefix. We’ll see an example in the applications section.

 The search for the longest prefix is almost entirely the same as the search method.
The only difference is that in a recursive implementation, when we backtrack we need
to check whether we have already found a key, and if we haven’t and the current node
is a key node, we’ll have to return the current node’s key. This also means that we have
to return a string, not just true or false, and at each call keep track of the path tra-
versed, because we need to know what we can return. Since backtracking walks the path
backward, the first key node we find while backtracking will hold the longest prefix.

 Listing 6.9 clarifies these concepts by showing the implementation of this method.
If you recall how insert works, it can be rethought as a two-step operation: finding
the longest common prefix of the key to be inserted already in the trie, and then add-
ing a branch with the remaining characters. As an exercise, try to rewrite the pseudo-
code for insert by leveraging method longestPrefix.

. . . it means that this node can’t be pruned 
anymore, so we update the flag before returning.

If execution gets here, it means 
we haven’t found the key in the 
trie, so it can’t be deleted.



193Trie

function longestPrefix(node, s, prefix)
  if s == “” then                          
    if node.keyNode then                    
      return prefix
    else
      return null    
  c, tail ← s.splitAt(0)   
  if node.children[c] == null then                       
    if node.keyNode then return prefix else return null  
  else
    result ← longestPrefix (node.children[c], tail, prefix + c) 
    if result != null then    
      return result
    elsif node.keyNode then
      return prefix
    else
      return null 

As with the other methods we have described so far, this operation is also linear in the
length of the searched string: O(m), if |s|==m.

6.2.6 Keys matching a prefix

The last method we are going to describe returns all the keys matching a certain prefix.
 If you stop and think about the definition of a trie, the implementation for this

method will flow almost naturally. Even the alias for this data structure, prefix tree, sug-
gests a solution. We have seen, in fact, that tries compactly store strings sharing the
same prefix, because each string is translated in a path from the root to a key node,
and strings sharing the same prefix will result in sharing the same path in the trie.

 For instance, in figure 6.3, all the strings “and”, “ant”, “anthem” share a portion
of their path, corresponding to the common prefix “an”.

 Listing 6.10 shows the implementation of this method. Not surprisingly, it’s one
more method that leverages the searchNode method defined in listing 6.4.

 

Listing 6.9 Method longestPrefix

Method longestPrefix takes a trie node, the string key 
s to be searched, and a string with the path from root to 
node. It returns the longest prefix of s stored in the trie.

Checks if the string searched is empty. If it
is, since this method is implemented using

recursion, we know it has traversed the
whole path in the trie.

We are at the final node of the path for the 
searched string: if it’s a key node, then the 
string itself (by now accumulated into prefix) 
is its longest prefix in the trie.

Otherwise,
we need to

return
null to let

the caller
know we

haven’t
found any

key yet.

Since s is not the empty string, it 
can be broken into a head character, 
c (the first character of s) and a tail, 
the rest of the string.

If there is no outgoing 
edge in node for the 
character c, it means 
that we cannot traverse 
the trie any further.

We need to check if current node is a
 key node. If it is, it returns current prefix

(which is the longest match); otherwise,
it returns null to let the caller know we
haven’t found any result in this subtree.

If there is an outgoing edge, we recursively
search tail into the subtree referenced by
children[c], and store the longest result

found in this subtree into a temporary variable.

If we have found a prefix of the searched 
string stored into the subtree, then it is 
going to be longer than any other prefix 
we can find backtracking. We can just 
propagate the result back.

Otherwise, if we found nothing in 
the subtree for children[c], 
we can check if this node is a key 
node, meaning that the path to it 
is the longest prefix for the 
searched string.

If the recursive 
call hasn’t found 
anything and 
this is not a key 
node, we return 
null to let the 
caller know we 
don’t have our 
answer yet.
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function Trie::keysStartingWith(prefix)
  node ← searchNode(this.root, prefix)   
  if node == null then                
    return []        
  else 
    return allKeys(node, prefix)    

Clearly, there is a new method that we still need to define: allKeys, the method that
traverses a (sub)trie and collect all its keys; this method, shown in listing 6.11, is a tra-
versal of the whole subtree. We traverse all branches for each node, and we only stop
following a path when we reach a leaf. We also need to pass the (string corresponding
to the) path traversed so far, up to node, as the second argument, because we will need
that to know which key we should return.

function allKeys(node, prefix) 
  keys ← []                   
  if node.keyNode then       
    keys.insert(prefix)          
  for c in node.children.keys() do  
    keys ← keys + allKeys(node.children[c], prefix + c) 
  return keys 

When we run the asymptotic analysis for this method, we need to be especially careful
with line #6. Depending on the programming language and data type used, concate-
nating lists can be quite expensive, if it’s not done right.

 The most efficient way to accumulate the keys found would be to pass a third
parameter to the method, an accumulator, to which we would add each key only once
and in one place, line #4.

 Under this assumption, the running time for method allKeys is O(j), for a trie with
j nodes, and therefore the worst-case upper bound for the method keysStartingWith
is O(m+j), for a trie with j nodes and a prefix with m characters.

Listing 6.10 Method Trie:: keysStartingWith

Listing 6.11 Method allKeys

Method keysStartingWith for the Trie class takes 
a string prefix, and returns the list of all keys stored 
in the trie that starts with this prefix.

Performs a search on the trie and gets the 
node for prefix (if present). Remember that 
searchNode will return the node at the end 
of the path, even if it’s an intermediate node, 
or null if there isn’t any such path.

If node is null, it means that there is 
no key stored in the trie that starts with 
prefix, so we return an empty list.

Otherwise, we have to return all keys 
stored in the sub-tree rooted at node.

Method allKeys takes a trie node and the string 
prefix corresponding to the path from the trie’s root 
to node. It returns the list of strings sk=prefix+suffixk, 
where suffixk is the k-th string contained in this subtree.

Initializes 
the list of 
strings to 
return

If current node is a key node, then we need to add 
prefix to the list of strings contained in the 
subtree rooted at node—assuming prefix is the 
correct string for the path from root to current 
node.

Iterate over node’s outgoing edges; in particular, 
we need the characters marking each edge.

Add to the list of keys for the subtree rooted at node all the keys in the
subtree referenced by the edge. For this subtree, the path from the

root will be made by prefix + c. Be careful about the implementation
of this operation; it can be costly if not implemented properly.

Returns all 
keys gathered
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 The caveat is that it’s hard to know or even estimate how many nodes a trie will
have based on the number of keys it stores. If, however, we know it contains n keys
whose maximum length is M, then the worst-case (loose) bound for a non-empty string
is O(m + n*(M-m)), corresponding to a degenerate trie where all words share exactly
the prefix searched, and no further character.

 In the example shown in figure 6.10, we search for all keys matching prefix “ant”,
so n=6, m=3 and M=8 (the length of the longest key, “antidote”).

 If, instead, we search all keys starting whose prefixes include the empty string, this
will return all keys in the tree, and the running time will be O(n*M), which would also
be the worst-case upper bound for the method.

6.2.7 When should we use tries?

Now that we have described all the main methods on tries, it feels like taking a
moment to recap would be a good idea. Table 6.2 shows the performance of tries on
these methods, compared to the equivalent methods for balanced BSTs.

 Table 6.2 helps answer the question about performance that we put on hold in sec-
tion 6.2.1. We saw when a trie would require less memory than a BST; now we also
know that it would almost always be faster. 

 Remember that while in general we express the running time for BSTs in terms of
n, the number of entries stored, in this case we can’t assume that the cost to compare
two keys is O(1), but it’s rather O(m), depending on the length m of the shortest of the
two keys.
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Figure 6.10 An example of method keysWithPrefix. (1) Traverse the path corresponding to the 
common prefix. (2) Collect all keys found traversing the subtree at the end of the path for prefix.
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The third column in table 6.2 shows the results for a particular variant of BSTs where
we store a hash of the string, together with the key itself, in each node. This approach,
which requires an extra O(n) memory to store these fields, allows for a fast two-pass
comparison. Given a search string w, we compute h(w) before starting the search. Then
for each node we first check whether h(w) matches the node’s hash (which requires
constant time), and only when it does do we perform a proper strings comparison.

 Before moving on, let’s also recap the pros and cons of using tries, and when we
should prefer a trie over a BST.

 On the pros side, compared to using BSTs or hash tables

 The search time only depends on the length of the searched string.
 Search misses only involve examining a few characters (in particular, just the

longest common prefix between the search string and the corpus stored in the
tree).

 There are no collisions of unique keys in a trie.
 There is no need to provide a hash function or to change hash functions as

more keys are added to a trie.
 A trie can provide an alphabetical ordering of the entries by key.

As appalling as this list looks, as we have repeated many times, unfortunately there is
no perfect data structure. So even tries do have some downsides:

 Tries can be slower than hash tables at looking up data whenever a container is
too big to fit in memory. Hash tables would need fewer disk accesses, even down
to a single access, while a trie would require O(m) disk reads for a string of
length m. 

 Hash tables are usually allocated in a single big and contiguous chunk of mem-
ory, while trie nodes can span the whole heap. So, the former would better
exploit the principle of locality.

 A trie’s ideal use case is storing text strings. We could, in theory, stringify any
value, from numbers to objects, and store it. Yet, if we were to store floating

Table 6.2 Running time for operations on tries vs balanced BSTs, assuming n keys with average length
m; finally, as a simplification we assume for the size of the input keys m, that m ϵ O(M)

Method BST BST + hash Trie

Search O(m*log(n)) O(m+log(n)) O(m)

insert O(m*log(n)) O(m+log(n)) O(m)

remove O(m*log(n)) O(m+log(n)) O(m)

longestPrefix O(m*n) O(m+n) O(m)

keysWithPrefix O(m*n) O(m+n) O(n+m) a

aaverage
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point numbers, for instance, there are some edge cases that can produce long
meaningless paths,16 such as periodic or transcendent numbers, or results of
certain floating points operations such as 0.1+0.2, due to issues with double pre-
cision representation.17

 Tries have memory overhead for nodes and references. As we have seen, some
implementations require each node to store an array of || edges, where  is
the alphabet used—even if the node has few or no children at all.

In summary, the advice could be to use tries when you have to frequently perform pre-
fix searches (longestPrefix or keysWithPrefix). Use hash tables when data is stored
on slow supports like disk or whenever memory locality is important. In all intermedi-
ate cases, profiling can help you make the best decision.

 Tries offer extremely good performance for many string-based operations. Due to
their structure, though, they are meant to store an array of children for each node.
This can quickly become expensive. The total number of edges for a trie with n ele-
ments can swing anywhere between ||*n and ||*n*m, where m is the average word
length, depending on the degree of overlap of common prefixes.

 We have seen that we can use associative arrays, dictionaries in particular, to imple-
ment nodes, only storing edges that are not null. Of course, this solution comes at a
cost: not only the cost to access each edge (that can be the cost of hashing the charac-
ter plus the cost of resolving key conflicts), but also the cost of resizing the dictionary
when new edges are added.

6.3 Radix tries
To overcome these issues with tries, a few alternatives have been developed: the ternary
search trie (TST), which trades off lower memory usage for worse running time, or the
radix trie, just to name a few.

 While TSTs improve the space requirements to store links, and free us from worry-
ing about platform-specific implementations to optimize how we store edges, the
number of nodes we need to create is still on the order of magnitude of the number
of characters contained in the whole corpus stored, O(n*m) for n words of average
length m.

 In tries, most of the nodes don’t store keys and are just hops on a path between a
key and the ones that extend it. Most of these hops are necessary, but when we store
long words, they tend to produce long chains of internal nodes, each with just one
child. As we saw in section 6.2.1, this is the main reason tries need too much space,
sometimes more than BSTs.

 Figure 6.11 shows an example of a trie. Nothing special, just a small, regular trie.
We can see that intermediate nodes always have children (assuming we prune dan-
gling branches after deleting keys); sometimes just one child, sometimes more.

16See http://stackoverflow.com/questions/588004/is-floating-point-math-broken/27030789#27030789.
17See https://en.wikipedia.org/wiki/IEEE_floating_point#Basic_formats.

http://stackoverflow.com/questions/588004/is-floating-point-math-broken/27030789#27030789
https://en.wikipedia.org/wiki/IEEE_floating_point#Basic_formats
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 When an intermediate node has more than one child, we have several branches
that we can traverse from it. When, instead, there is just one child, those two nodes
begin to resemble a linked list. For example, take the first three nodes from the root
of figure 6.11: they encode the prefix “an”, and the search of any other string starting
with ‘a’ but not followed by an ‘n’ couldn’t get anywhere in the tree.

 In fact, it turns out that an intermediate node is a branching point if it has more
than one child: it means that the trie stores at least two keys sharing the common pre-
fix corresponding to that node. If that’s the case, the node carries valuable informa-
tion that we can’t compress in any way.

Key nodes also store information, regardless of the number of children they have.
They tell us that the path to reach them composes a string that is stored in the trie.

 If, however, an intermediate node stores no key and only has one child, then it car-
ries no relevant information; it’s only a forced step in the path.

 Radix tries (aka radix trees, aka Patricia trees18) are based on the idea that we can
somehow compress the path that leads to this kind of nodes, that are called pass-
through nodes.

 How? Figure 6.12 gives a hint about the process to compress these paths. Every
time a path has a pass-through node, we can squash the section of the path hinging on
these nodes into a single edge, which will be labeled with the string made concatenat-
ing the labels of the original edges.

18The original name for this DS, Patricia tree, is an acronym. Morrison, Donald R. “PATRICIA—practical algo-
rithm to retrieve information coded in alphanumeric.” Journal of the ACM (JACM) 15.4 (1968): 514-534.
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Figure 6.11 Intermediate nodes in tries have 
one or more outgoing edges (assuming we 
implemented pruning after delete). Do you 
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How much can we save with this change? Let’s look at the two trees in figure 6.12 to
get an idea.

 The original trie has 9 nodes and 8 edges, and with the assumptions made in sec-
tion 6.2.1, with a 4-byte overhead per node, this means 9 * 4 + 8 * 9 = 108 bytes.

 The compressed trie on the right has 6 nodes and 5 edges, but in this case each
edge carries a string, not just a character; however, we can simplify the operation by
accounting for edge references and string labels separately. This way, we would still
count 9 bytes per edge (because we would include the string terminator byte in the
edge cost), but we could add the sum of string lengths as a third term in the final
expression; the total number of bytes needed is given by 6 * 4 + 5 * 9 + 8 * 1 = 77 bytes.

 In other words, for this simple trie, the compressed version requires 30% less
memory. 

6.3.1 Nodes and edges

All the operations that we have described for tries can be similarly implemented for
radix trees, but instead of edges labeled by chars, we need to store and follow edges
labeled by strings.

 While at a high level the logic of the methods is almost the same as for trie, to
check which branch we should traverse, we can’t just check the next character in the
key, because edges could be labeled with a substring that matches more than one
character of our argument s.

 One important property in these trees is that no two outgoing edges of the same
node share a common prefix. This is crucial and allows us to store and check edges
more efficiently.
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A first solution is keeping edges in sorted order and using binary search to look for a
link that starts with the next character c in the key. Because there can’t be two edges
starting with c, if we find one, we can compare the rest of the characters in its label to
the next characters in the string. Moreover, binary search allows us to find this edge in
logarithmic time in the number of edges, and because there can’t be more than
k=|| edges per node (because there can be at most one starting with each character
in our alphabet ), we know that the worst case running time for performing binary
search and finding a candidate edge is O(log(k)). 

 Because k is a constant that doesn’t depend either on the number of keys stored in
the trie or on the length of the words searched/inserted/etc., we can consider
O(log(k))=O(1) as far as asymptotic analysis is concerned. Moreover, no extra space19

is required to store edges with this solution.
 This solution is illustrated in figure 6.13, where we also show how binary search

works to find the possible edge matching.

Notice that the match between the string searched and an edge’s label doesn’t have
(and usually isn’t) full; we’ll see in a moment what this means for our algorithms and
how to handle these situations.

 Of course, using sorted arrays, as we discussed in chapter 4 and appendix C,
means logarithmic search, but linear (translated: slow!) insertion. Although the num-
ber of elements can be considered a constant, in asymptotic analysis, from a practical
point of view this implementation can significantly slow down insertion of new keys in
large tries.

 The alternative solutions to implement this dictionary for edges are the usual: bal-
anced search trees, which would guarantee logarithm search and insertion, or hash

19Except a constant overhead for the array object, in most languages.
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search, though, the edge’s label is a prefix of the searched string.
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tables. The latter is illustrated in figure 6.14. We can keep a dictionary whose keys are
characters and whose values are the full string labels of the node’s edges, together
with a reference to the children linked by the edge. This solution requires O(k) addi-
tional space for a node with k children, and worst-case it will require O(||) extra
space per node.

Despite requiring more space and a little bookkeeping on insertion and deletion to
update the hash table, this solution allows amortized constant-time lookup when
searching the path for a key.

 Independently of the implementation, the first step will be comparing the first
character of the input string to the first character of the edges’ label.

 Overall, we have four possible cases, illustrated in figure 6.15:

1 The string sE labeling an edge perfectly matches a substring of s, the input the
string. This means s starts with sE, so we can break it up as s=sE+s’. In this case,
we can traverse the edge to the children, and recurse on the input string s’.

2 There is an edge starting with the first character in s, but sE is not a prefix of s;
however, they must have a common prefix sP (at least one character long). The
action here depends on the operation we are running. For search, it’s a failure
because it means there isn’t a path to the searched key. For insert, as we’ll see, it
means we have to decompress that edge, breaking down sE.

3 The input string s is a prefix of the edge’s label sE. This is a special case of point
#2 and can be handled similarly.

4 Finally, if we don’t find a match for the first character, then we are sure we can’t
traverse the trie any longer.

Now that we have clarified the high-level structure of radix trie’s nodes, let’s delve into
the algorithms. Keeping in mind the considerations we just discussed, their behavior
will flow naturally from trie’s methods.

 Listing 6.12 shows the pseudo-code for the RadixTrie and RTNode classes, used to
model this new data structure. We also added a class to model edges, to make code
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Figure 6.14 An example of a node where edges to 
children are stored in a dictionary. Dictionary's 
keys are characters, the first letter of each label, 
while values contain the full labels and the 
references to the destination node of the edge. The 
figure shows a simplification of the same searches 
in figure 6.13. As before, comparisons are based on 
the first character of the searched strings.
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cleaner. I wonder if you have you noticed a tiny, but meaningful, detail: we don’t need
to define a fixed alphabet beforehand, like for tries!

 You can also take a look at a full implementation on the book’s repo on GitHub.20

class RTEdge
  #type RTNode
  destination

  #type string
  label

class RTNode
  #type boolean
  keyNode
  
  #type HashMap<Char, RTEdge>
  children

  function RTNode(storesKey)
    children ← new HashMap()
    this.keyNode ← storesKey

class RadixTrie
  #type RTNode
  root

  function RadixTrie()
    root ← new RTNode(false)

6.3.2 Search

The search method, shown in listing 6.13, is almost identical to the trie’s counterpart;
the only difference is the way we get the next edge to traverse. Because we are going to

Listing 6.12 Class RadixTrie

20See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#radix-trie-aka-patricia-tree.
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Figure 6.15 Possible cases comparing a search string to a node's links. (1) An edge’s 
label completely matches part of the string. (2) An edge’s label and the search string have 
a common prefix that is shorter than both strings. (3) The search string is a prefix of one 
of the edge’s labels. (4) The search string has no common prefix with any of the edges.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#radix-trie-aka-patricia-tree
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reuse this operation over and again for the other methods, we extract its logic into a
utility method, shown in listing 6.14.

function search(node, s) 
  if s == “” then                 
    return node.keyNode                         
  else
    (edge, commonPrefix, sSuffix, edgeSuffix) ← matchEdge(node, s)
    if edge != null and edgeSuffix == “” then                    
      return search(node.children[commonPrefix].destination, sSuffix) 
    else
      return false  

This method just looks for an edge with a common prefix with the target string s, if
any. Remember that all edges can’t have any prefix in common, so there can be at
most one starting with the same character as s.

 It returns some useful information that the caller can use to decide the action to
take: the longest common prefix between searched string and edge’s label, and the
suffixes of these two strings (with respect to their common prefix).

function matchEdge(node, s)
  c ← s[0]                     
  if node.children[c] == null then  
    return (null, “”, s, null)  
  else
    edge ← node.children[c]        
    prefix, suffixS, suffixEdge ← longestCommonPrefix(s, edge.label)
    return (edge, prefix, suffixS, suffixEdge)

Listing 6.13 Method search for radix tries

Listing 6.14 Method matchEdge for Radix Tries

Method search takes an RTNode and the string key s to be 
searched. It returns true if s is stored in the trie, or false 
otherwise. We assume that node is never null: this is a 
reasonable assumption if this method is implemented as a private 
method, internally called by the RadixTrie’s API search method.

Checks if the string searched is empty. If 
it is, since this method is implemented 
using recursion, we know it has traversed 
the whole path in the tree and we 
reached the target node.

We are at the target node for the 
target key: the tree stores it only 
if current node is a key node.

Since s is
not the
empty

string, we
can check
if there is

an edge
matching

it, even
partially.

If there is an edge sharing a common prefix with s, and the whole
edge’s label is a prefix to s, then we recursively search the remaining

characters of s (stored in sSuffix) into the subtree linked by the
edge. This is case 1 of the four possible matches in figure 6.15.

Otherwise, we are in one of 
cases #2–4. The key is 
certainly not stored in the 
tree, and we can return.

Method matchEdge takes an RTNode and the string key 
s to be matched. It returns a tuple with the edge 
matched, if any, the common prefix between s and the 
edge’s label, and the suffixes of those strings. We assume 
that node is never null and that s is not empty.

Since s is not the empty string, it will 
certainly have a first character c.

Looks up in the hash table for children if 
there is any edge whose label starts with c

If there isn’t any, it means there is no edge 
with a common prefix to s. Then, it returns 
null for the edge and an empty string for 
the common prefix, and consequently 
computes the suffixes.

Retrieves
the

outgoing
edge in

node
starting

with
character c Computes the longest common prefix between

s, the edge’s label and the remaining suffixes

Returns the 
computed values
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At line #6 of listing 6.13, we use this information to distinguish between the four
match cases illustrated in figure 6.15. The only positive case for search is the first one,
so we need to check that there is an edge whose label is a prefix of s.

 The implementation of the utility method is straightforward, assuming we have a
way to extract the longest common prefix of two strings. This can be done by compar-
ing the characters at the same indices in the two strings, one by one, until we find a
mismatch.

 We assume that this method is given, and it also returns the suffixes of the two
strings, meaning two strings made of the remaining characters in each of the input
strings, once stripped of their common prefix.

 Figure 6.16 shows an example of the search method on the radix tree resulting
from compressing the trie in figure 6.3.

6.3.3 Insert

As mentioned, cases #2 and #3 are the most complicated to handle, especially for
method insert. When we find a partial match between a key and an edge, we will
need to break the edge’s label down, split the edge into two new edges, and add a new
node in the middle, corresponding to the longest common prefix sP.

 This is illustrated in figure 6.17. Once the common prefix has been found, we
need to add a new node in order to split the edge partially matching the string to
insert, and then we can add a new branch to this new node.

 This node we add is called a bridge node, because it will be a bridge between the
existing node corresponding to the common prefix of the two strings, and the paths
leading to the final nodes for these strings. Bridge nodes are, obviously, bifurcation
points, where the path from root branches out.
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Figure 6.16 Unsuccessful search for the string “antiquity” in the radix tree corresponding to the trie in 
figure 6.3. The first two diagrams show the initial steps in the search; then we fast forward to the final step.
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To better understand this operation, it might help you to imagine that we decompress
the edge to the child into a path, going back to the trie representation with one char
per link. Then we traverse this path until we get to the end of the common prefix (to,
say, a node B), we add a new branch as a child of B, and finally we compress again the
two sub-paths on the two sides of B.

function insert(node, s)
  if s == “” then      
    node.keyNode ← true
  else
    (edge, commonPrefix, sSuffix, edgeSuffix) ← matchEdge(node, s) 
    if edge == null then       
      this.children[s[0]] ← new RTEdge(s, new Node(true))   
    elif edgeSuffix == “” then      
      insert(edge.destination, sSuffix)
    else
      bridge ← new Node(false)      
      this.children[s[0]] ← new RTEdge(commonPrefix, bridge) 
      bridge.children[edgeSuffix[0]] ← 
          new RTEdge(edgeSuffix, edge.destination)   
      insert(bridge, sSuffix)      

Listing 6.15 Method insert for radix tries
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Figure 6.17 Handling case #2 in edge matching while performing an insertion. In this example, we add the 
word “annual” to a node containing an edge labeled with “anti”. To do so, we insert a bridge node B, 
linked to N by an edge labeled with the common prefix “an”, and then two new edges leaving B.

Method insert takes a RTNode and the string key s to be 
inserted. It returns nothing but has side effects on the trie. 
Again, we assume that node is never null. This is a reasonable 
assumption if this method is implemented as a private method, 
internally called by the trie’s API insert method.

Checks if the string searched is empty. If it is, since 
this method is implemented using recursion, we 
know it has traversed the whole path in the trie.

We are at the target node for the target 
key. We set the current node to a key 
node to ensure it will store s.Since s is

not the
empty

string, we
can see if

there is an
edge

matching
it, even

partially.

Match case #4 
(figure 6.15). If there 
isn’t any edge sharing 
a common prefix, 
not even the first 
character, with s, then 
we need to add a new 
edge, with label s, to a 
new key node.

Match case #1. There is 
an edge whose label is a 
prefix to s; we just need 
to traverse the edge.

Otherwise, we are in match case #2 or #3. There 
is a common prefix between the edge’s label and 
s, but there are also characters in the edge’s label 
not matching s. Therefore, we need to break down 
the edge and create a bridge node.

Updates the
outgoing edge
for this node,
with an edge

pointing to the
bridge node,
and labeled

with the
common

 prefix

Adds an edge from the bridge node to 
the former children of the current node: 
the label will be the original edge’s 
label, stripped of commonPrefix.

Finally, we still need to recursively add the 
remaining part of the key to the bridge node. If 
sSuffix is the empty string, this corresponds 
to match case #3, otherwise to match case #2.



206 CHAPTER 6 Trie, radix trie: Efficient string search

Listing 6.15 describes the pseudo-code for the insert method, and figures 6.18 and
6.19 show two examples of how this method works on a simplified tree.

 The method follows the same high-level logic as the trie’s version we saw in listing
6.5. We traverse the tree as far as we can (following the longest path covering a prefix
of the string to insert), and then add a new branch for the new key.

Traversing the tree becomes more complicated because at each node we need to dis-
tinguish between the four different possible results of the edge label matching, and
this complexity is reflected in the length of the method. Moreover, when we bump
into case #2 or #3, we need to break down an edge and add a bridge node. Adding a
new branch, however, becomes easier, because we just need to add a new edge and a
single node.

an

d t

ihem

Common
prefix’s node

d t

ihem

a

n

Bridge
node

tom

d t

ihem

a

n

New
branch

Common
prefixBridge

node

d t

ihem

a

n

Common
prefix

Bridge
node

Expand
compressed path

Find longest
common prefix

Add new key’s
suffix

s

sP s'
atom

Figure 6.18 An example of method insert
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6.3.4 Remove

Like for search, the only changes to the remove method, with respect to tries, revolve
around the extraction of the common prefix. This is not surprising, because deleting a
key can be thought of as a successful search followed by a clean-up of the deleted node.

 With remove, we don’t have to worry about splitting edges or adding bridge nodes.
Because we need to find the key first, there must be a path perfectly matching the key
to be deleted, in order to be able to complete the operation. We might, however, have
the chance to compact the final part of the deleted path, because turning an existing
key node into an intermediate node can change the tree structure, introducing a pass-
through node (see 6.3.1).

 Figure 6.20 shows an example of remove in action on a radix tree.

Besides that, we might have to perform the usual pruning when deleting a key in a
leaf. The difference with tries, in this case, is that we will only have to remove a single
edge in radix trees.

 The example in figure 6.20 shows both cases where we have to correct a node’s
parent. We first remove the key from a leaf, and then, once the node is removed from
the tree, its parent becomes a pass-through node, and hence can be removed, allow-
ing us to compress the path from its parent to its only child.

 Listing 6.16 shows the pseudo-code for this method, where we use two utility
functions.
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Figure 6.20 Removing the word “atom” from an example radix trie. (1) Find the node at the end of the 
path for the key to delete. The path must entirely match the key. (2) Unmark the node, making it an 
intermediate node. If the node is a leaf, it will create a dangling branch. (3) Remove the dangling branch. 
If the parent of the node removed had only two children, it now became a pass-through node. (4) 
Compress the path by removing the pass-through node and merging edges.
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 isPassThrough checks if a node is a pass-through node. This only happens when a
node is not a key node, it has only one outgoing edge, and even its parent only has
one outgoing edge (hence we need to pass the parent too). Implementation is left as
an exercise.

 Since a pass-through node only has one outgoing edge, its children field will have
exactly one entry; getPassThroughEdge is a wrapper for retrieving this entry.

function remove(node, s)
  if s == “” then   
    node.keyNode ← false      
    return (true, node.children == 0)     
  else
    (edge, commonPrefix, sSuffix, edgeSuffix) ← matchEdge(node, s) 
    if edge != null and edgeSuffix == “” then    
      dest ← edge.destination     
      (deleted, shouldPrune) ← remove(dest, sSuffix)  
      if deleted then
        if shouldPrune then    
          node.children[s[0]] ← null
        elsif isPassThrough(dest, node) then  
          nextEdge ← getPassThroughEdge(dest)    
          this.children[s[0]] ← 
            new RTEdge(nextEdge.destination, edge.label+nextEdge.label) 
      return (deleted, false)  
    else
      return (false, false)

Listing 6.16 Method remove for radix tries

Method remove takes a node and the string to delete from the 
sub-tree rooted at node. It returns a couple of Booleans; the 
first one tells the caller if the key has been successfully deleted, 
and the second one is true if the last link followed becames a 
dangling empty branch and should be pruned.

Checks if the string searched is empty. If it is, we traversed 
the whole path to the final node for the string to delete. We make sure that the current node is 

marked as an intermediate node.

Search is over, so returns to the 
caller, reporting that the operation 
was successful and if this node is to 
be pruned (in case it’s a leaf).

Since s is
not the
empty

string, we
can check
if there is

an edge
matching

it, even
partially.

Match case #1 (figure 6.15). There is an
outgoing edge in node whose label is a

prefix of the search string, so we can
traverse it.

Saves in a
temporary

variable the
node at the

end of the
edge

Recursively calls remove 
on the remaining substring 
and saves the result

If the key was 
removed, and the 
next node in the 
path was a leaf 
that can now be 
pruned, we remove 
the edge to the 
former leaf.

If, instead, the key was deleted and the 
next node is now a pass-through node, 
we can compress the path.

If node dest is a pass-through
node, it will only have one outgoing

edge; we can retrieve it here.

dest is a pass-through node if and only if
the node also has a single outgoing edge.

To compress the path, we can short-circuit
the path and compress it into a single

node. With this implementation, if a path
has several pass-through nodes, it will be

compressed one node at the time.

Returns, letting caller know if we deleted the key. 
Since for radix tries there will only be dangling 
nodes, we know that pruning will certainly not be 
needed in this case.

Match cases #2 to #4: the
searched key is not in the

tree, so it can’t be deleted
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6.3.5 Longest common prefix

Porting this method from the trie’s version is straightforward. It’s just a matter of
slightly modifying the search algorithm to take into account the different way we do
edge matching. Listing 6.17 describes the pseudo-code for the radix trie’s version.

function longestPrefix(node, s, prefix)
  if s == “” then                     
    if node.keyNode then                         
      return prefix
    else
      return null     
  (edge, commonPrefix, sSuffix, edgeSuffix) ← matchEdge(node, s)
  result ← null                                   
  if edge != null and edgeSuffix == “”  then                    
    result ← longestPrefix(edge.destination, sSuffix, prefix+commonPrefix)  
  if result != null then    
    return result
  elsif node.keyNode then 
    return prefix
  else
    return null

6.3.6 Keys starting with a prefix

For tries, this method leverages search to find the starting point of a full-fledged tra-
versal, retrieving all keys in the subtree rooted at the prefix.

 Unfortunately for radix tries, the situation is a bit more complicated, because pre-
fixes that are not stored in the tree can partially match edges. Take, for instance, the
tree in figure 6.20, where prefixes such as “a” or “anth” are not stored in the tree.
The latter doesn’t even have a node at the end of the corresponding path, but still the
radix trie contains several words starting with those prefixes.

 If we were just looking for nodes that lie at the end of the path for those strings, we
would miss all those legit results. We need, instead, to rewrite a special version of the
search method for this operation, where we distinguish the edge match case #2, where
we have a no-go, and case #3, where, instead, since the string fragment searched is a
proper prefix of the last edge in the path, the subtree referenced by the edge will

Listing 6.17 Method longestPrefix for radix trie

Method longestPrefix takes a RTNode, the 
string key s to be searched, and a string with the 
path from root to node; it returns the longest 
prefix of s stored in the trie.

Checks if the string searched is empty. If it is, since 
this method is implemented using recursion, we 
know it has traversed the whole path in the trie.

We are at the final node of the path for the 
searched string. If it’s a key node, then the string 
itself (by now accumulated into prefix) is its 
longest prefix in the trie.

Otherwise,
we need to

return
null to let

the caller
know we

haven’t
found any

key yet.

Since s is
not the
empty

string, we
can check
if there is

an edge
matching

it, even
partially.

Initialize this temporary variable to null. In case we can
traverse another edge, it will hold the result of the recursive call.

Match case #1 (figure 6.15). There is an edge
whose label is a prefix to s. We just need to
traverse the edge and store the result. In all

other cases, like for search, we simply know that
we can’t get anywhere.

Now checks the result of the (possible) recursive 
call. If it found something, just returns it.

Or, if this is a key node, the longest possible prefix in the trie 
could be the path to current node (accumulated in prefix).

Otherwise, we know that we 
haven’t find any result in this 
subtree and return null to 
let the caller know.
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indeed contain strings that match the searched prefix. The difference between the
two cases is illustrated in figure 6.21.

 Listing 6.18 illustrates this new method, called searchNodeWithPrefix, to distin-
guish it from an exact match search. The API method keysStartingWith and the util-
ity method allKeysInBranch are, instead, basically identical to the equivalent method
in tries, so we leave its pseudo-code as a useful exercise for the reader.

function searchNodeWithPrefix(node, s) 
  if s == “” then                 
    return node
  (edge, commonPrefix, sSuffix, edgeSuffix) ← matchEdge(node, s) 
  if edge == null then       
    return null

Listing 6.18 Method searchNodeWithPrefix for radix trie
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Figure 6.21 The difference in facing match cases #2 and #3 while looking for the node matching the shorter 
string including a prefix. (Left) When we face case #2, it means that the next edge doesn’t match all the 
characters in the string fragment left; therefore, in the corresponding trie, searchNode(s) would return 
null. (Right) With case #3, we have a full match of the string fragment that ends in the middle of an edge. 
In the corresponding trie, the search would return an intermediate node, in particular a pass-through node; 
therefore, since no keys are stored in pass-through nodes, we can equivalently start enumerating keys from 
the first non-pass-through among its descendants.

Method searchNodeWithPrefix takes an RTNode and a 
string key s to be searched; returns the root of the subtree 
containing all the keys stored that have s as a prefix.

Checks if the string searched is empty. If it is, 
since this method is implemented using recursion, 
we know it has traversed the whole path in the 
trie: this is the node exactly matching s.

Because s is not the empty string,
we can check if there is an edge

matching it, even partially.

Match case #4 (figure 6.15). The searched 
prefix is not stored in the tree.



211Applications

  elsif edgeSuffix == “”  then         
    return searchNodeWithPrefix(edge.destination, sSuffix)  
  elsif sSuffix == null then 
    return edge.destination
  else
    return null                 

This concludes our rundown of the main methods for radix tries, and the discussion on
data structures for efficient strings search. To the interested reader who would like to
delve further into this subject, we suggest taking a look at suffix trees and suffix arrays,
two interesting data structures that are fundamental to fields like bioinformatics, and
that are unfortunately out of scope for this chapter.

6.4 Applications
Now that we know two concrete data structures for implementing the ADT String-
Container, we can confidently look at applications where they make a difference.

 As is usual with data structures, the difference is not about new things that couldn’t
be done without tries, but rather about doing some operations better or faster than
with other DSs.

 This is particularly true for tries, as they were specifically designed to improve the
running time of string-based queries. As one of the main uses for tries is to implement
text-based dictionaries, the touchstone will often be hash tables.

6.4.1 Spell-checker

Time to go back to our main example! We saw in chapter 4 that Bloom filters were
used for the first versions of spell-checkers, but after a while they were replaced with
more efficient alternatives, such as tries.

 The first step to build a spell-checker is, obviously, inserting all the keys from our
dictionary (here meant as “English dictionary,” not the data structure!) in a trie.

 Then, using the trie for spell check when the feedback we want is just highlighting
typos is simple. We just need to perform a search, and if it’s a miss, we have a typo.

 But suppose, instead, that we would like to also provide suggestions about how we
could correct the typo—how can we do that with a trie?

 Let’s say that the word w we are checking has m characters, and we can accept sug-
gestions differing by at most k characters from w: in other words, we want words whose
Levenshtein distance (also known as edit distance) is at most k.

Match case #1. There is an edge whose label 
is a prefix to s. We just need to traverse the 
edge and recurse on the remaining 
characters in the string.

Match case #3. Although there is no node storing a key at 
the end of the path for the searched prefix, there would 
be a pass-through node for it in the uncompressed trie. 
This means that all prefixes stored in the subtree rooted 
at node will start with s+edgeSuffix, and those will be 
the only strings stored having s as a prefix.

Match case #4. There is no 
path starting with s in the 
(sub)trie rooted at node.
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 To find those words in a trie, we start traversing the tree from the root, and while
traversing it we keep an array of m elements, where the i-th element of this array is the
smallest edit distance necessary to match the key corresponding to the current node
to the first i characters in our search string.

 For each node N, we check the array holding the edit distances:

 If all distances in the array are greater than out maximum tolerance, then we
can stop; there’s no need to traverse its subtree any further (because the dis-
tances can only grow).

 Otherwise, we keep track of the last edit distance (the one for the whole search
string), and if it’s the best we have found so far, we pair it with current node’s
key and store it.

When we finish traversing, we will have saved the closest key to our search string and
its distance.

 Figure 6.22 shows how the algorithm works on a simplified example. It uses a trie,
but the same algorithm, with minor changes, can easily be shown and implemented
on radix trees. In fact, for this algorithm we are mostly interested in key nodes, not
intermediate ones.

 The algorithm starts at the root that corresponds to the empty string (because the
path that leads to it is also empty). At each step, we have to compare the target word s
(“amt”, in the example) to the word corresponding to the current node; in particular,
we compute the distance between each prefix of s and the word associated to the cur-
rent node.

 So, for the root, the distance between the empty string and the empty prefix of
“amt” (which also is the empty string, obviously) is 0 (because they match). The dis-
tance between “” and “a” is 1, because we need to add one character to the former to
make the latter, and so on.

 After computing our vector of distances, we traverse any outgoing edge and repeat
the process for the next nodes. In this case, there is only one, associated with the
string “a”, the concatenation of the labels leading to it. We can build the next row in
the table using only the previous row, and compare the last character (the one mark-
ing the last edge traversed) to each character in s (note that for the empty string col-
umn, the distance will always be the length of the path).

 Therefore, the second row in our table will start with a 1, then have 0 in cell [1,1],
because both strings start with an ‘a’. For the next character in s, there isn’t a corre-
sponding char in the node’s key (because it’s shorter), so we need to add 1 to have its
distance, and the same for the last character. In fact, as a double-check, if we consider
the prefix “am”, the distance to “a” is 1, while for “amt” is 2.

 Notice that the cost to compare two strings is always contained in the bottom-right
cell, so for “a” and “amt” this distance is 2.

 The algorithm goes on traversing all branches, until we get to a point where the
cost can’t decrease any more (when the path is already as long as the string s or lon-
ger, there is no point in going down a branch as soon as we find a key node) or all the
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distances in the last row are larger than a user-defined threshold, the max meaningful
distance. This is particularly useful when searching long strings that would otherwise
cause most of the tree to be traversed (while words within a distance of 2-3 characters
are the most likely anyway).

 As you saw in figure 6.22, the smallest distance is obtained for the path “ant”;
however, there is a catch! This trie, in fact, doesn’t contain “ant” as a key, and there-
fore we can’t take this value into consideration.

 Instead, there are several keys at distance 2, and any of them, or all of them, can be
returned as a suggestion.

 How fast can we find a suggestion? As we know at this point, after the discussion in
section 6.1, searching a string in a trie has a better worst-case running time than the
alternatives: O(m) comparisons for a string of length m, while for hash tables or binary
search trees it would be O(m + log(n)) at best.

6.4.2 String similarity

The similarity between two strings is a measure of the distance that separates them.
Usually, it’s some function of the number of changes needed to transform one string
into the other.

 Two examples of these distances are

 The Levenshtein distance, the number of single-character edits 
 The Hamming distance, the number of positions in which the strings are

different

As we have seen in the previous sub-section, string similarity is used by spell-checkers
to decide the best suggestions to correct typos.
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Figure 6.22 Searching spell 
suggestions for the word s=”amt” 
using a trie. Notice that for each 
node, we only compute the last row of 
each table, based on the previous row 
(from the node’s parent). While the 
path with the closest distance to 
“amt” would spell “ant”, in this trie 
the corresponding node is not a key 
node, so “ant” is not stored in the 
trie and can’t be returned as a result! 
Instead, there are three keys at 
distance 2: “an”, “and”, 
“anti”. They can all be returned.
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 But recently another even more important use case has become popular: bioinfor-
matics, matching sequences of DNA. This is a computationally intensive task, so using
the wrong data structures can make it impossible to solve.

 When we have to compare just two strings, directly computing the Levenshtein dis-
tance is the most effective way to go; however, if we have to compare a single string to
n other strings to find the best match, computing n times the Levenshtein distance
becomes impractical. The running time would be O(n * m * M), where m is the length
of our search string and O(M) is the average length of the n strings in the corpus.

 Turns out, we can do much better using a trie. By using the same algorithm shown
for spell-checkers (without the threshold-based pruning), computing all the distances
will only take time O(m * N), where N is the total number of nodes in the trie, and
while the trie construction could take up to O(n * M), it would only happen once at
the beginning, and if the rate of lookups is high enough, its cost would be amortized.

 In theory N can be O(n * M), as we saw in section 6.2, if no two strings in the corpus
share the same prefix. In practice, however, it is likely that N is order of magnitudes
smaller than n * M, and closer to O(M). Moreover, as we saw in the last sub-section, if we
set a threshold for the max tolerance, that is, for the largest difference between two
strings, and keep track of the best result we have found, we can prune even more the
number of nodes we traverse during search.

6.4.3 String sorting

Burstsort21 is a cache-efficient sort algorithm that works similarly to MSD (Most Signifi-
cant Digit) radix sort. However, burstsort is cache-efficient and even faster than radix
sort! 

 They both have the same asymptotic running time, O(n * M), which is a theoretical
lower bound for sorting n strings of length M, but burstsort creates results twice as fast
by exploiting locality of reference and better memory distribution.

 Going into the details of this algorithm is out of the scope of this chapter, but to
give you an idea of how burstsort works, it dynamically constructs a trie while the
strings are sorted, and uses it to partition them by assigning each string to a bucket
(similar to radix sort). The asymptotic cost, as mentioned, is the same as MSD’s,
because leading characters of each string are inspected once only. The pattern of
memory accesses, however, makes better use of cache.

 While MSD, prior to the bucket-sorting phase, accesses each string once for each
character, burstsort accesses each string only once overall. The trie nodes, instead, are
accessed randomly.

 However, the set of trie nodes is much smaller than the set of strings, so cache is
used more wisely.

 If the set of string exceeds cache size, burstsort becomes considerably faster than
any other string sorting algorithms.

21Sinha, Ranjan, and Justin Zobel. “Efficient trie-based sorting of large sets of strings.” Proceedings of the 26th
Australasian computer science conference-Volume 16. Australian Computer Society, Inc., 2003.
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6.4.4 T9

T9 was such a big milestone in mobile history that we still (mistakenly) address new
mobiles’ spell-checkers as T9—though it was abandoned long ago with the advent of
smartphones.

 The name comes as an abbreviation of “Text on 9 keys,” as the alphabet was (long
before mobile phones) divided into groups of three to four characters that would fit
into a digital phone numpad. 

 In the original design for landline phones, every number had to be pressed one to
four times to choose every single letter. For instance, 2 had to be pressed once for 'a',
twice for 'b', and thrice for 'c'.

 Instead, the idea with T9 was that the user would press each key once for each let-
ter in the word, to state that the i-th letter belonged to the group of the k-th button.
Then T9 would offer suggestions for possible words made out of those combinations
of letters, or even directly provide the right word, if only one possible match was
found.

 For instance, typing 2-6-3 would select all three letters combinations to form the
Cartesian product [a,b,c]x[m,n,o]x[d,e,f], and T9 would provide valid English
words such as [and, cod, con,...].

 This was made possible by keeping a trie, and for each key pressed refining the
search: 

1 When keypad button 2 is pressed, we would start traversing the trie, going, in
parallel, to the subtrees linked by edges marked with 'a', 'b', 'c' (all three of
them would likely be in the trie for any language using the Latin alphabet). 

2 When the second keypad button is pressed, for each of the three paths that we
are currently traversing, T9 checks to see if they have children labeled with 'm',
'n' and 'o', and keeps track of the nodes reached at this second level. Each
combination represents a path from the root to a level-2 node. Most likely, not
all of the 9 combinations would have a path in the trie: for example, it’s unlikely
any word will start with “bn”. 

3 The process continues with the next buttons pressed, until there is no node
reachable through the possible paths traversed.

For this specific task, the trie nodes would likely store more than just a Boolean for
each key. They would rather store the corpus frequency of that word (for instance,
how likely it is that a word is used in English). This way, the most likely result would be
returned when more than one result is available: for instance, you would somehow
expect that and would be preferred over cod. 

6.4.5 Autocomplete

In the last 10 years or so, we have all become familiar with the autocomplete feature of
search boxes. Today we even expect search boxes to provide it by default. 
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 The usual autocomplete workflow is the following: A user on the client side (typi-
cally a browser) starts typing in a few letters, and the autocomplete search box shows a
few options that start with the characters already typed (Does this ring a bell? Sounds
like “all keys with prefix”?). If the set of possible values that could be inserted in the
search box was static and small, then it could be transmitted to the client together
with the page, cached, and used directly on the client.

 This, however, is usually not the case, since the sets of possible values are normally
large, and they might change over time, or even be dynamically queried.

 So, in real-world applications the client usually sends (asynchronously) a REST
request to the server with the characters typed so far.

 The application server keeps a trie (or more likely a Patricia tree) with the valid
entries, searches for the strings starting with what was inserted so far and a valid pre-
fix, and returns a certain number of entries in this string’s subtree.

 When the response comes back to the client, it simply shows the list of results from
the server as suggestions.

Summary
 There is a fundamental difference between working with primitive data types

like integers or floats and working with strings: while all integers will require the
same amount of memory to be stored,22 strings can be of arbitrary length, and
hence require arbitrarily many bytes.

22With exceptions; for instance, the bignum integer type in Python can represent arbitrarily large numbers, using
a variable number of bytes.

Autocomplete across the Net
It's not strictly required that the request is performed through a REST endpoint or that
it is sent asynchronously. However, the former indicates a clean design, and without
the latter the autocomplete feature would make little sense.

To avoid wasting net bandwidth and server computations, usually the requests to
autocomplete are sent every few seconds or when a user stops typing. When a
response comes back, the page updates the list of entries shown.

This is still not ideal, because with HTTP/1.1 it is not possible to cancel requests
that have already been sent and have reached the server. Moreover, we have no guar-
antee of the order in which responses come back. Therefore, if more characters are
typed or erased before the previous response comes back, we’ll have to keep some
kind of versioning for the responses and never replace the results shown if a stale
response arrives.

This will be mitigated with HTTP/2, since it introduces cancellable requests, among
other cool things.
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 The length of the string on which a data structure works is an important factor
in its asymptotic analysis; this leaves space for further optimizations that are not
possible with the simplest data types.

 Tries allow us to more efficiently store and query large sets of strings, assuming
many of them share some common prefixes.

 String prefixes are a key factor for this new data structure, which in turn allows
us to efficiently perform queries to find strings with a common prefix or, vice
versa, given a string find its longest prefix in the dataset.

 Radix tries compress paths, whenever possible, to provide a more compact rep-
resentation of tries, without having to compromise in terms of complexity or
performance.

 From spell-checkers to bioinformatics, many applications and fields manipulat-
ing strings can benefit from using tries.
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Use case: LRU cache

This chapter is going to be different from what you have seen so far in this book.
We are not going to introduce a new data structure, but instead we will use the ones
described in chapters 2–5 to create a more complex data structure. By using lists,
queues, hash tables, and so on as building blocks, we will be able to create an
advanced data structure that can be used to quickly access values and computed
results that were recently accessed—although one could argue that a cache is more
than just a data structure; it’s a sophisticated component with several moving parts.

This chapter covers
 Avoiding computing things twice

 Introducing caching as a solution

 Describing different types of caches

 Designing an efficient solution for LRU cache

 Discussing MFU and other choices for handling 
priority

 Discussing caching strategies

 Reasoning about concurrency and synchronization

 Describing how caches can be applied in a 
sentiment analyzer’s pipeline
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In its simplest form, a cache can be implemented as an associative array, but we will
see during the course of this chapter that it can become as complex as a web service.

 In this chapter, we’ll delve into the details of how caches of increasing complexity
work, so after reading it, you should be able to articulate an informed opinion on the
topic.

7.1 Don’t compute things twice
In our daily job as software developers, we write applications, most of which perform
really simple tasks. Adding two numbers, or even dividing them, or adding two vectors
(with modern GPUs1) are trivial operations, fast enough that we don’t need to bother
with optimizing them. (Of course, this wasn’t always the case, but if you happen to be
young enough, you’ve never had to deal with x86 processors.)

 Yet, no matter how fast and optimized multicore processors or server clusters
become, there will always be some kind of computations, some complex operations
for which it will just be too expensive for us to ignore how wasteful it would be to per-
form them multiple times when we don’t need to.

 Back to the previous vector sum. If our vectors have billions of elements (or too
many to fit in a GPU’s memory at once), then even this operation becomes quite
expensive. The same is true if we are going to repeat the same divisions billions of
times when we could have gotten away with a few hundred of them: the impact on our
applications’ running time will be sensible.

 Number crunching is not the only context in which optimizing your computation
matters. If we move to web applications, for example, one of the costliest operations is
certainly accessing a database, and even more so if it involves iterating through a cur-
sor to count or compute something.

 It’s not just terribly expensive (in terms of resources) and slow. Database cursors2

might involve extensive (possibly even table- or DB-wide) locks3 if they are not read-
only, but even writing single rows can, in some DBs, require locking a page or a whole
table.

 Every time we lock some data, all read operations on that data have to wait until the
lock is released. If this is not handled carefully, a big load of write operations to the DB
can put it on fire,4 slowing your application down and producing an inconvenient lag

1 Graphics Processing Units were originally designed to speed up image processing and buffering for display
devices. With the turn of the century they became increasingly used as general (parallel) computation devices,
so much so that they actually are the election choice, instead of CPUs (Central Processing Unit), for algebraic-
intensive tasks such as machine learning.

2 Cursors are control structures that allow traversing a set of rows in a DB table; as a simplification, they can be
thought of as pointers to the next row to read in a portion of the table, and they are used to subsequently pro-
cess rows (either reading data or modifying it) one by one, as opposed to a batch read/write where a group of
records is read/written at once.

3 Locks are another DB construct that prevents all reads/writes on a raw/table/DB while data is being modified.
They are needed for consistency, but they can have a dramatic impact on availability. In general, using cursors
that allow updating the data is not advised because they might hold locks for a long time.

4 Not literally! Just jargon.
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for your users, or even grinding your DB to a halt, which in turn will cause all your
HTTP calls to time out and thus an outage of your website/application.

 Wow, that’s scary, isn’t it? Now, if there only was a way to avoid it!
 Many companies, even tech giants, in their early days (and at the dawn of the inter-

net age), had to experience first-hand the troubles of running and growing a website
smoothly. That is, until they found ways to adapt and cope with it.

 One of the best ways to ease the load on a database is to avoid computing expen-
sive results twice in a short time. There are many other strategies orthogonal to this,
from sharding5 to loosening the consistency constraint (moving to eventual consis-
tency6), that are needed or at least helpful in order to achieve good, stable perfor-
mance on a web application. This is obviously not the right place to present them, but
the literature on scalability is rich, and if you are going to work in the field, we defi-
nitely recommend you look at some of the amazing books or web guides that have
been published.7

 In this chapter we are going to focus, instead, on caching. To narrow our scope a
bit, and hopefully make our example clearer, let’s consider a plausible situation where
you could actually use some caching.

 Imagine you have this aggregator service that gathers news about companies from
social networks, and provides some sort of insight on them; for example, if people are
talking about a company in a positive or negative way (what’s called sentiment analysis8

in data science). Figure 7.1 shows a possible simplified architecture for such a service.
 You will need to call external APIs to gather posts from the major social networks

and then analyze them and assign a sentiment to each post. Once they are all labeled,
each with a certain degree of confidence, you need to decide if overall the sentiment
about the company is positive or negative. For instance, you can decide that a tweet
spoke positively about company X, with a degree of confidence of 70%, while for
another tweet you have a degree of confidence of 95% that the sentiment is negative.
Then you’ll have to weigh the two of them, taking that confidence into consideration
(among many other things).

 You will likely have to subscribe to, pay for, and connect to different services for the
different social networks and write adapters that cope with the different formats.

 Each external service requires an HTTP call outside your intranet, and each call will
have some latency that’s different for the various services. You can call each service in

5 Sharding consists in breaking down data, users or transactions (or all of them) in groups, each of which is
assigned to a different machine/cluster/data-center. This balances the loads and allows us to use smaller,
cheaper servers and databases for each group, ultimately allowing applications to scale better and in a cheaper
way.

6 Relaxing the temporal requirement on consistency. We’ll explain a bit more later in the chapter.
7 For instance, https://www.manning.com/books/principles-of-cloud-design or https://www.manning.com/

books/progressive-web-apps, which also has a nice chapter on caching.
8 Using techniques such as natural language processing, text analysis, and computational linguistics to automat-

ically identify the attitude of one or more subjects with respect to some topic.

https://www.manning.com/books/principles-of-cloud-design
https://www.manning.com/books/progressive-web-apps
https://www.manning.com/books/progressive-web-apps
https://www.manning.com/books/progressive-web-apps
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parallel, but even then, if you do need all the data to make a decision, your latency will
be at least as high as the slowest of those services.

 Latency can really be a problem; say you offered your customer a service-level agree-
ment (SLA) where you committed to return 95% of your monthly calls within 750ms,
but unfortunately, during peaks of traffic, a couple of those external services can take
as long as 3s to answer.
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Figure 7.1 A possible architecture for the “Get social networks daily summary” application. (1) The client 
sends an HTTP call to the web server asking for the daily summary (for a specific company). (2) The web 
server contacts the app server to get the data from the major social networks (here the list is just meant 
as an example). The app server might be physically and logically on the same machine as the web server 
(in which case the call is a method call), or physically hosted on the same machine but in a different 
process, or even hosted in a different machine, such that the call ends up being an actual HTTP call. (3) 
The data gatherer starts one new thread for each loader/social network. All these calls are asynchronous. 
(4) Each loader sends an HTTP call to an external API over the internet. Once it’s done, it returns the loaded 
data to the gatherer. Once all the loaders are finished, the gatherer returns all the collected data to its 
caller (the web server, in this case). (5) The web server synchronously calls the sentiment analyzer, passing 
the raw data, and expecting the summary in return. Alternatively, the web server could have called an 
orchestrator or the sentiment analyzer directly at point 2, and this step would be delegated. (6) Once the 
sentiment has been computed and passed back to the web server, it builds an HTTP response around it and 
sends it back to the client.
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 To make things worse, your timeout for HTTP responses is set to 3.5s, meaning
that you have to return an answer to the client within 3.5 seconds; otherwise your load
balancer will kill the call. I can imagine you are thinking it would be enough to adjust
the timeout, but suppose you can’t change this timeout, because otherwise you
couldn’t support the traffic load, given the resources you have available. So, assuming
you take around 250ms to process data for a single source, if it takes 3 seconds to get
that data, considering the time to handle the incoming call, do some post-processing,
and send the response back, you risk having a lot of 5039 errors. And guess what? That
also goes against your SLA.

 At this point it is worth noting that if you are a paid service and you violate your
SLA, you might have to give some money back to your customers. So, you definitely
would like to avoid that.

 Let’s say, in order to keep things simple for our example, that you’d like to provide
this sentiment analysis for one company at a time (one company per HTTP call), per
day, and always only based on the day before. Imagine that people will use the infor-
mation gathered yesterday before the stock market opens to decide whether or not it’s
a good idea to invest in a company. Also, let’s assume we only provide our prediction
service to the Fortune 100 top companies.

7.2 First attempt: Remembering values
At this point, we know that we can’t afford to compute each intermediate result over
and again every time we receive a call; that would be too expensive. So, the most natu-
ral thing to do is store these intermediate results once we compute them and look
them up when we need the results again.

 We are obviously in luck because the function to produce the summary takes only
one argument, the name (or internal ID) of the company and its domain10 is relatively
small.11 And thus we can easily identify the intermediate results we need, and we can
expect to reuse them several times. If our application runs for long enough without
restarting, after an initial warm-up period when we have to actually compute values
(and hence latency will be high during this warm-up), we will have computed enough
intermediate results to respond to calls quickly, without the extra latency due to the
external HTTP calls.

 Take a look at how these assumptions change our architecture in figure 7.2, and
meet the cache, our knight in shining armor that will save us from failing our SLA and
going out of business.

 To get rid of all the nitty-gritty HTTP related details that are not particularly
important for our analysis, let’s abstract them out in a magic function that can be
called by our sentiment analyzer and just return all the data we need for all the social

9 HTTP status code for “Service unavailable.”
10The set of possible inputs for the function.
11As we said, we are restricting ourselves to only top Fortune 100 companies in this example.
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networks we draw our posts from. Figure 7.3 shows the simplified architecture for the
sentiment analyzer.

 It looks much cleaner now, right? Remember, we are hiding all complexity in the
“sentiment generator” because we want to focus on the caching mechanism, and we are
not interested in the details of how this sentiment is computed. Nonetheless, this
doesn’t mean that you can only use caching in-memory or for standalone applications;
on the contrary, web applications are probably one of the best places to add some cach-
ing layers: the detailed example from which we started should have made this clear.

 Moreover, it is important to remember that simplifying complex things by abstract-
ing low-level details is a paramount technique in algorithm analysis. For instance, we
often assume that some containers will store integers instead of worrying about every
possible type of entry that could be stored, and even the RAM model itself, that we
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Figure 7.2 With the introduction of cache, before issuing a call to the app server, the web server checks 
if the results have already been computed, and in that case skips steps 3–6 in this figure. Note that cache 
can be added also for the single loaders, in case we allow partial results (for instance, if one of the external 
services is down). In theory, it can also be added to the “data cruncher” instead of the web server, 
delegating the interface with the data gatherer to the data cruncher, so that the web server directly calls 
only the data cruncher. Having cache on the web server (physically on the same machine), however, has 
several advantages.



224 CHAPTER 7 Use case: LRU cache

introduced in appendix B, is a simplification to hide the details of the myriad of dif-
ferent configurations that real computers can have.

7.2.1 Description and API

As always, let’s draft an API and a contract that our data structure should adhere to.

7.2.2 Fresh data, please

Now that we have a first solution for our specific example, we could ask if these
conclusions apply also to the general case. To that end, we need to discuss some
concerns that we’ve swept under the proverbial rug so far. We need to question if the

Abstract data structure: Cache

API class Cache {
  init(maxSize);
  get(key);
  set(key, value);
  getSize();
}

Contract with client A cache stores a certain number of entries (the maxSize argument for the con-
structor, in the API), always allows you to set new entries, and retains elements 
based on the concrete cache’s implementation of the eviction policy.a

When set is called, if an entry with the same key already exists on the cache, 
the new value will overwrite the old one.

aA cache’s eviction policy is used to decide which element should be purged from a full cache to make
room for a new entry.
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CACHE

CACHE2. Check 
cache
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Figure 7.3 The architecture of our example application, after abstracting out all details relative to the 
generation of the summary into an ad hoc component, the “sentiment generator”, that we can imagine 
is hosted on the web server, and is called synchronously from the web app.
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computation is static, isolated, and time-independent. Think, for instance, of a matrix
product or numerically computing a complex integral. If that’s the case, we are in
luck, because we can compute the results once (for each input), and they will be valid
forever.

 It might happen, instead, that we have to deal with some computation that can
vary depending on time (for instance, on day of the week or month) or on any other
external factor (for instance, an aggregate of daily orders that will change when new
orders are placed and when the date changes). In this case, we would have to be care-
ful when reusing values we have already computed, because they can go stale; meaning
that under some conditions, the value once computed and stored in our cache might
not be the most up to date, or even relevant, anymore.

 How we deal with stale cache depends heavily on the context. In some cases, even
stale values can provide an acceptable approximation when a certain margin of error
is acceptable. For instance, if we do compute aggregates on daily sales and show them
in a live chart, we might be OK with having data synched every minute or every 10
minutes. This would avoid recomputing all the aggregates (possibly grouped by prod-
uct or store) every time the chart is displayed in our reporting tool, which could be
used by tens of employees at the same time. 

 Probably the best example explaining why this “controlled staleness” can be accept-
able is provided by web caches. HTTP standards allow the server (the provider of the
content) to add headers12 to resources (web pages, but also images, files, and so on) to
let the client (usually the browser) know when it is allowed to read a certain resource
from cache, and also to let intermediate cache nodes know if13 and for how long the
response provided by the server to an HTTP (GET, usually) call can be cached.

 Vice versa, if we have a time-critical, safety-critical application, such as a monitor-
ing application for a nuclear power plant (for some reason, this example works well in
communicating a sense of criticality . . . ), then we can’t afford approximations and
stale data (certainly not for more than a few seconds).

 The other open questions are these: What makes data stale and do we have a quick
way to know when that happens? If data simply ages, we can store a timestamp when
we write it to cache and check it when we read it. If it’s too old to still be relevant, we
can recompute and update the cache. If there are other external conditions—for
instance, a change in configuration or some event, such as a new order made or a
change of the required precision for calculus—we are still fine as long as we can check
these conditions, and the check is relatively inexpensive with respect to computing
the value again from scratch.

12Ideally, all http responses should add Cache-Control, Expires, and Last-Modified headers to make sure
the resources are taken from cache as much as possible.

13Not all data can be shared without limits. That’s why there are private caches where data is shared with a single
user/IP, and public caches (used, for example, for static, anonymous content) shared with anyone interested
in the resource.
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 In the rest of the chapter we simplify the problem by assuming that cached content
doesn’t go stale. Handling stale content can be seen as an orthogonal task that can
enhance the base caching mechanism we built, for the most part independently of the
choices we made for this mechanism.

7.2.3 Handling asynchronous calls

Acknowledging the existence of stale data and discussing workarounds was a good
starting point toward generalizing caching solutions to more than just our carefully
crafted example. The next step is generalizing the computation model. So far, we have
assumed we are in a single-threaded environment, so calls are handled by a synchro-
nous queue and are executed one after the other. This is not only unrealistic; this is
also wasteful. Real-world applications can’t afford the latency that would result in leav-
ing clients waiting while previous calls are being processed. We can run many copies
of this pipeline, as shown in figure 7.4, but each of them will have its own cache and
will be able to handle one call at a time. Caching would not be as effective as possible,
because if two threads get the same request, neither will be able to read the result
from cache. But even worse, assuming the sentiment generator works synchronously,
handling one request at a time slows us down even more.

 Consider any of the threads depicted in figure 7.4 and suppose the cache has
already stored the intermediate results for Twitter and Facebook when the sentiment
generator receives four more requests for Google, Twitter, Facebook, and Google. For
the first request, we’ll have to compute everything from scratch, but for the next two,
we already have all we need in cache, and we could output the result immediately. In a
synchronous architecture, however, we would be forced to wait for the first call to
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Figure 7.4 A possible configuration for the app running with one cache per thread. Each thread hosts a 
full pipeline (web server, sentiment generator, and cache) and handles one call at a time, running 
synchronously. A load balancer makes sure to distribute the calls to the many threads running, waiting for 
each web server to answer before forwarding the next call (in the figure, the web app in thread 2 would 
have returned the response for call #2 before the load balancer could forward call #4).
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complete before the next two (and all the others that would possibly pile up in the
meantime) could be processed by the sentiment generator and returned. In an asyn-
chronous configuration, however, the web app can call the sentiment generator asyn-
chronously for each sentiment analysis request, “join” on the responses containing the
intermediate results, and return as soon as all the information for a call is gathered,
and it can compute the final result. What happens, though, if in the figure’s example
sequence the second request for Google is processed while the first one is still com-
puting the intermediate results?

 If the first call hasn’t finished yet, no value is added to the cache for Google. So,
when the second call comes, the web app sees a cache miss and calls the sentiment
generator to retrieve all the data from social networks and compute the sentiment
again.

 Then, the result of whichever call that finishes first will be stored in the cache. And
when the other call finally produces a result, it will also try to store that result in the
cache. Depending on the implementation of the cache, this can simply overwrite the
old result (they could be different for a lot of reasons), discard the new result, or in
the worst-case scenario, produce a duplicate.14

 But regardless of how the collision is handled, the worst part is that we twice com-
pute a result that we could have retrieved from cache. This in turn means unnecessar-
ily high latency, and in some cases extra costs. For instance, in our example, data
providers do charge for data from social networks.

7.2.4 Marking cache values as “Loading”

Finding a perfect solution for race conditions is not easy. In some cases, it is impossi-
ble. Here, for example, if we consider the fully detailed architecture of figure 7.2, we
have several HTTP calls that can have a variable latency or fail altogether. So, we can’t
be sure which one of the two calls to retrieve Google sentiment would return first.
Assuming the first call finishes first can be reasonable, but it can also lead to ineffi-
ciency, if for any reason the first call to the data gatherer15 lasts more than the average.
That’s not the worst-case scenario, though: if we decide that the second call to our
/sentiment endpoint will wait and reuse the result computed for the first one, and
then the calls to the data gatherer fail for some reason, the net result will be that both
web calls to our web server will fail.

 That said, we can and need to try to do better and avoid wasting resources. To han-
dle the situation described in the last sub-section, one thing we could do is certainly
add a “loading” state for cache values, used to mark entries in the cache that are cur-
rently being computed. When the first call to /sentiment/Google checks the cache
and finds a miss, it will create an entry for Google and mark it as “in progress.”

 When the second call checks the cache, it will be aware that the value is being
computed. Then we can either do some time-based polling of the cache, checking

14We’ll pick this example up again in section 7.7. Figure 7.12 illustrates it.
15A software component shown in figures 7.1 and 7.2.
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every few hundreds of milliseconds until a value is stored for that entry, or implement
a publisher-subscriber mechanism, with the web app subscribing to the cache to let it
know it’s interested in the entry “Google,” and the cache notifying all subscribers for
that entry once its value is finally computed.

 Either way, we can’t completely solve the problems with the race conditions men-
tioned here, but risking a little extra delay and a few more 500s responses is in many
cases worth the savings we earn by avoiding re-computing values that are in progress.

7.3 Memory is not enough (literally)
Let’s stop for a minute and recap what we have discussed so far:

 We have a complex problem which has a lot of intermediate results that can
internally be reused frequently.

 To exploit this fact, we need a mechanism to remember the intermediate
results so that we compute them only once (or at least as few times as possible).

That seems straightforward, right? For our example, it probably is: we have a very
small number of possible entries (at most 100), and for each one we only store the
sentiment computed. It seems likely that we would be OK with a very small amount of
memory to store our cache.

 What do you think would happen, however, if we needed to create a cache for the
data gatherer in figure 7.2, storing all the messages across the major social networks
mentioning a company in their raw format? Consider that there could be millions of
those, for the “coolest” companies, and each one would on average require a few kilo-
bytes (assuming we store media as links or don’t store them at all). Even with just a
hundred companies, it could be on the order of a few gigabytes.

 Likewise, consider how an application like Facebook would work. When you try to
access your wall, an algorithm computes the best posts to show you, based on your
friends’ walls, your preferences, the pages you follow, and so on.

 It’s a pretty complex and resource-consuming algorithm, so you want to cache its
results as much as possible, since you probably don’t need to recompute the feed if
the same user accesses their wall after one or five minutes (or maybe you have an
incremental update mechanism that only surfaces new posts when they are pub-
lished—but that’s another story and slightly off the point).

 Now consider this caching mechanism for a billion walls: even if we store just the
top 50 posts per wall, and for each post we just store its ID (typically a few bytes), we
still need a terabyte for the cache.

 These examples show how we can easily reach a size, for the cache, that’s hard or
impossible to keep in the RAM. It would still be possible to use NoSQL databases, or
distributed caches, such as Memcached, Redis, or Cassandra, to name a few, but even
there, the more entries we store, the slower it will be checking the cache. This will be
clearer when we discuss the implementation of a typical cache.
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 We can also imagine a situation where we keep receiving different inputs that
would need new entries in the cache. As you can imagine, we can’t add new entries
indefinitely to a cache: being a finite system, there will always be a point when an
infinite number of entries will saturate it.

 Therefore, once we have filled the cache, if we want to add new entries, we need to
start purging some of the existing ones.

 The question is, of course, which entries should we purge? The somehow uncanny
answer is that it would be ideal to remove the ones that won’t be requested anymore,
or at least those that will be requested fewer times.

 Unfortunately, as much as we’ve gotten better at forecasting, despite the amazing
progress in AI we have seen, even computers don’t have any psychic superpower, so we
can’t predict exactly which elements we are going to need the most and which ones the
least.16

 Spoiler alert: there are some assumptions that we can use to try to make educated
guesses. One reasonable assumption is that if an entry hasn’t been accessed for a long
time, it has less value than an entry that was recently accessed. Depending on the
size of the cache and on the time elapsed until the entry was last accessed, we could
infer that the oldest entry is somehow stale, and it’s likely it won’t be needed soon or
ever again.

 On the other hand, depending on the context, even the opposite could be true:
that entries that haven’t been accessed for a long time will be needed soon. In that
case, though, removing the fresher items usually doesn’t work very well, and some
other criteria must be found.

 If we only look at the timestamp of last access, though, we discard other useful
information. For example, if an entry was accessed several times, but not for the last
few minutes, then all newer entries, even if only accessed once, will be considered
more valuable. If you think about it, if an entry is only required once, it means it has
been computed but never read from the cache, so caching it has not yet brought any
advantage. After some time, if that entry is not yet accessed, the utility of keeping it
becomes questionable. So, a different approach could be assigning a value to entries
based on how often they are accessed.

 We will discuss these recipes in detail in the next few sections, while we also detail
the implementation of these caches.

16Of course, there are many techniques, including machine learning, that can provide good predictions, but
always with some degree of error—especially high in a field like this where the users’ behavior can change
quickly and unexpectedly.
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7.4 Getting rid of stale data: LRU cache
The first type of cache, or rather of eviction policy, that we are going to describe is the
LRU (least recently used) cache, purging the cache’s least recently used entry each time.

 What do we need to implement this data structure? The operations we want to
optimize for are

 Storing an entry given the name of a company (obviously)
 Checking if there is an entry stored for a name
 Retrieving an entry by name
 Getting the number of elements stored
 Getting the oldest entry and purging it from the cache

As we explained in section 7.3, this data structure will only be able to store a certain
number of elements at the same time. The actual size of the cache can be decided on
creation and, depending on the implementation, can even be changed dynamically.
We will denote with N the number of elements that can be stored in the cache. When
the cache is already at its full capacity, if we need to add a new entry, we will have to
remove one of the existing ones, and in this case we will remove the one that was least
recently used (hence the name).

 Let’s now reason about which one, among the basic data structures we have seen so
far, could guarantee us the best performance. Handling the size of the cache is easy;
we can keep a variable for that and update it in constant time, so we won’t mention it
any further in this analysis.

 Checking if an entry exists is based on finding an entry by name, so only the latter
operation needs to be analyzed.

 Storing and retrieving entries by name should ring a bell. It’s clearly what an asso-
ciative array does, so hash tables would be the obvious choice there. Hash tables, how-
ever, are not great when it comes to retrieving the minimum (or maximum) element
they contain.17

 In fact, removing the oldest element could take up to linear time and, unless the
expected life of the cache is so short that, on average, we are not going to fill it com-
pletely, this could slow down every insertion of a new entry.

 Using arrays doesn’t seem like a good idea, because they would not speed up any
of the operations, or at most just a single one, while requiring all the space for maxi-
mum capacity to be allocated from the start.

 Linked lists seem promising for keeping the order of insertion, but they wouldn’t
be great when it comes to looking up entries.

 If you read appendix C, you might remember that there is a data structure offering
a compromise between all of these different operations: balanced trees! With a tree,
we would be able to guarantee that all of these operations could be performed in log-
arithmic time in the worst-case scenario. 

17See chapter 2 and appendix C for a refresher.



231Getting rid of stale data: LRU cache

So, from table 7.1, we could infer that

 The tree would look like the best compromise on the general case.
 The hash table would be the best choice if we know the size of the cache is big

enough (and the insertion of new elements infrequent enough) to rarely
require removal of the oldest entry.

 The linked list could be a valid option if removing old entries was more import-
ant than storing entries or finding cache elements: but in that case, the cache
would basically be useless and adding it would provide no benefit.

 In all cases, the memory needed to store n entries is O(n).

Now the question is, can we do any better?

7.4.1 Sometimes you have to double down on problems

As you can imagine, if the answer were no, we wouldn’t really be asking the question
in the first place.

 But how can we do any better? There isn’t any other data structure that allows us to
optimize all three main operations at the same time.

 And yet . . . . What if I told you that it is possible to design an LRU cache that takes
O(1) amortized time18 for all those operations?

 Before you go on and read the solution to the riddle, please try for a couple of
minutes to imagine how that could be possible.

 Let me give you two hints (spoiler alert: you might want to try designing a solution
before reading them):

1 You can use as much extra memory as you want (but staying within O(n) should
be your target).

2 The fact that I mentioned linked lists should ring a bell, and make you think
about a specific data structure we saw in appendix C. Nevertheless, we have
seen that it’s not enough if you take it alone.

Table 7.1 Comparative analysis of performance vs implementation for cache with n elements

Array (unsorted) Array (sorted) Linked list Hash table Balanced tree

Storing an entry O(1) O(n) O(n) O(1) a O(log n)

Finding entry by name O(n) O(log n) b O(n) O(1) a O(log n)

Removing oldest entry O(n) c O(n) O(1) O(n) O(log n)

aAmortized.
bUsing binary search.
cIt requires O(1) time to locate the entry but, considering a static array, after removing its first ele-
ment, the rest of the elements must be shifted one position.

18Technically, as we have seen, it’s more correct to say that the amortized time for n operations is O(n), so indi-
vidual calls usually take constant time, but some of them might and will take longer, up to O(n).
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Both hints point to the same idea: a single data structure might not be enough to
build the most efficient solution to the problem.

 On the one hand, we have data structures that are particularly good for quickly storing
and retrieving entries. Hash tables are pretty much impossible to beat if that’s the game.

 On the other hand, hash tables are terrible when it comes to maintaining an
ordering of things, but we have other structures that handle this very well. Depending
on the kind of ordering we would like to keep, we might need trees, or we might be
fine with lists. We’ll actually see both cases in the rest of the chapter.

 In light of this new hint, pause for another minute and try to imagine how to make
this work. Can you come up with an idea of how to combine a hash table and another
data structure in order to optimize all operations on a cache?

7.4.2 Temporal ordering

It turns out that we have a very simple way to do so. Before delving into this section, you
might want to look at appendix C if you can’t exactly remember the running time for
operations on arrays and lists, and the difference between singly- and doubly-linked lists.

 So, imagine that you only have to keep an ordering on the cache entries, being
able to go from the least to the most recently used. Since the order is only based on
insertion time, new elements are not changing the order of the older elements; there-
fore, we don’t need anything fancy: we only need a structure that supports FIFO. We
could just use a list or a queue. As you should remember, a linked list is usually the
best choice when we don’t know in advance the number of elements we will have to
store or the number can change dynamically, while a queue is usually implemented
using an array (and so more static in dimension), but optimized for insertion on the
head and removal on the tail.

 Linked lists can also support fast insertion/removal at their ends. We need, how-
ever, a doubly-linked list, as shown in figure 7.5, where we insert elements on the
front, and remove from the tail. By always keeping a pointer to the tail and links from
each node to its predecessor, we can implement tail removal in O(1) time.

Figure 7.5 Structure of an LRU cache. 
You can see the tree data elements that 
are stored for the cache and need to be 
updated after every operation: (1) The 
hash table. (2) The head of a doubly-
linked list. (3) A pointer to the last 
element in the list. Notice how each 
element in the hash table points to a 
node in the list where all the data is 
stored. To get from a list entry to the 
corresponding hash entry, we have to 
hash the name of the company stored 
in the node, which is the key for the 
table. For the sake of simplicity, 
collision resolution is not considered in 
this and the following figures.
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Listing 7.1 shows some pseudo-code implementing an LRU with linked lists.

class LRUCache
  #type integer
  maxSize         
  #type HashTable
  hashTable         
  #type LinkedList
  elements         
  #type LinkedListNode
  this.elementsTail = null       

  function LRUCache(maxElements) 
    maxSize ← maxElements        
    hashTable ← new HashTable(maxElements)   
    elements ← new LinkedList()                      
    elementsTail ← null  

When static queues are implemented using arrays, we can save some extra memory in
comparison to linked lists, which would use it for pointers to other nodes and for the
node object itself. This is an implementation detail, though, that depends on the lan-
guage used and doesn’t change the order of magnitude of the memory used: it’s O(n)
in both cases.

 So, in the end, how do we choose between lists and queues? Well, we need to rea-
son a bit more about our design. So far, we have only considered the hash table and
the linked list separately, but we need to make them work together in synchrony.

 We might store very large objects in the cache, and we definitely don’t want to
duplicate them in both data structures. One way to avoid duplication is storing the
entries only in one of the structures and referencing them from the other one. We
could either add the entries to the hash table and store in the other DS the key to the
hash table, or vice versa.

 Both linked lists and queues could support either way. But we are going to use a
linked list instead; the reason will be clear in a few lines.

 We also need to decide which data structure should hold the values and which one
should be left with the reference. Here, we are arguing that the best choice is having
hash table entries store pointers to linked list nodes, and have the latter store the
actual values, and the main reason for that is the same as for choosing lists over
queues.19

This reason stems from a situation we haven’t considered yet.

Listing 7.1 LRU cache construction

19There is also more to the story. If we do the opposite, then the way we link from a linked list node to the hash
table entry will be tied to the implementation of the hash table. It could be an index for open addressing or a
pointer if we use chaining. This coupling to an implementation is neither good design nor, often, possible, as
you usually can’t access standard library internals (for good reason!).

The signature of the constructor for the 
LRUCache object. We pass the max number 
of elements that the cache should store.

We need to remember how many entries 
we can store.

Init the hash table (the max size helps 
computing the internal parameters for 
the table).

Init the linked list for the elements 
(for now, it’s just empty).

The list is empty, so the pointer to last element is null.
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 This cache is called least recently used. It’s not least recently added. This means the
ordering is not just based on the time we first add an element to cache, but on the last
time it was accessed (which can be the same, for unlucky entries that are never reused
after they have been saved, although it usually shouldn’t be).

 So, considering the set method to add a new entry to the cache (implemented in
listing 7.2), when we have a cache miss, trying to access an element that is not on the
cache, we just add a new entry to the front of our linked list, as shown in figure 7.6.

function LRUCache::set(key, value)
  if hashTable.contains(key) then      
    node ← hashTable.get(key)           
    node.setValue(value)      
    elements.moveToFront(node)   
    return false        
  elsif getSize() >= maxSize then     
    evictOneEntry()            
  newNode = elements.addFront(key, value)  
  hashTable.set(key, newNode)   
  if elementsTail == null then  
    elementsTail ← newNode     
  return true  

But when we run into a cache hit, as shown in figure 7.7, accessing an element that is
indeed stored on the cache, we need to move an existing list element to the front of
the list, and we can only do that efficiently if we can both retrieve in constant(-ish20)
time a pointer to the linked list node for the existing entry (which could be anywhere
in the list, for what we know), and remove an element from the list in constant time
(again, we need a doubly-linked list for this; with an array-based implementation of a
queue, removal in the middle of the queue takes linear time).

 If the cache is full, we need to remove the least-recently-used entry before we can
add a new one. In this case, the method to remove the oldest entry, described in list-
ing 7.3 and illustrated in figure 7.8, can access the tail of the linked list in constant
time, from which we recover the entry to delete. To locate it on the hash table and

Listing 7.2 LRU cache set

20Remember we still need to include the time for computing each hash value for the entry we look up. See
appendix C for more on this topic.

Declares method set. The prefix LRUCache:: is 
just a notation to remind that this function is a 
method of class LRUCache.

Checks that the entry isn’t already in the cache

If it is, we retrieve the node 
containing all entry’s data.

Updates
the value

stored
 in the

node

Moves the
existing

node to the
front of the

queue

[OPTIONAL] Returns false to flag that no 
new entry was added. We need to return 
here, though, to avoid running the rest of 
the code in the method.

If the entry is not in the cache, 
we need to check if the cache is 
already full.

If the cache is full, we need to delete 
one element from the cache. The 
implementation of this method defines 
the eviction policy of the cache: for LRUs, 
the oldest element will be removed.

At this point, the c
maxSize-1 eleme
certainly room for 
a new node at the 

Adds an
entry in the
cache table
pointing at

the new
node

If the pointer to the tail of the list was null, it means the list 
was empty, so now the tail should point to the new element.

Returns true to flag that a new
entry was added to the cache
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Figure 7.6 Add on a cache miss. (A) The cache before adding a new element. At this point, we 
look up “Acme” and get a cache miss. (B) We add to the front of the list a new node for “Acme.” 
(C) We create a new entry in the hash table and update the pointer to the new head of the list.
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Figure 7.7 Update of a cache entry on cache hit. (A) The initial state of the cache. At this stage, the 
entry to update, “EvilCorp,” has been looked up and we had a cache hit. The lookup happens on the hash 
table; hence, the EvilCorp entry and link are highlighted. (B) The list node for EvilCorp is updated with 
the new data (looks like EvilCorp spent some cash to turn around its reputation!) and it’s also removed 
from the list, whose links are updated. (C) The node is now added to the front of the list. No update is 
necessary for the hash table.
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delete from it, we will need to hash the entry (or its ID) at an extra cost (potentially
non-constant: for strings, it will depend on the length of the string).

function LRUCache::evictOneEntry()
  if hashTable.isEmpty() then     
    return false        
  node ← elementsTail    
  elementsTail ← node.previous()            
  if elementsTail != null then 
    elementsTail.next ← null
  hashTable.delete(node.getKey())
  return true     

Listing 7.3 LRU cache evictOneEntry (private method)
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Figure 7.8 Removal of the LRU entry (will be followed by an add on miss, like the one in figure 7.6). (A) 
The initial state of a full cache. (B) The pointer to the tail of the list is updated, as well as the links 
from/to the second-to-last node. The corresponding entry in the hash table is also removed, so the node 
for the entry is not referenced from the cache anymore (depending on the language, it might be garbage 
collected, or we need to manually destroy it and release the memory it uses).

Checks that the cache is not empty

If it is, returns false to flag failure

Updates the pointer to the least recent element. 
Invariant: if the cache is not empty, the tail is not null

If the new tail is not null, updates its pointer to the next 
element (that must be null now, being the new tail)

Removes the entry from the hash table
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true to
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There are still a couple of methods in the API that we haven’t discussed yet: get(key)
and getSize(). Their implementation, though, is trivial, because they are just wrap-
pers for the homonymous methods in hash tables, at least if we keep values in the
hash table directly. If, instead, we keep values in the linked list, and the hash table has
pointers to list nodes, then in get we need to resolve this further indirection, as shown
in listing 7.4.

function LRUCache::get(key)
  node ← hashTable.get(key)       
  if node == null then
    return null         
  else
    return node.getValue()    

7.4.3 Performance

So, if you look at all the previous listings, they only contain operations that are either
constant-time or amortized constant-time (for the hash table). That gives us the boost
in performance that we were looking for!

 Table 7.2 shows an updated version of table 7.1, including an entry for the LRU
cache.

7.5 When fresher data is more valuable: LFU
We have hinted at this in the previous sections: sometimes the least recently used
entries are the ones less likely to be requested again . . . but that is not necessarily true
in all contexts.

 It may happen that some data was popular in the past and currently becomes tem-
porarily irrelevant, but then it will likely be accessed again in the near future.

 Think about an online retailer that operates worldwide. If a product is particularly
popular in one or just a few countries, it will hit high peaks of requests during busy

Listing 7.4 LRU cache get

Table 7.2 Comparative analysis of performance vs implementation for cache with n elements

Array (unsorted) Linked list Hash table Balanced tree LRU cache

Storing an entry O(1) O(n) O(1) a

aAmortized time

O(log n) O(1) a

Finding entry by name O(n) O(n) O(1) a O(log n) O(1) a

Eviction O(n) O(1) O(n) O(log n) O(1) a

Searches the hash table for the argument key. The 
output of get is a node of the linked list or null.

If node is null, the key is not stored in the 
hash table; hence, the entry is not in the cache.

Otherwise, we just return the value 
stored in the linked list’s node.
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hours for that country, while it will hardly be accessed at all during the low peaks of
activity for that same area.21

 Another example could simply be a spurious peak of requests for certain items, as
shown in figure 7.9.

Either way, we might end up purging from the cache data that on average is used fre-
quently over time, because there might be fresher data—entries that have been
accessed more recently, but perhaps will never ever (or for a long time, longer than
the average life of a cache entry) be accessed again.

 If that’s a possibility, an alternative policy could be based on counting how many
times an entry has been accessed since it was added to the cache, and always retaining
those items that are accessed the most.

 This purging strategy is called LFU for Least Frequently Used (sometimes also referred
to as MFU, Most Frequently Used) and comes with the advantage that items that are stored
in the cache and never accessed again get purged out of the cache fairly quickly.22

21This example is purely for illustration. In all likelihood, cache, DBs, web servers, and so on for such a retailer
will be sharded geographically exactly to exploit this locality of preferences.

22If implemented correctly. In particular, you need to be careful how you break ties when two entries have the
same count—assigning higher value to newer entries is usually the best choice.
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Figure 7.9 An example of a possible situation where LRU eviction policy would purge most “best-
selling” items from a cache, in favor of the more recently viewed ones which become popular during a 
peak of requests. In the figure, items are ordered according to their most recent view; the number of 
views is shown only to display how most recent views during a peak can wipe out normal best-selling 
products. While LRU policy never guarantees that best-selling items will stay in the cache, the higher 
frequency with which they are accessed makes it more likely that they will stay in the cache (because 
it is likely they will go to the head of the queue before being purged). During a peak, if the number of 
items that suddenly become popular is large enough, they could fill the cache and force the usual items 
to be purged. This would be a temporary side effect that will regress after the peak. In some situations, 
this could also be desirable, because items popular during a peak should be accessed faster than the 
regular best-selling ones. LRU has a more dynamic turnaround than LFU, as we will see.
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7.5.1 So how do we choose?

Those are not the only possible strategies for cache purging. A web cache, for
instance, could also consider the cost of retrieving some information in terms of
latency, compute time, and even actual costs when, as in our example, you need to pay
an external service to retrieve some information.

 And that’s just one of many examples. The key point here is that you need to
choose the best strategy for your context and for the characteristics of your applica-
tion. Partly you can determine it during design, but to validate and fine tune your
choice, you will likely have to run some profiling and collect statistics on the usage of
your cache (don’t be alarmed, though; there are several tools that can automatically
do that for you).

7.5.2 What makes LFU different

To describe an LFU, we are not going to start from scratch; that would make no sense,
as we already have a good basis to start with—our LRU cache.

 We’ve said it over and again: the difference between two cache types is the eviction
policy. Well, that’s true for the most part, although not quite the whole story.

 As shown in figure 7.10, we could implement our LFU from the code in section 7.4
by just changing the eviction policy and therefore the order of elements in the list.

 When we add a new entry, we set its counter to 1, and we could insert it at the tail
of the list, while on a cache hit we could increment the node’s counter and move it
toward the head of the list until we find another node with a larger counter.
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Figure 7.10 An inefficient implementation of an LFU cache. When all elements of a list with n entries 
have the same value for counter, and one element at the end of the list is accessed, we will have to 
perform n-1 node swaps to bubble up the updated entry to the front of the list.
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That would certainly work correctly. But how efficient would it be? Would there be a
way to improve the performance of our cache?

 We can forget about constant-time insertion: that only works for the LRU. We can
at least maintain constant-time lookup, and it’s better than nothing.

 But adding or updating a new element could take up to linear time in edge cases
where most of the elements are used with the same frequency.

 Can we do any better? Well, once again, at this point a bell should ring (if it doesn’t,
you might want to take a look at chapter 2 and appendix C before moving on).

 We are no longer basing our eviction policy on a FIFO (first in, first out) queue.23

The order of insertion doesn’t matter anymore; instead, we have a priority associated
with each node.

 Now do you see where I am going? The best way to keep an order on entries based
on their dynamically changing priority is, of course, a priority queue. It might be a
heap, a Fibonacci heap, or any other implementation, but we will stick with the abstract
data structure in the code, leaving to users the task of thinking about which implemen-
tation works best for them, depending on the programming language they use and, of
course, the context in which they will use the cache.24 For the performance analysis,
though, we will consider a heap because it gives us reasonable-enough performance
guarantees on all operations, combined with a clean, simple implementation.

 Take a look at figure 7.11 to see how this changes our cache internals. Now we have
only two things to change in our implementation to switch from an LRU to an LFU:

 The eviction policy (all the logic about choosing which element to remove)
 The data structure used to store elements

It’s time to look at some more code. We highlighted the differences between the cor-
responding LRU’s methods to make it easier for the readers to compare them.

 The initialization of the cache, shown in listing 7.5, is almost identical to the LRU
one; we just create an empty priority queue instead of a linked list.

function LFUCache(maxElements)
  maxSize ← maxElements        
  hashTable ← new HashTable(maxElements)    
  elements ← new PriorityQueue()      

When it comes to adding an entry, things get a bit trickier. Remember that we men-
tioned how you need to be careful in order to implement the priority? We want to
make sure that among the elements with the minimum number of entries, the oldest
is removed first; otherwise, we could end up removing the latest entry over and over
again, without giving it a chance to have its counter increased.

23One could say a FIFO+ queue, because elements can also be moved to the head of the queue at any time.
24Depending on the relative frequency of read/write, you might want to fine-tune one operation or the other.

Listing 7.5 LFU cache construction

This time we need to create a priority queue. 
On the other hand, we don’t need the pointer 
to the tail anymore. We assume that elements 
with lower values for priorities are towards the 
top of the queue (as it happens in a min-heap).
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The solution is described in listing 7.6, where we use a tuple, <counter, timestamp>
as priority, where the timestamp is the time of last access to an entry, and it’s used to
break ties on the counter; here, higher frequency and larger timestamps mean higher
priority.

function LFUCache::set(key, value)
  if hashTable.contains(key) then     
    node ← this.hashTable.get(key)   
    node.setValue(value)      
    node.updatePriority(new Tuple(node.getCounter() + 1, time())) 
    return false       
  elsif getSize() >= maxSize then     
    evictOneEntry()
  newNode ← elements.add(key, value, new Tuple(1, time())) 
  hashTable.set(key, newNode)     
  return true       

Finally, we have the method to evict one of the entries, which is implemented in listing
7.7. Using a priority queue makes its implementation even easier, because all the
details of removing the element and updating the queue are encapsulated in the pri-
ority queue itself.

Listing 7.6 LFU cache set

Figure 7.11 As opposed to the example in figure 7.10, an efficient implementation of an LFU 
cache, using a priority queue to keep track of which elements should be evicted next. Here the 
PriorityQueue, which is an abstract data type, is represented as a binary heap. Note that we 
don’t need to keep separate pointers for the points of insertion and eviction like for the linked list.
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function LFUCache::evictOneEntry()
  if hashTable.isEmpty() then     
    return false       
  node ← elements.pop()          
  hashTable.delete(node.getKey())     
  return true        

7.5.3 Performance

Let’s once again update our table with the performance for LFU. As shown in table
7.4, since all writing operations for an LFU involve modifying a heap, we can’t have
the constant time guarantee anymore, except for the lookup.

 It’s worth noting that with a Fibonacci heap, insertion and update of priority in the
heap would run in amortized constant time, but deleting the top element would still
require logarithmic time, so we couldn’t improve the asymptotic running time needed
for storing an entry (because it uses delete).

7.5.4 Problems with LFU

Of course, no policy is always perfect, and even LFU has some cons. Most notably, if
the cache runs for long, the turnaround time for older entries that are not popular
anymore could be very long.

 Let’s consider an example: if you have a cache with at most n entries, and the most
frequently used one, X, has been requested m times before, but at some point isn’t
being accessed anymore (for example, it goes out of stock), then for a set of n new
entries to cause the eviction of X, they will have to be requested n*m times at least.

 Plugging in some numbers, if your cache holds a thousand elements and X was
requested a thousand times, it will take at least one million accesses to a thousand
brand-new entries before X is evicted after it becomes useless. Obviously, if more
accesses are made to other entries already in the cache, then this number goes down,
but on average it should be in that order of magnitude.

 To solve this issue, some possible solutions are

 Limiting the maximum value for the counter of an entry

Listing 7.7 LFU cache evictOneEntry (private method)

Table 7.3 Comparative analysis of performance vs implementation for cache with n elements

Array List Hash table Tree LRU cache LFU cache

Storing an entry O(1) O(n) O(1) a

aAmortized time.

O(log n) O(1) a O(log n) a

Finding entry by name O(n) O(n) O(1) a O(log n) O(1) a O(1) a

Eviction O(n) O(1) O(n) O(log n) O(1) a O(log n) a

Instead of handling removal from the tail of a linked 
list, we just remove the top element from a priority 
queue. Invariant: if the hash table is not empty, the 
queue must not be empty.
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 Resetting or halving the counter of entries over time (for instance, every few
hours)

 Computing the weighted frequency based on the time of last access (this would
also solve our issue with ties on the counter, and we could avoid storing tuples
as priorities)

LRU and LFU are not the only type of cache available. Starting from an LFU cache,
and just (this time for real) changing the eviction policy by choosing a different met-
ric for entries priority, custom types can be created to adapt to specific contexts.

 For instance, we could decide that certain companies are more important than
others, or we might want to weight the number of accesses with the age of the data,
halving it every 30 minutes from the last access.

 As complicated as it may sound so far, that’s not all of it. You have choices about
how to run a cache, but you also have more choices when it comes to how to use it.

7.6 How to use cache is just as important
That’s right, the cache type is only part of the story. To make it work properly, you also
need to use it in the best possible way for your application.

 For instance, if you place a cache in front of a database, on writing operations you
could decide to write values only to the cache and only update the DB if another client
requests the same entry; or, on the other hand, you could decide to always update the DB.

 Even more, you could decide to write on the DB only and update the cache just
when data is requested for read, or update the cache on writes.

 These policies described above all have names, because they are widely used in
software design and engineering.

 Write-Behind (or Write-Back), our first example, is a storage policy where data is writ-
ten into cache on every change while it’s written into the corresponding location on
the main storage (memory, DB, and so on) only at specified intervals of time or under
certain conditions (for instance, on reads).

 In this case, the data on cache is always fresh, while data on the DB (or other sup-
port) might be stale. This policy helps keep latency low and also reduces the load on
the DB, but it might lead to data loss; for instance, when we write back only on reads,
and an entry stored in cache is never read after write. In some applications this data
loss is fine, and in those cases write back is the preferred policy.

 Write-Through (or Write-Ahead), always writes entries both on cache and on the main
storage at the same time. This way the database will usually have only one write and
will (almost) never be hit by the application for read. This is slower than Write-
Behind, but reduces the risk of data loss, bringing it down to zero, with only the
exception of edge cases and malfunctions. Write-Through strategy doesn’t improve
writing performance at all (but caching would still improve reading performance);
instead, it is particularly useful for read-intensive applications when data is written
once (or seldom) and read many times (usually in a short time). Session data is a good
example of usage for this strategy.
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 Write-Around refers to the policy of writing data only to the main storage, and not to
cache. This is good for write-and-forget applications, those ones that seldom or never
reread recently written data. The cost of reading recently written data in this configu-
ration is high because they will result in a cache miss.

 Read-Through refers to the overall strategy of writing entries on the cache only
when they are read, so they are already written on another, slower, memory support.
The writing policy that’s used for this purpose can be any of Write-Back or Write-
Around. The peculiarity of this policy is that in Read-Through, the application only
interfaces to cache for reading, and the cache store will be delegated to read data from
the main storage on a cache miss. 

 Refresh-Ahead is a caching strategy used in caches where elements can go stale, and
they would be considered expired after a certain time.25 In this approach, cache
entries with high requests that are about to expire are proactively (and asynchro-
nously) read and updated from the main source. This means that the application will
not feel the pain of a slow DB read and cache store.

 Cache-Aside has the cache sitting on the side of the application, and only talking to
the application. It’s different from Read-Through because in this case the responsibil-
ity of checking the cache or the DB is on the application, which will first check the
cache and, in case of miss, do some extra work to also check the DB and store the
value read on the cache.

 Choosing the best strategy can be as important as acing the cache implementation,
because choosing unwisely can overload and crash your database (or whatever the
main storage is, in your case).

7.7 Introducing synchronization
So far, we have always assumed that our cache objects were used in a single-threaded
environment.

 What do you think would happen if we used code in listing 7.6 in a concurrent
environment? If you are familiar with concurrent code, you can already imagine that
we might have issues with race conditions.

 Let’s take another look at that code, copied over to listing 7.8 for your conve-
nience, with some minimal simplifications.

function LFUCache::set(key, value)
  if (this.hashTable.contains(key)) then                                   #1
    node ← this.hashTable.get(key)                                        #2
    node.setValue(value)                                                   #3

25This kind of cache is particularly useful in eventually consistent systems. Eventual consistency relaxes the consis-
tency constraint, allowing for instance data in the cache to be slightly off-sync with respect to the most recent
version of the same entry stored in a database. This can be useful if we are fine with some information being
slightly off-sync. For instance, for a shopping cart, we can probably handle the availability of an entry being off-
sync for a 100ms or even a second.

Listing 7.8 Simplified version of LFU cache set
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    return node.updatePriority(node.getCounter())                          #4
  elsif getSize() >= this.maxSize                                          #5
    evictOneEntry()                                                        #6
  newNode ← this.elements.add(key, value, 1)                              #7
  hashTable.set(key, newNode)                                              #8
  return true

Let’s imagine we have two concurrent calls to add two new entries (neither of them is
in the cache yet) and our cache already contains maxSize-1 elements. In other words,
the next element will fill the cache to its maximum capacity.

 Now those two requests will proceed in parallel and suppose call A is the first one
to get to line 5 in listing 7.8. The condition is false; then it moves to line 7. But
before call A executes line 7, call B gets to line 5, and—guess what?—the if condition
is still false, so call B will move on to line 7 as well and execute it and line 8.

 As a result, the cache will hold one element more than allowed. Figure 7.12 shows
this situation. The good news is that on line 5, we already do things the right way and
check if current size is greater than or equal to the max allowed size. If we were just
checking for equality, this race condition would have caused the cache to grow indefi-
nitely, likely until it overflowed your system’s heap.
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Check cache size.

Overflow
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Figure 7.12 A shared cache used in a multithreaded environment, without implementing synchronization. 
(A) Two threads concurrently try to add a new element to a cache with only one free spot. When the 
LFUCache::set method inside each thread concurrently checks for cache size (line 5 in listing 7.8), 
they both see it’s not full. (B) Without synchronization, both threads add an element to the cache (line 
7), without evicting. Depending on the implementation of the cache (and of elements.add), this could 
lead to overflow of the cache or just to one of the two values being overwritten by the other. It’s important 
to understand that even if the cache handles purging internally, as it should be (the app should only worry 
about reading/writing elements; only the cache should decide when purging is necessary), if cache’s 
methods are not synchronized, race conditions can and do happen inside those methods.
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Likewise, line 1 could bring to race conditions if two parallel calls to set the same key
happen simultaneously.

 It also gets worse than this. For instance, think about how we might want to fix this
problem. You might be tempted to add another check right before line 7, but would
that work? It would somehow lower the odds that things might go berserk, but it
wouldn’t really solve the problem.

 The issue here is that the set operation is not atomic: while we are in the process of
setting a new entry (or updating an old one), at the same time we might be perform-
ing the same operation in another thread for another entry, the same operation for
the same entry, or even an entirely different operation, such as evicting an element
from the cache.

 When we operate in a single-threaded environment, calling cache’s methods syn-
chronously, things go smoothly because each method call is completed before anyone
else can change the cache, so we have the illusion of atomicity.

 In a multi-threaded environment, we need to be careful and explicitly regulate the
execution of these methods and access to the shared resources, so that all methods
that mutate the state of an object are executed simulating full isolation (so no one else
can modify the resource, and perhaps also no one else can read from it). Figure 7.13
can give you an idea of how we can correct the workflow to prevent the race condi-
tions previously discussed.

 For composite data structures such as caches, we need to be twice as careful,
because we need to make sure that also the basic data structures upon which they’re
built are thread-safe.26

 And thus, for LFU, we need to ensure that both the priority queue and the hash
table support concurrent execution.

 Modern programming languages provide plenty of mechanisms to ensure thread-
safety, from locks to semaphores to latches.

 An extensive covering of this topic would require a book on its own, so unfortu-
nately we will have to make do with an example. We’ll show how to solve this problem
in Java, providing the full code for thread-safe LRU/LFU in our repo on GitHub.27

 
 
 
 
 
 
 
 

26Or, in other words, they can be safely run in a multi-threading environment, without leading to race
conditions.

27See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#cache.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#cache
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7.7.1 Solving concurrency (in Java)

If we are making another exception in this chapter, showing some code in a specific
programming language rather than pseudo-code, it’s because we feel that these con-
cepts can only by tackled effectively within the concrete context of a real language.

 As many programming languages support the same concepts, it should be easy to
port this logic to your favorite environment.

 We actually need to start from the class constructor, implemented in listing 7.9,
because there will be new elements to be added.
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Figure 7.13 Using a synchronized implementation for the cache, we can avoid race conditions. In the 
example shown in figure 7.12, a synchronized data structure requires any thread to acquire a lock on it 
(B) before being able to write a value (C). If another thread tries to acquire the lock while it is still in use 
by thread N, it will be left waiting until the lock is released (D). After that (not shown in the figure), the 
waiting thread can acquire the lock, or possibly compete with other threads trying to acquire it.
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LFUCache(int maxSize) {
  this.maxSize = maxSize;                                                  #1
  this.hashTable=new ConcurrentHashMap<Key, PriorityQueueNode >(maxSize);  #2
  this.elements = new ConcurrentHeap<Pair<Key, Value>, Integer>();         #3
  ReentrantReadWriteLock lock = new ReentrantReadWriteLock();              #4
  this.readLock = lock.readLock();                                         #5
  this.writeLock = lock.writeLock();
}

There are a few noticeable changes with respect to listing 7.5, besides, of course,
switching to Java syntax. 

 At lines 2 and 3, notice how we used a ConcurrentHashMap instead of a simple
HashMap, as you might have expected, and the same goes for the ConcurrentHeap28

class. We want our internal data structures to be synchronized as well, to guarantee
atomicity and isolation. Technically, if we handle the synchronization of LRUCache’s
methods correctly, there will be no concurrent access at all to its internal fields, so we
could also be fine with the regular, single-thread data structures. If we use their con-
current versions, we need to be super-careful, because that could lead to bugs and
deadlocks.29

7.7.2 Introducing locks

When we get to line 4, though, we see a new entry, a brand-new attribute for our class:
an object of type ReentrantReadWriteLock. Before explaining what a reentrant lock is,
we should make one thing clear: this is the mechanism that we are going to use to han-
dle concurrent access to LFUCache’s methods. Java provides several different ways to
do so, from declaring methods as synchronized to using semaphores, latches, and so
on of these mechanisms. Which one is the best depends—as always—on the context,
and sometimes more than one method could work. In this case, I prefer using a reen-
trant read/write lock rather than declaring methods as synchronized, because it gives us
more flexibility in deciding when we should use a lock on read and when on write. As
we’ll see, there might be a big impact on performance if we don’t get this right.

 But first things first: we still need to define what a lock is, not to mention what
reentrant means.

 A lock is a concurrency mechanism whose name is pretty self-explanatory. You
probably have already heard of database locks, and the principle is exactly the same
for code. If an object (an instance of class) has some code wrapped inside a lock, this
means that for that instance, no matter how many calls are made to that method, the

Listing 7.9 Java implementation, LFU cache constructor

28Java standard library doesn’t provide an implementation of PriorityQueue, so you won’t find this class
natively in your JRE. We provide a version of a synchronized heap in our repo.

29A situation where all threads are blocked waiting for some shared resources, but none of them can acquire it.
This causes the application to become unresponsive and stuck, and ultimately crash.
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locked portion of code can only be executed by one call at a time—all the others will
have to wait for their turn.

 In our example, it means that of the two calls to set, while the first is executed, the
second is left waiting.

 As you can see, this is a powerful mechanism, but it’s also dangerous, because fail-
ing to release a lock can leave all other calls hanging forever (deadlock) and even just
using locks excessively can degrade performance sensibly, introducing unnecessarily
long delays.

 Locks basically move execution from parallel to synchronous (hence the term syn-
chronization) by using waiting queues to regulate access to a shared resource.

 Explaining in-depth how a lock works and how deadlocks can happen and can be
prevented usually takes a couple of chapters in a book on operating systems, so it’s out
of our scope. We encourage interested readers to go on and read more on the
subject30 because it’s becoming more and more important for modern programming
and web applications, but also compute-intensive applications that run in parallel
on GPUs.

 Now, what does reentrant mean? As the word suggests, with a reentrant lock a
thread can enter (or lock) a resource more than once, and every time it does, a
counter is incremented by one, while when it unlocks the resource, the counter is
decremented by one, and the lock is actually released when this counter gets to zero.
Why is it important to have a reentrant lock? Because if the same thread tries to lock
the same resource more than once, we could get into a deadlock. 

 No, seriously, why is it important to us? You will have to wait a few paragraphs until
we will show you in practice.

7.7.3 Acquiring a lock

So, now that we have an idea of what a lock is, we are ready to take a look at the modi-
fied version of the set method in listing 7.10.

 As you can see, as soon as we enter the method, we lock our resource (the whole
cache) for writing. What does it mean? When a write lock is set on a resource, the
thread holding the lock is the only one that can write to and read from that resource.
It means that all other threads, either trying to read or write on the resource, are
going to have to wait until the current lock holder releases it.

 The second instruction here is a try, with a finally block at the end of the
method (lines marked with 4 and 5), where we release the lock. This is necessary to
prevent deadlock: if any of the operations inside the try fail, we still release the lock
before exiting the function, so that other threads can acquire the lock and not be
blocked anymore.

 

30A superb start is C++ Concurrency in Action (by Anthony Williams, Manning Publications, 2019), if you are famil-
iar with C++, or would like to learn more about it. Concurrency in .NET (by Riccardo Terrell, Manning Publica-
tions, 2018) is your choice of election if functional programming is your way.
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public boolean set(Key key, Value value) {
  writeLock.lock();                                                        #1
  try {                                                                    #2
    if (this.hashTable.contains(key)) {     
      PriorityQueueNode node = this.hashTable.get(key);
      node.setValue(value);  
      return node.updatePriority(node.getCounter());
    } else if (this.getSize() >= this.maxSize) {
      this.evictOneEntry();                                                #3
    }
    PriorityQueueNode newNode = this.elements.add(key, value, 1);
    this.hashTable.put(key, newNode);
    return true;
  } finally {                                                              #4
    writeLock.unlock();                                                    #5
  }
}

In these examples, we are still using the hash table to store references to the priority
queue nodes, the way we were storing references to the linked list nodes for LRU.
While for LRU this makes sense, in order to keep the constant running time for all
operations, as explained in section 7.4.2, for LFU cache we can store just values in the
hash table. This makes implementation simpler, as shown on our repo, but possibly at
the cost of changing the running time for the operation.

 Take a minute to think about it before reading the explanation. The reason, as you
may have figured out, is simple: both in set and get we call updatePriority on the
priority queue. If we have a reference to the node to update, pushdown and bubbleUp
will require logarithmic time, as shown in chapter 2, sections 2.6.1 and 2.6.2.

 Finding an element in a heap, however, would normally require linear time. Alter-
natively, in section 2.6.8 we showed that it is possible to use an auxiliary hash table
inside our priority queue and have search performed in amortized constant time, so
that updatePriority would then run in amortized logarithmic time.

 We previously hinted at the fact that we should go easy on using locks, so the ques-
tion arises: Could we acquire the lock later in the function?

 That depends. We need to make sure that while we check the hash table for key,
no other thread is writing on it. If we use a concurrent structure for the hash table, we
could move the write lock acquisition inside the first branch of the if, but then we
would also need to change the rest of the function (because evicting one entry and
adding the new one should all happen as an atomic operation) and be careful with
how we use the hash table, since we introduce a second resource on which we lock,
and that might lead to deadlock.31

Listing 7.10 Java concurrent LFU cache set

31If thread A locks on the hash table and thread B acquires the write lock on the whole cache, and then both
need the other thread to continue, we get to the equivalent of a Mexican standoff for threads. And that never
ends well in movies.
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 So, the short answer is, let’s keep it simple (also because we wouldn’t have much of
an advantage anyway).

7.7.4 Reentrant locks

Now we can finally explain how a reentrant lock prevents deadlock in our case. At the
line marked with #3 in listing 7.10, the current thread calls evictOneEntry to remove
one item from the cache. We decided to keep the method private in our example, for
good reason, but let’s now imagine that we need to have it as a public method, guaran-
teeing the option to clients to free space in the cache. (Maybe because of memory or
garbage collection issues we need to shrink the cache dynamically—we certainly
would rather not restart it altogether and lose all of its content.)

 In that case, we need to make evictOneEntry synchronized as well, and hence
acquire a write lock inside of it. With a non-reentrant lock, evictOneEntry would try to
acquire the write lock, but set has already acquired it, and can’t free it until evictOne-
Entry finishes. Long story short, our thread is stuck waiting for a resource that will never
be freed, and all other threads will soon be stuck as well. That is basically a recipe for
deadlock, and it’s that easy to get yourself into such a situation. That’s why you should
be careful with synchronization mechanisms.

 With reentrant locks instead, since both evictOneEntry and set belong to the
same thread, evictOneEntry on line 1 is able to acquire the lock that is held by set
and can go on with its execution. Deadlock avoided, at least this time!

7.7.5 Read locks

We haven’t yet talked about read locks. We mentioned how important they are for per-
formance, but why? Let’s revisit the get method in listing 7.11.

 We acquire a read lock before reading data from the cache’s internal fields and
release it as the very last step before exiting the function.

 It seems exactly like what we do with set, right? The only change is that we use a
read lock instead, so the difference must be there—and it actually is.

public Value get(Key key) {
  readLock.lock();                                                         #1
  try {
    PriorityQueueNode node = this.hashTable.get(key);
    if (node == null) {
      return null;
    } else {
      node.updatePriority(node.getCounter() + 1);                          #2
      return node.getValue();
    }
  } finally {
    readLock.unlock();                                                     #3
  }
}

Listing 7.11 LFU cache get, Java version
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Only one thread can hold a write lock at a single time, but a read lock can be held by
many threads at the same time, provided no thread is holding a write lock.

 When we read from a data structure (or a database) we don’t modify it, so if 1, 2,
10, or a million threads are reading from the same resource at the same time, they will
always get consistent results (if the invariant is implemented correctly, and we don’t
have side effects that mutate the resource).

 When we write on a resource, we change it, and while the process is ongoing, all
reads and writes will make no sense, because they will be based on inconsistent data.
That leads to four possible combinations of locks (Read-Read, Read-Write, Write-
Read, and Write-Write), as shown in table 7.4.

 If any (other) thread is holding a read lock, we can acquire another read lock, but
need to wait for a write lock until all the read locks are released.

 If any thread is holding a write lock, all other threads need to wait to acquire either
a write or a read lock.

So, the advantage of actually distinguishing between read and write locks for our
cache is that all calls to get can be executed in parallel, and only calls to set will
block. Had we not made this distinction, access to the cache would as a result have
been entirely synchronous, with only one thread at a time being able to check the
cache. This would have introduced an unnecessary latency in our application, reduc-
ing the advantage of using a cache and possibly even making it counterproductive.

7.7.6 Other approaches to concurrency

Using locking mechanisms is not the only way to deal with concurrency. Locking han-
dles the access to a segment of code that mutates a resource, so that we are sure that
these instructions applying modification will be executed by one thread, and one
thread only, at each instant in time.

 On the other end of the spectrum, there is a completely symmetrical approach
championed by functional programming: remove mutability from your resources
altogether.

 One of the principles of functional programming is, in fact, that all objects should
be immutable. This has several advantages; for instance, it makes it easier to reason
about code because we can analyze a function to be sure that no other method will
influence what it does, and it removes race conditions altogether. It also has some dis-
advantages; for instance, it makes some operations harder, like keeping a running
state, and makes it more expensive to update state in large objects.

Table 7.4 Combinations of locks requested and held

Lock requested/held Read Write

Read Allowed Need to wait

Write Need to wait Need to wait
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 When we talk about concurrency, having immutable objects means that you can
read your resource without worrying that someone else will change it while you are
reading it, so you don’t have to set a lock.

 Writing remains a bit more complicated.32 In the functional world, a method like
set would return not a Boolean, but a new instance of the cache itself, where its con-
tent has been updated.

7.8 Cache applications
This section would definitely be shorter if we listed examples of systems that do not use
cache! Cache is ubiquitous, at all levels, from processors to the highest-level applica-
tions you can imagine.

 Low-level, hardware caches work slightly differently, though, so we’d better stick to
software caches.

 As mentioned, many single- and multi-thread applications employ ad hoc in-memory
caches to avoid repeating expensive computations.

 These caches are usually objects (in OO33 languages), provided by libraries, and
allocate dynamic memory in the heap of the same application that uses them. In the
case of multi-thread applications, the cache might run in its own thread and be shared
among several threads (as we saw in the previous section, this configuration requires
special attention to prevent race conditions).

 The next step is bringing the cache out of one application, into its own process,
and communicating with it through a certain protocol; this can be HTTP, Thrift, or
even RPC.

 A typical case is the several layers of cache in a web application:

 A CDN to cache and deliver static content (and some dynamic content)
 A web cache that caches content from the web server (usually entire pages and

might be the CDN itself)
 An application cache storing the result of expensive server computations
 A DB cache storing the most-used rows, tables, or pages from a database

Finally, for large applications with thousands of requests per second (or more), caches
need to be scaled together with the rest of the web stack. This means that a single pro-
cess might not be enough to hold all the entries that the application needs to cache in
order to run smoothly. For instance, if we have a million accesses per second to a data-
base, a cache in front of it that can only store a million elements is probably close to
useless, because there would be too high a turnaround, and all requests would basi-
cally go ahead to the DB, crashing it to a halt in a few minutes.

32You can still have race conditions when two threads try to update the shared cache at the same time, but this
case can be solved with optimistic locks, basically (in an extreme simplification) versioning your resource. For
further insight into optimistic locks, you might take a look at the Compare-and-swap (CAS) algorithm. Using immu-
tability plus optimistic locks, you can get a sensible performance boost in many common contexts/languages.

33Object-Oriented languages like Java where classes and objects are language basic building blocks.
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 For this reason, distributed caches have been introduced. These caches, such as
Cassandra, use several processes called nodes, each one of them being a standalone
cache, plus another process (sometimes a special node), called the orchestrator, that
is in charge of routing requests to the right node. Distributed caches use a special
hashing function, consistent hashing34 (see figure 7.14), to decide which node should
store an entry.

Web clients also make extensive use of caching: browsers have their own caches
(although those work slightly differently, storing content on your disk), but they also
have a DNS cache to store the IP addresses corresponding to the domains you browse.
Lately, more caching has been added with local and session storage, and perhaps the
most promising of all, service worker caching.

34Consistent hashing is a special kind of hashing that guarantees that when one of the nodes is removed, only
the keys hosted on that node need to be remapped. See figure 7.14 to get an idea of how it works. It’s not just
about caches: if applied to a hash table, consistent hashing guarantees that when a table with n slots is resized,
only one n-th of the keys stored needs to be remapped. This is particularly important for distributed caches,
where billions of elements might need to be remapped or possibly cause the whole cache to crash.
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Figure 7.14 An array of cache nodes using consistent hashing for distributing keys. On the left, the 
initial nodes array. Nodes and keys map to the same metric space (the IDs space), usually represented 
as a circle (which could be obtained even with just a modulo operation on the hash values). Keys are 
assigned to the next node in the circle—that is, the node whose value is the smallest node’s ID larger 
than the key’s hashing. On the right, we can see how, when a cache node is removed or added, only a 
fraction of the keys needs to be remapped.
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Summary
 Caches are ubiquitous at all levels of the computation stack, from hardware

caches in your processor to distributed web caches on the internet.
 Whether you’re running complex vector algebra on a GPU or connecting to an

external subscription service, if it is reasonable to assume that the result you just
computed might be used again in the near future, just store it in a cache.

 Caches are useful at all levels, but while you could probably ignore them in
standalone applications running locally on a single computer, they are para-
mount to allow web applications to scale to billions of requests per day.

 There are different types of caches, and the distinction is based on their evic-
tion policy. A cache usually has a fixed maximum size, and when reached, the
eviction policy states which entries must be purged out of the cache to make
room for the newer ones.

 There are also different ways to plug a cache into a system. We have seen the
difference between Write-Ahead, Read-Ahead, Write-Through, Write-Behind,
and Refresh-Ahead.

 When we share a resource (in this case, a cache) between multiple threads, we
need to be very careful in designing it so that we won’t end up with race condi-
tions, inconsistent data, or—even worse—deadlocks.

 If we use functional programming, we might make our life easier when it comes
to concurrency.



Part 2

Multidemensional
 queries

The common thread for the central part of this book is nearest neighbor search.
It is first introduced as yet another special case in search, then used as a building
block of more advanced algorithms.

 This section opens with a description of the issues and challenges that are
found when dealing with multi-dimensional data: indexing these data and per-
forming spatial queries. We will once again show how ad hoc data structures can
provide drastic improvements over using basic search algorithms. 

 Next, this section describes two advanced data structures that can be used to
search multi-dimensional data.

 In the second half of this part, we’ll check out applications of nearest neigh-
bor search, starting with some practical examples, and then focusing on cluster-
ing, which heavily leverages spatial queries. Talking about clustering also allows
us to introduce distributed computing, in particular the MapReduce program-
ming model, which can be used to process volumes of data that are too large to
be handled by any single machine.

 There is an important difference in the structure of part 2 in comparison to
the first seven chapters. As we’ll see, the discussion about these topics is particu-
larly rich, and there is no way that we can cover them, or even just their crucial
bits, in a single chapter. Therefore, while in part 1 each chapter followed a dif-
ferent pattern to explain topics, we’ll have to follow a single pattern throughout
part 2, where each chapter will cover only one piece of our usual discussion.



 Chapter 8 introduces the nearest neighbor problem, discusses a few naïve
approaches to multi-dimensional queries, and introduces the problem used as an
example for most of part 2.

 Chapter 9 describes k-d trees, a solution for efficient search in multi-dimensional
data sets, focusing on the 2D case (for the sake of visualization).

 Chapter 10 presents more advanced versions of these trees, r-trees, which are briefly
illustrated, and ss-trees, for which we’ll instead delve into specifications for each
method. In the final sections of this chapter we also discuss the performance of
ss-trees and how they can be improved further, and then compare them to k-d trees.

 Chapter 11 focuses on the applications of nearest neighbor search, with a use case
described in depth (finding the closest warehouse from which goods should be
shipped to customers), but also introducing several problems that can benefit from
the application of k-d trees or ss-trees.

 Chapter 12 focuses on an interesting use case that leverages the efficient nearest
neighbor search algorithms presented so far. It enters the machine-learning world
and describes three clustering algorithms, k-means, DBSCAN, and OPTICS.

 Chapter 13 concludes this part by introducing MapReduce, a powerful computa-
tional model for distributed computing, and applies it to the three clustering algo-
rithms: k-mean and DBSCAN, discussed in chapter 12, and canopy clustering, introduced
in this chapter.
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Nearest neighbors search

So far in this book we have worked with containers that were holding unidimen-
sional data: the entries that we stored in queues, trees, and hash tables were always
assumed to be (or to be translatable to) numbers—simple values that could be
compared in the most intuitive mathematical sense.

 In this chapter, we will see how this simplification doesn’t always hold true in
real datasets, and we’ll examine the issues connected to handling more complex,
multidimensional data. Do not despair, though, because in the next chapters we
will also describe data structures that can help handle this data and see real applica-
tions that leverage efficient nearest neighbor search as part of their workflow, such
as clustering.

 As we’ll see, the discussion on this area is particularly rich, and there is no way
that we can cover it, not even just its crucial bits, in a single chapter. Therefore,
while in part 1 each chapter was following the same pattern to explain topics, we’ll

This chapter covers
 Finding closest points in a multidimensional dataset

 Introducing data structures to index multidimensional 
space

 Understanding the issues with indexing high 
dimensional spaces

 Introducing efficient nearest neighbor search
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have to stretch this pattern to the whole part 2, where each chapter will cover only a
single piece of our usual discussion:

 Chapter 8 contains an introduction to the problem and the real-world example
we will tackle.

 Chapters 9-10 describe three data structures that can be used to implement
nearest neighbor search efficiently.

 Chapter 11 applies those data structures to the problem described here and
introduces more applications for them.

 Chapters 12-13 focus on a particular application of nearest neighbor search:
clustering.

8.1 The nearest neighbors search problem
Let’s start our journey for this chapter from figure 8.1: a map showing a few cities (taken
from an alternate universe) and the locations of some warehouses in their area.

 Imagine you are living in the 1990s, the dawn of the internet era, with e-commerce
taking its very first steps.

 You are running an online store where you sell locally produced products by col-
laborating with a few retailers. They sell to shops in the real world, and you provide
them with the infrastructure to also sell online, for a small price.

Figure 8.1 A hypothetical map of warehouses (marked with stars) next to the major cities on the 
coast (in an alternate universe)
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Each warehouse will take care of deliveries for its orders, but to gain traction and have
more retailers hop on board, you offer a special deal: for each delivery further than 10
km away, you will cut your commission proportionally to the distance.

 Back to figure 8.1. You are the chief architect of this company and your main goal
is finding a way, when a client orders a product, to come up with the closest warehouse
that has the product in stock, and, if possible, keeping within a distance of 10 km.

 Long story short, to keep your company in business and to keep your job, it’s vital
that you always redirect each user to the closest warehouse.

 Imagine that someone from Gotham City tries to order some French cheese. You
look at your list of warehouses, compute the distance between your customer’s mail-
ing address and each of them, and pick the closest one, P-5. Immediately after that,
someone from Metropolis buys two wheels of the same cheese; unfortunately, you
can’t use any of the distances computed before, because the source point, the location
of the customer, is completely different. So, you just go through that list of stores
again, compute all the distances, and choose warehouse B-2. If the next request
comes, say, from Civic City, off you go! You once again need to compute all N distances
again, to all N warehouses.

8.2 Solutions
Now, I know, figure 8.1 only shows five warehouses, so it seems a trivial, quick opera-
tion to go through all warehouses for each user. You could even handle orders manu-
ally, choosing case by case based on your gut feeling and experience.

 But suppose that after one year, since your business is working well, more stores
have decided to sell on your website, and you have close to a hundred of them in that
same area. That’s challenging, and your customer care department can’t cope with a
thousand orders a day: manually selecting the closest place for each order doesn’t
work anymore.

 So, you write a small piece of code that automatically performs the previous steps
for each order and checks all the distances for each order.

 After another year, however, the business is going so well that your CEO decides
you are ready to go national after closing a deal that will see hundreds or thousands of
medium and large stores (spread across the country) join your platform.

 Computing millions of distances per user starts to seem a little overwhelming and
inefficient—also, since you are only in the late ‘90s, servers are not that fast, server
farms are a rarity, and data centers are something for large hardware companies such
as IBM. They are not yet a thing for e-commerce.

8.2.1 First attempts

Your first proposal can be precomputing the closest warehouse for each user once and
for all products, but that doesn’t really work, because users can and will move, or
sometimes they want to have stuff sent to their office or to the post office and not to
their homes. Plus, the availability of goods will change over time, so the closest shop
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isn’t always the best one. You would need to keep a list of shops, ordered by distance,
for each customer (or at least each city). Haven’t I already mentioned that data cen-
ters aren’t yet a thing?

8.2.2 Sometimes caching is not the answer

So, this is one of those cases where cache doesn’t really help us a lot. As we mentioned
in chapter 7, there aren’t many such situations, but sometimes they do happen.

 Reasoning in 2-D, we might try a different approach, inspired by real maps: divide
our map into tiles, using a regular grid. This way, we can easily find which tile contains
a point from its coordinates (simply dividing the value of each coordinate by the size
of a tile; see figure 8.2) and search the closest points in the same tile or in the neigh-
boring tiles. This, indeed, seems to help reduce the number of points we need to com-
pare; there is, however, a catch. This approach works if data is regularly spaced, which
is usually not the case with real datasets, as shown in figure 8.2.

Real data forms clusters, dense conglomerates that gather many points close to each
other, alternated with sparse areas with few points. With a regularly spaced grid, the
risk is having many empty tiles and a few tiles that gather hundreds or thousands of
points, hence defying the purpose of this approach. We need something different,
something more flexible.

8.2.3 Simplifying things to get a hint

The solution to this problem seems elusive. In these cases, it sometimes helps to solve
a simplified version of the problem and then come up with a more general solution
that works for our initial problem.

(x,y)

Row: y / s
Column: x / s

s

Clusters

Figure 8.2 Indexing 2-D space 
with regular, equal-sized tiles. While 
finding the tile where a point lies is 
easy, irregular distribution of points 
in a dataset causes, on average, 
many cells to be empty, while a 
few of them have high density.
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 Suppose, for instance, that we were able to restrict our search to a 1-D search
space. Say that we need to serve only customers on a single road that extends for miles
and miles, and all our warehouses are also placed along this same road.

 To simplify things even further, suppose that the road is perfectly straight, and that
the total distance we cover is short enough that we don’t have to worry about the
earth’s surface being curved, latitude, longitude, etc. Basically, we assume that an
approximation with a 1-D segment is close enough to our space, and we can use
Euclidean distance in 1-D as a proxy for the real distance between cities.

 Figure 8.3 might help you picture the scenario. We have a line segment with a start-
ing point marked as 0, and the cities and warehouses that we saw in figure 8.1, but
now all of them are on the same line. 

This is an approximation of the initial scenario, where those points belong to a 2-D
plane, which in turn is an approximation of the reality, where the same points are on a
3-D curved surface. Depending on the use case, we might be fine with either approxi-
mation, or require a more precise model taking into account the curvature of the
earth’s surface.

 Given a random point on the segment, we would like to know which one of the
reference points is closer. Being in a 1-D case, this looks awfully similar to binary
search, right? Check figure 8.4 to see how binary search can be used to find the closest
1-D point.
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Figure 8.3 Cities and warehouses from figure 8.1, now projected on a 1-D space, a line segment
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8.2.4 Carefully choose a data structure 

Binary search on an array is cool, but arrays are not really known for their flexibility
(as we discuss in appendix C). If we would like to add another point between W-3 and
B-2, for instance, we would have to move all array entries points from B-2 to B-4, and
possibly reallocate the array if it’s a static array.
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Figure 8.4 How the 1-D version of the search problem is solved by humans and computers. Each 
city, warehouse, and customer is defined in terms of a distance from a fixed point (the origin, whose 
distance is 0). (A) Humans can easily look at a 1-D map, place a point on it, and see the closest 
entry. (B) A computer, on the other hand, needs instructions to find a relation between a point and 
what it sees as just an ordered sequence of numbers. Linear scan of the sequence is an option, but 
(C) binary search is a better option. We start from the middle of the sequence, check whether our 
value (75) is equal to the element in the middle (32), and since it is not, we move to the right of 
32, in the middle of the sub-sequence between 40 and 93. We keep doing so until we either find a 
perfect match (which would also be the closest entry), or we end up with a sub-sequence that has 
just two elements. If that’s the case, we compare the two elements to our value, and see that 80 
is closer than 62. So Happy Harbor is our winner.
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 Luckily, we do know a data structure that is more flexible than arrays and would
allow us to perform a binary search efficiently. As its name suggests, a binary search
tree (BST) is what we are looking for. In figure 8.5 we show a balanced binary search
tree; remember that we need the tree to be balanced to guarantee logarithmic run-
ning time on the most common operations.

 For this example, we show a tree that contains both cities and warehouses. You can
imagine, for the sake of simplification, that each city has a big warehouse or distribu-
tion center, so our searches can just return the closest entry (either a city or a ware-
house) to a customer (that is not in one of the cities in the tree). 1

And indeed, insertion, removal, and search are guaranteed to be logarithmic on our
balanced BST. This is much better than our initial linear time search, isn’t it? A loga-
rithmic running time grows amazingly slowly; just think that for a million points, we
would go down from a million distances to be computed to just about 20!

 Figure 8.6 shows how we would run binary search on the binary search tree shown
in figure 8.5 to find the nearest neighbor of a point whose distance from the origin
(aka its x coordinate) is 75. If we had an exact match, the nearest neighbor would be
the result of binary search. When we don’t have an exact match, which is the most
common case, then the nearest neighbor will always be either the node where the
binary search fails, or its parent.

1 Here, rotation refers to the balancing operation performed, among others, on red-black trees.
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Figure 8.5 A balanced binary search tree containing cities and warehouses in our example. Note that 
this is only one of the possible balanced search trees for these values. For this set of values, there are at 
least 32 valid binary search trees that are also balanced. As an exercise, you can try to enumerate all of 
them (hint: Which internal nodes can be rotated1 without changing the tree height?)
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So, what’s the algorithm to find the nearest neighbor of a 1-D point, when our dataset
is stored in a binary search tree?

1 Run search on the binary search tree.
2 If there is an exact match, the entry found is the nearest neighbor (with dis-

tance equal to 0).
3 Otherwise, check which entry is closest to your target between the last entry vis-

ited (the one on which search stopped) and its parent.

Now that we have brilliantly solved the problem in 1-D, the question arises: Can we use
a similar data structure to solve the problem in 2-D?

8.3 Description and API
Of course, the answer is yes. Probably the fact that we asked the question already led
you to suspect it. But nonetheless, getting from 1-D to 2-D is a big leap. There is no
easy way to imagine a tree that works in two dimensions. Worry not, though; we’ll get
into a detailed explanation in the next section. Once we have taken that leap, it will
be easy to move to 3-D and in general to hyper-spaces with an arbitrary number of
dimensions.

 We also won’t be limited to datasets that lie in 2-D or 3-D geometric space. The
dimensions can be anything, as long as we can define a distance measure on them,
with the caveat that the distance measure respects some requirements; namely, it
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5. The nearest neighbor will
certainly be either the node
on which we stopped, or its
parent. We just need to
check which one is closer.

1. Start in the middle.

2. Go right since 40 < 75.

4. Stop since 62 < 75
but this node doesn’t
have a right child.

3. Go left since 80 > 75.

Figure 8.6 Using search on a binary search tree to find the nearest neighbor (in 1-D) of a target point
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needs to be Euclidian distance.2 For example, we can have 2-D entries where the first
coordinate is their price and the second coordinate is their rating, and then we can
ask for the closest entry to a target tuple, like (100$, 4.5 rating). Even more, we will be
able to ask for the N closest entries to that target.

 In this and the following chapters we are going to describe three data structures,
three containers, that allow for efficient nearest neighbor queries. But not just that—
they will provide a few special operations:

 Retrieving the N closest points to a target point (not necessarily in the
container)

 Retrieving all the points in the container within a certain distance from a target
point (geometrically interpretable as all points within a hyper-sphere)

 Retrieving all the points in the container within a range (all points lying inside
a hyper-rectangle, or a semi-hyperspace)

Let’s now briefly introduce the three structures we will describe in these chapters:

 K-d tree—A k-d tree is a special binary tree in which every non-leaf node rep-
resents a splitting hyper-plane that divides the k-dimensional space into two
half-spaces. Points on one side of this splitting hyper-plane are stored in the left
subtree of the node and points in the other half-space created by the hyper-
plane are stored in the right subtree. We’ll focus on k-d trees in chapter 9.

 R-tree—The R here is for rectangle. An R-tree groups nearby points and defines
the minimum bounding box (that is, hyper-rectangle) containing them. Points
in the container are partitioned in a hierarchical sequence of minimum bound-
ing boxes, one for each intermediate node, with the one at the root containing
all the points, and the bounding box of each node fully containing all its chil-
dren’s bounding boxes. In chapter 10 we will give a brief description of how
R-trees work.

 SS-tree—Similar to R-trees, but Similarity Search Trees use hyper-spheres as bound-
ing regions. Hyper-spheres are constructed with a recursive structure: the leaves
only contain points, while inner spheres’ children are other hyper-spheres.
Either way, a hyper-sphere can gather up to a certain number n of points (or
spheres), within a certain distance from the sphere’s center. When it gets more
than n children or some of them are too far away with respect to the others,
then the tree is rebalanced. We’ll describe in detail how this is done in chapter
10, which is devoted to SS-trees.

And finally, let’s define a generic interface, common to all concrete implementations.

2 A Euclidean distance is the ordinary straight-line distance between two points in Euclidean space, like the
Euclidean plane or 3-D Euclidean space, and their generalizations to k dimensions.
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8.4 Moving to k-dimensional spaces
In section 8.2, we showed that it is possible to efficiently solve the nearest neighbor
problem in 1-D by using a binary search tree. If you read through the book and the
appendices on core data structures, you should be familiar with binary trees. (If you
did skip appendix C, this is your clue: go check out binary trees!)

 When we go from 1-D to 2-D, however, the situation becomes slightly more compli-
cated, since at each node we don’t have a clear fork between two paths, namely left
and right children. We have seen the same concept in ternary trees, where at each
node we have a fork with three paths (or more, in n-ary trees), and the direction we
have to follow depends on the result of comparison with more than just true/false
possible outcomes. But would an n-ary tree help us in this situation? Let’s analyze what
happens in 1-D and see if we can generalize.

8.4.1 Unidimensional binary search

To recap what was described in section 8.2, it’s easy to perform binary search when
our entries can lie on unidimensional space. Figure 8.7 exemplifies how the entries
can be translated to points on a line (that’s basically a unidimensional space) so that
each point on that line implicitly defines a left and a right.

 So, each node has a value that corresponds to a point on that line, and each point
on the line defines a left and right. But wait—in a binary search tree we also have left
and right paths for each of our nodes: that’s why it’s so easy to know what to do in
binary trees search!

 
 
 
 

Abstract data structure: NearestNeighborContainer

API class NearestNeighborContainer {
 size(),
 isEmpty(),
 insert(point),
 remove(point),
 search(point),
 nearestNeighbor(point),
 pointsInRegion(targetRegion)
}

Contract with client The container allows inserting and removing points, and the following queries:

 Existence: Check if a point is in the container.
 Nearest Neighbor: Return the closest point (or optionally the closest N points, 

for any N) to a target point. The target point doesn’t have to be in the container.
 Region: Return all the points in the container within a certain region, either a 

hyper-sphere or hyper-rectangle.
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8.4.2 Moving to higher dimensions

Now that we understand the mechanism for real numbers, what about ℝ2? What about
points in a Euclidean bidimensional space? What about C (the set of complex numbers)?

NOTE Notice that ℝ2 and C are bidimensional Euclidean spaces, and entries
of these spaces can be represented with a pair of real numbers. 

Well, if we move to higher dimensions, how to run binary search is not as clear as in
the unidimensional case.

 Binary search relies on recursively dividing a search space into halves, but if you
consider a point P in the Cartesian plane, how can we partition the plane into two
regions, left and right of P? Figure 8.8 shows a few possible ways to do so.

 A visually intuitive approach could be splitting the plane along a vertical line pass-
ing through P, so that in our representation of the Cartesian plane, the two semi-
spaces will actually be drawn on the left and on the right of P. See figure 8.8.
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Figure 8.7 Real numbers on ℝ. Given a point P, the continuous line is naturally partitioned into a left and 
a right subset.
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Figure 8.8 Points in a Cartesian plane. Lines through the origin and each point are shown. A few possible 
partitionings into left and right of P are shown. (A) Splitting the plane with a vertical line passing through P. 
(B) Drawing a line passing through P and the origin will define two semi-spaces on the two sides of the line. 
(C) Using the same line as B but partitioning points whose projection on that line is left or right of P.
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This solution can look fine while using P as a pivot, but if we take other points, a cou-
ple of drawbacks will emerge:

 Looking at point R in figure 8.9, if we draw a vertical line, parallel to the y axis,
and use the x coordinate to partition points, we get W, P, O, Q, and U in the left
partition, and S and T in the right one. This means that despite U and S being
much closer than U and O or S and T, they end up in
different partitions (while the other two pairs of
points are in the same partition).

 If we consider O, in which partition will Q be? And
what about any other point on the y axis? We can
arbitrarily assign points with the same x coordinate
of our pivot to the left or right partition, but we’ll
have to do so for all of them, no matter how far they
are from O on the y axis.

Both examples show issues that are derived from the same
mistake: we are ignoring the points’ y coordinates alto-
gether. Using only a fraction of the available information
can’t be ideal; whenever we give up some info about a data-
set, we are missing out on the opportunity to organize data
more efficiently.

8.4.3 Modeling 2-D partitions with a data structure 

Using the same, single-direction approach for all points doesn’t really work, so maybe
dividing a plane into four quadrants would be a better idea.

 Indeed, figure 8.10 shows that this works better than our previous attempts. Of
course, since there are four quadrants, left and right partitioning doesn’t apply any
more.

 We can use a tree where each node has four children instead of two, one child for
each possible quadrant. Points on the axes or on the lines passing by a point can be
arbitrarily assigned to one of the quadrants (as long as this is done consistently).

 This seems to work for ℝ2, allowing us to overcome the main limit we identified for
our previous attempt. Both x and y coordinates are taken into consideration to group
points together (this would be even more apparent if you add more points to the
diagram).

 Now the question is whether we extend this solution to ℝ3. To move to a 3-D space,
we need to answer one question: Into how many sub-hyperplanes do we split the plane
for each point? In 1-D, it was two segments for each point, in 2-D it was four quad-
rants, and similarly in 3-D we will need eight octants.3

3 An octant is, by definition, one of the eight divisions of a Euclidean three-dimensional coordinate system. Usu-
ally octants refer to the eight hyper-cubes resulting from splitting ℝ3 along the three Cartesian axes, so each
octant is defined by the sign of the coordinates. For instance, (+++) is the octant where all coordinates are pos-
itive, (+-+) is the one where x and z are positive, and y is negative.
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Figure 8.9 Another 
example of partitioning ℝ2 
space using a line parallel 
to y axis and passing for a 
given point (R, in this case)
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Therefore, for each point in the dataset we will add a node with eight children, one
for each octant resulting from splitting the 3-D space along lines parallel to the carte-
sian axes and passing through the point.

 In general, for a k-dimensional space, we will need 2k children for each node in the
tree, because each point would partition the hyperspace in 2k parts.

 For real datasets, with the advent of big data, we will have to deal with high-
dimensional spaces, meaning that k might easily be in the order of 10 to 30, or even
100. It’s not unusual for datasets to have hundreds of features, and millions of points,
and there are use cases where we need to perform nearest neighbor search on these
datasets to make sense of them (clustering is one, as we will see in chapter 12).

 Even with a smaller number of features, in the order of 10, each node would
already have around a thousand children. As we saw in chapter 2 when talking about
d-way heaps, when the branching factor of a tree grows too much, the tree flattens and
becomes closer to a list.

 But with 100-dimensional datasets, the number of children per node would be
closer to 1030, a number so large that it becomes challenging to store even a single
node of such a tree. We certainly need to do better than that. But how?

 As we will see in the next couple of chapters, computer scientists have found a few
different ways to cope with these issues. In the next chapter, in particular, we intro-
duce k-d trees, a data structure that uses a tiny variation on the approach in section
8.4.3 to avoid the exponential growth of the tree.
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Figure 8.10 Four-way partitioning of the plane. For each point, we split the area it belongs to 
in four quadrants using the lines passing through the point and parallel to the axes. For the first 
one, R in the example, we get four infinite quadrants (left). When we choose the next point, P 
(right), we have to further divide the upper-left quadrant into four parts: we get a finite 
rectangle, to which U belongs, and three infinite sections of the plane. For each further point, 
such as U, we further split the region it belongs to into four more smaller regions.
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Summary
 We can’t use a conventional container to handle multidimensional data.
 When the number of dimensions of a dataset grows, indexing with traditional

methods becomes unfeasible due to the exponential growth of the number of
branches at each step.

 A common API for a class of containers can hold multi-dimensional data, pro-
viding a method to query for the closest points to an arbitrary target.
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K-d trees:
 Multidimensional

 data indexing

This chapter will be structured slightly differently from our book’s standard, simply
because we will continue here a discussion started in chapter 8. We introduced a
problem: searching multidimensional data for the nearest neighbor(s) of a generic
point (possibly not in the dataset itself).

 In this chapter, we follow up on those topics, so we won’t introduce a new prob-
lem, but pick up the “closest hub” example from chapter 8 and show a different
option to solve it, using k-d trees.

This chapter covers
 Indexing a 2-D (and in general k-D) dataset efficiently

 Implementing nearest neighbor search with k-d trees

 Discussing k-d trees’ strengths and flaws
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9.1 Right where we left off
Let’s recap where we left off in previous chapters. We are designing software for an
e-commerce company, an application to find the closest warehouse selling a given
product for any point on a very large map. See figure 9.1 to visualize. To have a ball-
park idea of the kind of scale we need, we want to serve millions of clients per day
across the country, taking products from thousands of warehouses, also spread across
the map.

 In section 8.2, we established that a brute-force solution where we skim through
the whole list of points to compare differences can’t work for a live solution.

 We have also seen how the multidimensional structure of the data prevents us from
using the basic solutions we saw in the first part of the book, from heaps to hash maps.

Viable solutions, however, do exist. In this chapter we will first explain the issues we
face in moving to multi-dimensional spaces; then, in this and the next chapter, we will
delve into a few alternatives to efficiently tackle those challenges.
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Figure 9.1 Our example map, showing cities (real and imaginary) and warehouses (all imaginary!) on the 
east coast. In a typical application for k-d trees, given a point on the map, we would like to find the closest 
warehouse or the closest city to that point. Map source: ArcGIS.
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9.2 Moving to k-D spaces: Cycle through dimensions
You might have the impression that we’ve hit a dead end, and even in the scientific
community it certainly seemed so for a long time.

 The answer came in the form of a heuristic, by the hand (and brain) of Jon Louis
Bentley.1 

 The idea is as brilliant as it is simple and stems from the considerations that led us
this far in chapter 8. If we restrict to 2-D spaces, instead of splitting each region into
four sub-regions for each point, we can perform a 2-way split, but alternating splits
along vertical lines to split along horizontal lines.

 For each split, we partition the points in a region into two groups. Then, at the
next split, when we choose the next pivot in each of the two sub-regions, we will use a
perpendicular direction to do the next partitioning.

 Figure 9.2 shows a few steps of this algorithm. You can see how for the first pivot
chosen we draw a vertical line passing through the point, then for the second one we
draw a horizontal semi-line (we are splitting a semi-plane now, not the whole plane
again!), and then a vertical (semi)line again.

Notice that in the Cartesian plane, a vertical line through a point P=(Px,Py) has a
peculiar characteristic: it is parallel to the y axis, and all points on the line have the
same value for their x coordinate, Px. Likewise, a horizontal line passing through P is
made of all the points in the plane for which y=Py.

1 “Multidimensional binary search trees used for associative searching.” Communications of the ACM, 1975, Vol.
18, Issue 9, pp. 509-517
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Figure 9.2 Partitioning points in the 2-D Cartesian space by cycling through the directions along which we 
split. For the first split (left) we choose point R and draw a vertical line (parallel to y axis, x coordinate is 
constant) passing through it. We have thus created two half-spaces, a lighter-shaded one on the left and a 
darker-shaded one on the right of this line, grouping points W, P, O, Q, U on one side, and S, T on the other. 
Point R is the pivot of this partitioning. Next, we choose point W in the lighter shade partition. This time, we 
draw a horizontal line (parallel to x axis, y coordinate is constant). It splits the lighter shade partition into 
two new partitions, one in the top-left area of the plane, containing P, O and U, and one in the bottom-left 
area, with just Q. If we further split the top-left area at point P, we again need to use a vertical line, as shown 
in the right-most part of the figure.
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 So, when we split the plane along a vertical line through P=(Px,Py), what we really
mean is that we create two partitions, one for the points L in the plane for which Lx<Px,
and one for those points R for which Rx>Px. And similarly, for horizontal lines, using
the y coordinates of the points.

 This binary partitioning allows us to use binary trees to index our points. Each node
in the tree is the pivot we chose to partition the remaining region of space, and its left and
right subtrees gather all points in the two partitions, and represent the two sub-regions
resulting from the split we perform along the pivot (check out figures 9.2 and 9.5).

 Can this algorithm be generalized to higher dimensions? Yes, it naturally allows a
generalization to higher dimensions, because we split on a single coordinate for each
point, but we can do a round-robin through all the coordinates of a k-dimensional
space, and the i-th level of the binary tree we build will correspond to a split along the
(i mod k)-th dimension. 

 This means that in a 2-D space, the root will split the plane along the x axis, its chil-
dren will split each of the two semi-planes along the y axis, and then their children
will split again along the x axis and so on. In a k-dimensional space, with k > 2, we
start with the first coordinate at level 0 (the root), and then move to the second at
height 1, the third at height 2, and so on.

 This way, we partition the plane into rectangular areas. With respect to our initial
idea of splitting points with vertical lines only, we have fewer areas extending to infin-
ity (while if we always used the same coordinate all areas would be infinite!) and avoid
keeping distant points in the same partition.

 At the same time, each node has just two children, and we can maintain all the
advantages and guarantees of binary partitioning and binary search.

9.2.1 Constructing the BST

So far, we have just hinted at the construction of a binary search tree, implying that
there is a direct translation of the partitions, or rather the pivots we choose, into a BST.

 We have also implied that the BST we are going to construct is an important part
of the k-d tree. Let’s give a more formal definition to clarify the relation between these
two data structures.

DEFINITION A k-d tree is a binary search tree whose elements are points taken
from a k-dimensional space, that is, tuples with k elements, whose coordi-
nates can be compared. (To simplify, let’s assume that each coordinate’s val-
ues can be translated into real numbers.) In addition to that, in a k-d tree, at
each level i, we only compare the i-th (modulo k) coordinate of points to
decide which branch of the tree will be traversed.

In fewer words, a k-d tree can be described in terms of a binary search tree with a
fancy comparison method on its keys. The added value is given by the algorithms for
search that can be performed on this kind of tree much more efficiently than on
other simpler data structures.
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 Figure 9.3 shows the construction of an example tree for the unidimensional case.
This is an edge case, because singletons (tuples with dimension 1) will result in always
using the x coordinate in points (that is, the whole singleton).

Figure 9.3 Constructing a BST from 
the pivots of a 1-D dataset. (Left) We 
add the first pivot, which is going to be 
the root of the tree. The pivot creates an 
implicit divide along the x axis, 
partitioning the remaining points into 
left and right subsets. The region 
covered by a node is the union of the 
partitions its pivot creates, so the root 
covers the whole subset. (Center) Each 
of the two sub-regions implied by the 
root is further partitioned by selecting a 
point in each region as a pivot. As shown 
by the highlighting above the horizontal 
axis, each of these nodes at level 1 now 
covers half of the space (while the root 
still covers the whole space). (Right) 
Level 2 nodes are added, further 
partitioning the space. Notice how some 
regions are still only covered by nodes at 
level 1 because these intermediate 
nodes only have one child.
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Notice how each node of the tree “covers” a region of the dataset in a hierarchical
way: the root covers the whole dataset, level 1 nodes cover the left and right partitions
created using the root as a pivot, and level 2 nodes cover the even smaller partitions
created using level 1 nodes as pivots. 

 Here, when we use the term “cover,” we mean that given an entry X in the search
space (in 1-D, given a real number X), and if we query the tree (as a binary search
tree) for X, then all nodes we traverse during the search for X (which form a path from
the root to a node N) cover X. In particular, the node on which the search stops is the
one covering the smallest region for X.

 In other words, each node in the tree is associated to a range of values for which it
will be traversed when searching the tree; that range is the region covered by the
node.

 Make sure to go through the example in figure 9.3 and understand every step; maybe
even try to run an example yourself (for instance, by just changing the pivots or their
order and checking how the tree changes). It is important to understand the unidimen-
sional case because it will make it simpler to understand the 2-d tree construction.

 In order to better show the steps of the construction of a 2-d tree and highlight the
advantages of cycling through the dimensions used to partition, we add a few cities to
figure 9.1 in order to have a more uniform 2-D spatial distribution. In figure 9.4 we
have also added a coordinate system: both the origin and the scale are arbitrary, and
completely marginal for the results of the algorithm. We can always apply any transla-
tion and scale operation, since they preserve the Euclidean distances.

Figure 9.4 A richer version of the map in figure 9.1, with a coordinate system. Map source: ArcGIS.
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Figure 9.5 shows the results of the first couple of steps of the algorithm that builds the
tree. In this figure you can see a different scale than in the previous picture. While the
other one was more realistic, with distances between points closer to the real distances
in miles between cities, it could also generate some unnecessary confusion in the
drawings; moreover, as we mentioned, the coordinate system is not really important
for the algorithm, as long as it’s consistent.

Figure 9.5 The first two steps of 
constructing a k-d tree for our map 
of DC cities. (Left) First we split 
vertically with pivot “Opal City,” 
which becomes the root of the         
k-d tree. (Right) The right partition 
(created by the root) is further 
split along a horizontal line 
passing through our second pivot, 
“Civic City,” so in the BST we add 
a right child to the root. This node 
corresponds to another split into 
a top and bottom sub-region.
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The first point we choose as pivot is “Opal City.”2 Since we first split using x coordi-
nates, all cities on its left will go into one partition, and all cities on its right will go to
the other partition. Then, as a second step, let’s focus on the right partition. We
choose, for instance, “Civic City” as a pivot, and this time we have to use y coordinates
to split, so all points in the top-right region will go in a sub-partition of the right one,
and all points in the bottom-right region will go into the other. We now have three
partitions, and we can further split any of them.

 In figure 9.6, we show the resulting tree after inserting all the cities (without the
warehouses). The edges have the same vertical or horizontal split on each level, and
both vertical and horizontal edges are alternated in any path.

 Splits now define 10 clearly separated regions, and if you look at how warehouses
are distributed, you can get an idea of what city they might be close to with just a
glance at the region they are in.

2 Here we choose points arbitrarily to obtain a clearer visualization. In section 9.3.3 we will explain how to make
this choice programmatically to obtain a balanced tree.

Figure 9.6 The k-d tree resulting after adding all cities in figure 9.4. (We haven’t added 
warehouses to the tree, both for the sake of clarity and because it makes more sense to create 
a tree with just one kind of entries, either cities or warehouses, and search the other kind on it.)
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There is not, however, a direct match, and looking at regions is not enough to deter-
mine the closest point. For instance, if you look at B-8 in the picture, it’s not clear if
Buffalo, Pittsburgh, or Harrisburg is the closest city, and C-6 looks closer to Syracuse
than Harrisburg, despite being “covered” by the latter and not the former.

 Determining the closest point(s) requires a few more steps than in regular binary
search trees (the unidimensional case), and we will defer the description of the full
algorithm to the next section.

 As mentioned, this construction method for k-d trees naturally generalizes to higher
dimensions, although it becomes more difficult to visualize the trees and the spaces itself.

 For k=3, we can still imagine ℝ3 divided in parallelepipeds, as shown in figure 9.7,
but for 4-D and further, we lack an immediate geometric interpretation. That said, as
long as we treat k-D points as tuples, it is possible to follow the same steps we have seen
for a 2d-tree without any change.

9.2.2 Invariants

We could sum up the definition of k-d trees in a few invariants. A k-d tree is defined as
a binary search tree, whose elements are k-dimensional points, and that abides by the
following invariants:

 All points in the tree have dimension k.
 Each level has a split coordinate index j, such that 0 ≤ j < k.

Figure 9.7 An example of a 3-D 
tree (aka k-d tree with dimension 
3). For the sake of clarity, regions 
are not highlighted, and nodes are 
filled with the same color of their 
split planes.
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 If a node N’s split coordinate index is j, then N’s children have a split coordinate
equal to (j+1) mod k.

 For each node N, with split coordinate index j, all nodes L in its left subtree have
a smaller value for N’s split coordinate, L[j] < N[j], and all nodes R on N’s right
subtree have a larger or equal value for N’s split coordinate, R[j] ≥ N[j].

9.2.3 The importance of being balanced

So far in this section we’ve consciously ignored a detail, a special characteristic we
look for when it comes to binary search trees: whether the tree is balanced or not. As
for the regular BST, you might have already figured out that the order in which we
insert elements in our k-d tree determines the shape of the tree. Even having finite
areas is not a synonym of having small areas, or good partitioning. If you look at the
example in figure 9.6, we have carefully chosen points “by hand” in order to create a
balanced tree, but it is easy to provide an example of a terrible insertion sequence that
would create an imbalanced tree (just insert points starting from the top-left going in
order toward the bottom-right corner, for instance). 

 Here we also consider a binary partitioning “good” only if it manages to split the
whole set being partitioned into two subsets approximately of the same size.

 If we manage to obtain a good partitioning at each step, we will have a balanced
tree with logarithmic height. Given a sequence of points, it is possible, however, to
choose an order of insertion for the points that will produce a skewed tree with linear
height.

 We’ll see in a few pages how we can prevent this from happening under certain
conditions. Rebalancing on insertion is not, unfortunately, as viable an option for k-d
trees as it was for binary search trees.

 Before worrying about balancing trees, let’s see in detail the way methods such as
insert, remove, and all the queries work for k-d trees.

9.3 Methods
We have now seen a few examples of k-d trees and how we can construct them. By now,
it should be clear what a k-d tree looks like, the main ideas behind this data structure,
and how we can leverage it.

 It’s time to delve into the main methods for k-d trees and see how they work and
how they can be implemented. In this section we will present pseudo-code for these
methods, and you can find an actual implementation on our repo on GitHub.3

 Figure 9.8 shows a pre-constructed k-d tree that we are going to use as a starting
point for this section. In order to focus on the details of the algorithm, we are going to
use a simplified view, showing points on a Cartesian plane where axes are omitted.
Points are denoted with capital letters (we are leaving out city names for now) to
abstract out the context and focus on the algorithms. Vertical and horizontal splits are

3 See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#k-d-tree.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#k-d-tree
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still shown, but we won’t highlight the regions as we did in figures 9.6; as a conse-
quence, we can fill tree nodes (instead of edges) with shading to show that vertical or
horizontal splits will be used at a certain level.

 While in figure 9.8 coordinates are shown next to both nodes and points, we might
sometimes omit them for the sake of neatness, as shown in figure 9.8.

We will start with the “easy” methods first: search and insert work almost exactly as in
basic BSTs; we will still describe them and provide their pseudo-code, but if you are already
familiar with binary search trees, feel free to skim through the next few sub-sections. 

 But before that, we need to define a model for the k-d tree and its nodes; see list-
ing 9.1.

class KdNode
  #type tuple(k)
  point
  #type KdNode
  left
  #type KdNode
  right
  #type integer
  level
  function KdNode(point, left, right, level)
   
class KdTree

Listing 9.1 The KdTree class

A

BC

D E

F

(0, 5)

(1, -1)

(2, -5)

(-1, 6)

(-1, 1)

(-0.5, 0)

C(-1,6)

D(-1,1)

A(0,5)

B
(1,-1)

E(2,-5)

(0,0)

F(-0.5, 0)

  

Figure 9.8 An example k-d tree for a 2-D dataset. On the left, the tree representation. On the right, 
a visualization of (a portion of) the 2-D Cartesian plane, where the origin is at the center of the 
square. The vertical lines pass through nodes A, D, and E and correspond to splits along the x 
coordinate. The horizontal lines are drawn through nodes B, C, and F, and correspond to splits along 
the y coordinate.
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  #type KdNode
  root
  #type integer 
  k
  function KdTree(points=[])

A KdTree just contains a root node and a constructor method, taking an optional
array of points as input. We’ll take a look at how a k-d tree can be constructed later,
after we introduce the insertion method. For now, suffice it to say that it will set the
root to either a void entry (be it null, a special instance of KdNode, or whatever is
more appropriate for the language used).

 For the sake of convenience, let’s assume a tree also stores the value k, the dimen-
sion of the space on which the tree is defined.

 The root is, as said, an instance of KdNode. This data structure models a node of a
BST, with its left and right children, and its value, a point in the k-dimensional space.
We will use the special value null to model an empty node (and thus an empty tree).

9.3.1 Search

In section 9.2 we have implicitly described how search works on k-d trees. There is noth-
ing fancy in this algorithm; it’s just a regular search on binary search trees storing tuples,
with the caveat that instead of comparing the whole tuple at each step, we only use one
coordinate. At level i, we compare the i-th coordinate (or i mod k, if i ≥ k). 

 Listing 9.2 shows a few helper functions that will help us keeping our code clean.
We encapsulate in these functions the logic of cycling through split coordinates while
traversing the tree, instead of duplicating it across all the methods. This way the other
methods will be more readable, and if we ever have to change the way this comparison
is done (for instance, because we find a bug or we want to implement a fancier algo-
rithm), we just need to touch one single place in the code base.

function getNodeKey(node) 
  return getPointKey(node.point, node.level) 

 
function getPointKey(point, level)           
  j ← level % k    
  return point[j] 

function compare(point, node)                                    
  return sign(getPointKey(point, node.level) - getNodeKey(node))

Listing 9.2 Helper functions

Given a tree node, returns the value of the 
coordinate that needs to be used, given the 
level at which the node is stored

In turn, it calls the function extracting 
this value from the node point.

Given a point (a tuple with k values) 
and an index for the level, returns the 
tuple entry that should be used in 
comparisons for nodes at that level

We assume the method has access to k, the dimension 
of the tree. At level i, we need to extract the tuple 
value at index i mod k (0-based indexing).

Just
returns

the
correct

tuple
entry

Compares a point to a node, returning 0 if the
node’s point matches the first argument, a value

lower than 0 if the point is on the “left” of the
node, greater than 0 otherwise

The sign function returns the sign of 
a numeric value: -1 for negative values, 
+1 for positive ones, or 0.
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function splitDistance(point, node)
  return abs(getPointKey(point, node.level) - getNodeKey(node))    

Listing 9.3 shows the pseudo-code for the search method. The pseudo-code for all
these methods will assume that we are providing an internal version that takes a
KdNode as argument. The public API for KdTree will provide adapter methods that will
call the internal ones; for instance KdTree::search(target) will call search(root,
target).

function search(node, target) 
  if node == null then                 
    return null
  elsif node.point == target then     
    return node
  elsif compare(target, node) < 0 then     
    return search(node.left, target)
  else                                           
    return search(node.right, target)

This way we have more flexibility in reusing these methods (for instance, we can run
search on just a subtree, not the whole tree).

 Notice that this recursive implementation is eligible for tail-recursion optimization
on those languages and compilers supporting it (check appendix E for an explana-
tion of tail-recursion).

 Let’s follow the example in figure 9.9 step by step.
 We start by calling search(A, (-1.5, -2)), where node A is the root of the k-d

tree, as shown in the figure. Since A is not null, at line #2 the condition fails, and we
can compare A.point, which is the tuple (0, 5), to our target at line #4. They obvi-
ously don’t match, so we move on to line #6 and use the compare helper function to
check which direction we should take. A.level will evaluate to 0, so we compare the
first value in each of the tuples: -1.5 < 0, so we traverse the left subtree and call
search(C, (-1.5, -2)).

Listing 9.3 The search method

Computes the distance between a point 
and its projection on the split line passing 
through a node

This distance is nothing other than the
absolute value of the difference between

the j-th coordinates of the two points,
where j = node.level mod k.

Search returns the tree node that contains a target 
point, if the point is stored in the tree; it returns null 
otherwise. We explicitly pass the root of the (sub)tree 
we want to search so we can reuse this function for 
subtrees.

If the node is already null, we are 
traversing an empty tree, and by 
definition it does not contain any point.

If the target point matches this node’s 
point, then we have found what we are 
looking for.

Otherwise, we need to compare the 
appropriate coordinates of target and 
node’s point. We use the helper method 
previously defined, and check if it is lower 
than 0, which would mean that we have to 
take a left turn during tree traversal, and 
therefore we run the method recursively 
on the left or right branch.
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For this call, we repeat more or less the same steps, except this time C.level is equal
to 1, so we compare the second value in each tuple. -2 < 6 so we still go left, calling
search(D, (-1.5, -2)).

 Once again, we go through lines #2, #4, and #6, and we take a left turn; only this
time, D.left == null, so we call search(null, (-1.5, -2)), which will return null
at line #2. The execution backtracks through the call stack, and our original call will
also return null, stating that the target point was not found on the k-d tree.

 Figure 9.10 shows another example, calling search(A, (2, -5)). On the first call,
conditions at lines #2 and #4 are false, as well as the condition at line #6, since 2 > 0.
This time, therefore, we take a right turn at node A, and recursively call search(B,
(2, -5)), then in turn search(E, (2, -5)), for which the condition at line #4 is true
(E.point matches target), and thus we finally return node E as the result of the origi-
nal call.

 How fast is search on a k-d tree? Like for regular BSTs, its running time is propor-
tional to the height of the tree. If we keep the tree balanced, therefore, the running
time will be O(log(n)) for a tree holding n points.
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Figure 9.9 An example of an unsuccessful search on a k-d tree (2-D). The searched point, P, would 
ideally lie in the region highlighted on the bottom left, which corresponds to the left subtree of node D.
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9.3.2 Insert

As we have seen on BSTs, insertion can be implemented in two steps. The first step is
running a search for the point to add, which will either find that the point is already in
the tree, or stop at its parent-to-be, the node to which the new point should be added
as a child. If the point is already in the tree, then what we do next depends on the policy
we adopt on duplicates. If duplicates are not allowed, we might ignore the new point or
fail; otherwise we have a wide range of solutions, from using a counter on nodes to keep
track of how many times a point was added, up to consistently adding duplicates to
either branch of a node—for instance, always in the left sub-branch, although as we
have seen in appendix C, this leads to slightly unbalanced trees on average.

 If, instead, the point was not on the tree, search will fail on the node that should
have the new point as its child, and the second step will consist of creating a new node
for the point and adding it in the correct branch of its parent.

 Listing 9.4 shows an approach that doesn’t reuse the search method. This
approach, while not DRY,4 allows us to simplify both methods. To be reusable in
insert, search should also return the parent of the node found (and even more
importantly, the last node traversed, when the target is not found), which is not of any
particular use for search, whose implementation would thus become unnecessarily
complicated. Moreover, this way we can write insert in a more elegant way, using a pat-
tern that naturally supports immutability.5

4 Don’t Repeat Yourself. In this case we have some code duplication that makes the code slightly less maintainable.
5 Immutability of data structures is a key point of functional programming. It has several advantages, from being

intrinsically thread-safe to easier debugging. While this code doesn’t implement an immutable data structure,
it can be easily changed to adhere to that pattern.
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Figure 9.10 An example of a successful search on a k-d tree (2-D). Here points P and E are 
coincident, and the highlighted region corresponds to the subtree rooted at node E.
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function insert(node, newPoint, level=0)
  if node == null then                   
    return new KdNode(newPoint, null, null, level)
  elsif node.point == newPoint then       
    return node
  elsif compare(newPoint, node) < 0 then                     
    node.left ← insert(node.left, newPoint, node.level + 1)  
    return node
  else                                                      
    node.right ← insert(node.right, newPoint, node.level + 1)
    return node

Figures 9.11 and 9.12 show two examples of insertion of new points on the k-d tree in
figure 9.10.

 Let’s follow the first example step by step. It starts with a call to insert(A, (-1.5,
2)), where we don’t pass any value for level, thus defaulting it to the right value for
root (as defined in the function signature, this value is 0).

 A <> null, so the condition at line #2 won’t match; A.point <> (-1.5, 2), and
also at line #4 the condition is false. When we get to line #6, -1.5 < 0, so compare
will return -1, and we traverse the left subtree and call insert(C, (-1.5, -2), 1).

 The next few calls will proceed similarly (like we have seen for search), and in
turn we call insert(D, (-1.5, -2), 2), insert(null, (-1.5, -2), 3). For the
latter, the condition at line #2 will be true, so we create a new node, KdNode((-1.5,
-2), null, null, 3), and return it to the previous call in the stack trace. There, at
line #7, we set .left to this new KdNode we created, and then return D.

 Notice how at line #6 we are breaking ties by partitioning coordinates with the
same value as the current node on its right. This decision might seem of little impor-
tance, but we will see that it’s a big deal when it comes to deleting nodes.

 If we take a look at the stack trace for the example in figure 9.12, we can see how it
is entirely similar to the one for the previous case:

insert(A, (2.5, -3))
  insert(B, (-1.5, 2), 1)
    insert(E, (-1.5, 2), 2)
     insert(null, (-1.5, 2), 3)
     return new KdNode((-1.5, 2), null, null, 3)
    return E
  return B
return A

Listing 9.4 The insert method

Inserts a point on the tree. The method will 
return a pointer to the root of the (sub)tree 
containing the new point. The level to which 
the node is added is set to 0 by default.

If node is null, we are traversing an empty tree, 
so we have performed an unsuccessful search. We 
can therefore create a new node and return it, so 
the caller can store a reference to it. Notice how 
this also works when the tree is empty, creating 
and returning a new root.

If the new point matches this node’s 
point, we ran a successful search and 
we have a duplicate. Here, we will 
just ignore duplicates, but you can 
handle it by changing these lines.

Otherwise, we need to compare the coordinates of target and node’s point: we use the 
helper method previously defined, and check if it is lower than 0, which would mean we 
have to take a left turn during tree traversal, and therefore we run the method recursively 
on the left branch, setting the result as the new left (or right) child of the current node.
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9.3.3 Balanced tree

Before moving on to the most advanced methods designed for k-d trees, let’s take a
step back. In section 9.2.3 we have already described one key point of k-d trees. We
need our tree to be balanced. In the previous sections we saw how search and inser-
tion have running time O(h) proportional to the height of the tree, and thus having a
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Figure 9.11 Inserting a new point on a k-d tree (2-D). To the k-d tree in figure 9.10 we add a new point 
G. Insertion, like for BSTs, consists of a (unsuccessful) search, after which we can identify the node 
that will be the parent of the node to add. If the new point already exists on the tree, your conflict 
resolution policy might lead you to ignore the duplicate or handle it properly.
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Figure 9.12 Another example of inserting a new point on a k-d tree (2-D). The starting point is the k-d 
tree resulting after the insertion in figure 9.11.
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balanced tree will mean that h = log(n), and in turn that all these methods will run
in logarithmic time.

 Unfortunately, a k-d tree is not a self-balancing tree, like RB-trees or 2-3-trees, for
example. This means that if we perform a large number of insertions and deletions on
a tree, on average the tree will be tendentially balanced, but we have no guarantee of
that. Moreover, if we resolve ties on coordinate comparison by always going to the
same side, then it is proven that we will break the balance over many operations.

 To solve this problem, we can slightly change the compare method that we defined
in listing 9.2 so that it will never return 0. Whenever we have a match, half of the time
it will return -1, and half of the time +1, thereby achieving a better balance for the
tree. The choice needs to be consistent, so we can’t use randomness and have a per-
fect balance; instead, a possible solution to implement this correction, as shown in list-
ing 9.5, is to return -1 when the node’s level is even, and +1 when it’s odd (or vice
versa; it doesn’t really matter, as long as it’s consistent).

function compare(point, node)
  s ← sign(getPointKey(point, node.level) - getNodeKey(node))    
  if s == 0 then                     
    return node.level % 2 == 0 ? -1 : +1
  else
    return s

This helps us to achieve a better-balanced tree on average, but still doesn’t provide any
guarantee. To date, there is not a solution to easily keep a k-d tree balanced while
maintaining O(h) running time for insertion.

 Nevertheless, if we know the set of points to insert in advance (when we create the
k-d tree), then we can find an optimal order of insertion that allows us to construct a
balanced tree. If the tree is not changed after construction, or if the number of ele-
ments inserted/deleted is negligible in comparison to the size of the tree, then we can
have a worst-case balanced k-d tree, and insert and search will run in worst-case log-
arithmic time.

 Listing 9.6 shows the algorithm to create a balanced k-d tree from a set of points.

function constructKdTree(points, level=0)
  if size(points) == 0 then         

Listing 9.5 Revised compare

Listing 9.6 Balanced construction

The signature of the method 
remains unchanged.

We store the value of the sign of the
difference between the components, that is,

what was computed by the old method.

If this value is 0, meaning that the value of 
the coordinate compared is the same, then 
we go left half of the time, and right the other 
half. Otherwise, we just return the sign that 
will be either 1 or -1.

Constructs a k-d tree from a set of points. We 
also pass the level, so we can recursively call 
this method for subtrees. If points is empty, we need 

to create an empty node, so 
we just return null.
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    return null
  elsif size(points) == 1 then
    return new KdNode(points[0], null, null, level)
  else
    (median, left, right) ← partition(points, level) 
    leftTree ← constructKdTree(left, level + 1)     
    rightTree ← constructKdTree(right, level + 1)   
    return new KdNode(median, leftTree, rightTree, level) 

The principle is simple: the tree has to hold all the points in the set and, ideally, we
would like left and right subtrees of the root to have the same number of elements. To
achieve that, we can find the median in the set of points with respect to the first coor-
dinate of the points, and use it as a pivot for the root, having half of the remaining
points that will end up on the root’s left branch, and half on its right branch. But each
of the branches of the root is a k-d tree itself, so it is possible to repeat the same step
for the root’s left and right subtrees, with the caveat that we need to find the medians
comparing the second coordinates for each point, instead. And so on for each level of
the tree; we just need to keep track of the depth of the recursion, which tells us in
what level of the tree we currently are.

 The key point in listing 9.6 is the call to the partition method at line #7. We need
to pass level as an argument because it will tell us which coordinate we need to use to
compare points. The result of this call will be a tuple with the median of the points
array and two new arrays with (n-1)/2 elements each, if size(points) == n.

 Each point in left will be “smaller” (with respect to the coordinate at index level
% k) than median, and each point in right will be “larger” than median; therefore, we
can recursively construct both (balanced) subtrees using these two sets.

 Notice that we can’t just sort the array once and chunk it up into halves recursively,
because at each level the sorting criteria change!

 To understand how this works, let’s consider a call to construct-

KdTree([(0,5),(1,-1),(-1,6),(-0.5,0),(2,5),(2.5,3),(-1, 1),(-1.5,-2)]).
 The median for this set (with regard to the first coordinate, the median of all the

first values of the tuples) is either -0.5 or 0: there is an even number of elements, so
there are technically two medians. You can double-check the values by sorting the
array.

 Say we choose -0.5 as the median; then we have

(median, left, right) ← (-0.5,0), [(-1, 1),(-1.5,-2),(-1,6)], [(1,-1),

➥ (2.5,3),(2,5)(0,5)]

If points has just one element, we can 
create a leaf, a node without children, 
so recursion stops here.

Otherwise, we first find the median of the set of
points and its left and right partitions. We use a

method, not shown here for the sake of space, similar
to quicksort’s partition—just operating on one of the
coordinates at a time (the coordinate whose index is

given by level).

Recursively constructs k-d trees 
for the left and right partitions

Finally, the root of 
this tree is created, 
assigning the left 
and right subtrees 
previously created.



292 CHAPTER 9 K-d trees: Multidimensional data indexing

So, at line #8 we call constructKdTree([(-1, 1),(-1.5,-2),(-1,6)], 1) to create
the root’s left subtree. This in turn will partition the sub-array, but comparing the sec-
ond coordinates of each tuple, the median of y coordinates is 1, so we have

(median, left, right) ← (-1, 1), [(-1.5,-2)], [(-1,6)]

And so on; the method would similarly run on the other partitions created on the ini-
tial array.

 What’s the running time of method constructKdTree? We will use Tk(n) to denote
the running time for a k-d tree of dimension k, on an array with n elements. Let’s
check the method step by step: lines #2–5 only require a constant amount of time, as
does line #10, which is just creating a new node. Lines #8 and #9 are recursive calls,
and they will be called on sets of points with at most n/2 elements, so we know they
will take Tk(n/2) steps each.

 Finally, line #7, where we call partition: it’s possible to find a median in linear
time, and we can also partition an array of n elements around a pivot with O(n) swaps
(or create two new arrays, also with O(n) total assignments).

 So, summing up, we have this formula for the running time:

Tk(n) = 2 * Tk(n/2) + O(n)

There are a few ways to solve this equation—for example, the substitution method or
telescoping—but the easiest is probably using master theorem.6 All of these methods
are beyond the scope for this book, so we will just provide you with the solution, leav-
ing it to the curious reader to work out the details:

Tk(n) = O(n * log(n))

In other words, the balanced construction method takes linearithmic7 time.
 To complete our analysis, if we look at the extra memory needed by this method, it

will require O(n) memory for the tree. However, there is more. If we don’t partition
the array in place and create a copy for each left and right sub-array, then each call to
a partition will use O(n) extra memory. Deriving a similar formula to the one for the
running time, we could find out that also M(n) = O(n * log(n)).

 Conversely, by partitioning the array in place, we can obtain the best possible
result: 

Mk(n) = O(n)

That’s because we only need a constant amount of memory for the internals of the
function, plus the O(n) memory needed for the tree.

6 See https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms).
7 n*log(n) is often referred to as linearithmic, as a crasis of linear and logarithmic. 

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
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9.3.4 Remove

After search and insert, we can continue with the third basic operation on a con-
tainer: remove. This is despite the fact that on a k-d tree, delete is not such a common
operation, and some implementations don’t even offer this method. As we discussed
in the previous section, k-d trees are not self-balancing, so they perform best when
they are created with a static set of points, avoiding frequent insertion and removal.

 Nevertheless, in any real-world application you’ll likely need to be able to update
your dataset, so we are going to describe how to remove elements. Figures 9.13 and
9.14 show the remove method in action on our example k-d tree, and the result of
removing point D from it.

Similarly to insert and search, this method is based on binary search tree removal.
There are, however, two issues that make k-d tree’s version sensibly more complicated,
and they are both connected to how we find a replacement in the tree for the node we
are going to remove.

 To see what these issues are, we need to take a step back. In binary search trees,
when we delete a node, we can face one of three situations (see figure 9.15).
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Figure 9.13 Deleting point D from our example k-d tree. Method remove, like for BSTs, consists of a 
(successful) search to find the node to remove, followed, if the node to remove is an internal node with 
at least one subtree, by a traversal to find an element with which it can be replaced. In this example, 
an internal node is removed.
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Figure 9.14 The k-d tree resulting after deleting point D
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Figure 9.15 Possible cases when deleting a node from a binary search tree. (A) Deleting a leaf. 
(B) Deleting a node with a single child. (Works symmetrically if the child is in the right branch). 
(C) Deleting a node with both children.
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1 The node we need to remove is a leaf. In this situation, we can just safely
remove the node from the tree, and we are done.

2 The node N to-be-removed has only one child. Here simply removing the node
would disconnect the tree, but we can instead bypass it by connecting N’s parent
to its children (independently of it being in the left or right subtree of N). This
won’t violate any invariant for the BST. For instance, in the case shown in figure
9.15B, N is a left child of its parent P, so it’s smaller than or equal to P, but like-
wise, all elements in the subtree rooted at N will be smaller than or equal to P,
including N’s child L.

3 If the node N that we need to remove has both children, we can’t just replace it
with one of its children (for instance, if we were to replace the root in figure
9.15C with its right child R, then we would have to merge R’s left child with N’s,
and that would require worst-case linear time (and also be a waste). 

Instead, we can find the successor8 of N. By construction, it will be the mini-
mum node in its right subtree, let’s call it M, which in turn means the leftmost
node of its right subtree. Once we have found it, we can delete M and replace N’s
value with M’s value. No invariant will be violated, because M was no smaller than
N, and N in turn was no smaller than any node in its left subtree.

Moreover, M will certainly configure as either case (A) or case (B), because
being the left-most node, it won’t have a left child. This means that deleting M
will be easy and recursion stops at M.

When we move from regular BSTs to k-d trees, the first difference is caused by the fact
that at each level we only use a single coordinate to partition points in the two
branches. If we have to replace a node N at level i, at that level we are using coordinate
j = i mod k, so we know its successor (for coordinate j) will be in N’s right subtree.
However, when we move to N’s child, that node will use another coordinate, j1 =

(i+1) mod k, to partition its children. As you can see in figure 9.16, that means that
the successor of N doesn’t have to be in R’s left subtree.

 That’s bad news, because it means that while for BSTs we could quickly traverse N’s
right subtree to its leftmost node in order to find N’s successor, now we can only do
that for level l where l mod k == i mod k. In all the other levels, we will have to tra-
verse both subtrees to look for the minimum. 

 Listing 9.7 shows the pseudo-code for the findMin method. The first difference
you can see with respect to BST’s version is that we need to pass the index of the coor-
dinate for which we look for the minimum. For instance, we could call findMin(root,
2) to search the node in the whole tree with the minimum value for the third coordi-
nate—assuming k>=3.

 
 

8 Note that we could also use N’s predecessor in a symmetrical way.
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function findMin(node, coordinateIndex) 
  if node == null then                
    return null
  elsif node.level == coordinateIndex then  
    if node.left == null then                                
      return node
    else             
      return findMin(node.left, coordinateIndex)
  else
    leftMin ← findMin(node.left, coordinateIndex)   
    rightMin ← findMin(node.right, coordinateIndex) 
    return min(node, leftMin, rightMin) 

This greater complexity in the findMin method unfortunately reflects on its running
time. It can’t be logarithmic as with BSTs because we are traversing all branches for all
levels except the ones matching coordinateIndex, so in (k-1)/k cases.

Listing 9.7 The findMin method

A

BC

D E

F

(0, 5)

(1, -1)

(2, -5)

(-1, 6)

(-1, 1)

(-0.5, 0)
G

(-1.5, -2)
H

(2.5, -3)

Element to delete

findMin(B, x)

I
(0.5, 2)

N

R
findMin(A, y)

Successor

findMin(A, x)

Figure 9.16 An example of how the successor of a node, or more generally the 
minimum of a subtree with respect to a certain coordinate, can lie anywhere in 
the subtree. The results of a few calls to findMin on the whole tree and on node 
B are explicitly shown.

Finds the node in the tree with the minimum 
value for the coordinate at a given index

If node is null, we are traversing
an empty tree, so there is no min.

Lucky case: the coordinate to use for 
comparison is the same one for which 
we are looking for the minimum value, 
so the minimum will either be . . . 

. . . this very node, if its 
left subtree is empty . . .

. . . or in
its left

subtree, if
it’s not
empty.

If we are at a level for 
which the partitioning is 
computed on a different 
coordinate, then we have 
no way of saying where the 
minimum lies. We have to 
recurse on both branches 
and find the minimum of 
each branch.

That, however, is not enough. The minimum could be the current node as well, so we have 
to compare these three values. We assume that function min here is an overload that takes 
nodes as input and handles null by considering it to be larger than any non-null node.
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 And, in fact, it turns out that the running time for findMin is O(n(k-1)/k). If k==2, this
means O(n1/2) = O( ), which is not as good as logarithmic, but still sensibly better than
a full scan. As k grows, though, this value gets closer and closer to O(n).

 The enhanced version of findMin solves the issue with the coordinates. Now you
might hope that plugging it into the regular BST’s remove is enough, but that’s unfor-
tunately not the case. There is another issue that complicates things a bit further.

 If you go back to figure 9.15 (B), for BSTs there were two lucky cases for which
deleting a node was easy: deleting a leaf and deleting a node with only one child.

 For k-d trees, only leaves can be deleted easily. Unfortunately, even if the node N to
be deleted has only one child C, we can’t just replace N with its child, because this would
change the direction of the splits for C and its entire subtree, as shown in figure 9.17.

In that example, we attempt to remove node B, which only has one child and no right
branch (it works similarly in the symmetric case). If we tried to simply replace B with its
children E, this node would appear one level up in the tree, and likewise all its children.

 So, before node E was using x coordinates to partition nodes in its subtree, so that
node H was on the right of E because H’s x coordinate (2.5) is larger than E’s (2).

 After we move E and its subtree up, we would need to use y coordinates to parti-
tion nodes in E’s subtree. But H’s y coordinate (-8) is larger than E’s (-5), so node H
doesn’t belong to E’s right branch anymore, and the k-d tree invariants are violated.

 In this case it might look like something easy to fix, but we would need to reevalu-
ate every single node in E’s subtree and rebuild it.

 This would certainly require O(n) time, where n is the number of nodes in the sub-
tree rooted at the node we remove.

n
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Figure 9.17 An example of a k-d tree deletion for which replacing the deleted node with its only child 
wouldn’t work. (A) The initial tree, from which we remove node B. This node has only one child, so in a BST 
it would just be replaced by its child. (B) However, in a k-d tree this might cause violation of the k-d tree 
invariants, because moving a node one level up changes the coordinate on which the split is performed, when 
using it as a pivot.
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 A better solution would be to replace the node N that we want to remove with its
successor or its predecessor. If N only has a right child, we can just find its successor
using findMin, as we described in the example in figure 9.16.

 When node N only has a left child, can we replace it with its predecessor? As much
as you might be tempted to think so, in this situation another issue comes up.

 We mentioned when we described the insert method that the way we break ties
on insert has an influence on the remove method as well.

 And indeed, figure 9.18 shows an example where this becomes relevant. The prob-
lem is that when we break ties on insert and search by going right, we implicitly
assume an invariant:9 that for any internal node N, no node in its left branch will have
the same value for the coordinate used to partition N’s subtree. In figure 9.18, this
means that no node in the left branch of node B has a y coordinate equal to N’s.

If we replace N with the max of its left branch, however, it is possible that in N’s old left
branch there was another node with the same y coordinate. In our example, that
would be the case since there are two nodes with the same maximal value for y, node I
and node H.

 By moving node I to replace B, we would therefore break search, because node H
would never be found by the search method in listing 9.3.

 Luckily the solution is not too complicated. We can instead run findMin on the left
branch, replace N’s point with the node M found by findMin, and set N’s old left branch
as the right branch of this new node we are creating, as shown in figure 9.19.

9 This is implied by invariant 4 as described in section 9.2.2

A

BC

D E

F

(0, 5)

(1, -1)

(2, -5)

(-1, 6)

(-1, 1)

(-0.5, 0)
G

(-1.5, -2)
H

(2.5, -4)

Element to delete

P

N

(A)

I
(1.5, -4)

findMax(B, y)

Starting point

A

C

D

I

F

(0, 5)

(1.5, -4)(-1, 6)

(-1, 1)

(-0.5, 0)
G

(-1.5, -2)

(B)

E
(2, -5)

H
(2.5, -4)

Incorrect solution

Violates
invariant #4

Figure 9.18 An example showing why, when we delete a node with only a left child, we can’t replace the 
current node with the minimum of the left branch. On the right, we can see how H causes the fourth invariant 
of k-d trees to be violated, because it is on the left branch of node I, but has the same value for I’s split 
coordinate.
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Figure 9.19 Correct steps for deleting a 
node N with only a left child. In figure 9.18, 
we saw that finding the max of the left 
branch won’t work. Instead, we need to 
find the min M, use it to replace the 
deleted node, and then set N’s old left 
branch as the new node’s right branch. 
Then we only need to remove M from the 
left branch, which requires a new call to 
remove. (As you can see, unfortunately we 
can make no assumptions on this call; it 
might cascade and require more recursive 
calls to remove.)
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Then we just need to remove the old node M from that right branch. Notice that
unlike what happened with binary search trees, we can make no assumptions on M
here, so we might need to repeat these steps in the recursive call deleting M.

 Listing 9.8 sums up all these considerations into a pseudo-code implementation
for method remove.

function remove(node, point)
  if node == null then    
    return null
  elsif node.point == point then 
    if node.right != null then  
      minNode ← findMin(node.right, node.level) 
      newRight ← remove(node.right, minNode.point)   
      return new KdNode(minNode.point, node.left, newRight, node.level) 
    elsif node.left != null then                                   
      minNode ← findMin(node.left, node.level)                    
      newRight ← remove(node.left, minNode.point)                
      return new KdNode(minNode.point, null, newRight, node.level)   
    else
      return null                      
  elsif compare(point, node) < 0 then       
    node.left ← remove(node.left, point)
    return node
  else                                      
    node.right ← remove(node.right, point)
    return node

If we look at the running time for remove, the cost of the calls to findMin drives up the
total cost, which thus can’t be logarithmic anymore (as it was for BSTs). To perform a
more rigorous analysis, let’s again denote as Tk(n) the running time for this method,
where k is the dimensionality of the points’ space and n is the number of nodes in the
tree. When we look more closely at each conditional fork, if we assume that we are
working on a balanced tree, then

Listing 9.8 The remove method

Removes a point from the tree rooted at 
node. The method will return the root of 
the tree after completing the operation.

If node is null, we are traversing an
empty tree, so we can conclude the

target point is not on the tree.
If the node matches the point to remove, we can 
stop traversing the tree, and we need to remove 
the current node.

In case the current node has a right child, 
we are in the most generic situation.

Finds the 
minimum 
MR, in the 
right branch, 
for current 
node’s split 
coordinate

Removes MR above 
from the right subtree

Creates a new node, to replace
current, with MR as point, and

the old branches

If, instead, there is no right child, but there is
a left branch, we are in the first special case.

Finds the minimum ML, in the left branch,
for current node’s split coordinate

Removes ML found above
from the left branch

Creates a new node, to
replace current, using ML as

point, and setting left child to
null, and right child to the

former left branch.

If both left and right branches are null, 
we are at a leaf, so we can just remove it.

Otherwise, if the current node doesn’t match 
the point to delete, checks if we need to go 
left or right, and recursively calls remove
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 Each branch of the conditional at line #15 would trigger a recursive call on
approximately half the nodes, and so require time Tk(n/2).

 If we enter the code blocks after conditionals at lines #2 or #13, those only
require constant time.

 Conditionals at lines #5 and #9 both will run code blocks that requires creating
a new node, O(1), running findMin, O(n1-1/k), and recursively calls remove.

The worst case here is the latter: we don’t know where the minimum node will be in its
branch. It could be far down the tree or just the root of the branch; thus, if we end up
in a case similar to figure 9.17 (either with a missing left or right branch, indifferently),
we might have to call remove recursively on n-1 nodes, in the absolute worst case.

 However, we assumed that our k-d tree is balanced. Under this assumption, left
and right branches should have more or less the same number of nodes, and there-
fore if the right branch of a node is empty, the probability that the left branch has one
node is still high, that it has two nodes is less likely, and it goes down with three nodes,
and so on. For a certain constant, for example 5, we can say that in a situation like the
one in figure 9.17, where a node has a single branch, then it is highly unlikely that
branch has more than a constant number of nodes (say five). And we can thus assume
that in a balanced tree, such an imbalanced case can happen at most a constant num-
ber of times during a call to remove. Or, more precisely, on a large number of remov-
als, we can assume that the amortized cost of running the code blocks starting at lines
#5 and #9 would be Tk(n/2).

 Our recurrence would therefore become

Tk(n) = Tk(n/2) + O(n
1-1/k)

Using the master theorem’s third case, since 1-1/k > log2(1)=0, and (n/2)1-1/k ≤ n1-1/k,
we can then conclude that the amortized time required by remove on a balanced k-d
tree is

Tk(n) = O(n
1-1/k)

In other words, remove’s running time is dominated by findMin; this also means that
in a 2-D space, the amortized running time for remove would be O( ).

9.3.5 Nearest neighbor

We are now ready to study the most interesting operation provided by k-d trees, the
nearest neighbor (NN) search. First, we are going to restrict to the case where we
search for the single closest point in the dataset with respect to a target point (which,
in general, doesn’t have to be contained in the same dataset). Later we will generalize
this operation to return an arbitrary number m10 of points such that no other point in
the dataset is closer to the target.

10This method is usually denoted as a k-nearest-neighbor search, but the use of k here could cause confusion
with the dimension of the tree; hence we will just use m or n to indicate the number of points we look for.

n
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 In a brute-force scenario, we would have to compare each point in the dataset to
our target, compute their relative distances, and keep track of the smallest one,
exactly the way we search for an element in an unsorted array.

 However, a k-d tree, much like a sorted array, has structural information about the
relative distance and position of its elements, and we can leverage that information to
perform our search more efficiently.

 Listing 9.9 shows the pseudo-code implementing nearest neighbor search. To under-
stand this code, however, we first need to ask, how does nearest neighbor search work?

function nearestNeighbor(node, target, (nnDist, nn)=(inf, null)) 
  if node == null then                                      
    return (nnDist, nn)
  else            
    dist ← distance(node.point, target) 
    if dist < nnDist then             
      (nnDist, nn) ← (dist, node.point)
    if compare(target, node) < 0 then    
      closeBranch ← node.left
      farBranch ← node.right
    else                               
      closeBranch ← node.right
      farBranch ← node.left
    (nnDist, nn) ← nearestNeighbor(closeBranch, target, (nnDist, nn)) 
    if splitDistance(target, node) < nnDist then                   
      (nnDist, nn) ← nearestNeighbor(farBranch, target, (nnDist, nn)) 
    return (nnDist, nn)   

We start from the consideration that each tree node covers one of the rectangular
regions in which the space was partitioned, as we have shown in figures 9.5 and 9.6. So
first we want to find which region contains our target point P. That’s a good starting
point for our search, because it’s likely that the point stored in the leaf covering that
region, G in this example, will be among the closest points to P.

Listing 9.9 The nearestNeighbor method

Finds the closest point to a given target. We also pass 
the best values found so far for nearest neighbor (NN) 
and its distance to help pruning. These values default 
to null, infinity for a call on the tree root.

If the node is null, we are traversing an empty 
tree, so the nearest neighbor can’t change with 
respect to what we have already found.

Otherwise, we have three tasks:
check if the current node is closer

than previously found NN, traverse
the branch on the same side of the

split with respect to the target
point, and check if we can prune the
other branch (or traverse it as well).

We compute 
the distance 
between the 
current node’s 
point and 
target.

If that distance is less than the current 
NN’s distance, we have to update the 
values stored for the NN and its distance.

Checks if the target point is on the left branch of 
the split. If it is, the left branch is the closest to 
the target point, otherwise it is the furthest.

We certainly need to traverse the closest branch 
in search of the nearest neighbor. It is important 
to do so first and update the mementos for NN’s 
distance, to improve pruning.

Using one of the helper functions defined in
listing 9.2, we compute the distance between the

split line passing through the current node and
the target point. If this distance is closer than the

distance to current nearest neighbor, then the
furthest branch might contain points closer than

the current nearest neighbor (see figure 9.21).

Traverses the furthest branch and updates 
the current values for NN and its distance

Returns the closest point found so far
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 Can we be sure that G will be the closest point to P, though? That would have been
ideal, but unfortunately that’s not the case. Figure 9.20 shows this first step in the algo-
rithm, traversing a path in the tree from the root to a leaf, to find the smallest region
containing P.
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Figure 9.20 The first few steps of 
nearest neighbor search. The first 
phase of nearest neighbor search 
consists of a search on the tree, 
during which we keep track of the 
distance of each node (aka point) 
we traverse: more precisely, if we 
need to find N nearest neighbors for 
P, we need to keep track of the N 
smallest distances we find. In this 
case we are showing the query for 
N=1. Thus, if the search is 
successful, then we definitely have 
the nearest neighbor, at distance 
0. Otherwise, when search ends, 
we are not yet sure we have found 
the actual nearest neighbor. In this 
example, the point at the minimum 
distance we have found during 
traversal is D but, as you can see 
from the figure, we can’t be sure 
that another branch of the tree 
doesn’t have a point within the 
radius given by dist(D).
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As you can see, we check the distance of every intermediate point along the path,
because any of them can be closer than the leaf. Even if intermediate points cover
larger regions than leaves, inside each region we don’t have any indication of where
dataset points might lie. If we refer to figure 9.20, if point A had been at (0,0), the
tree would have had the same shape, but P would have been closer to A (the root) than
G (a leaf).

 But even that is not enough. After finding the region containing P, we can’t be sure
that in neighboring regions there aren’t one or more points even closer than the clos-
est point we found during this first traversal.

 Figure 9.21 exemplifies this situation perfectly. So far, we have found that D is the
closest point (among those visited) to P, so the real nearest neighbor can’t be at a

Figure 9.21 The second step, after an unsuccessful search, is to backtrack to check other branches of 
the tree for closer points. It is possible to have such points because when we traverse the tree, we cycle 
through the coordinates that we compare at each level, so we don’t always go in the direction of the 
closest point, but we are forced to go on one side of the pivot, depending only on a single coordinate. This 
means it is possible that the nearest neighbor is on the wrong side of the pivot with respect to our target 
point P. In this example, when we reached D, since it creates a vertical split, we needed to move to the 
left, as shown in figure 9.20. Unfortunately, the target point P and its nearest neighbor lie on opposite sides 
of the split line for D. So, once we reach the end of the path, we need to backtrack to check other branches.
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distance larger than the one between D and P. We can thus trace a circle (a hyper-
sphere, in higher dimensions) centered at P and with a radius equal to dist(D, P). If
this circle intersects other partitions, then those regions might contain a point closer
than D, and we need to get to them.

 How do we know if a region intersects our current nearest neighbor’s hyper-
sphere? That’s simple: each region stems by the partitioning created by split lines.
When traversing a path, we go on one side of the split (the one on the same side as P),
but if the distance between a split line and P is less than the distance to our current
nearest neighbor, then the hyper-sphere intersects the other partition as well.

 To make sure we visit all partitions still intersecting the NN hyper-sphere, we need
to backtrack our traversal of the tree. In our example, we go back to node D, then
check the distance between P and the vertical split line passing through D (which, in
turn, is just the difference of the x coordinates of the two points). Since this is smaller
than the distance to D, our current NN, then we need to visit the other branch of D as
well. When we say visit, we mean traversing the tree in a path from D to the closest leaf
to P. While we do so, we visit node F and discover that it’s closer than D, so we update
our current NN (and its distance: you can see that we shrink the radius of our nearest
neighbor perimeter, the circle marking the region where possible nearest neighbors
can be found).

 Are we done now? Not yet; we need to keep backtracking to the root. We go back
to node C, but its split line is further away than our NN perimeter (and it doesn’t have
a right branch, anyway), so we go back to node A, as shown in figure 9.22.
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Figure 9.22 We need to backtrack toward the root. If we had to check every possible branch of the tree, 
however, this would be no better than scanning the whole list of points. Instead, we can use all the 
information we have to prune the search. In the geometric representation on the right, we show a visual 
hint of why it would be useless to check A’s right sub-branch. If you look back at figure 9.21, you can 
see that we knew that we couldn’t rule out D’s right sub-branch without traversing it.
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At node A we took the left branch during search, meaning P is on the left semi-plane.
If we were to traverse the right subtree of A, all the points in that subtree would have
their x coordinate greater than or equal to A’s. Therefore, the minimum distance
between P and any point in the right sub-tree of A is at least the distance between P
and its projection on the vertical line passing through A (i.e., A’s split line). In other
words, the minimum distance for any point right of A will at least be the absolute value
of the difference between P’s and A’s x coordinates.

 We can therefore prune search on A’s right branch, and since it was the root, we
are finally done. Notice how the more we climb back on the tree, the larger are the
branches (and the regions) that we can prune—and the larger the saving.

 We can generalize this method to find an arbitrary large set of the closest points in
the dataset, also known as the n-nearest-neighbor11 search method.

 The only differences are

 Instead of the distance of a single point, we need to keep track of the m shortest
distances if we want the m closest points.

 At each step, we use the distance of the m-th closest point to draw our NN perim-
eter and prune search.

 To keep track of these m distances, we can use a bounded priority queue. We
described something similar in chapter 2, section 2.7.3, when we described a
method to find the m largest values in a stream of numbers.

Listing 9.10 details the pseudo-code for the nNearestNeighbor method. 

function nNearestNeighbor(node, target, n)
  pq ← new BoundedPriorityQueue(n) 
  pq.insert((inf, null))               
  pq ← nNearestNeighbor(node, target, pq) 
  (nnnDist, _) ← pq.peek()        
  if nnnDist == inf then        
    pq.top() 
  return pq           

function nNearestNeighbor(node, target, pq)  

11As mentioned, this is also referred to as k-nearest-neighbor in literature.

Listing 9.10 The nNearestNeighbor method

Finds the n points in the k-d tree 
that are closest to a given target

Initializes a max-heap (or any other (max) priority queue), 
bounded in its size, so that it will only contain the n 
smallest elements added to it. Refer to chapter 2, section 
2.7.3, to see how insertion in such a queue works.

Before starting our search, we need to initialize 
the priority queue by adding a “guard”: a tuple 
containing infinity as distance, a value that will be 
larger than any other distance computed, and so 
it will be the first tuple removed from the queue 
if we find at least n points in the tree.

We start the 
search on the 
root, using a 
recursive 
internal 
function.

We take a peek at the queue produced by the 
call at line #4, and . . . 

. . . if its top element is still at an infinite 
distance, we need to remove it, because it 
means we have added less than n elements 
to the queue.

Once that’s taken care of, we can just 
return to the caller the queue with the 
elements we found.

Internal version of the function taking an 
already initialized priority queue. The queue 
will encapsulate the logic about keeping track 
of the n-th closest neighbors and their 
distances, which we’ll use to prune search.
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  if node == null then
    return pq
  else
    dist ← distance(node.point, target) 
    pq.insert((dist, node.point))    
    if compare(target, node) < 0 then  
      closeBranch ← node.left
      farBranch ← node.right
    else                         
      closeBranch ← node.right
      farBranch ← node.left
    pq ← nNearestNeighbor(closeBranch, target, pq)  
    (nnnDist, _) ← pq.peek()                     
    if splitDistance(target, node) < nnnDist then 
      pq ← nNearestNeighbor(farBranch, target, pq) 
    return pq      

What’s the running time for nearest neighbor search? Let’s start with the bad news: in
the worst-case scenario, even for a balanced tree, we might have to traverse the whole
tree before finding a point’s nearest neighbor(s).

 Figure 9.23 shows a couple of examples of such a degenerate case. While the sec-
ond example is artificially constructed as a literal edge case with all the points lying on
a circle, the one in figure 9.23 (A) shows the same tree we used in our previous exam-
ples and demonstrates how even on random, balanced trees it is possible to find
counter-examples where the method behaves poorly by just carefully choosing the tar-
get point for the search.

 So, unfortunately there isn’t much to do: the worst-case running time for this kind
of query is O(n).

 That’s the bad news. Luckily, there is also a silver lining.
 

If node is null it's likely that we are traversing an 
empty tree, so the nearest neighbors can’t change 
with respect to what we have already found.

Once we are sure the current node is not null it's 
likely that we can compute the distance between the 
current node’s point and target.

We try to insert the tuple (current distance, 
current point) into the bounded (max) priority 
queue. This helper data structure takes care of 
keeping only the smallest n tuples, so that 
current point will only be added if its distance is 
among the n smallest distances found so far.

Checks if the target point is on the left 
branch of the split. If it is, the left branch 
is the closest to the target point; 
otherwise it is the furthest.

We certainly need to traverse the closest
branch in search of the nearest neighbor. It is

important to do so first and update the
priority queue, and so the distance to the n-th

closest neighbor, to improve pruning.

We need to retrieve the distance to 
the n-th closest neighbor, and we can 
do so by peeking at the tuple at the 
top of the bounded priority queue. 
Notice that this works if the queue 
has less than n elements. Since at line 
#3 we added a tuple with distance 
equal to infinity, that tuple will be at 
the top of the heap until we add n 
points, and so nnnDist will be set to 
infinity here, as long as we haven’t 
yet added at least n points to the 
queue. Note: Underscore here is a 
placeholder, meaning that we are not 
interested in the value of the second 
element of the pair.

Using one of the helper functions defined in listing 9.2, we 
compute the distance between the split line passing through 
the current node and the target point. If this distance is closer 
than the distance to the current n-th nearest neighbor, as it’s 
stored in the queue, then the furthest branch might contain 
closer points.

Traverses furthest branch and updates 
current values for NNs and their distance

Returns the priority queue with the points found so far
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Turns out that the average running time for nearest neighbor search on a balanced
k-d tree is O(2k + log(n)). The proof for this probabilistic bound is particularly com-
plex and would require too much space to properly cover it here. You can find it in
the original paper by Jon Bentley that first introduced k-d trees.

 Nevertheless, to give you an intuition about why it works this way, consider a two-
dimensional space: one point divides it into two halves, two points info three regions,
three points will create four regions, and so on, and in general n points will create n+1
regions. If the tree is balanced and n is sufficiently big, we can assume these regions
are approximately equally sized.

 Now suppose the dataset covers a unitary area.12 When we run a nearest neighbor
search we first traverse the tree from the root to the closest leaf,13 and this, for a bal-
anced tree, means traversing O(log(n)) nodes. Since we hypothesized that each
region is approximately the same size, and we have n+1 of them, the area covered by
the closest leaf will also be a rectangular region of area approximately equal to 1/n.
That means that there is a reasonably high probability that the distance between the
target point and the nearest neighbor we have found during this traversal is no larger
than half the diagonal of the region, which in turn is smaller than the square root of
the region’s area, or in other words, .

 The next step in the algorithm is backtracking to visit all the regions that are
within that distance from the target point. If all the regions are equally-sized and regu-
larly shaped, this means that any region within distance must be in one of the neigh-
boring rectangles (with respect to our leaf’s region), and from geometry we know that

12Since we can define an ad-hoc unit measure for the area, it is always possible to imagine so.
13The one leaf that is closest to the target point, as shown in listing 9.9.
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Figure 9.23 Edge cases for nearest neighbor search, which require traversing the whole tree. (A) An example 
built on the k-d tree from figures 9.20–9.22. By carefully choosing the target point, we can force the algorithm 
to search the whole tree, as shown on the tree representation. (B) We show the spatial representation only 
of an edge case where all the points lie in a circle, and we choose the center of the circle as target of the 
search. Notice how the distance from P to a split line will always be shorter than the radius of the circle 
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in such a situation, with regular equally sized rectangles that can be approximated to a
rectangular grid, each rectangle has eight neighbors. From figure 9.24, however, it is
possible to see how, on average, even if potentially we would have to traverse at most
eight more branches, it’s likely we only have to check four of them, because only the
ones adjacent to the current region’s sides will be within distance . Hence, this
makes the total average running time O(4*log(n)).

If we move to ℝ3, then the possible neighbors for each cube are 26, but the minimum
distance will be . With similar considerations we can infer that only less than
eight regions will be close enough to have points within the minimum distance found
so far; likewise, if we move to ℝ4, and so on.

 So, in summary, after finding the region where the target point of our search lies,
we need to examine another O(2k) points, making total running time O(2k + log(n)).
While k is a constant for a given dataset, and we could in theory ignore it in big-O
analysis, in the general case k is considered a parameter, as we measure the perfor-
mance of this method with respect to both size and dimension of the k-d tree changes.
It’s also apparent that for large values of k, 2k becomes so big that it dominates the
running time, since
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Figure 9.24 A perfectly regular k-d tree partitioning with square cells. On the left, we show what 
can be considered the average case, with the tree’s leaf point at the center of the region. Then the 
furthest the target could be, inside the region, is at half the distance of the square’s diagonal. If we 
draw the circle circumscribed to the square, it intersects just the four regions adjacent to the sides 
of the current one. On the right is an example of another more generic and less optimistic case. Even 
if the distance is larger than the average, the hypersphere centered at the target node only 
intersects four other regions. Of course, in the worst-case scenario, it might intersect up to eight 
other regions.
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and in practice for k ≥ 7 there is already no chance of having a dataset big enough to
satisfy the inequality. For n > 2k, however, this method still has an advantage over the
brute-force search.

 A final consideration: Pruning heavily depends on the “quality” of the nearest
neighbor we have found so far. The shorter the distance to the current nearest neigh-
bor, the more branches we can prune, and in turn the higher speed-up we can get.
Therefore, it is important to update this value as soon as possible (we do this in our
code for each node on the first time we visit it) and to traverse the most promising
branches first. Of course, it is not easy to determine what the most promising branch
is at any point. A good, although imperfect, indicator could be the distance between
the target point and split line for a branch. The closer the target, the larger should be
the intersection between the nearest neighbor perimeter (the hyper-sphere within
which it’s still possible to find a closer point to the target), and the region on the
other side of the split line. That’s the reason why we traverse the tree using a depth-
first search: we backtrack on the smallest branches first, so hopefully when we reach
larger branches close to the top of the tree, we can prune them.

9.3.6 Region search

While k-d trees were mainly designed to perform nearest neighbor search, they
turned out to be particularly efficient for another kind of operation: querying the
intersection of our dataset with a given region in the k-dimensional space.

 In theory this region could be of any shape, but this operation becomes meaning-
ful only if we can efficiently prune the branches we traverse during the query, and this
heavily depends on the region’s morphology.

 In practice, there are two main cases we are interested in:

 Hyper-spherical regions, as shown in figure 9.25; the geometric interpretation is
to query points within a certain distance from a certain point of interest.

 Hyper-rectangular regions, as shown in figure 9.26; here, the geometric inter-
pretation is to query points whose values are in certain ranges.

When we deal with spherical regions, we are in a similar situation as the nearest neigh-
bor search: we need to include all the points within a certain distance from a given
point. It’s like performing a NN-search, where we never update the distance to the
nearest neighbor, and instead of keeping track of only one point (the NN), we gather
all points closer than that distance.

 In figure 9.25 you can see how we are going to prune branches. When we are at a
split, we will certainly have to traverse the branch on the same side of the center of the
search region P. For the other branch, we check the distance between P and its pro-
jection on the split line. If that distance is lower than or equal to the search region’s
radius, it means that there is still an area of intersection between that branch and the
search region, and so we need to traverse the branch; otherwise, we can prune it. 
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Listing 9.11 shows the pseudo-code for this method. As you can see, it’s pretty similar
to the regular NN-search.

function pointsInSphere(node, center, radius) 
  if node == null then       
    return []
  else
    points ← []                 
    dist ← distance(node.point, center)  
    if dist < radius then               
      points.insert(node.point)
    if compare(target, node) < 0 then    
      closeBranch ← node.left
      farBranch ← node.right
    else                                   
      closeBranch ← node.right
      farBranch ← node.left
    points.insertAll(pointsInSphere(closeBranch, center, radius))  
    if splitDistance(target, node) < radius then                
      points.insertAll(pointsInSphere(farBranch, center, radius)) 
    return points   

Listing 9.11 The pointsInSphere method

Figure 9.25 Region search on a k-d tree returns all the points in a k-d tree within a given hyper-sphere. 
This means looking for points within a given Euclidean distance from the sphere’s center. We start our 
search from the root: it’s not within the sphere. The point is on A’s left branch, so we need to traverse 
it, but even if A is not within the sphere, the split line through it intersects the sphere, so there is a 
portion of the sphere intersecting the right branch of A as well (highlighted in the top-left figure). For 
the following steps, we are showing in parallel the execution on all branches at a given level, for the 
sake of space. (This is also a good hint that these processes could be executed in parallel.)

Finds all the points in the container intersecting a 
given hyper-sphere. We pass the hyper-sphere as 
its center and radius.

If node is null, we are traversing an empty 
tree, so there is no point to be added.

Otherwise, we have three tasks: check if the 
current node is inside the hyper-sphere, 
traverse the branch on the same side of the 
split with respect to the center of the sphere, 
and check if we can prune the other branch (or 
traverse it as well). We start by initializing the 
list of points found within this subtree.

We compute 
the distance 
between the 
current node’s 
point and 
sphere’s 
center.

If that’s less than the sphere’s radius, we 
can add the current point to the results.

Checks which branch is on the same side 
of the sphere’s center (close) and which 
on the other side (far)

We certainly need to traverse the
closest branch, because it intersects

the sphere. Add all points found to the
results for the current subtree.

Using one of the helper functions defined in
listing 9.2, we compute the distance between the

split line passing through the current node and
the center of the sphere. If this distance is closer

than the radius, the furthest branch will also
intersect the sphere (see figure 9.25).

Traverses the furthest branch, and adds 
all points found to current results

Returns the points found in this subtree
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The other region we are going to use for these queries is a rectangular shape. As you
can imagine, the only difference with respect to pointsinSphere is the way we check
whether we have to prune a branch. If we assume that the rectangle is oriented along
the Cartesian axes used for splits, then pruning might even be considered easier, as
shown in figure 9.26. But suppose we are at a horizontal split; then we need to under-
stand if the split line intersects the search region, and in this case we will traverse both
branches, or if it’s above or below the region, which tells us which branch we can
prune. This can be checked by simply comparing the y coordinate current node’s
point—call it Ny—with top (Rt) and bottom (Rb) y coordinates of the rectangular
region, as we can have three cases:

 Rb ≤ Ny ≤ Rt—We need to traverse both branches.
 Ny > Rt—We can prune the left branch.
 Rb > Ny—We can prune the right branch.

And similarly for vertical splits, by checking the x coordinates instead of the y coordi-
nates, it can also be generalized for k-dimensional spaces, cycling through dimensions.

 This method is particularly useful when we need to search values within simple
boundaries for each feature in data. For instance, if we have a dataset containing the
tenures and salaries of employees, we might want to search all employees who worked
for the company between two and four years and have salaries between 40K and 80K
. . . and give them a raise!14

 This search, implemented in listing 9.12, translates into a rectangle with boundar-
ies parallel to the dataset feature axes, meaning that in our boundaries each feature is
independent of any other feature. If, instead, we had conditions that would mix more
than one feature (for instance, a salary lower than 15K for each year of tenure), then
the boundaries of the search region would be segments of generic lines, not parallel
to any axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

14In a perfect world . . . 
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In that case, the problem becomes harder to solve, and we might need something more
complex, such as the simplex algorithm,15 to search the points satisfying our range
query.

function pointsInRectangle(node, rectangle)
  if node == null then       
    return []
  else                    
    points ← []                            
      if (rectangle[i].min ≤ node.point[i] ≤ rectangle[i].max 
           ∀ 0≤i<k) then                           
      points.insert(node.point)
    if intersectLeft(rectangle, node) then               
      points.insertAll(pointsInRectangle(node.left, rectangle))    
    if intersectRight(rectangle, node) then        
      points.insertAll(pointsInRectangle(node.right, rectangle))
    return points     

What’s the performance of both region-searches? Well, as you can imagine, it heavily
depends on the regions we search. We go on a full range from two edge cases:

15The simplex algorithm is an ingenious optimization method. It is not related to or helped by k-d trees and, as
such, is out of scope for this chapter, but it’s interesting reading, and you can read more here: https://
en.wikipedia.org/wiki/Simplex_algorithm.

Listing 9.12 The pointsInRectangle method

Figure 9.26 Region search on a k-d tree returns all the points in a k-d tree within a given hyper-
rectangle. This means looking for points that, for each coordinate, satisfy two inequalities: each 
coordinate must be within a range. For instance, in this 2-D example, the points’ x coordinates 
need to be between -2 and 3.5, and y coordinates between -4 and 2.

Finds all the points in the container intersecting a given hyper-
sphere. We pass the hyper-rectangle as an argument, so we 
can assume it is a list of named tuples, each containing the 
boundaries for a dimension of the rectangle, as a range (min-
max values).

If the node is null, we are traversing an 
empty tree, so there is no point to be added.

Otherwise, we have three tasks: check if the 
current node is inside the hyper-rectangle, 
check if the left and right branches intersect 
the rectangle (at least one of them will), and 
traverse any that do intersect.

We start by initializing the list of 
points found within this subtree.

If, for each dimension i, the i-th
coordinate of the current node’s point

is within the rectangle’s boundaries for
that coordinate, then we can add the

current point to the results.

If the rectangle boundaries intersect the
left branch, either being on the left of

the current node’s split line, or
intersecting it, then we need to traverse
the left branch and add all points found

to the current results. For the sake of
space, we won’t provide this helper

function, but you can easily write it using
figure 9.26 as a reference.

If the rectangular search region intersects 
the right branch, we can symmetrically 
recurse on the right child.

Finally, we return all points found in this subtree.

https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex_algorithm
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 For very small regions intersecting only a single branch corresponding to a leaf,
we will prune every other branch, and just follow a path to the leaf, so the run-
ning time will be O(h), where h is the height of the tree – O(log(n)) for a bal-
anced tree with n points.

 When the region is large enough to intersect all points, we will have to traverse
the whole tree, and the running time will be O(n).

Therefore, we can only say that the worst-case running time is O(n), even if the meth-
ods will efficiently prune the tree whenever possible.

9.3.7 A recap of all methods

As we have seen, k-d trees provide a speed-up over brute-force search on the whole
dataset; table 9.1 summarizes the performance of the methods described in this chap-
ter. While the worst-case running time for nearest neighbor search (and removal) is
still linear (exactly as for brute-force), in practice the amortized performance on bal-
anced k-d trees is slightly to consistently better. The improvement is higher in low
dimensional spaces and still consistent in medium-dimensional spaces.

 In high-dimensional spaces, the exponential term on k for nearest neighbor
becomes dominant and makes supporting the extra complexity of such a data struc-
ture not worth it.

9.4 Limits and possible improvements
If we look back at our “find the closest hub” problem, we started this chapter with basi-
cally nothing better than brute-force search to find the nearest neighbor of a point in
a multi-dimensional dataset. Then, going through a few less-than-ideal attempts, we
built our understanding of the traps and challenges in such a task and finally intro-
duced k-d trees.

Table 9.1 Operations provided by k-d tree, and their cost on a balanced k-d tree with n elements

Operation Running time Extra space

search O(log(n)) O(1)

insert O(log(n)) O(1)

remove O(n1-1/k)a

aAmortized, for a k-d tree holding k-dimensional points.

O(1)

findMin O(n1-1/k)a O(1)

nearestNeighbor O(2k + log(n))a O(m)b

bWhen searching for the m nearest neighbors, with m constant (not a function of n).

pointsInRegion O(n) O(n)
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 K-d trees are great because they offer a major speed-up over linear search; yet, they
still have potential issues:

 K-d trees might be hard to implement efficiently.
 K-d trees are not self-balancing, so they perform best when they are constructed

from a stable set of points, and the number of inserts and removes are limited
with respect to the total number of elements. Unfortunately, static datasets are
not the norm in the big-data era.

 When we deal with high-dimensional spaces, k-d trees become inefficient. As we
have seen, the time needed for removal and nearest neighbor search is expo-
nential in k, the dimension of the dataset. But for sufficiently large values of k,
this can hinder any performance benefits over brute-force search. We have seen
that nearest neighbor searches perform better than naïve search if n > 2k, so
starting at k ≈ 30, we would need an ideal dataset (one with a regular distribu-
tion of points) with billions of elements in order for k-d tree to overperform
brute-force.

 K-d trees don’t work well with paged memory; they are not memory-efficient with
respect to the locality of reference because points are stored in tree nodes, so
close-by points won’t lie close by memory areas.

 While they handle points well, k-d trees can’t handle non-punctiform objects,
such as shapes or any object with a non-zero measure.

The inefficiency of high-dimensional datasets stems from the fact that in these datasets,
data becomes very sparse. At the same time, when we traverse a k-d tree during NN-
search, we can only prune a branch when it doesn’t intersect the hyper-sphere centered
in the target point and with a radius equal to the minimum distance found so far. It is
highly likely that this sphere will intersect many of the branches’ hyper-cubes in at least
one dimension.

 To overcome these limitations, we could try a few approaches:

 We could use different criteria to decide where to partition the k-dimensional
space, using different heuristics:
– Don’t use a splitting line passing through points, but just divide a region into

two balanced halves (either with respect to the number of points or the sub-
regions’ size; basically, choose the mean instead of the median).

– Instead of cycling through dimensions, choose at every step the dimension
with the greatest spread or variance, and store the choice in the tree node.

 Instead of storing points in nodes, each node could describe a region of space
and link (directly or indirectly) to an array containing the actual elements.

 We could approximate nearest neighbor search. For instance, we could use
locality sensitive hashing.

 Or we could find new ways to partition the k-dimensional space, ideally trying to
reduce sparsity.



318 CHAPTER 9 K-d trees: Multidimensional data indexing

Heuristics help on some datasets, but in general won’t solve the issue with higher
dimensional spaces.

 The approximate approach doesn’t produce an exact solution, but there are many
cases where we can settle with a sub-optimal result, or we can’t even define a perfect
metric. For example, think about retrieving the closest document to an article or the
closest item to something you want to buy, but is out of stock. We won’t go on this path
for now. Instead, in the next chapter we will delve into the latter approach with
SS-trees. We will also defer to chapter 11 the discussion about applications of nearest
neighbor search.

Summary
 When the number of dimensions of a dataset grows, this usually brings an expo-

nential increase in either the complexity or memory needed.
 We need to carefully design our data structures to avoid or limit this exponen-

tial burst, but we can’t remove it altogether. When the number of dimensions is
large, it’s hard, if even possible, to maintain good performance.

 K-d trees are an advanced data structure that helps perform spatial queries
(nearest neighbor search and intersections with spherical or rectangular
regions) more efficiently.

 K-d trees are great with low- and medium-dimensional spaces, but suffer sparsity
with high-dimensional spaces.

 K-d trees work better on static datasets because we can build balanced trees on
construction, but insert and remove are not self-balancing operations.
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Similarity Search Trees:
Approximate nearest
 neighbors search for

 image retrieval

This chapter will be structured slightly differently from our book’s standard, because
we will continue here a discussion started in chapter 8. There, we introduced the
problem of searching multidimensional data for the nearest neighbor(s) of a generic

This chapter covers
 Discussing the limits of k-d trees

 Describing image retrieval as a use case where 
k-d trees would struggle

 Introducing a new data structure, the R-tree

 Presenting SS-trees, a scalable variant of R-trees

 Comparing SS-trees and k-d trees

 Introducing approximate similarity search
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point (possibly not in the dataset itself). In chapter 9, we introduce k-d trees, a data struc-
ture specifically invented to solve this problem.

 K-d trees are the best solution to date for indexing low- to medium-dimensional
datasets that will completely fit in memory. When we have to operate on high-
dimensional data or with big datasets that won’t fit in memory, k-d trees are not
enough, and we will need to use more advanced data structures.

 In this chapter we first present a new problem, one that will push our indexing
data structure beyond its limits, and then introduce two new data structures, R-trees
and SS-trees, that can help us solve this category of problems efficiently.

 Brace yourself—this is going to be a long journey (and a long chapter!) through
some of the most advanced material we have presented so far. We’ll try to make it
through this journey step by step, section by section, so don’t let the length of this
chapter intimidate you!

10.1 Right where we left off
Let’s briefly recap where we left off in previous chapters. We were designing software
for an e-commerce company, an application to find the closest warehouse selling a
given product for any point on a very large map. Check out figure 9.4 to visualize it.
To have a ballpark idea of the kind of scale we need, we want to serve millions of cli-
ents per day across the country, taking products from thousands of warehouses also
spread across the map.

 In section 8.2, we have already established that a brute-force approach is not prac-
tical for applications at scale, and we need to resort to a brand-new data structure
designed to handle multi-dimensional indexing. Chapter 9 described k-d trees, a mile-
stone in multidimensional data indexing and a true game changer, which worked per-
fectly with the example we used in chapters 8 and 9 where we only needed to work
with 2-D data. The only issue we faced is the fact that our dataset was dynamic and
thus insertion/removal would produce an imbalanced tree, but we could rebuild the
tree every so often (for instance, after 1% of its elements had been changed because
of insertions or removals), and amortize the cost of the operation by running it in a
background process (keeping the old version of the tree in the meantime, and either
putting insert/delete on hold, or reapplying these operations to the new tree once it
had been created and “promoted” to current). 

 While in that case we could find workarounds, in other applications we won’t
necessarily be so lucky. There are, in fact, intrinsic limitations that k-d trees can’t
overcome:

 K-d trees are not self-balancing, so they perform best when they are constructed
from a stable set of points, and when the number of inserts and removes is lim-
ited with respect to the total number of elements.

 The curse of dimensionality: When we deal with high-dimensional spaces, k-d
trees become inefficient, because running time for search is exponential in the
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dimension of the dataset. For points in the k-dimensional space, when k ≈ 30,
k-d trees can’t give any advantage over brute-force search.

 K-d trees don’t work well with paged memory, because they are not memory-
efficient with respect to the locality of reference, as points are stored in tree
nodes, so nearby points won’t lie close to memory areas.

10.1.1 A new (more complex) example

To illustrate a practical situation where k-d trees are not the recommended solution,
let’s pivot on our warehouse search and imagine a different scenario, where we fast-
forward 10 years. Our e-commerce company has evolved and doesn’t sell just grocer-
ies anymore, but also electronics and clothes. It’s almost 2010, and customers expect
valuable recommendations when they browse our catalog; but even more importantly,
the company’s marketing department expects that you, as CTO, make sure to increase
sales by showing customers suggestions they actually like.

 For instance, if customers are browsing smartphones (the hottest product in the
catalog, ramping up to rule the world of electronics, back in the day!), your applica-
tion is supposed to show them more smartphones in a similar price/feature range. If
they are looking at a cocktail dress, they should see more dresses that look similar to
the one they (possibly) like.

 Now, these two problems look (and partially are) quite different, but they both
boil down to the same core issue: given a product with a list of features, find one or
more products with similar features. Obviously, the way we extract these feature lists
from a consumer electronics product and a dress is very different!

 Let’s focus on the latter, illustrated in figure 10.1. Given an image of a dress, find
other products in your catalog that look similar—this is a very stimulating problem,
even today!
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Figure 10.1 Feature extraction on an image dataset. Each image is translated into a feature vector 
(through what’s represented as a “black box” feature extractor, because we are not interested in the 
algorithm that creates this vectors). Then, if we have to search an entry P, we compare P’s feature vector 
to each of the images’ vectors, computing their mutual distance based on some metric. (In the figure, 
Euclidean distance. Notice that when looking for the minimum of these Euclidean distances, we can 
sometimes compute the squared distances, avoiding applying a square root operation for each entry.)
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The way we extract features from images completely changed in the last 10 years. In
2009, we used to extract edges, corners, and other geometrical features from the
images, using dozens of algorithms specialized for the single feature, and then build
higher-level features by hand (quite literally).

 Today, instead, we use deep learning for the task, training a CNN1 on a larger dataset
and then applying it to all the images in our catalog to generate their feature vectors.

 Once we have these feature vectors, though, the same question arises now as then:
How do we efficiently search the most similar vectors to a given one?

 This is exactly the same problem we illustrated in chapter 8 for 2-D data, applied to
a huge dataset (with tens of thousands of images/feature vectors), and where tuples
have hundreds of features.

 Contrary to the feature extraction, the search algorithms haven’t changed much in
the last 10 years, and the data structures that we introduce in this chapter, invented
between the late 1990s and the early 2000s, are still cutting-edge choices for efficient
search in the vector space.

10.1.2 Overcoming k-d trees’ flaws

Back in chapter 9, we also mentioned a couple of possible structural solutions to cope
with the problems discussed in the previous section:

 Instead of partitioning points using a splitting line passing through a dataset’s
points, we can divide a region into two balanced halves with respect to the num-
ber of points or the sub-region’s size.

 Instead of cycling through dimensions, we can choose at every step the dimension
with the greatest spread or variance and store the choice made in each tree node.

 Instead of storing points in nodes, each node could describe a region of space
and link (directly or indirectly) to an array containing the actual elements.

These solutions are the basis of the data structures we will discuss in this chapter,
R-trees and SS-trees.

10.2 R-tree
The first evolution of k-d trees we will discuss are R-trees. Although we won’t delve
into the details of their implementation, we are going to discuss the idea behind this
solution, why they work, and their high-level mechanism.

 R-trees were introduced in 1984 by Antonin Guttman in the paper “R-Trees. A
Dynamic Index Structure For Spatial Searching.”

 They are inspired by B-trees,2 balanced trees with a hierarchical structure. In par-
ticular, Guttman used as a starting point B+ trees, a variant where only leaf nodes con-
tain data, while inner nodes only contain keys and serve the purpose of hierarchically
partitioning data.

1 Convolutional Neural Network, a type of deep neural network that is particularly well-suited to process images.
2 A B-tree is a self-balancing tree optimized for efficiently storing large datasets on disk.
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10.2.1 A step back: Introducing B-trees
Figure 10.2 shows an example of a B-tree, in particular a B+tree. These data structures
were meant to index unidimensional data, partitioning it into pages,3 providing effi-
cient storage on disk and fast search (minimizing the number of pages loaded, and so
the number of disk accesses).

Each node (both internal nodes and leaves) in a B-tree contains between d-1 and
2*d-1 keys, where d is a fixed parameter for each tree, its branching factor:4 the (min-
imum, in this case) number of children for each node. The only exception can be the
root, which can possibly contain fewer than d-1 keys. Keys are stored in an ordered
list; this is fundamental to have a fast (logarithmic) search. In fact, each internal node
with m keys, k0, k1, …, km-1, d-1  m  2*d*-1, also has exactly m+1 children, C0,
C1, …, Cm-1, Cm, such that k < k0 for each key k in the subtree rooted in C0; k0  k

< k1 for each key k in the subtree rooted in C1; and so on. 
 In a B-tree, keys and items are stored in the nodes, each key/item is stored exactly

once in a single node, and the whole tree stores exactly n keys if the dataset has n items.
In a B+ tree, internal nodes only contains keys, and only leaves contain pairs, each with
keys and links to the items. This means that a B+tree storing n items has n leaves, and
that keys in internal nodes are also stored in all its descendants (see how, in the exam-
ple in figure 10.2, the keys 4, 10, and 45 are also stored in leaves).

 Storing links to items in the leaves, instead of having the actual items hosted in the
tree, serves a double purpose:

 Nodes are more lightweight and easier to allocate/garbage collect.
 It allows storing all items in an array, or in a contiguous block of memory,

exploiting the memory locality of neighboring items.

3 A memory page, or just page. 
4 An attentive reader will remember that we already discussed the branching factor in chapter 2 for d-ary heaps.
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Figure 10.2 B+ tree explained. The example shows a B+ tree with a branching factor of d == 3.
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When these trees are used to store huge collections of large items, these properties
allow us to use memory paging efficiently. By having lightweight nodes, it is more
likely the whole tree will fit in memory, while items can be stored on disk, and leaves
can be loaded on a need-to basis. Because it is also likely that after accessing an item X,
applications will need to access one of its contiguous items, by loading in memory the
whole B-tree leaf containing X, we can reduce the disk reads as much as possible.

 Not surprisingly, for these reasons B-trees have been the core of many SQL data-
base engines since their invention5—and even today they are still the data structure of
choice for storing indices.

10.2.2 From B-Tree to R-tree

R-trees extend the main ideas behind B+trees to the multidimensional case. While for
unidimensional data each node corresponds to an interval (the range from the left-
most and right-most keys in its sub-tree, which are in turn its minimum and maximum
keys), in R-trees each node N covers a rectangle (or a hyper-rectangle in the most
generic case), whose corners are defined by the minimum and maximum of each
coordinate over all the points in the subtree rooted at N.

 Similarly to B-trees, R-trees are also parametric. Instead of a branching factor d
controlling the minimum number of entries per node, R-trees require their clients to
provide two parameters on creation:

 M, the maximum number of entries in a node; this value is usually set so that a
full node will fit in a page of memory.

 m, such that m  M/2, the minimum number of entries in a node. This parame-
ter indirectly controls the minimum height of the tree, as we’ll see.

 Given values for these two parameters, R-trees abide by a few invariants:

1 Every leaf contains between m and M points (except for the root, which can pos-
sibly have less than m points).

2 Each leaf node L has associated a hyper-rectangle RL, such that RL is the smallest
rectangle containing all the points in the leaf.

3 Every internal node has between m and M children (except for the root, which
can possibly have less than m children).

4 Each internal node N has associated a bounding (hyper-)rectangle RN, such that
RN is the smallest rectangle, whose edges are parallel to the Cartesian axes,
entirely containing all the bounding rectangles of N’s children.

5 The root node has at least two children, unless it is a leaf.
6 All leaves are at the same level.

5 See, for instance, https://sqlity.net/en/2445/b-plus-tree/.

https://sqlity.net/en/2445/b-plus-tree/
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Property number 6 tells us that R-trees are balanced, while from properties 1 and 3 we
can infer that the maximum height of an R-tree containing n points is logm(n).

 On insertion, if any node on the path from the root to the leaf holding the new
point becomes larger than M entries, we will have to split it, creating two nodes, each
with half the elements.

 On removal, if any node becomes smaller than m entries, we will have to merge it
with one of its adjacent siblings.

 Invariants 2 and 4 require some extra work to be maintained true, but these
bounding rectangles defined for each node are needed to allow fast search on the
tree.

 Before describing how the search methods
work, let’s take a closer look at an example of an
R-tree in figures 10.3 and 10.4. We will stick to
the 2-D case because it is easier to visualize, but
as always, you have to imagine that real trees can
hold 3-D, 4-D, or even 100-D points.

 If we compare figure 10.3 to figure 9.6, show-
ing how a k-d tree organizes the same dataset, it
is immediately apparent how the two partition-
ings are completely different:

 R-trees create regions in the Cartesian
plane in the shape of rectangles, while k-d
trees split the plane along lines.

 While k-d trees alternate the dimension
along which the split is done, R-trees don’t
cycle through dimensions. Rather, at each
level the sub-rectangles created can parti-
tion their bounding box in any or even all dimensions at the same time.

 The bounding rectangles can overlap, both across different sub-trees and even
with siblings’ bounding boxes sharing the same parent. However, and this is
crucial, no sub-rectangle extends outside its parent’s bounding box.

 Each internal node defines a so-called bounding envelope, that for R-trees is the
smallest rectangle containing all the bounding envelopes of the node’s
children.

Figure 10.4 shows how these properties translate into a tree data structure; here the
difference with k-d trees is even more evident!

 Each internal node is a list of rectangles (between m and M of them, as mentioned),
while leaves are lists of (again, between m and M) points. Each rectangle is effectively
determined by its children and could indeed be defined iteratively in terms of its chil-
dren. For practical reasons such as improving the running time of the search methods,
in practice we store the bounding box for each rectangle.

R1
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R3 R4

R6

R7

R9

R10

R11

R12

R13 R14
R5

R8

Figure 10.3 Cartesian plane 
representation of a (possible) R-tree for 
our city maps as presented in the example 
of figure 9.4 (the names of the cities are 
omitted to avoid confusion). This R-tree 
contains 12 bounding rectangles, from 
R1 to R12, organized in a hierarchical 
structure. Notice that rectangles can and 
do overlap, as shown in the bottom half.
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Because the rectangles can only be parallel
to the Cartesian axes, they are defined by
two of their vertices: two tuples with k coor-
dinates, one tuple for the minimum values
of each coordinate, and one for the maxi-
mum value of each coordinate.

 Notice how unlike k-d trees, an R-tree
could handle a non-zero-measure object by
simply considering its bounding boxes as
special cases of rectangles, as illustrated in
figure 10.5.

10.2.3 Inserting points in an R-tree
Now, of course, you might legitimately
wonder how you get from a raw dataset to
the R-tree in figure 10.5. After all, we just presented it and asked you to take it as a
given.

 Insertion for R-trees is similar to B-trees and has many steps in common with
SS-trees, so we won’t duplicate the learning effort with a detailed description here.
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Figure 10.4 The tree representation for the R-tree from figure 10.3. The parameters for this R-tree 
are m==1 and M==3. Internal nodes only hold bounding boxes, while leaves hold the actual points 
(or, in general, k-dimensional entries). In the rest of the chapter we will use a more compact 
representation, for each node drawing just the list of its children.
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Figure 10.5 R-trees entries, besides points, can 
also be rectangles or non-zero-measure entities. 
In this example, entities R7 to R14 are the tree’s 
entries, while R3 to R6 are the tree’s leaves.
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 At a high level, to insert a new point you will need to follow the following steps:

1 Find the leaf that should host the new point P. There are three possible cases:
a P lies exactly within one of the leaves’ rectangles, R. Then just add P to R and

move to the next step.
b P lies within the overlapping region between two or more leaves’ bounding

rectangles. For example, referring to figure 10.6, it might lie in the intersection
of R12 and R14. In this case, we need to decide where to add P; the heuristic used
to make these decisions will determine the shape of the tree (as an example,
one heuristic could be just adding it to the rectangle with fewer elements).

c If P lies outside of all rectangles at the leaves’ level, then we need to find the
closest leaf L and add P to it (again, we can use more complex heuristics than
just the Euclidean distance to decide).

2 Add the points to the leaf’s rectangle R, and check how many points it contains
afterward:
a If, after the new point is added, the leaf still has at most M points, then we are

done.
b Otherwise, we need to split R into two new rectangles, R1 and R2, and go to

step 3.
3 Remove R from its parent RP and add R1 and R2 to RP. If RP now has more than M

children, split it and repeat this step recursively.
a If R was the root, we obviously can’t remove it from its parent; we just create a

new root and set R1 and R2 as children.

To complete the insertion algorithm outlined
here, we need to provide a few heuristics to
break ties for overlapping rectangles and to
choose the closest rectangle, but even more
importantly, we haven’t said anything about
how we are going to split a rectangle at points
2 and 3.

 This choice, together with the heuristic
for choosing the insertion subtree, deter-
mines the behavior and shape (not to men-
tion performance) of the R-tree.

 Several heuristics have been studied over
the years, each one aiming to optimize one
or more usages of the tree. The split heuris-
tics can be particularly complicated for inter-
nal nodes because we don’t just partition
points, but k-dimensional shapes. Figure 10.7 shows how easily a naïve choice could
lead to inefficient splits.
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Figure 10.6 Choosing the R-tree leaf’s 
rectangle to which a point should be added: 
the new point can lie within a leaf rectangle 
(PA), within the intersection of two or more 
leaves’ rectangles (PB), or outside any of the 
leaves (PC and PD).
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Delving into these heuristics is out of the scope of this section; we refer the curious
reader to the original paper by Antonin Guttman for a proper description. At this
point, though, we can already reveal that the complexity of handling hyper-rectangles
and obtaining good splits (and merges, after removals) is one of the main reasons that
led to the introduction of SS-trees.

10.2.4 Search

Searching for a point or for the nearest neighbor (NN ) of a point in R-trees is very
similar to what happens in k-d trees. We need to traverse the tree, pruning branches
that can’t contain a point, or, for NN search, are certainly further away than the cur-
rent minimum distance.

 Figure 10.8 shows an example of an (unsuccessful) point search on our example
R-tree. Remember that an unsuccessful search is the first step for inserting a new
point, through which we can find the rectangle (or rectangles, in this case) where we
should add the new point.

 The search starts at the root, where we compare point P’s coordinates with the
boundaries of each rectangle, R1 and R2; P can only be within R2, so this is the only
branch we traverse.

 At the next step, we go through R2’s children, R5 and R6. Both can contain P, so we
need to traverse both branches at this level (as shown by the two curved arrows, leav-
ing R2 in the bottom half of figure 10.8).

 This means we need to go through the children of both rectangles R5 and R6,
checking from R11 to R14. Of these, only R12 and R14 can contain P, so those are the only
rectangles whose points we will check at the last step. Neither contains P, so the search
method can return false, and optionally the two leaves’ rectangles that could host P,
if inserted.

 Nearest neighbor search works similarly, but instead of checking whether a point
belongs to each rectangle, it keeps the distance of the current nearest neighbor and
checks to see if each rectangle is closer than that (otherwise, it can prune it). This is sim-
ilar to the rectangular region search in k-d trees, as described in section 9.3.6.

Bad split Good split

Figure 10.7 An example of bad 
and good splits of an internal 
node’s rectangle, taken from 
the original paper by Antonin 
Guttman
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We won’t delve into NN-search for R-trees. Now that you should have a high-level under-
standing of this data structure, we are ready to move on to its evolution, the SS-tree.

 It’s also worth mentioning that R-trees do not guarantee good worst-case perfor-
mance, but in practice they usually perform better than k-d trees, so they were for a
long time the de facto standard for similarity search and indexing of multidimen-
sional datasets.
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Figure 10.8 Unsuccessful search on the R-tree in figures 10.4 and 10.5. The path of the search 
is highlighted in both the Cartesian and tree views, and curved arrows show the branches traversed 
in the tree. Notice the compact representation of the tree, compared to figure 10.5.
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10.3 Similarity search tree
In section 10.2, we saw some of the key properties that influence the shape and per-
formance of R-trees. Let’s recap them here:

 The splitting heuristic
 The criteria used to choose the sub-tree to add new points (if more than one

overlaps)
 The distance metric

For R-trees, we assumed that aligned boxes, hyper-rectangles parallel to the Cartesian
axes, are used as bounding envelopes for the nodes. If we lift this constraint, the shape
of the bounding envelope becomes the fourth property of a more general class of sim-
ilarity search trees.

 And, indeed, at their core, the main difference between R-trees and SS-trees in
their most basic versions, is the shape of bounding envelopes. As shown in figure 10.9,
this variant (built on R-trees) uses spheres instead of rectangles. 

 Although it might seem like a small change, there is strong theoric and practical
evidence that suggest using spheres reduces the average number of leaves touched by
a similarity (nearest neighbor or region) query. We will discuss this point in more
depth in section 10.5.1.

 Each internal node N is therefore a sphere with a center and a radius. Those two
properties are uniquely and completely determined by N’s children. N’s center is, in
fact, the centroid of N’s children,6 and the radius is the maximum distance between
the centroid and N’s points. 

 To be fair, when we said that the only difference between R-trees and SS-trees was
the shape of the bounding envelopes, we were guilty of omission. The choice of a dif-
ferent shape for the bounding envelopes also forces us to adopt a different splitting
heuristic. In the case of SS-trees, instead of trying to reduce the spheres’ overlap on
split, we aim to reduce the variance of each of the newly created nodes; therefore, the
original splitting heuristic chooses the dimension with the highest variance and then
splits the sorted list of children to reduce variance along that dimension (we’ll see this
in more detail in the discussion about insertion in section 10.3.2).

 As for R-trees, SS-trees have two parameters, m and M, respectively the minimum
and maximum number of children each node (except the root) is allowed to have.

 And like R-trees, bounding envelopes in an SS-tree might overlap. To reduce the
overlap, some variants like SS+-trees introduce a fifth property (also used in R-tree’s
variants like R*-trees), another heuristic used on insert that performs major changes to
restructure the tree; we will talk about SS+-trees later in this chapter, but for now we
will focus on the implementation of plain SS-trees.

6 The centroid is defined as the center of mass of a set of points, whose coordinates are the weighted sum of the
points’ coordinates. If N is a leaf, its center is the centroid of the points belonging to N; if N is an internal node,
then we consider the center of mass of the centroids of its children nodes.
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Figure 10.9 Representation of a possible SS-tree covering the same dataset of figures 
10.4 and 10.5, with parameters m==1 and M==3. As you can see, the tree structure is 
similar to R-trees’. For the sake of avoiding clutter, only a few spheres’ centroids and radii 
are shown. For the tree, we use the compact representation (as shown in figures 10.5 
and 10.8).
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The first step toward a pseudo-implementation for our data structures is, as always,
presenting a pseudo-class that models it. In this case, to model an SS-tree we are going
to need a class modeling tree nodes. Once we build an SS-tree through its nodes, to
access it we just need a pointer to the tree’s root. For convenience, as shown in listing
10.1, we will include this link and the values for parameters m and M in the SsTree
class, as well as the dimensionality k of each data entry, and assume all these values are
available from each of the tree nodes.

 As we have seen, SS-trees (like R-trees) have two different kind of nodes, leaves and
internal nodes, that are structurally and behaviorally different. The former stores
k-dimensional tuples (references to the points in our dataset), and the latter only has
links to its children (which are also nodes of the tree).

 To keep things simple and as language-agnostic as possible, we will store both an
array of children and an array of points into each node, and a Boolean flag will tell
apart leaves from internal nodes. The children array will be empty for leaves and the
points array will be empty for internal nodes.

class SsNode
  #type tuple(k)
  centroid
  #type float
  radius

  #type SsNode[]
  children

  #type tuple(k)[]
  points
  
  #type boolean
  Leaf

  function SsNode(leaf, points=[], children=[])

class SsTree
  #type SsNode
  root
  #type integer 
  m
  #type integer 
  M
  #type integer 
  k

  function SsTree(k, m, M)

Notice how in figure 10.9 we represented our tree nodes as a list of spheres, each of
which has a link to a child. We could, of course, add a type SsSphere and keep a link

Listing 10.1 The SsTree and SsNode classes
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to each sphere’s only child node as a field of this new type. It wouldn’t make a great
design, though, and would lead to data duplication (because then both SsNode and
SsSphere would hold fields for centroids and radius) and create an unnecessary level
of indirection. Just keep in mind that when you look at the diagrams of SS-trees in
these pages, what are shown as components of a tree node are actually its children.

 One effective alternative to translate this into code in object-oriented program-
ming is to use inheritance, defining a common abstract class (a class that can’t be
instantiated to an actual object) or an interface, and two derived classes (one for
leaves and one for internal nodes) that share a common data and behavior (defined
in the base, abstract class), but are implemented differently. Listing 10.2 shows a possi-
ble pseudo-code description of this pattern.

abstract class SsNodeOO
  #type tuple(k)
  centroid
  #type float
  radius
   
class SsInnerNode: SsNodeOO
  #type SsNode[]
  children
  function SsInnerNode(children=[])

class SsLeaf: SsNodeOO
  #type tuple(k)[]
  points
  function SsLeaf(points=[])

Although the implementation using inheritance might result in some code duplica-
tion and greater effort being required to understand the code, it arguably provides a
cleaner solution, removing the logic to choose the type of node that would otherwise
be needed in each method of the class.

 Although we won’t adopt this example in the rest of the chapter, the zealous
reader might use it as a starting point to experiment with implementing SS-trees using
this pattern.

10.3.1 SS-tree search

Now we are ready to start describing SsNode’s methods. Although it would feel natu-
ral to start with insertion (we need to build a tree before searching it, after all), it is
also true that as for many tree-based data structures, the first step to insert (or delete)
an entry is searching the node where it should be inserted.

 Hence, we will need the search method (meant as exact element search) before we
can insert a new item. While we will see how this step in the insert method is slightly
different from plain search, it will still be easier to describe insertion after we have
discussed traversing the tree.

Listing 10.2 Alternative Implementation for SsNode: SsNodeOO
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 Figures 10.10 and 10.11 show the steps of a call to search on our example SS-tree.
To be fair, the SS-tree we’ll use in the rest of the chapter is derived from the one in fig-
ure 10.9. You might notice that there are a few more points (the orange stars), a few of
the old points have been slightly moved, and we stripped all the points’ labels, replac-
ing them with letters from A to W, in order to remove clutter and have cleaner dia-
grams. For the same reason, we’ll identify the point to search/insert/delete, in this
and the following sections, as Z (to avoid clashes with points already in the tree).
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Figure 10.10 Search on a SS-tree: the first few steps of searching for point Z. The SS-tree shown is derived 
from the one in figure 10.9, with a few minor changes; the name of the entries have been removed here and 
letters from A to W are used to reduce clutter. (Top) The first step of the search is comparing Z to the spheres 
in the tree’s root: for each of them, computes the distance between Z and its centroid, and checks if it’s 
smaller than the sphere’s radius. (Bottom) Since both S1 and S2 intersect Z, we need to traverse both 
branches and check spheres S3 to S6 for intersection with Z.
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To continue with our image dataset example, suppose that we now would like to check
to see if a specific image Z is in our dataset. One option would be comparing Z to all
images in the dataset. Comparing two images might require some time (especially if,
for instance, all images have the same size, and we can’t do a quick check on any other
trivial image property to rule out obviously different pairs). Recalling that our dataset
supposedly has tens of thousands of images, if we go this way, we should be prepared
to take a long coffee break (or, depending on our hardware, leave our machine work-
ing for the night).

 But, of course, by now readers must have learned that we shouldn’t despair,
because this is the time we provide a better alternative!

 And indeed, as we mentioned at the beginning of the chapter, we can create a col-
lection of feature vectors for the images in our dataset, extract the feature vector for
Z—let’s call it FZ—and perform a search in the feature vectors space instead of directly
searching the image dataset.

 Now, comparing FZ to tens or hundreds of thousands of other vectors could also
be slow and expensive in terms of time, memory, and disk accesses.

 If each memory page stored on disk can hold M feature vectors, we would have to
perform n/M disk accesses and read n*k float values from disk.

 And that’s exactly where an SS-tree comes into play. By using an SS-tree with at
most M entries per node, and at least m M/2, we can reduce the number of pages
loaded from disk to7 2*logM(n), and the number of float values read to ~k*M*logM(n).

 Listing 10.3 shows the pseudo-code for SS-tree’s search method. We can follow the
steps from figures 10.10 and 10.11. Initially node will be the root of our example tree,
so not a leaf; we’ll then go directly to line #7 and start cycling through node’s children,
in this case S1 and S2.

function search(node, target)
  if node.leaf then       
    for point in node.points do  
      if point == target then
        return node 
  else
    for childNode in node.children do     
      if childNode.intersectsPoint(target) then

7 Since the height of the tree is at most logm(n), if m==M/2 (the choice with the largest height) logM/2(n)~=
logM(n).

Listing 10.3 The search method

Method search returns the tree leaf that contains a target 
point if the point is stored in the tree; it returns null 
otherwise. We explicitly pass the root of the (sub)tree we 
want to search so we can reuse this function for sub-trees.

Checks if node is a leaf 
or an internal node

If node is a leaf, goes through 
all the points held, and checks 
whether any match target

If a match
is found,
returns
current

leaf

Otherwise, if we are traversing an 
internal node, goes through all its 
children and checks which ones could 
contain target. In other words, for 
each children childNode, we check 
the distance between its centroid 
and the target point, and if this is 
smaller than the bounding 
envelope’s radius of childNode, we 
recursively traverse childNode.

Checks if childNode could contain target; that is, if target is within 
childNode’s bounding envelope. See listing 10.4 for an implementation.
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        result ← search(childNode, target) 
        if result != null then
          return result                   
  return null      

For each of them, we compute the distance between target (point Z in the figure) and
the spheres’ centroids, as shown in listing 10.4, describing the pseudo-code implemen-
tation of method SsNode::intersectsPoint. Since for both the spheres the computed
(Euclidean) distance is smaller than their radii, this means that either (or both) could
contain our target point, and therefore we need to traverse both S1 and S2 branches.

If that’s the case, performs a recursive 
search on childNode’s branch, and if 
the result is an actual node (and not 
null), we have found what we were 
looking for and we can return.

If no child of current node could contain the target, or if we are 
at a leaf and no point matches target, then we end up at this line 
and just return null as the result of an unsuccessful search.

Figure 10.11 Search on an SS-tree: Continuing from figure 10.10, we traverse the tree up to leaves. At each 
step, the spheres highlighted are the ones whose children are being currently traversed (in other words, at 
each step the union of the highlighted spheres is the smallest area where the searched point could lie).
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This is also apparent in figure 10.10, where point Z clearly lies in the intersection of
spheres S1 and S2.

 The next couple of steps in figures 10.10 (bottom half) and 10.11 execute the
same lines of code, cycling through node’s children until we get to a leaf. It’s worth
noting that this implementation will perform a depth-first traversal of the node: it will
sequentially follow down to leaves, getting to leaves as fast as possible, back-tracking
when needed. For the sake of space, these figures show these paths as they were tra-
versed in parallel, which is totally possible with some modifications to the code (that
would, however, be dependent on the programming language of an actual implemen-
tation, so we will stick with the simpler and less resource-intensive sequential version).

 The method will sometime traverse branches where none of the children might
contain the target. That’s the case, for instance, with the node containing S3 and S4.
The execution will just end up at line #12 of listing 10.3, returning null and back-
tracking to the caller. It had initially traversed branch S1; now the for-each loop at
line #7 will just move on to branch S2.

 When we finally get to leaves S12-S14, the execution will run the cycle at line #3, where
we scan a leaf’s points searching for an exact match. If we find one, we can return the
current leaf as the result of the search (we assume the tree doesn’t contain duplicates,
of course).

 Listing 10.4 shows a simple implementation for the method checking whether a
point is within a node’s bounding envelope. As you can see, the implementation is
very simple, because it just uses some basic geometry. Notice, however, that the dis-
tance function is a structural parameter of the SS-tree; it can be the Euclidean dis-
tance in a k-dimensional space, but it can also be a different metric.8

function SsNode:: intersectsPoint(point)         
  return distance(this.centroid, point) <= this.radius 

10.3.2 Insert
As mentioned, insertion starts with a search step. While for more basic trees, such as
binary search trees, an unsuccessful search returns the one and only node where the new
item can be added, for SS-trees we have the same issue we briefly discussed in section
10.2 for R-trees: since nodes can and do overlap, there could be more than one leaf
where the new point could be added. 

 This is such a big deal that we mentioned it as the second property determining
the SS-tree’s shape. We need to choose a heuristic method to select which branch to
traverse, or to select one of the leaves that would already contain the new point.

Listing 10.4 Method SsNode::intersectsPoint

8 As long as it satisfies the requirements for a valid metric: being always non-negative, being null only between
a point and itself, being symmetrical, and abiding by the triangular inequality.

Method intersectsPoint is 
defined on SsNode. It takes a 
point and returns true if the 
point is within the bounding 
envelope of the node.

Since the bounding envelope is a hyper-sphere, it just needs to check 
that the distance between the node’s centroid and the argument point 
is within the node’s radius. Here, distance can be any valid metric 
function, including (by default) the Euclidean distance in Rk.
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 SS-trees originally used a simple heuristic: at each step, they would select the one
branch whose centroid is closest to the point that is being inserted (those rare ties that
will be faced can be broken arbitrarily).

 This is not always ideal, because it might lead to a situation like the one shown in
figure 10.12, where a new point Z could be added to a leaf already covering it, and
instead ends up in another leaf whose envelope becomes larger to accept Z, and ends
up overlapping the other leaf. It is also possible, although unlikely, that the leaf
selected is not actually the closest one to the target. Since at each level we traverse
only the closest node, if the tree is not well balanced, it might happen that at some
point during traversal the method bumps into a skewed sphere, with the center of
mass far away from a small leaf—something like S6 in figure 10.12, whose child S14 lies
far away from its center of mass.
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Figure 10.12 An example where the 
point Z, which will be inserted into the 
tree, is added to the closest leaf, S14, 
whose bounding envelope becomes 
larger as a result, and overlaps another 
existing leaf, S15, which could have 
held Z within its bounding envelope. In 
the bottom half, notice how S14’s 
centroid moves as a result of adding 
the new point to the sphere.
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On the other hand, using this heuristic greatly simplifies the code and improves the
running time. This way, we have a worst-case bound (for this operation) of O(logm(n)),
because we only follow one path from the root to a leaf. If we were to traverse all
branches intersecting Z, in the worst case we could be forced to visit all leaves.

 Moreover, the code would also become more complicated because we might have
to handle differently the cases where no leaf, exactly one leaf, or more than one leaf
intersecting Z are found.

 So, we will use here the original heuristic described in the SS-tree first paper,
shown in listing 10.5. It can be considered a simpler version of the search method
described in section 10.3.1, since it will only traverse a single path in the tree. Figure
10.13 shows the difference with a call to the search method for the same tree and
point (refer to figures 10.10 and 10.11 for a comparison).

function searchParentLeaf(node, target) 
  if node.leaf then                  
    return node                                
  else
    child ← node.findClosestChild(target)  
    return searchParentLeaf(child, target) 

However, listing 10.5 is just meant to illustrate how this traversal works. In the actual
insert method, we won’t call it as a separate step, but rather integrate it. That’s
because finding the closest leaf is just the first step; we are far from being done with
insertion yet, and we might need to backtrack our steps. That’s why we are implement-
ing insert as a recursive function, and each time a sub-call returns, we backtrack on
the path from the root to current node.

 
 
 
 
 
 
 
 
 
 
 
 

Listing 10.5 The searchParentLeaf method

This search method returns the 
closest tree leaf to a target point.

Checks if node is a leaf. If 
it is, we can return it.

Otherwise, we are traversing an 
internal node and need to find which 
branch to go next. We run the heuristic 
findClosestChild to decide (see 
listing 10.8 for an implementation).

Recursively traverses the chosen 
branch and returns the result
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Figure 10.13 An example of the tree traversing for method searchParentLeaf. In contrast with figures 10.10 
and 10.11, here the steps are condensed into a single diagram for the sake of space. The fact that only one path 
is traversed allows this compact representation. Notice how at each step the distance between Z and the 
centroids in the current node are computed (in this figure, we used for distances the same level-based color code 
as for spheres, and the segments drawn for distances have one end in the center of the sphere they are computed 
from, so it’s easy to spot the distance to the root node, and to spheres at level 1, and so on), and only the branch 
with the shortest distance (drawn as a thicker, solid line) is chosen. The spheres’ branches traversed are 
highlighted on both representations.
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Suppose, in fact, that we have found that we should add Z to some leaf L, that already
contains j points. We know that j  m > 1, so the leaf is not empty, but there could
be three very different situations:

1 If L already contains Z, we don’t do anything, assuming we don’t support dupli-
cates (otherwise, we can refer to the remaining two cases).

2 j < M—In this case, we add Z to the list of L’s children, recompute the centroid
and radius for L, and we are done. This case is shown in figure 10.12, where
L==S14. On the left side of the figure, you can see how the centroid and radius of
the bounding envelopes are updated as a result of adding Z to S14.

3 j == M—This is the most complicated case, because if we add another point to
L, it will violate the invariant requiring that a leaf holds no more than M points.
The only way to solve this is by splitting the leaf’s point into two sets and creat-
ing two new leaves that will be added to L’s parent, N. Unfortunately, by doing
this we can end up in the same situation as if N already had M children. Again,
the only way we can cope with this is by splitting N’s children into two sets
(defining two spheres), removing N from its parent P, and adding the two new
spheres to P. Obviously, P could also now have M+1 children! Long story short,
we need to backtrack to the root, and we can only stop if we get to a node that
has less than M children, or if we do get to the root. If we have to split the root,
then we will create a new root with just two children, and the height of the tree
will grow by 1 (and that’s the only case where this can happen).

Listing 10.6 shows an implementation of the insert method using the cases just
described:

 The tree traversal, equivalent to the searchParentLeaf method, appears at
lines #10 and #11.

 Case 1 is handled at line #3, where we return null to let the caller know there is
no further action required.

 Case 2 corresponds to lines #6 and #18 in the pseudo-code, also resulting in the
method returning null.

 Case 3, which clearly is the most complicated option, is coded in lines #19 and
#20.

 Backtracking is handled at lines #12 to #21.

Figures 10.14 and 10.15 illustrate the third case, where we insert a point in a leaf that
already contains M points. At a high level, insertion in SS-trees follows B-tree’s algo-
rithm for insert. The only difference is in the way we split nodes (in B-trees the list of
elements is just split into two halves). Of course, in B-trees links to children and order-
ing are also handled differently, as we saw in section 10.2. 
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Figure 10.14 Inserting a point in a full leaf. (Top) The search step to find the right leaf. (Center) A closeup 
of the area involved. S9 needs to be updated, recomputing its centroid and radius. Then we can find the 
direction along which points have the highest variance (y, in the example) and split the points so that the 
variance of the two new point sets is minimal. Finally, we remove S9 from its parent S4 and add two new leaves 
containing the two point sets resulting from the split. (Bottom) The final result is that we now need to update 
S4’s centroid and radius and backtrack.
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In listing 10.6 we used several helper functions9 to perform insertion; however, there
is still one case that is not handled. What happens when we get to the root and we
need to split it?

9 Remember: one of the golden rules of clean code is breaking up long, complex methods into smaller ones, so
that each method is focused on one goal only.
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Figure 10.15 Backtracking in method insert after splitting a leaf. Continuing from figure 10.14, 
after we split leaf S9 into nodes S16 and S17, we backtrack to S9’s parent S4, and add these two new 
leaves to it, as shown at the end of figure 10.14. S4 now has four children, one too many. We need to 
split it as well. Here we show the result of splitting S4 into two new nodes, S18 and S19, that will be added 
to S4’s parent, S1, to which, in turn, we will backtrack. Since it now has only three children (and M==3) 
we just recompute centroid and radius for S1’s bounding envelope, and we can stop backtracking.
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 The reason for not handling this case as part of the method in listing 10.6 is that
we would need to update the root of the tree, and this is an operation that needs to be
performed on the tree’s class, where we do have access to the root. 

function insert(node, point)
  if this.leaf then 
    if point in this.points then  
      return null
    this.points.add(point)   
    this.updateBoundingEnvelope() 
    if this.points.size <= M then                      
      return null
  else
    closestChild ← this.findClosestChild()
    (newChild1, newChild2) ← insert(closestChild, point)
    if newChild1 == null then        
      node.updateBoundingEnvelope()
      return null
    else
      this.children.delete(closestChild) 
      this.children.add(newChild1)        
      this.children.add(newChild2)      
      node.updateBoundingEnvelope()     
      if this.children.size <= M then 
        return null
  return this.split()

Therefore, we will give an explicit implementation of the tree’s method for insert.
Remember, we will actually only expose methods defined on the data structure classes
(KdTree, SsTree, and so on) and not on the nodes’ classes (such as SsNode), but we
usually omit the former’s when they are just wrappers around the nodes’ methods.
Look at listing 10.7 to check out how we can handle root splits. Also, let me highlight
this again: this code snippet is the only point where our tree’s height grows.

 
 
 

Listing 10.6 The insert method

Method insert takes a node and a point and adds the 
point to the node’s subtree. It is defined recursively and 
returns null if node doesn’t need to be split as a result of 
the insertion; otherwise, it returns the pair of nodes 
resulting from splitting node.

Checks if node is a leaf

If it is a leaf, checks if it already 
contains the argument among its 
points, and if it does, we can return

Otherwise,
adds the
point to
the leaf

We need to recompute the centroid 
and radius for this leaf after adding 
the new point.

If we added a new point, we need to 
check whether this leaf now holds more 
than M points. If there are no more than 
M, we can return; otherwise, we 
continue to line #22.

If we are in an internal node, 
we need to find which branch to 
traverse, calling a helper method.

Recursively
traverses the

tree and
inserts the
new point,
storing the
outcome of

the operation

If the recursive call returned 
null, we only need to 
update this node’s bounding 
envelope, and then we can in 
turn return null as well.

Otherwise, it means that closestchild 
has been split, and we need to remove it 
from the list of children . . .

. . . and add the two newly 
generated spheres in its place.

We need to compute the centroid 
and radius for this node.

If the number of children is still within the 
max allowed, we are done with backtracking.

If it gets here, it means that the node needs to be 
split: create two new nodes and return them.
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function SsTree::insert(point)
  (newChild1, newChild2) ← insert(this.root, point) 
  if newChild1 != null then                                         
    this.root = new SsNode(false, children=[newChild1, newChild2])  

10.3.3 Insertion: Variance, means, and projections

Now let’s get into the details of the (many) helper methods we call in listing 10.6,
starting with the heuristic method, described in listing 10.8, to find a node’s closest
child to a point Z. As mentioned, we will just cycle through a node’s children, com-
pute the distance between their centroids and Z, and choose the bounding envelope
that minimizes it.

function SsNode::findClosestChild(target)
  throw-if this.leaf  
  minDistance ← inf                    
  result ← null                        
  for childNode in this.children do 
    if distance(childNode.centroid, point) < minDistance then 
      minDistance ← distance(childNode.centroid, point) 
      result ← childNode                               
  return result

Figure 10.16 shows what happens when we need to split a leaf. First we recompute the
radius and centroid of the leaf after including the new point, and then we also com-
pute the variance of the M+1 points’ coordinates along the k directions of the axis in
order to find the direction with the highest variance; this is particularly useful with
skewed sets of points, like S9 in the example, and helps to reduce spheres volume and,
in turn, overlap.

 If you refer to figure 10.16, you can see how a split along the x axis would have pro-
duced two sets with points G and H on one side, and F and Z on the other. Comparing
the result with figure 10.14, there is no doubt about which is the best final result!

Listing 10.7 The SsTree::insert method

Listing 10.8 The SsNode::findClosestChild method

Method insert is defined on SsTree. It 
takes a point and doesn’t return anything. Calls the insert function 

on the root and stores the 
result

If, and only if, the result of insert is not null, it needs to replace
the old tree root with a newly created node, which will have as its

children the two nodes resulting from splitting the old root.

Method findClosestChild is defined on SsNode. 
It takes a point target and returns the child of the 
current node whose distance to target is minimal.

If we call this method on a leaf, there is something 
wrong. In some languages, we can use assert to 
make sure the invariant (not node.leaf) is true.

Properly initializes the minimum distance, 
and the node that will be returned. Another 
implicit invariant is that an internal node has 
at least one child (there must be at least m), 
so these values will be updated at least once.

Cycles
through all

children

Checks if the distance between the
current child’s centroid and target is
smaller than the minimum found so far

If it is, stores the new 
minimum distance and 
updates the closest node

After the for loop cycles 
through all children, returns 
the closest one found
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Of course, the outcome is not always so neat. If the direction of maximum variance is
rotated at some angle with respect to the x axis (imagine, for instance, the same
points rotated 45° clockwise WRT the leaf’s centroid), then neither axis direction will
produce the optimal result. On average, however, this simpler solution does help.

 So, how do we perform the split? We start with listing 10.9, which describes the
method to find the direction with maximum variance. It’s a simple method perform-
ing a global maximum search in a linear space.

function SsNode::directionOfMaxVariance()
  maxVariance ← 0 
  directionIndex ← 0
  centroids ← this.getEntriesCentroids()   
  for i in {0..k-1} do                          
    if varianceAlongDirection(centroids, i) > maxVariance then 
      maxVariance ← varianceAlongDirection(centroids, i) 
      directionIndex ← i                                 
  return directionIndex 

We need, of course, to compute the variance at each step of the for loop at line #5.
Perhaps this is the right time to remind you what variance is and how it is computed.
Given a set S of real values, we define its mean µ as the ratio between the sum of the
values and their multiplicities:

Listing 10.9 The SsNode::directionOfMaxVariance method
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Figure 10.16 Splitting a leaf along a non-optimal direction. In this case, the x axis 
is the direction with minimal variance. Comparing the final result to figure 10.14, although 
S4’s shape doesn’t change significantly, S16 has more than doubled in size and completely 
overlaps S17; this means that any search targeted within S17 will also have to traverse S16.

Method directionOfMaxVariance is defined on 
SsNode. It returns the index of the direction along 
which the children of a node have maximum variance.

Properly initializes the maximum variance and 
the index of the direction with max variance

Gets the centroids of the items inside the 
node’s bounding envelope. For a leaf, those 
are the points held by the leaf, while for an 
internal node, the centroids of the node’s 
children.

Cycles through all directions: 
their indices, in a k-dimensional 
space, go from 0 to k-1.

Checks whether the variance
along the i-th axis is larger

than the maximum found so far

If it is, stores the new 
maximum variance and 
updates the direction’s 
indexAfter the for loop cycles through all axis’ directions, returns the 

index of the direction for which we have found the largest variance

μ 1
S
----- s

s ∈  S
=
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Once we’ve defined the mean, we can then define the variance (usually denoted as σ2)
as the mean of the squares of the differences between S’s mean and each of its elements:

So, given a set of n points P0..Pn-1, each Pj with coordinates (P(j,0), P(j,1), .., P(j,k-1)),
the formulas for mean and variance along the direction of the i-th axis are 

These formulas are easily translatable into code, and in most programming languages
you will find an implementation of the method computing variance in core libraries;
therefore, we won’t show the pseudo-code here. Instead, let’s see how both functions
for variance and mean are used in the updateBoundingEnvelope method (listing
10.10) that computes a node centroid and radius.

function SsNode::updateBoundingEnvelope()
  points ← this.getCentroids() 
  for i in {0..k-1} do     
    this.centroid[i] ← mean{point[i] for point in points}
  this.radius ← 
    max{distance(this.centroid, entry)+entry.radius for entry in points} 

This method computes the centroid for a node as the center of mass of its children’s
centroids. Remember, for leaves, their children are just the points it contains, while
for internal nodes, their children are other nodes.

Listing 10.10 The SsNode:: updateBoundingEnvelope method

σ2 1
S
----- s μ–( )2

s ∈ S
=

μi
1
n
--- Pj,i

j 0=

n 1–

=

σ2
i

1
n
--- Pj,i μi–( )2

j 0=

n 1–

=

Method updateBoundingEnvelope is defined on SsNode. 
It updates the centroid and radius for the current node.

Gets the centroids of the items inside the node’s bounding 
envelope. For a leaf, those are the points held by the leaf, while 
for an internal node, the centroids of the node’s children.

Cycles through the k coordinates 
of the (k-dimensional) space

For each coordinate, computes the
centroid’s value as mean of the

points’ values for that coordinate. For
instance, for the x axis, computes the

mean of all x coordinates over all
points/children in the node.

The radius is the maximum distance between the node’s centroid and its children’s 
envelope. This distance includes the (Euclidean) distance between the two centroids, 
plus the radius of the children. We assume that points here have radius equal to 0.
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 The center of mass is a k-dimensional point, each of whose coordinates is the
mean of the coordinates of all the other children’s centroids.10

 Once we have the new centroid, we need to update the radius of the node’s bound-
ing envelope. This is defined as the minimum radius for which the bounding envelope
includes all the bounding envelopes for the current node’s children; in turn, we can
define it as the maximum distance between the current node’s centroid and any point
in its children. Figure 10.17 shows how and why these distances are computed for each
child: it’s the sum of the distance between the two centroids and the child’s radius (as
long as we assume that points have radius==0, this definition also works for leaves).

10.3.4 Insertion: Split nodes

We can now move to the implementation of the split method in listing 10.11.

function SsNode::split()  
  splitIndex ← this.findSplitIndex(coordinateIndex)           
  if this.leaf then

10Assuming a point’s centroid is the point itself. We will also assume points have a radius equal to 0.

Listing 10.11 The SsNode::split method
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Figure 10.17 Computing the radius of an internal node. The point in SC that is further away from SA’s 
centroid A is the point on the bounding envelope that’s furthest from C along the opposite direction WRT 
SA’s centroid, and its distance is therefore the sum of the distance A-C between the two centroids, plus 
SC’s radius. If we choose another point P on the bounding envelope, its distance from A must be smaller 
than the distance A-B, because metrics by definition need to obey the triangular inequality, and the 
other two edges of triangle ACP are AC and CP, which is SC’s radius. You can check that this is also true 
for any of the other envelopes in the figure.

Method split is defined on SsNode. It returns 
the two new nodes resulting from the split.

Finds the best “split index” for the list of
points (leaves) or children (internal nodes)
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    newNode1 ← new SsNode(true, points=this.points[0..splitIndex-1]) 
    newNode2 ← new SsNode(true, points=this.points[splitIndex..])   
  else
    newNode1 ← new SsNode(false, children=this.children[0.. index-1])  
    newNode2 ← new SsNode(false, children=this.children [index..])    
  return (newNode1, newNode2)           

This method looks relatively simple, because most of the leg work is performed by the
auxiliary method findSplitIndex, described in listing 10.12.

function SsNode::findSplitIndex()  
  coordinateIndex ← this.directionOfMaxVariance()  
  this.sortEntriesByCoordinate(coordinateIndex)  
  points ← {point[coordinateIndex] for point in this.getCentroids()}
  return minVarianceSplit(points, coordinateIndex)  

After finding the direction with maximum variance, we sort11 points or children
(depending on if a node is a leaf or an internal node) based on their coordinates for
that same direction, and then, after getting the list of centroids for the node’s entries,
we split this list, again along the direction of max variance. We’ll see how to do that in
a moment.

 Before that, we again ran into the method returning the centroids of the entries
within the node’s bounding envelope, so it’s probably the right time to define it! As we
mentioned before, the logic of the method is dichotomic:

 If the node is a leaf, this means that it returns the points contained in it.
 Otherwise it will return the centroids of the node’s children.

Listing 10.12 The SsNode::findSplitIndex method

11Disclaimer: A function that returns a value and has a side effect is far from ideal and not the cleanest design.
Using indirect sorting would be a better solution. Here, we used the simplest solution because of limited space,
but be advised.

If this is a leaf, the new nodes resulting from the 
split will be two leaves, each with part of the 
points of the current leaf. Given splitIndex, the 
first leaf will have all points from the beginning of 
the list to splitIndex (not included), and the 
other leaf will have the rest of the points list.

If this node is internal, then we create two
new internal nodes, each with one of the

partitions of the children list.

Returns the pair of new SsNodes created

Method findSplitIndex is defined on SsNode. It returns the 
optimal index for a node split. For a leaf, the index refers to the list of 
points, while for an internal node it refers to the children’s list. Either 
list will be sorted as a side effect of this method.

Finds along which axes the coordinates of the 
entries’ centroids have the highest variance

We need to sort the
node’s entries (either
points or children) by

the chosen coordinate.

Gets a list of the
centroids of this node’s
entries: a list of points
for a leaf, and a list of

the children’s
centroids, in case we

are at an internal node.
Then, for each

centroid, extract only
the coordinate given by
coordinateIndex.

Finds and returns which index will result in a 
partitioning with the minimum total variance
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Listing 10.13 puts this definition into pseudo-code.

function SsNode::getEntriesCentroids() 
  if this.leaf then           
    return this.points        
  else
    return {child.centroid for child in this.children}  

After retrieving the index of the split point, we can actually split the node entries. Now
we need two different conditional branches to handle leaves and internal nodes dif-
ferently: we need to provide to the node constructors the right arguments, depending
on the type of node we want to create. Once we have the new nodes constructed, all
we need to do is return them.

 Hang tight; we aren’t done yet. I know we have been going through this section for
a while now, but we’re still missing one piece of the puzzle to finish our implementa-
tion of the insert method: the splitPoints helper function.

 This method might seem trivial, but it’s actually a bit tricky to get it right. Let’s say
it needs at least some thought.

 So, let’s first go through an example, and then write some pseudo-code for it! Fig-
ure 10.18 illustrates the steps we need to perform such a split. We start with a node
containing eight points. We don’t know, and don’t need to know, if those are dataset
points or nodes’ centroids; it is irrelevant for this method.

Listing 10.13 The SsNode::getEntriesCentroids method

Method getEntriesCentroids is defined on SsNode. It 
returns the centroids of the entries within the node’s 
bounding envelope.

If the node is a leaf, we can just return its points.

Otherwise, we need to return a list
of all the centroids of this node’s

children. We use a construct
typically called list-comprehension

to denote this list (see appendix A).
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Figure 10.18 Splitting a set of points 
along the direction of maximum variance. 
(Top) The bounding envelope and its points 
to split; the direction of maximum variance 
is along the y axis (center), so we project 
all points on this axis. On the right, we 
rotate the axis for convenience and replace 
the point labels with indices. (Middle) 
Given that there are 8 points, we can infer 
M must be equal to 7. Then m can be any 
value 3. Since the algorithm chooses a 
single split index, partitioning the points on 
its two sides, and each partition needs to 
have at least m points, depending on the 
actual value of m, we can have a different 
number of choices for the split index. 
(Bottom) We show the three possible 
resulting splits for the case where m==3: 
the split index can be 3, 4, or 5. We will 
choose the option for which the sum of the 
variances for the two sets is minimal.
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Suppose we have computed the direction of maximum variance and that it is along
the y axis; we then need to project the points along this axis, which is equivalent to
only considering the y coordinate of the points because of the definition of our coor-
dinate system.

 In the diagram we show the projection of the points, since it’s visually more intui-
tive. For the same reason, we then rotate the axis and the projections 90° clockwise,
remove the points’ labels, and index the projected points from left to right. In our
code, we would have to sort our points according to the y coordinate (as we saw in list-
ing 10.12), and then we can just consider their indices; an alternative could be using
indirect sorting and keeping a table of sorted/unsorted indices, but this would sub-
stantially complicate the remaining code.

 As shown, we have eight points to split. We can deduce that the parameter M, the
maximum number of leaves/children for a tree node, is equal to 7, and thus m, the
minimum number of entries, can only be equal to 2 or 3 (technically it could also be
1, but that’s a choice that would produce skewed trees, and usually it’s not even worth
implementing these trees if we use m==1).

 It’s worth mentioning again that the value for m must be chosen at the time of cre-
ation of our SS-Tree, and therefore it is fixed when we call split. Here we are just
reasoning about how this choice influences how the splits are performed, and ulti-
mately the structure of the tree.

 And indeed, this value is crucial to the split method, because each of the two
partitions created will need to have at least m points; therefore, since we are using a
single index split,12 the possible values for this split index go from m to M-m. In our
example, as shown in the middle section of figure 10.18, this means

 If m==2, then we can choose any index between 2 and 6 (5 choices).
 If m==3, then the alternatives are between 3 and 5 (3 choices).

Now suppose we had chosen m==3. The bottom section of figure 10.18 shows the
resulting split for each of the three alternative choices we have for the split index. We
will have to choose the one that minimizes variance for both nodes (usually, we mini-
mize the sum of the variances), but we only minimize variance along the direction we
perform the split, so in the example we will only compute the variance of the y coordi-
nates of the two sets of points. Unlike with R-trees, we won’t try to minimize the
bounding envelopes’ overlap at this stage, although it turns out that reducing vari-
ance along the direction that had the highest variance brings us, as an indirect conse-
quence, a reduction of the average overlap of the new nodes.

 Also, with SS+-trees, we will tackle the issue of overlapping bounding envelopes
separately.

12For SS-trees we partition the ordered list of points by selecting the split index for the list, and then each point
on the left of the index goes in one partition, and each point on the right in the other partition.
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 For now, to finish with the insertion method, please look at listing 10.14 for an
implementation of the minVarianceSplit method. As mentioned, it’s just a linear
search among M – 2*(m-1) possible options for the split index of the points.

function minVarianceSplit(values) 
  minVariance ← inf               
  splitIndex ← m                 
  for i in {m, |values|-m} do           
    variance1 ← variance(values[0..i-1])          
    variance2 ← variance(values[i..|values|-1])  
    if variance1 + variance2 < minVariance then 
      minVariance ← variance1 + variance2      
      splitIndex ← i                          
  return splitIndex     

And with this, we can finally close this section about SsTree::insert. You might feel
this was a very long road to get here, and you’d be right: this is probably the most com-
plicated code we’ve described so far. Take your time to read the last few sub-sections
multiple times, if it helps, and then brace yourself: we are going to delve into the
delete method next, which is likely even more complicated.

10.3.5 Delete

Like insert, delete in SS-trees is also heavily based on B-tree’s delete. The former is
normally considered so complicated that many textbooks skip it altogether (for the
sake of space), and implementing it is usually avoided as long as possible. The SS-tree
version, of course, is even more complicated than the original one.

 But one of the aspects where R-trees and SS-trees overcome k-d trees is that while
the latter is guaranteed to be balanced only if initialized on a static dataset, both can
remain balanced even when supporting dynamic datasets, with a large volume of
insertions and removals. Giving up on delete would therefore mean turning down
one of the main reasons we need this data structure.

 The first (and easiest) step is finding the point we would like to delete, or better
said, finding the leaf that holds that point. While for insert we would only traverse
one path to the closest leaf, for delete we are back at the search algorithm described
in section 10.3.1; however, as for insert, we will need to perform some backtracking,

Listing 10.14 The minVarianceSplit method

Method minVarianceSplit takes a list of real values. The method 
returns the optimal index for a node split of the values. In particular, 
it returns the index of the first element of the second partition; the 
split is optimal with respect to the variance of the two sets. The 
method assumes the input is already sorted.

Initializes temporary variables for the minimum 
variance and the index where to split the list

Goes through all the possible values 
for the split index. One constraint is 
that both sets need to have at least m 
points, so we can exclude all choices 
for which the first set has less than m 
elements, as well as those where the 
second set is too small.

For each possible value i for the 
split index, selects the points before 
and after the split, and computes 
the variances of the two sets

If the sum of the variances just computed 
is better than the best result so far, 
updates the temporary variables

Returns the best option found
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and hence rather than calling search, we will have to implement the same traversal in
this new method.13

 Once we have found the right leaf L, assuming we do find the point Z in the tree
(otherwise, we wouldn’t need to perform any change), we have a few possible situa-
tions—an easy one, a complicated one, and a seriously complicated one:

1 If the leaf contains more than m points, we just delete Z from L, and update its
bounding envelope.

2 Otherwise, after deleting Z, L will have only m-1 points, and therefore it would
violate one of the SS-tree’s invariants. We have a few options to cope with this:
a If L is the root, we are good, and we don’t have to do anything.
b If L has at least one sibling S with more than m points, we can move one point

from S to L. Although we will be careful to choose the closest point to L
(among all its siblings with at least m+1 points), this operation can potentially
cause L’s bounding envelope to expand significantly (if only siblings far away
from L have enough points) and unbalance the tree.

c If no sibling of L can “lend” it a point, then we will have to merge L with one
of its siblings. Again, we would then have to choose which sibling to merge it
with and we might choose different strategies:
i Choosing the closest sibling
ii Choosing the sibling with larger overlap with L
iii Choosing the sibling that minimizes the coordinates variance (over all

axes)

Case 2(c) is clearly the hardest to handle. Case 2(b), however, is relatively easy
because, luckily, one difference with B-trees is that the node’s children don’t have to
be sorted, so we don’t need to perform rotations when we move one point from S to L.
In the middle-bottom sections of figure 10.19 you can see the result of node S3 “bor-
rowing” one of the S4 children, S9—it’s just as easy as that. Of course, the hardest part
is deciding which sibling to borrow from and which of its children should be moved.

 For case 2(b),  merging two nodes will cause their parent to have one less child; we
thus have to backtrack and verify that this node still has at least m children. This is
shown in the top and middle sections of figure 10.19. The good news is that we can
handle internal nodes exactly as we handle leaves, so we can reuse the same logic (and
mostly the same code) for leaves and internal nodes.

 Cases 1 (at the bottom of figure 10.19) and 2(a) are trivial, and we can easily imple-
ment them; the fact that when we get to the root we don’t have to do any extra action
(like we have to for insert) makes the SsTree::delete wrapper method trivial. 

13We could reuse search as the first call in delete (and searchClosestLeaf in insert) if we store a pointer
to its parent in each node, so that we can climb up the tree when needed.
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Figure 10.19 Deleting a point. This example shows, in order, cases 2(c), 2(b), and 1 described in this section.

S3

S6

S4

S7

S12
S14

S8

S9

S10

S15

S13

S1

S5

S11
H

G

A

D

B

K

E

LF
I
J

N

M
O

P

R

Q T

V

W

U

S

S2

S3
0

S4
1

S5
0

S6
1

S7
0

S8
1

S9
0

S10
1

S12
0

S14
0

S15
1

S11
2

S1
0

S2
1

S13
1

A
B
D

S
Q

U

WN

ME
I
J

F

G
H

K
L

T

V
P
RO

After removing point E, S8  only has one point,
and none of its siblings can lend it one.

S3

S6

S4

S16

S12
S14

S9

S10

S15

S13

S1

S5

S11
H

G

A

D

B

K

LF
I
J

N

M
O

P

R

Q T

V

W

U

S

S2

Move to S3

S3
0

S4
1

S5
0

S6
1

S16
0

S9
0

S10
1

S12
0

S14
0

S15
1

S11
2

S1
0

S2
1

S13
1

A
B D

S
Q

U

W
N

M
I
J

F

G
H

K
L

T

V
P
RO

Now S3 has only one child, 
but its sibling has three, 
so S3 can borrow one.

Thus, we need to 
merge S8 and S7.

S3

S6

S4

S16

S12
S14

S9

S10

S15

S13

S1

S5

S11
H

G

A

D

B

K

LF
I
J

N

M
O

P

R

Q T

V

W

U

S

S2

S3
0

S4
1

S5
0

S6
1

S16
0

S9
1

S10
0

S12
0

S14
0

S15
1

S11
1

S1
0

S2
1

S13
1

A
BD

S
Q

U

W
N

M
I
J

F

G
H

K
L

T

V
P
RO

Backtracking

S1 doesn’t violate any invariant,
so just update its bounding box.

backtracking



355Similarity search tree

Enough with the examples; it’s time to write the body of the delete method, shown in
listing 10.15.

function delete(node, target)
  if node.leaf then                                
    if node.points.contains(target) then 
      node.points.delete(target)     
      return (true, node.points.size() < m)  
    else
     return (false, false)    
  else
    nodeToFix ← null  
    deleted ← false
    for childNode in node.children do          
      if childNode.intersectsPoint(target) then     
        (deleted, violatesInvariants) ← delete(childNode, target) 
        if violatesInvariants == true then 
          nodeToFix ← childNode     
        if deleted then         
          break
  if nodeToFix == null then
    if deleted then 
      node.updateBoundingEnvelope()                                     
    return (deleted, false)                       

Listing 10.15 The delete method

Method delete takes a node and a point to delete from 
the node’s subtree. It is defined recursively and returns a 
pair of values: the first one tells if a point has been deleted 
in current subtree, and the second one is true if current 
node now violates SS-tree’s invariants. We assume both 
node and target are non-null.

If the current node is a leaf, checks that it 
does contain the point to delete and . . . 

. . . removes the point . . .

. . . and returns (true, true) if the 
node now contains fewer than m points, 
to let the caller know that it violates 
SS-tree invariants and needs fixing, or 
(true, false) otherwise, because the 
point was deleted in this subtree.

Otherwise, if this leaf doesn’t 
contain target, we need to 
backtrack the search and traverse 
the next unexplored branch (the 
execution will return to line #13 of 
the call handling node’s parent, 
unless node is the root of the tree), 
but so far no change has been made, 
so it can return (false, false).

If node is not a leaf, we need to continue the 
tree traversal by exploring node’s branches. 
We start by initializing a couple of temporary 
variables to keep track of the outcome of 
recursive calls on node’s children.

Cycles through all of node’s children that 
intersect the target point to be deleted

Recursively traverses the next branch 
(one of the children that intersects target), 
searching for the point and trying to delete it

If the recursive call returns true for violatesInvariants, it means that the 
point has been found and deleted in this branch, and that childNode currently 
violates the SS-tree’s invariants, so its parent needs to do some fixing.

To that extent, we save current child in the 
temporary variable we had previously initialized.

If a point has been deleted in the current node’s subtree, 
then exit the for loop (we assume there are no duplicates 
in the tree, so a point can be in one and one branch only).

Check if none of node’s children violates SS-tree’s invariants. 
In that case, we won’t need to do any fix for the current node.

However, if the point was deleted in this subtree, 
we still need to recompute the bounding envelope. Then we can return, letting the caller know if 

the point was deleted as part of this call, and 
that this node doesn’t violate any invariant.
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  else
    siblings ← node.siblingsToBorrowFrom(nodeToFix) 
    if not siblings.isEmpty() then               
      nodeToFix.borrowFromSibling(siblings)           
    else
      node.mergeChildren(
        nodeToFix, node.findSiblingToMergeTo(nodeToFix))
    node.updateBoundingEnvelope()          
    return (true, node.children.size() < m) 

As you can see, this method is as complicated as insert (possibly even more compli-
cated!); thus, similarly to what we did for insert, we broke down the delete method
using several helper functions to keep it leaner and cleaner.

 This time, however, we won’t describe in detail all of the helper methods. All the
methods involving finding something “closest to” a node, such as function find-
SiblingToMergeTo in listing 10.15, are heuristics that depend on the definition of
“closer” that we adopt. As mentioned when describing how delete works, we have a few
choices, from shortest distance (which is also easy to implement) to lower overlap.

 For the sake of space, we need to leave these implementations (including the
choice of the proximity function) to the reader. If you refer to the material presented
in this and the previous section, you should be able to easily implement the versions
using Euclidean distance as a proximity criterion

 So, to complete our description of the delete method, we can start from find-
ClosestEntryInNodesList. Listing 10.16 shows the pseudo-code for the method that
is just another linear search within a list of nodes with the goal of finding the closest
entry contained in any of the nodes in the list. Notice that we also return the parent
node because it will be needed by the caller.

function findClosestEntryInNodesList(nodes, targetNode)
  closestEntry ← null                              

Listing 10.16 The findClosestEntryInNodesList method

If, instead, one of the current node’s children does violate an 
invariant as the result of calling delete on it, the first thing we 
need to do is retrieve a list of the siblings of that child (stored in 
nodeToFix) but filtering in only those that in turn have more than 
m children/points. We will try to move one of those entries (either 
children or points, for internal nodes and leaves respectively) from 
one of the siblings to the one child from which we deleted target, 
and that now has too few children.

Checks if there is any 
sibling of nodeToFix 
that meets the criteria

If nodeToFix has at least 
one sibling with more than m 
entries, moves one entry 
from one of the siblings to 
nodeTofix (which will now 
be fixed, because it will have 
exactly m points/children).

Otherwise, if there is no 
sibling with more than m 
elements, we will have to 
merge the node violating 
invariants with one of its 
siblings.

Before we return, we still need to 
recompute the bounding envelope 
for the current node.

If it gets here, we are at an internal node and the point has been 
deleted in node’s subtree; checks also if node now violates the 
invariant about the minimum number of children.

Function findClosestEntryInNodesList takes a list of nodes and a target 
node and returns the closest entry to the target and the node in the list that 
contains it. An entry here is, again, meant as either a point (if nodes are leaves) 
or a child node (if nodes contains internal nodes). The definition of “closest” is 
encapsulated in the two auxiliary methods called at lines #5 and #6.

Initializes the results to 
null; it is assumed 
that at line #6 function 
closerThan will 
return the first 
argument, when 
closestEntry is null.
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  closestNode ← null
  for node in nodes do
    closestEntryInNode ← node.getClosestCentroidTo(targetNode) 
    if closerThan(closestEntryInNode, closestEntry, targetNode) then  
      closestEntry ← closestEntryInNode   
      closestNode ← node                 
  return (closestEntry, closestNode)

Next, listing 10.17 describes the borrowFromSibling method, which moves an entry
(respectively, a point, for leaves, or a child node, for internal nodes) to the node that
currently violates the minimum points/children invariant, taking it from one of its sib-
lings. Obviously, we need to choose a sibling that has more than m entries to avoid mov-
ing the issue around (the sibling will have one less entry afterward, and we don’t want
it to violate the invariant itself!). For this implementation, we will assume that all ele-
ments of the list siblings, passed in input, are non-null nodes with at least m+1 entries,
and also that siblings is not empty. If you are implementing this code in a language that
supports assertions, you might want to add an assert to verify these conditions.14

function borrowFromSibling(siblings) 
  (closestEntry, closestSibling) ←
      findClosestEntryInNodesList(siblings, this)
  closestSibling.deleteEntry(closestEntry)    
  closestSibling.updateBoundingEnvelope()    
  this.addEntry(closestEntry)     
  this.updateBoundingEnvelope()  

If this condition is met, we want to find the best entry to “steal,” and usually this means
the closest one to the destination node, but as mentioned, other criteria can be used.
Once we find it, we just need to move the closest entry from the source to the destina-
tion of this transaction and update them accordingly.

Listing 10.17 The SsNode::borrowFromSibling method

14Assuming you implement this method as a private method. Assertions should never be used to check input,
because they can be (and often are, in production) disabled. Checking arguments in private methods is not
ideal and must be avoided when they are forwarded from user input. Ideally, you would only use assertions on
invariants.

Cycles through all the nodes in the input list

For each node, gets its closest entry to targetNode. By default, 
closest can be meant as “with minimal Euclidean distance.”

Compares the entry just
computed to the best

result found so far

If the new entry is closer (by whatever 
definition of “closer” is assumed) then 
updates the temporary variables, with 
the resultsReturns a pair with the closest entry and the 

node containing it for the caller’s benefit

Method borrowFromSibling is defined in class SsNode. It takes a non-
empty list of siblings of the current node and moves the closest entry with 
regard to the current node from one of the siblings to the current node.

Searches the list of siblings for the 
closest entry to the current node. 
Here the definition of “closest” 
must be decided when designing 
the data structure. The helper 
function will return both the 
closest entry to be moved and the 
sibling that currently contains it.

Deletes the chosen entry from the 
node that currently contains it and 
updates its bounding envelopeAdds the chosen entry to the current node 

and re-computes its bounding envelope
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 If, instead, this condition is not met, and there is no sibling of the child violating
invariants from which we can borrow an entry, it can mean one of two things:

1 There are no siblings: assuming m 2, this can only happen if we are at the root,
and it only has one child. In this case, there is nothing to do.

2 There are siblings, but all of them have exactly m entries. In this case, since
m M/2, if we merge the invalid node with any of its siblings, we get a new node
with 2*m-1<M entries—in other words, a valid node that doesn’t violate any
invariant.

Listing 10.18 shows how to handle both situations: we check whether the second argu-
ment is null to understand if we are in the former or latter case, and if we do need to
perform a merge, we also clean up the parent’s node (which is the one node on which
the mergeChildren method is called).

function mergeChildren(firstChild, secondChild)
  if secondChild != null then   
    newChild ← merge(firstChild, secondChild)  
    this.children.delete(firstChild)                     
    this.children.delete(secondChild)          
    this.children.add(newChild)          

function merge(firstNode, secondNode)     
  assert(firstNode.leaf == secondNode.leaf)   
  if firstNode.leaf then
    return new SsNode(true, 
      points=firstNode.points + secondNode.points) 
  else
    return new SsNode(false, 
      children=firstNode.children + secondNode.children) 

This was the last piece of pseudo-code we were missing for delete. Before wrapping
up this section, though, I’d like to exhort the reader to take another look at figure
10.19. The final result is a valid SS-tree that doesn’t violate any of its invariants, but
let’s be honest, the result is not that great, right? Now we have one huge sphere, S3,
that is taking up almost all the space in its parent’s bounding envelope and signifi-
cantly overlapping not just its sibling, but also its parent’s other branch.

Listing 10.18 The SsNode::mergeChildren method

Method mergeChildren is defined in class SsNode. 
It takes two children of the current node and merges 
them in a single node.

We assume the first argument is always non-null (we can add an assert to check it, in those 
languages supporting assertions). If the second argument is null, it means this method has 
been called on the root and it currently has just one child, so we don’t have to do anything. If we 
assume m 2, in fact, this is only possible when node is tree’s root node (but still possible).

Performs the merge, 
creating a new node

Deletes the
two former

children
from the
current

node

Adds the result of the call to 
merge to the list of this node’s 
children

Auxiliary function merge takes 
two nodes and returns a node 
that has the entries of both 
inputs

Verifies that either both nodes 
are leaves or neither is

If the nodes are leaves, 
returns a new node whose 
points are the union of 
the nodes’ sets of points

If the nodes are internal, creates a new 
node with children from both inputs
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 If you remember, this was mentioned as a risk of handling merges in case 2(b) in the
description for delete. It is, unfortunately, a common side effect of both node merges and
moving nodes/points among siblings; especially when the choice of the entry to move is
constrained, a far entry can be picked up for merge/move, and—as in the example in fig-
ure 10.19—in the long run, after many deletions, this can make the tree unbalanced.

 We need to do better if we would like to keep our tree balanced and its perfor-
mance acceptable, and in section 10.6 we will see a possible solution: SS+-trees.

10.4 Similarity Search
Before discussing how to improve the balancing of SS-trees, we can finish our discus-
sion of their methods. So far, we have seen how to construct such a tree, but what can
we use it for? Not surprisingly, nearest neighbor search is one of the main applications
of this data structure; you probably guessed that. Range search, like for k-d trees, is
another important application for SS-trees; both NN and range searches fall into the
category of similarity search, queries on large, multi-dimensional spaces where our
only criterion is the similarity between a pair of objects.

 As we discussed for k-d trees in chapter 9, SS-trees can also (more easily) be
extended to support approximated similarity search. If you remember, in section 9.4,
we mentioned that approximate queries are a possible solution to k-d tree perfor-
mance issues. We’ll talk in more depth about these methods in section 10.4.2.

10.4.1 Nearest neighbor search
The nearest neighbor search algorithm is similar to what we saw for k-d trees; obvi-
ously, the tree structure is different, but the main change in the algorithm’s logic is
the formula we need to use to check whether a branch intersects the NN query region
(the sphere centered at the query point and with a radius equal to the distance to the
current guess for the nearest neighbor)—that is, if a branch is close enough to the tar-
get point to be traversed. Also, while in k-d trees we check and update distance at
every node, SS-trees (and R-trees) only host points in their leaves, so we will only
update the initial distance after we traverse the tree to the first leaf.

 To improve search performance, it’s important to traverse branches in the right
order. While it is not obvious what this order is, a good starting point is sorting nodes
based on their minimum distance from the query point. It is not guaranteed that the
node that potentially has the closest point (meaning its bounding envelope is closest to
the target point) will actually have a point so close to our target, and so we can’t be
sure that this heuristic will produce the best ordering possible; however, on average it
helps, compared to following a random order.

 To remind you why this is important, we discussed in section 9.3.5 how getting to a
better guess of the nearest neighbor distance helps us prune more branches, and thus
improve search performance. In fact, if we know that there is a point within distance D
from our query point, we can prune all branches whose bounding envelopes are fur-
ther than D.
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 Listing 10.19 shows the code for the nearestNeighbor method, and figures 10.20
and 10.21 show examples of a call to the method on our example tree. As you can see,
the code is quite compact: we just need to traverse all branches that intersect the
sphere centered at the search points and whose radius is the distance to the current
nearest neighbor, and update the best value found in the process.

Figure 10.20 Nearest neighbor search. This figure shows the first steps of the call on the root of the tree. (Top) 
Initially, the search area is a sphere centered at the query point Z, and with infinite radius (although here it’s shown 
as a circle that includes the whole tree, for consistency). (Bottom) The search traverses the tree, choosing first the 
closest branches. S5’s border is closer than S6’s, so we visit the former first (although, as you can see, the opposite 
choice would be the best, but the algorithm can’t know that yet). Normally the distance is computed from a node’s 
bounding envelope, but since Z intersects both S1 and S2, it first chooses the one whose centroid is closer. The algorithm 
goes in depth as much as possible, traversing a path to a leaf before back-tracking. Here we show the path to the 
first leaf: once there, we can update the query region that now is the sphere centered at Z with radius equal to the 
distance to R, the closest point in S13, which is therefore saved as the best guess for the nearest neighbor.
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This simplicity and cleanness are not unexpected. We have done the hard work of the
design and creation of the data structure, and now we can enjoy the benefits!  
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Figure 10.21 Nearest neighbor search. A summary of the next steps in the traversal. Arrows are numbered 
to reflect the order of the recursive calls. (Top) After visiting S13 and finding R as the best guess for the 
nearest neighbor, S12 is skipped because it’s outside the update search region. Then the execution 
backtracks, and we get to S5’s sibling, S6, which still has a non-null intersection with the search region. 
(Bottom) Fast-forward to the end of the traversal. We need to traverse S1’s branch as well, because Z lies 
within it. As a matter of fact, the search region intersects another leaf, S10, so we need to traverse a path to 
it. As you can see, point J is close to being Z’s nearest neighbor, so it’s not unlikely that we would find the 
true NN in a later call.
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function nearestNeighbor(node, target, (nnDist, nn)=(inf, null))
  if node.leaf then 
    for point in node.points do    
      dist ← distance(point, target) 
      if dist < nnDist then                                 
        (nnDist, nn) ← (dist, point)                        
  else                                    
    sortedChildren ← sortNodesByDistance(node.children, target)
    for child in sortedChildren do  
      if nodeDistance(child, target) < nnDist then                
        (nnDist, nn) ← nearestNeighbor(child, target, (nnDist, nn)) 
  return (nnDist, nn)      

Of the helper methods in listing 10.19, it’s important to spend some time explaining
function nodeDistance. If we refer to figure 10.22, you can see why the minimum dis-
tance between a node and a bounding envelope is equal to the distance between the
centroids minus the envelope’s radius: we just used the formula for the distance
between a point and a sphere, taken from geometry.

 We can easily extend the nearest neighbor search algorithm to return the n-th
nearest neighbor. Similar to what we did in chapter 9 for k-d trees, we just need to use
a bounded priority queue that keeps at most n elements, and use the furthest of those
n points as a reference, computing the pruning distance as the distance from this
point to the search target (as long as we have found fewer than n points, the pruning
distance will be infinity).

 Likewise, we can add a threshold argument to the search function, which becomes
the initial pruning distance (instead of passing infinity as the default value for
nnDist), to also support search in spherical regions. Since these implementations can

Listing 10.19 The nearestNeighbor method for SS-tree

Function nearestNeighbor returns the closest point to a given target. It 
takes the node to search and the query point. We also (optionally) pass the 
best values found so far for nearest neighbor (NN) and its distance to help 
pruning. These values default to null and infinity for a call on the tree 
root, unless we want to limit the search inside a spherical region (in that 
case, just pass the sphere’s radius as the initial value for nnDist).

Checks if node is a leaf. Leaves are the only nodes containing points, and so 
are the only nodes where we can possibly update the nearest neighbor found.

Cycles through all 
points in this leaf

Computes the distance between 
current point and target

If that distance is less than the current 
NN’s distance, we have to update the 
values stored for the NN and its distance.

If, instead, node is an
internal node, we need to

cycle through all its
children and possibly

traverse their subtrees. We
start by sorting node’s

children from the closest to
the furthest with respect to
target. As mentioned, a

different heuristic than the
distance to the bounding

envelope can be used here.

Cycles through all children in the order we sorted them

Checks if their bounding envelope
intersects with the NN bounding

sphere. In other words, if the
distance from target to the
closest point within child’s

bounding envelope is smaller than
the pruning distance (nnDist).

If the distance between target and 
child is smaller than the pruning 
distance, then it traverses the subtree 
rooted at child, updating the result.

All that remains is to 
return the updated 
values for the best 
result found so far.
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be trivially obtained, referring to chapter 9 for guidance, we leave them to the readers
(for a hint, check the implementation on the book’s repo on GitHub15).

10.4.2 Region search
Region search will be similar to what we have described for k-d trees—the only differ-
ence being how we need to compute the intersection between each node and the
search region, besides the structural change due to the fact that points are only stored
in leaves.

 Listing 10.20 shows a generic implementation of this method for SS-trees that
assumes the region passed as argument includes a method to check whether the
region itself intersects a hyper-sphere (a node’s bounding envelope). Please refer to
section 9.3.6 for a detailed explanation and examples about search on the most com-
mon types of regions, and their algebraic meaning.

function pointsWithinRegion(node, region) 
  points ← []
  if node.leaf then 
    for point in node.points do     
      if region.intersectsPoint(point) then    
        points.insert(point)                   
  else    
   for child in node.children do           

15See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#ss-tree.

Listing 10.20 The pointsWithinRegion method for SS-tree

SB

SC

SADistance between
centroids

SB’s radius along the direction
connecting centroids

CB
CC

Z

Closest point
to Z (within SB)

Random point
on SB’s envelope

BA

Distance Z-P

Figure 10.22 Minimum distance to a bounding envelope. Consider the triangle ZBCB. Then, for the 
triangular inequality, |CBB|+|BZ|>|ZCB|, but |ZCB|==|ZA|+|ACB| and |ACB|==|CBB| (they are 
both radii), so ultimately |CBB|+|BZ|>|ZA|+|ACB|⇒|BZ|>|ZA|. Therefore, the minimum distance 
is the length of segment from Z to SB’s sphere, along the direction connecting its centroid to Z.

Function pointsWithinRegion takes a node on which the search 
must be performed, as well as the search region. It returns a list of 
points stored in the subtree rooted at node and lying within the 
search region (in other words, the intersection between the region 
and the node’s bounding envelope).

Initializes the return value to an empty list

Checks if node is a leaf

Cycles through 
all points in the 
current leaf

If the current point is 
within the search region, 
it’s added to the list of 
results. The onus of 
providing the right method 
to check if a point lies in a 
region is on the region’s 
class (so regions of 
different shapes can 
implement the method 
differently).

If, instead, node is an 
internal node, cycles 
through its children

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#ss-tree
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      if region.intersectsNode(child) then  
        points.insertAll(pointsWithinRegion(child, region)) 
  return points  

10.4.3 Approximated similarity search

As mentioned, similarity search in k-d trees, as well as R-trees and SS-trees, suffers
from what is called the curse of dimensionality: the methods on these data structures
become exponentially slower with the growth of the number of dimensions of the
search space. K-d trees also suffer from additional sparsity issues that become more
relevant in higher dimensions.

 While using R-trees and SS-trees can improve the balance of the trees and result in
better trees and faster construction, there is still something more we can do to
improve the performance of the similarity search methods.

 These approximate search methods are indeed a tradeoff between accuracy and
performance; there are a few different (and sometimes complementary) strategies
that can be used to have faster approximate queries:

 Reduce the dimensionality of the objects—Using algorithms such as PCA or Discrete
Fourier Transform, it is possible to project the dataset’s object into a different,
lower-dimensional space. The idea is that this space will maintain only the
essential information to distinguish between different points in the dataset.
With dynamic datasets, this method is obviously less effective.

 Reduce the number of branches traversed—As we have seen in the previous section,
our pruning strategy is quite conservative, meaning that we traverse a branch if
there is any chance (even the slightest) that we can find a point in that branch
closer than our current nearest neighbor. By using a more aggressive pruning
strategy, we can reduce the number of branches (and ultimately dataset points)
touched, as long as we accept that our results might not be the most accurate
possible. 

 Use an early termination strategy—In this case, the search is stopped when the cur-
rent result is judged good enough. The criterion to decide what’s “good
enough” can be a threshold (for instance, when a NN closer than some distance
is found), or a stop condition connected to the probability of finding a better
match (for instance, if branches are visited from closer to further with regard to
the query point, this probability decreases with the number of leaves visited).

We will focus on the second strategy, the pruning criterion. In particular, we can provide
a method that, given a parameter ϵ, called the approximation error, with 0.0  ϵ  0.5,

Checks to see if the search region intersects 
the current child. Again, the region’s class will 
have to implement this check.

If there is any intersection (so there
might be points in common), we

should call this method recursively on
the current child, and then add all the

results found, if any, to the list of
points returned by this method call.

At this point, we can just return all the 
points we collected in this method call.
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guarantees that in an approximated n-nearest neighbor search, the n-th nearest neigh-
bor returned will be within a factor (1+ϵ) from the true n-th nearest neighbor.

 To explain this, let’s restrict16 to the case where n==1, just plain NN search. Assume
the approximated NN-search method, called on a point P, returns a point Q, while the
real nearest neighbor of P would be another point N Q. Then, if the distance between
P and its true nearest neighbor N is d, the approximated search distance between P
and Q will be at most (1+ϵ)*d.

 Guaranteeing this condition is easy. When we prune a branch, instead of checking
to see if the distance between the target point and the branch’s bounding envelope is
smaller than the current NN distance, we prune unless it is smaller than 1/(1+ϵ)
times the NN’s distance.

 If we denote with Z the query point, with C current nearest neighbor, and with A
the closest point to Z in the branch pruned (see figure 10.21), we have, in fact

So, if the distance of the closest point in the branch is higher than the current NN’s dis-
tance over the reciprocal of (1+ϵ), we are guaranteed that the possible nearest neighbor
held in the branch is no further than an epsilon factor from our current nearest neighbor.

 Of course, there could be several points in the dataset that are within a factor
(1+ϵ) from the true nearest neighbor, so we are not guaranteed that we get the
second-closest point, or the third, and so on.

 However, the probability that these points exist is proportional to the size of the
ring region with radii nnDist and nnDist/(1+ϵ), so the smaller we set ϵ, the lower the
chances we are missing closer points.

 A more accurate estimate of the probability is given by the area of the intersection
of the aforementioned ring with the bounding envelope of the node we skip. Figure
10.23 illustrates this idea, and shows the difference between SS-trees, k-d trees, and
R-trees: the probability is maximum when the inner radius is just tangent to the area,
and a sphere has a smaller intersection, with respect to any rectangle. 

16This can easily be extended to n-nearest neighbor by considering the distance of the n-th NN instead.

d Z A,( ) 1
1 ∈+
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d Z A,( )
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r-ϵ.
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r

nnDist
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(1+ϵ)

Figure 10.23 The probability of missing 
j points by using an approximation error 
is proportional to the intersection of the 
pruned search area (the ring with radius 
(ϵ /(1+ϵ))*nnDist) and the bounding 
envelope of the node intersecting this region, 
but not the internal sphere with reduced 
radius. The maximum probability 
corresponds to a region tangent to the 
internal sphere. The figure shows how the 
intersection is smaller for spherical bounding 
envelopes than for rectangular ones.
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If we set ϵ==0.0, then we get back the exact search algorithm as a special case, because
nnDist/(1+epsilon) becomes just nnDist.

 When ϵ>0.0, a traversal might look like figure 10.24, where we use an example
slightly different from the one in figures 10.20 and 10.21 to show how approximate
NN search could miss the nearest neighbor.
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Figure 10.24 Approximated nearest neighbor search. The example is similar (almost identical) 
to the one in figures 10.20 and 10.21, to allow a close comparison. We show the verbose 
representation of the tree to make clearer the path followed in traversal. Node S4 contains J, 
the true NN, whose bit is further away from the query point Z than S5 and S6, and outside the 
approximated query region (ϵ has been chosen ad hoc, obviously, to cause this condition, in this 
example, ϵ~=0.25). Arrows are numbered in the order in which they are traversed.



367SS+-tree

In many domains we can be not just fine, but even happy, with approximate search.
Take our example of the search through a dataset of images: Can we really be sure
that an exact match is better than an approximate one? If we were working with geo-
graphic coordinates—say, on a map—then a factor ϵ difference could have dire conse-
quences (at the very best, taking a longer route would be expensive, but it might get as
bad as safety issues). But when the task is finding the dresses that most closely resem-
ble a purchase, then we can’t even guarantee the precision of our metric. Maybe a
couple of feature vectors are slightly closer than another pair, but in the end, to the
human eye, the latter images look more similar!

 So, as long as the approximation error ϵ is not too large, chances are that an
approximated result for “most similar image” will be as good as, or maybe better, than
the exact result.

 The interested reader can find plenty of literature on the topic of approximated
similarity search and delve deeper into the concepts that we could only superficially
examine here. As a starting point I suggest the remarkable work of Giuseppe Amato.17

10.5 SS+-tree18

So far, we have used the original SS-tree structure, as described in the original paper
by White and Jain19; SS-trees have been developed to reduce the nodes overlapping,
and in turn the number of leaves traversed by a search on the tree, with respect to
R-trees and k-d trees.

10.5.1 Are SS-trees better?

With respect to k-d trees, the main advantage of this new data structure is that it is self-
balancing, so much so that all leaves are at the same height. Also, using bounding
envelopes instead of splits parallel to a single axis mitigates the curse of dimensional-
ity because unidimensional splits only allow partitioning the search space along one
direction at a time.

 R-trees also use bounding envelops, but with a different shape: hyper-rectangles
instead of hyper-spheres. While hyper-spheres can be stored more efficiently and
allow for faster computation of their exact distance, hyper-rectangles can grow asym-
metrically in different directions: this allows us to cover a node with a smaller volume,
while hyper-spheres, being symmetrical in all directions, generally waste more space,
with large regions without any point. And indeed, if you compare figure 10.4 to figure
10.8, you can see that rectangular bounding envelopes fit the data more tightly than
the spherical ones of the SS-tree.

17See Amato, Giuseppe. “Approximate similarity search in metric spaces.” Diss. Technical University of Dort-
mund, Germany, 2002.

18This section includes advanced material focused on theory.
19See White, David A., and Ramesh Jain. “Similarity indexing with the SS-tree.” Proceedings of the Twelfth Inter-

national Conference on Data Engineering. IEEE, 1996.
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 On the other hand, it can be proved that the decomposition in spherical regions
minimizes the number of leaves traversed.20

 If we compare the growth of the volume of spheres and cubes in a k-dimensional
spaces, for different values of k, given by these formulas

we can see that spheres grow more slowly than cubes, as also shown in figure 10.25.
 And if a group of points is uniformly distributed along all directions and shaped as

a spherical cluster, then a hyper-sphere is the type of bounding envelope that wastes
the lowest volume, as you can see also for a 2-D space in figure 10.23, where a circle of
radius r is inscribed in a square of side 2r. If the points are distributed in a circular
cluster, then all the areas between the circle and its circumscribed square (highlighted
in figure 10.23) are potentially empty, and so wasted. 

Experiments have confirmed that SS-trees using spherical bounding envelopes per-
form better on datasets uniformly distributed along all directions, while rectangular
envelopes work better with skewed datasets.

 Neither R-trees nor SS-trees can offer logarithmic worst-case upper bounds for
their methods. In the (unlikely, but possible) worst case, all leaves of the tree will be
traversed, and there are at most n/m of them. This means that each of the main opera-
tions on these data structures can take up to linear time in the size of the dataset.
Table 10.1 summarizes their running time, comparing them to k-d trees.

20See Cleary, John Gerald. “Analysis of an algorithm for finding nearest neighbors in Euclidean space.” ACM
Transactions on Mathematical Software (TOMS) 5.2 (1979): 183-192.

VCube rk VSphere, rkπk 2⁄

k 2⁄( )!
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Figure 10.25 Volume of spheres (lighter line) and cubes (darker line) for various radii, as 
a function of the number of dimensions of the search space



369SS+-tree

10.5.2 Mitigating hyper-sphere limitations

Now this question arises: Is there anything we can do to limit the cons of using spheri-
cal bounding envelopes so that we can reap the advantages when we have symmetrical
datasets, and limit the disadvantages with skewed ones?

 To cope with skewed datasets, we could use ellipsoids instead of spheres, so that the
clusters can grow in each direction independently. However, this would complicate
search, because we would want to compute the radius along the direction connecting
the centroid to the query point, which in the general case won’t lie on any of the axes.

 A different approach to reduce the wasted area attempts to reduce the volume of
the bounding spheres used. So far we have always used spheres whose center was a
group of points’ center of mass, and whose radius was the distance to the furthest
point, so that the sphere would cover all points in the cluster. This, however, is not the
smallest possible sphere that covers all the points. Figure 10.26 shows an example of
such a difference.

 Computing this smallest enclosing sphere in higher dimensions is, however, not
feasible, because the algorithm to compute the exact values for its center (and radius)
is exponential in the number of dimensions.

 What can be done, however, is computing an approximation of the smallest enclos-
ing sphere, starting with the center of mass of the cluster as an initial guess. At the very
high level, the approximation algorithm tries at each iteration to move the center
toward the farthest point in the dataset. After each iteration, the maximum distance
the point can move is shortened, limited by the span of the previous update, thus
ensuring convergence.

 We won’t delve deeper into this algorithm in this context; the interested readers can
read more about this method, starting, for instance, with this article21 by Fischer et al.
For now, we will move to another way we could improve the balancing of the tree:
reducing the node overlap.

Table 10.1 Operations provided by k-d tree, and their cost on a balanced k-d tree with n elements

Operation k-d tree R-tree SS-tree

Search O(log(n)) O(n) O(n)

Insert O(log(n)) O(n) O(n)

Remove O(n1-1/k)a O(n) O(n)

nearestNeighbor O(2k + log(n))a O(n) O(n)

pointsInRegion O(n) O(n) O(n)

aAmortized, for a k-d tree holding k-dimensional points.

21See Fischer, Kaspar, Bernd Gärtner, and Martin Kutz. “Fast smallest-enclosing-ball computation in high dimen-
sions.” European Symposium on Algorithms. Springer, Berlin, Heidelberg, 2003.
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10.5.3 Improved split heuristic

We saw in section 10.3 that splitting and merging nodes, as well as “borrowing”
points/children from siblings, can result in skewed clusters that require bounding
envelopes larger than necessary, and increase node overlap.

 To counteract this effect, Kurniawati et al., in their work22 on SS+-trees, introduce a
new split heuristic that, instead of only partitioning points along the direction of max-
imum variance, tries to find the two groups such that each of them will collect the
closest nearby points.

 To achieve this result, a variant of the k-means clustering algorithm will be used,
with two constraints:

 The number of clusters will be fixed and equal to 2.
 The maximum number of points per cluster is bound to M.

We will talk in more depth about clustering and k-means in chapter 12, so please refer
to section 12.2 to see the details of its implementation.

 The running time for k-means, with at most j iterations on a dataset with n points,
is O(jkn),23 where, of course, k is the number of centroids.

 Since for the split heuristic we have k==2, and the number of points in the node to
split is M+1, the running time becomes O(jdM), compared to O(dM) we had for the
original split heuristic described in section 10.3. We can therefore trade off the quality
of the result for performance by controlling the maximum number of iterations j.

22“SS+ tree: an improved index structure for similarity searches in a high-dimensional feature space.” Storage and
Retrieval for Image and Video Databases V. Vol. 3022. International Society for Optics and Photonics, 1997.

23To be thorough, we should also consider that computing each distance requires O(d) steps, so the running
time, if d can vary, becomes O(djkn). While for SS-trees we have seen that it becomes important to keep in
mind how algorithms perform when the dimension of the space grows, a linear dependency is definitely good
news, and we can afford to omit it (as it is done by convention, considering the dimension fixed) without dis-
torting our result.

C

center of mass
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center of minimum
bounding sphere

r'
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area coverage

sphere with radius r
centered at C'

Figure 10.26 Difference between the spheres with minimum radius centered at the cluster 
centroid (left), and the minimum covering sphere (right) for an example set of points.
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Figure 10.27 shows an example of how impactful this heuristic can be, and why the
increase in running time is well worth it.

 Although newer, more complex clustering algorithms have been developed during
the years (as we’ll see in chapter 12, where we’ll also describe DBSCAN and OPTICS),
k-means is still a perfect match for SS-trees, because it naturally produces spherical
clusters, each with a centroid equal to the center of mass of the points in the cluster.

10.5.4 Reducing overlap

The k-means split heuristic is a powerful tool to reduce node overlapping and keep
the tree balanced and search fast, as we were reminded at the beginning of last sec-
tion; however, we can unbalance a node while also deleting points, in particular
during merge or when we move a point/child across siblings. Moreover, sometimes
the overlapping can be the result of several operations on the tree and involve more
than just two nodes, or even more than a single level.

 Finally, the k-means split heuristic doesn’t have overlap minimization as a crite-
rion, and because of the intrinsic behavior of k-means, the heuristic could produce
results where a node with larger variance might completely overlap a smaller node.

 To illustrate these situations, the top half of figure 10.28 shows several nodes and
their parents, with a significant overlap.

 To solve such a situation, SS+-trees introduce two new elements:

1 A check to discover such situations.
2 A new heuristic that applies k-means to all grandchildren of a node N (no mat-

ter whether they are points or other nodes; in the latter case their centroids will
be used for clustering). The clusters created will replace N’s children.

Before split Split along the 
direction of max variance

k-means split

Figure 10.27 An example of the different partitions produced by the split heuristic in the original SS-tree 
version (center) and the k-means split heuristic (left). For the original heuristic, the direction of maximum 
variance was along the y axis. For this example, we assume M==12 and m==6.



372 CHAPTER 10 Similarity Search Trees: Approximate nearest neighbors search for image 

To check the overlap, the first thing we need is the formula to compute the volume of
intersections of two spheres. Unfortunately, computing the exact overlap of two
hyperspheres, in the generic k-dimensional case, requires not just substantial work
and good calculus skills to derive the formulas, but also robust computing resources,
as it results in a formula that includes an integral whose computation is clearly expen-
sive enough to cause you to question its usefulness in a heuristic.

 An alternative approach is to check whether one of the two bounding envelopes is
completely included in the other. Check that the center of one sphere is contained in
the other one, and that the distance of the centroid of the smaller sphere is closer
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Figure 10.28 An example where the grandchildren-split heuristic could be triggered and would lower the 
nodes overlap. The SS-tree in the example has m==2 and M>=5. The k-means split heuristic is run on the points 
A-L, with k==5. Notice how k-means can (and sometimes will) output fewer clusters than the initial number 
of centroids. In this case, only four clusters were returned.
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than R-r to the centroid of the larger one, where R is the radius of the larger sphere
and, as you might expect, r is the radius of the smaller one.

 Variants of this check can set a threshold for the ratio between the actual distance
of the two centroids and R-r, using it for an approximation of the overlapping volume
as this ratio gets closer to 1.

 The reorganization heuristic is then applied if the check’s condition is satisfied. A
good understanding of k-means is needed to get into the details of this heuristic, so
we’ll skip it in this context, and we encourage readers to refer to chapter 12 for a
description of this clustering algorithm. Here, we will use an example to illustrate how
the heuristic works.

 In the example, the heuristic is called on node S1 and the clustering is run on its
grandchildren, points A-L. As mentioned, these could also be centroids of other inter-
nal nodes, and the algorithm wouldn’t change.

 The result is shown in the bottom half of figure 10.28. You might wonder why
there are now only four children in node S1: even if k-means was called with k, the
number of initial clusters, equal to five (the number of S1’s children), this clustering
algorithm could output fewer than k clusters. If at any time during its second step,
points assignment, one of the centroids doesn’t get any point assigned, that centroid
just gets removed and the algorithm continues with one less cluster.

 Both the check and the reorganization heuristic are resource-consuming; the lat-
ter in particular requires O(jMk) comparisons/assignments, if j is the number of max-
imum iterations we use in k-means. Therefore, in the original paper it was
recommended to check the overlap situation after splitting nodes, but to apply the
reorganization infrequently.

 We can also easily run the check when an entry is moved across siblings, while it
becomes less intuitive when we merge two nodes. In that case, we could always check
all pairs of the merged node’s sibling, or—to limit the cost—just sample some pairs.

 To limit the number of times we run the reorganization heuristic and avoid run-
ning it again on nodes that were recently re-clustered, we can introduce a threshold
for the minimum number of points added/removed on the subtree rooted at each
node, and only reorganize a node’s children when this threshold is passed. These
methods prove to be effective in reducing the variance of the tree, producing more
compact nodes. 

 But I’d like to conclude the discussion about these variants with a piece of advice:
start implementing basic SS-trees (at this point, you should be ready to implement
your own version), then profile them within your application (like we did for heaps in
chapter 2), and only if SS-trees appear to be a bottleneck and improving their running
time would reduce your application running time by at least 5-10%, try to implement
one or more of the SS+-tree heuristics presented in this section.
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Summary
 To overcome the issues with k-d trees, alternative data structures such as R-trees

and SS-trees have been introduced.
 The best data structure depends on the characteristics of the dataset and on

how it needs to be used, the dimension of the dataset, the distribution (shape)
of the data, whether the dataset is static or dynamic, and whether your applica-
tion is search-intensive.

 Although R-trees and SS-trees don’t have any guarantee on the worst-case run-
ning time, in practice they perform better than k-d trees in many situations, and
especially for higher-dimensional data.

 SS+-trees improve the structure of these trees by using heuristics that reduce the
number of nodes overlapping.

 You can trade the quality of search results for performance by using approxi-
mated similarity searches.

 There are many domains where exact results for these searches are not import-
ant, because either we can accept a certain error margin, or we don’t have a
strong similarity measure that can guarantee that the exact result will be the
best choice.

 An example of such a domain is similarity search in an image dataset.
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Applications of nearest
 neighbor search

It’s time to harvest what we’ve sown and to start solving the problems we have discussed
in the last few chapters. As always, after a deep dive into theory, we try to give you a “real-
life” angle, and in this chapter, we will incrementally build a solution for the “closest
hub” problem, one that takes into account many of the issues a real application would
face. But make no mistake—we can’t tackle all the possible issues here, and this chapter
doesn’t aim to be an exhaustive description of all the possible problems you could face;

This chapter covers
 Adapting abstract algorithms to the complexity of 

real systems

 Designing a solution for the “closest hub” 
problem using NN search

 Adding filtering to NN search to support business 
logic and dynamic supply

 Dealing with faulty networks and failure, and 
deploying to the real world

 Applying NN search to other domains, such as 
physics and computer graphics



376 CHAPTER 11 Applications of nearest neighbor search

neither it is a runbook about how to operate your e-commerce application. Only practice,
rolling up your sleeves, and getting burned while trying can teach you that. What you can
find in this chapter, besides a few examples of real-world technical challenges, is a hands-
on example of the analysis process that brings you from a solution “on paper” for your use
case, to a working application coping with the complex facets of reality.

11.1 An application: Find nearest hub
Now that we have seen how to implement k-d trees (in chapter 9) and SS-trees (chapter
10), we can focus on the problems we are able to solve by using these structures. And
we can go back to our initial example: writing an application to find the closest
warehouse/shop/retailer to customers, in real time. Figure 11.1 shows yet another
variation of the map first introduced in figure 8.1, where we show a few (real) cities and
some imaginary shops in the area around them. In our example, we need to find the
closest shop that is able to deliver a certain item to customers after they purchase that
item on our website. For this reason, we only show the kind of goods sold for each shop,
rather than the shop’s name or brand. 1

1 Sources: Esri, DeLorme; HERE; and MapmyIndia.

Figure 11.1 A map1 with cities and hypothetical distribution centers (in this chapter we will often use retailer/ 
shop as synonyms), and customers (dots). For these shops, on the map we only indicate what they sell for the 
sake of clarity.
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Given all the work done in the previous chapters, in this chapter we could actually get
away without even writing any code. k-d tree, SS-tree, or another similar data structure
can take care of all the operations we need; just create a container with the full list of
warehouses, and then, for each customer’s request, query it to find the closest hub.

 If, however, the retailer’s stock is dynamic, and items can go out of stock in one
place or be restocked in another, then our current model won’t work, and we need to
make a tiny change to our tree nodes and our search method. We will talk about these
details later in this chapter. First, let’s see how we can write a solution to the basic ver-
sion of our e-commerce problem.

11.1.1 Sketching a solution

Initially we will make some assumptions to simplify our scenario. Assume all the shops
have all the products in stock at all times. Figure 11.2 shows a possible workflow for
order processing under this scenario; of course, this is not what would happen in real
life, but simplifying a problem usually helps us sketch a first solution upon which we
can iterate, introducing one by one the constraints found in real situations and rea-
soning about how they influence our applications and how we can cope with them:

 Shops have dynamic inventory, so we need to check whether the closest shop to
a customer actually sells an item and has it in stock.

 Delivery costs and other considerations might cause us to prefer a further shop
to the closest one.

 If we need to make HTTP calls as part of our workflow, we need to take extra
care to avoid network pitfalls, and we might have to carefully select our algo-
rithm to cope with issues such as fault tolerance and timeouts.

The core of the problem, in this setting, is to keep an updated list of stores and
retrieve the closest one to a customer each time an order is placed on the website. 

 Listing 11.2 shows these trivial operations; we also define an auxiliary type for
shops in listing 11.1.

 
 
 
 

Start Order
(Customer C, Item I)

Find S, 
the closest 
shop to C

S.order(I, C) End

Figure 11.2 Simplified workflow for an order on the e-commerce site. After receiving the order 
from the customer, look up the closest retailer (assuming there will be always one selling the item 
ordered) and then place the order with it. Since we assume everything always works, we have a very 
linear (and unrealistic) workflow.
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class Shop
  #type string 
  shopName
  #type Array<Item>
  items
  #type tuple(k)
  point

  function Shop(shopName, location, items) 
  function order(item, customer)       

It encapsulates the information associated with a retailer. It will become even more
useful later in the chapter as we develop our final solution. We store the location of
the shop in the field point, for the sake of consistency with what we have seen in the
previous chapters.

function addShop(treeRoot, shopName, shopLocation, items=[]) 
  shop ← new Shop(shopName, shopLocation, items)        
  if treeRoot == null then            
    return new Node(shop, null, null, 0)                              
  else
       return insert(treeRoot, shop, treeNode.level + 1)  

function buyItem(treeRoot, customerLocation, item)  
  closestShop ← nearestNeighbor(treeRoot, customerLocation)
  closestShop.order(item, customerLocation) 

From the previous snippets, however, it’s apparent that we’ll need to make some adjust-
ments to the node objects and to the API of the methods we have defined in the previous
chapters. 

 For example, the Node class could hold a reference to the shop, as shown in listing
11.3, rather than directly to a point, and methods like insert, likewise, would take an
instance of Shop as an argument and not just a point, so that the new signature would
look something like

function insert(node, newShop, level=0)2

Listing 11.1 The Shop class

Listing 11.2 The addShop and BuyItem methods

2 We omit the implementation here that will differ from what is shown in chapters 9 and 10 for replacing every
occurrence of newPoint with newShop.point and using newShop instead of newPoint as argument to the
Node constructor.

The constructor
for the class

Performs the actual purchase. 
(Details of this method can’t 
be generalized, and they are 
not relevant to our discussion. 
Just imagine that this will 
update stock and start the 
process of actually shipping 
the goods to the customer.)

The addShop method takes the root of our container 
tree, the name of the shop and its location (a 2-D point), 
and optionally a list of items.

Creates a new 
instance of Shop

If the tree is empty . . .
. . . just
creates

a new
root

Otherwise, inserts 
the new shop in the 
tree (insert will 
create a new Node 
for it)

Defines a method to call when 
a customer buys an item

Finds the closest retailer to the customer and 
stores it to the temporary variable closestShop

Performs 
the order on 
that shop
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class Node
  #type Shop
  shop
  #type Node
  left
  #type Node
  right
  #type integer
  level

  function Node(shop, left, right, level)

The application code looks so simple, but do not let it fool you: the complexity is all
hidden in the order function that performs all the operations involved in actually
placing an order to a real shop. This likely means that you have to interact with each
shop’s own web applications,3 so first of all, you have to imagine that you need a com-
mon API by which all the shops’ services need to abide.4

11.1.2 Trouble in paradise

Now we’ve finally have defined a simple method that we can use to find the closest
retailer to our customer and let them know about the purchase so that they can ship
goods to users.

 Notice how simple listing 11.2 is. Simplicity, in IT as in life, is often a good thing.
Simple code usually means maintainable and flexible code. The problem is that some-
times things look great on paper, but when you deploy your application and open it to
real traffic, you often find issues you hadn’t thought of or even imagined. For example,
in the real world, you have to deal with dynamic inventory for each shop and, even
worse, race conditions.5

 The first issue we have overlooked is that not all the retailers have all the goods in
stock. So, it’s not enough to find the closest shop to a customer; we need to find the
closest retailer that can actually sell and deliver the product bought by our user. If the
user buys more than one item and we need to deliver them all in one go (to save on
shipping or just to reduce user churn), we likely want to filter shops that have all the
items at the same time, whenever possible. But then another question arises. If the
user buys products A and B, and there is one shop that could ship both, but it’s 100
miles away from the customer, and two shops each have only one of the items, but

Listing 11.3 Redefining Node

3 Unless, of course, you also provide IT infrastructure to all the shops as part of the service, which is possible,
although obviously more challenging both technically and financially.

4 That’s probably the easy part, because each shop can write an adapter to bridge the gap between their internal
software and your interface.

5 A race condition is a situation that occurs when a system attempts to perform two or more operations at the
same time, but the outcome of the operations depends on them being executed in a specific order. In other
words, a race condition happens when operations A and B are executed at the same time, but we get a correct
result if, for example, A finishes before B, while we get an error if B finishes before A.
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they’re within 10 miles of the customer, which solution should we choose? What about
choosing between a closer shop that has a longer delivery time or higher cost, and
another one that is further away, but cheaper and ultimately better for the customer?

 Even more issues come up if we lay down the architecture of the system (see figure
11.3). So far, we have treated shop datasets as if they were local, but that’s not neces-
sarily the case; each retailer can have their own system with which we need to interact:

 They can sell items offline, for instance. If that happens, our information about
their stock can become stale. Similarly, we can get out of sync if a shop’s items
are restocked.

 In listing 11.2 and figure 11.3, we assume that a call to shop.order will succeed,
but since it’s likely to be a remote call over HTTP, there are many reasons why it
could fail independently of the item availability in the shop’s inventory: the call
could time out, the shop’s application could crash and be unreachable, and so
on. If we don’t check their response, we will never know if the order was success-
fully placed. And if we do check, but never get a response, what should we do?

These are extremely challenging issues, that we’ll try to solve in the next sections.

11.2 Centralized application
Let’s set architectural questions aside for the moment, assume we handle in-house
(within the same virtual machine running our web application) all orders for retailers,
and focus on the first round of questions. At some point, we asked how we should
choose which shop or combination of shops is best in order to serve a customer. Nei-
ther k-d trees, nor SS-trees, nor any other data structure can (or should) answer this
question. This is a business-related decision that changes from company to company,
and perhaps over time or with other variables within the same company.

 What we can do, though, is provide our containers with a way to filter points in a
NN search by some conditions that we can pass into our code, thus allowing whoever

Web server

Localization
service

Client Server
Browser

Web app
1. Buy item

(HTTP call)

2. Find closest shop

Shop server

Internet
3. Send order

Figure 11.3 Simplified architecture for the e-commerce application described in chapter 8 and here in 
section 11.1
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uses the container to reason about the business rules, customize them, and pass them
as arguments to the search method.

11.2.1 Filtering points

By creating hooks through which clients can customize business logic, we provide a
template method that can be effectively customized depending on the business needs.

 Listing 11.4 shows the code for k-d tree’s nearest neighbor search, modified to
allow filtering of points.

 As you can see, we pass an extra argument (with respect to the regular method in
listing 9.9), a predicate that is evaluated on the current node before accepting this
point as a nearest neighbor.

 The only difference with the basic version, besides boilerplate to pass around this
new argument, is at line #5, where the predicate is actually evaluated on the current
node.

 This version of the method allows us to filter single points and solve the first of the
issues mentioned in the previous section, making sure that we choose a shop that actu-
ally has the item(s) a customer ordered.

function fNN(node, location, predicate, (nnDist, nn)=(inf, null))
  if node == null then
    return (nnDist, nn)
  else                                          
    dist ← distance(node.shop.point, location) 
    if predicate(node) and dist < nnDist then
      (nnDist, nn) ← (dist, node.shop)
    if compare(location, node) < 0 then     
      closeBranch ← node.left
      farBranch ← node.right
    else                             
      closeBranch ← node.right
      farBranch ← node.left
    (nnDist, nn) ← fNN(closeBranch, location, predicate, (nnDist, nn))  
    if splitDistance(location, node) < nnDist then  

Listing 11.4 The filteredNearestNeighbor method

Finds the closest point to a given target, among those 
satisfying a predicate. We also pass the best values found 
so far for NN and its distance to help pruning. These values 
default to null, infinity for a call on the tree root.

If the node is null, we are traversing an empty tree, so the nearest 
neighbor can’t be found in this branch of the tree. It is still possible 
that by backtracking, another branch is visited when it is found.

Otherwise, we have three
tasks: check if the current

node is closer than the
previously found NN, traverse
the branch on the same side

of the split with respect to the
target point, and check if we
can prune the other branch

(or traverse it as well).

We compute 
the distance 
between the 
current 
node’s point 
and the 
target 
location.

If the current node satisfies the 
predicate provided and its distance to 
target is less than the current NN’s 
distance, we have to update the values 
stored for the NN and its distance.

Checks if the target point is on the left branch of 
the split. If it is, the left branch is the closest to 
the target point; otherwise it is the furthest.

We certainly need to traverse the
closest branch in search of the nearest
neighbor. It is important to do so first

and update the mementos for NN’s
distance, to improve pruning.

Using one of the helper functions defined in listing 9.2, we compute 
the distance between the split line passing through the current node 
and the target point. If this distance is closer than the distance to the 
current nearest neighbor, then the furthest branch might contain 
points closer than the current nearest neighbor (see figure 9.21).
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      (nnDist, nn) ← fNN(farBranch, location, predicate, (nnDist, nn))  
    return (nnDist, nn)               

For instance, we could redefine nodes as shown in listing 11.3, and pass to fNN the
predicate hasItemX() defined in listing 11.5. We can also define a more generic ver-
sion, hasItem(), that takes two arguments, an item and a shop, and uses currying6 to
create a unary predicate checking a single fixed item in the shop, and pass it as shown
in listing 11.6.

function hasItemX(node)
  return X in node.shop.items  

To find the nearest shop that can ship Pinot noir, we can call our fNN method with
something like

fNN(treeRoot, customerPosition, hasItem(“Pinot noir”))

function hasItem(item, node)   
  return item in node.shop.items   

nn = fNN(root, customerLocation, hasItem(X)) 

Unfortunately, while this filtering mechanism allows us to filter out retailers that don’t
have the items we need, it isn’t powerful enough to let us decide that it is best to
choose a closer retailer with higher shipment costs over a cheaper one that is twice as
far away, and in general it can’t deal with complex conditions comparing different
solutions.

6 Currying is a functional programming technique that allows us to transform the execution of a function with
n arguments in a sequence of n executions of unary functions. It allows, for instance, defining a generic func-
tion, such as add(a,b) which adds numbers a and b, and then creates new functions by fixing the first argu-
ment: add5 = add(5). Or we could just as easily call the original function like this to add 4 and 3: add(4)(3).
Not all programming languages natively allow currying, but many allow workarounds to achieve it.

Listing 11.5 Method hasItemX

Listing 11.6 A curried version of hasItemX

Traverses the furthest branch and updates 
the current values for NN and its distance

Returns the closest point found so far

Defines a function taking a node as 
argument to check if it has a certain 
item X (fixed) Just checks whether the list 

of items associated with a 
shop contains the item X

Checks if the list of items associated 
with a shop contains item

A generic version for hasItem takes the 
item as well as the node as arguments. We pass a curried instance of hasItem 

to the fNN method to find the closest 
point whose shop has item X in the 
inventory (here X is supposed to be a 
variable containing the item we look for).
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11.2.2 Complex decisions

If what we really need is not just filtering shops according to some criteria, but also
choosing the best options among them, then we have to seek a more powerful
mechanism.

 We have two main choices: 

 Use n-nearest neighbor to retrieve a list of n shops that satisfy our criteria, and
then process this list to decide which one, among the possible solutions, is the
actual best choice.

 Or we can replace the predicate passed to our nearest neighbor method, as
shown in listing 11.7, which instead of a unary predicate is using a binary func-
tion that takes as arguments the current node and the best solution found so
far, and returns which one is the best.

And, of course, we can also use a combination of the two methods.
 The first solution doesn’t ask for any change to our container, so we won’t need to

develop it any further. You can use sorting, a priority queue, or any selector algorithm
you like in order to decide which solution is the best, according to your business rules.
This mechanism has an advantage: it also allows you to try solutions where you order
different items at different shops and see if that works better than the best “all-at-one-
place” solution.

function fNN(node, location, cmpShops, (nnDist, nn)=(inf, null)) 
  if node == null then                                        
    return (nnDist, nn)
  else   
    dist ← distance(node.shop.point, location)  
    if cmpShops((dist, node.shop), (nnDist, nn)) < 0 then
      (nnDist, nn) ← (dist, node.shop)
    if compare(location, node) < 0 then           
      closeBranch ← node.left
      farBranch ← node.right
    else                            
      closeBranch ← node.right
      farBranch ← node.left

Listing 11.7 Another version of the filteredNearestNeighbor method

Finds the closest point to a given target. In this case, we pass 
cmpShops method to compare two shops and return which one is 
best. We assume the return value follows the standard conventions 
for the compare functions: -1 means the first argument is smaller, 
1 the second is smaller, and 0 they are equal.

If the node is null, we
are traversing an empty

tree, so the nearest
neighbor can’t change

with respect to what we
have already found.

Otherwise, we have three tasks: check if the current node is better 
than the previously found NN, traverse the branch on the same side 
of the split with respect to the target point, and check if we can 
prune the other branch (or traverse it as well).

We compute 
the distance 
between the 
current 
node’s point 
and the 
target 
location.

We use the cmpShops 
method to decide which 
of the shops better 
satisfies our needs.

Checks if the target point is on the 
left branch of the split. If it is, the left 
branch is the closest to the target 
point; otherwise, it is the furthest.
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    (nnDist, nn) ← fNN(closeBranch, location, cmpShops, (nnDist, nn)) 
    if splitDistance(location, node) < nnDist then  
      (nnDist, nn) ← fNN(farBranch, location, cmpShops, (nnDist, nn)) 
    return (nnDist, nn)                             

When we pass a compare function to fNN, instead, this flexibility is not going to be pos-
sible, and we will only examine solutions where all items are shipped by the same shop.

 If that’s fine, because we have guarantees that we can always find such a shop (or
we handle separately the case where we fail to find one), the “compare function”
mechanism has the advantage of requiring less extra memory and being overall faster.

 As mentioned, the idea is that we can encapsulate all the business logic in a binary
function that will compare the node currently being traversed in nearest neighbor
search with the best solution found at that point of the traversal. We also assume that
this predicate will perform any necessary filtering, for example, making sure that the
current node’s retailer has all items in stock. The changes needed to our search
method are minimal, as shown in listing 11.7. We simply gather together two steps (fil-
tering shops and comparing the current solution with the best one found so far), and
instead of just checking distances during our NN search, we use a function passed as
an argument to fNN, function cmpShops,7 to decide which entry is nearer.

 So, now the heart of the business logic lies in this method, which in turn will
decide which shops are filtered in and how we choose the our best option.

 There are a couple of edge cases that we should always address in this function:

 If the current node is filtered out, always choose the current NN.
 If the best solution found so far is empty (that is, nn == null), then the current

node should always be chosen, unless it is filtered out (at point 1).

Listing 11.8 provides a possible generic implementation of this comparison method,
including filtering out shops that don’t have all items in stock, and checking distances
by using an unspecified heuristic method to decide which shop is the best.

function compareShops(boughtItems, (dist, shop), (nnDist, nnShop))
  if shop==null or not (item in shop.items ∀ item in boughtItems) then  
    return 1

7 Stands for compareShops; the abbreviation was forced to better fit code lines onto the page.

Listing 11.8 A possible comparison method

We certainly need to traverse the
closest branch in search of the NN.

It is important to do so first and
update the mementos for NN’s

distance to improve pruning.

Using one of the helper functions defined in listing 9.2, we compute 
the distance between the split line passing through current node 
and the target point. If this distance is closer than the distance to 
current nearest neighbor, then the furthest branch might contain 
points closer than the current nearest neighbor (see figure 9.21).

Traverses the furthest branch and updates the
current values for NN and its distanceReturns the closest point found so far

A comparison method to decide which shop is preferable in 
our search. It takes both shops (the current node’s and the 
nearest neighbor’s found so far) as well as their distances.

If shop is null, or it doesn’t have all the items in the purchase
list (boughtItems), then we return 1 to let the caller know

that the current nearest neighbor is still the best solution.
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  else if nnShop == null then
    return -1
  else if dist <= nnDist and heuristic(shop, nnShop) then  
    return -1
  else         
    return 1

fNN(root, customerPosition, compareShops([“Cheddar”, “Gravy”, “Salad”])) 

Figure 11.4 summarizes the method logic in a flow chart.

It’s worth clarifying once again that the choice of the heuristic is not connected to any
of the data structures we have seen, and, vice versa, those algorithms don’t depend on
this function. It’s just a heuristic method that encapsulates all the domain-specific
logic, and so it changes from application to application. Depending on how you write
it, and how you model the Shop class, you can customize the behavior of the search
method to solve your instance of the problem.

Otherwise, if we haven’t yet stored 
a NN, return -1: the current node is 
better than nothing.

If the distance of the current node is not worse than
what we had already found, we can compare the two
shops using a heuristic and see which one is better.
Here this heuristic encapsulates any business logic;
for instance, if a shop has lower shipment costs, if

they sell the goods at lower price, or any other
domain-specific condition.

If everything else fails, we just stick 
with what we have currently saved 
as nearest neighbor.

An example of a call to the (filtered) nearest neighbor 
method, searching for the most convenient shop that 
sells all three items in the list

YesYes

NoNo

StartStart
itemsOrdered

(shop, shopDist)
(NN, NNDist)

itemsOrdered
(shop, shopDist)

(NN, NNDist)

shop==null?shop==null?

NN==null?NN==null?

YesYes

Shop has all
items?

Shop has all
items?

YesYes

NoNo

NNNN ShopShop

EndEnd

shopDist <
NNDist?

shopDist <
NNDist?

Shop winsShop winsheuristic()heuristic()NN winsNN wins

NoNo

YesYes

NoNo

Figure 11.4 Flow chart describing the logic of the compare function defined in listing 11.8
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11.3 Moving to a distributed application
So far, so good: we have solved the “closest hub” problem assuming we are in control
of all the pieces of the applications, and we can be sure that the systems registering
the order and starting the process to send goods to customers are always available and
never fail.

 If only the world worked this way! Unfortunately, not only do systems (applica-
tions, computers, networks, and so on) fail, but there is also a good chance that, for an
e-commerce web application like the one we described, some crucial pieces are not
even under our control. That is, we are likely dealing with a distributed application
that includes different services, running on different machines (possibly located far
away from each other), and communicating through remote calls over a network. Fig-
ure 11.5 builds upon the simplified architecture in figure 11.3, depicting a more real-
istic situation, where the retailers’ servers live on their separate machines, and thus in
a different addressing space, only accessible through remote calls (over HTTP, or any
other communication protocol, such as IPFS8).

As you can imagine, this changes the rules of the game. While we can have tight con-
trol of what runs on our machine (virtual or physical), once we introduce remote
calls, we also introduce additional failure points, and we also need to deal with latency.
For instance, if we synchronously call a method in our application, we know it can fail,
and hopefully we also know why it would fail. We know it can take some time to com-
pute (or, possibly, even loop forever), but we are also sure that the method was called
and started doing its job.

8 IPFS is a peer-to-peer hypermedia protocol; see https://ipfs.io. It’s worth checking it out.

Web server

Web server

Application
server

Internet

Localization
service

Client Server

Shop server

Browser

Web app
1. Buy item

(HTTP call)

8. HTTP response 2. 
Start
order

7. Return result

6. Handle
failures

5. Result 
(HTTP response)

3. Find closest 
shop

4. Send order (HTTP call)

Figure 11.5 A more realistic design for the e-commerce application, taking into account the 
complexity of a distributed architecture and introducing a separate application server to deal with 
failures of HTTP calls to the shops’ servers

https://ipfs.io/


387Moving to a distributed application

Processing an order, when we take all these factors into consideration, becomes sensi-
bly more complicated, as shown in figure 11.6.

11.3.1 Issues handling HTTP communication

When we move to distributed systems, communication over the network is an addi-
tional source of uncertainty. We know that we sent an HTTP request, but if we don’t
get an answer, we have no way of knowing if the message arrived, if the network is bro-
ken, if the server is broken, or if it is hanging on a time-consuming task.9

 We therefore have to decide how to handle this uncertainty. First of all, are we
going to wait until we get a response (synchronous layout); send a request and do
something else while we wait for an answer; or “fire and forget”—that is, send a
request and not wait for any answer from the remote server?

 This communication channel is part of a workflow of user interaction, with users
waiting for a response, and their patience is usually limited. Who would wait 10 min-
utes (or just two!) before hitting reload on the page?

9 Obviously, if we do get an answer, we can check the HTTP code and see if there is a network error or, assuming
the callee correctly implements rules on the HTTP code to send back in case of an error, why the remote ser-
vice is failing.

YesYes

StartStart

Order(Customer C, Item I)Order(Customer C, Item I)

Find S, 
the closest shop 

to C selling I

Find S, 
the closest shop 

to C selling I

S found?S found?

Order
failed
Order
failed

Order
succeeded

Order
succeeded

Update
local DB
Update
local DBYesYes

EndEnd

S confirmed
the order?

S confirmed
the order?

HTTP call
S::order(C, I)

HTTP call
S::order(C, I)

S Responded?S Responded?

NoNo

NoNo

YesYesNoNo

Figure 11.6 A workflow for order processing that takes into account some 
possible sources of failure. As a result, the execution is not linear anymore, and 
the logic of handling an order is more complex.
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 And indeed, for an ecommerce page, where the user expects to see a live update
within a reasonable time, usually web servers have short timeouts on the calls they receive,
meaning they would respond with a 5XX error after a few seconds, usually less than 10.

 This introduces additional challenges, because if we keep a longer timeout for our
call to the shop’s server, there is a chance that the HTTP call from the customer fails,
but our call to the shop succeeds afterward,10 and we introduce a discrepancy, possibly
even causing the customer to buy the same item twice. See figure 11.7 illustrating this
case with sequence diagrams.

10This is the case with HTTP/1.1, where requests cannot be canceled by the caller. HTTP/2 specification, on
the other hand, introduces the possibility of canceling requests sent.

Figure 11.7 A sequence diagram showing how an improper handling of timeouts, when calls to external 
services are involved, could cause dire consequences. The application’s web server times out before 
receiving an answer from the external service, so the user sees that the order didn’t go through, while the 
retailer’s service has registered it. If the user tries to order the item again, there will be a duplicate.

Uncautious timeout handlingUncautious timeout handling
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:Application
server
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Web server
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Web server
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If the shops’ servers have a timeout set to 8 seconds11 we need to complete all the
remaining operations within 2 seconds, which likely leaves us less than a second to run
the nearest neighbor search.

 In short, when we move to distributed architectures, there are lot more factors we
need to be careful about that go beyond the mere use of algorithms. Nevertheless, the
choice of the search algorithm is even more important. A bad choice can have dire
consequences for our web application.

 That means we need to be careful about the algorithm we implement: 

 Different data structures have different levels of performance for the average
and worst case. You can decide to go with the algorithm that is the fastest on aver-
age to serve as many requests as possible in the shortest time, or to go with the
algorithm that has the best worst-case performance to be sure that all requests
will complete within the allotted time (even if, on average, it will be slower).

 If the dataset to search through constantly grows past a certain point, it will prob-
ably become too large to allow you to run a NN search in the time available. At
that point, you need to think about other ways to scale your application—for
example, with a geographical sharding of the data; or if that doesn’t make sense
for your business, with an approximate algorithm leveraging a random sharding
with parallelization, and then choosing the best of the solutions returned for
each shard.

 If you are using an approximated algorithm, then usually you have a trade-off
between performance and accuracy. In that case, you need to make sure you
can compromise on the quality of the results to obtain an answer within the
time you can afford to wait.

11.3.2 Keeping the inventory in sync

If the situation doesn’t already look complicated enough to you, there is another trou-
bling issue that we haven’t considered yet: Where do we get the information about the
availability of items?

 So far, we have assumed that this information is in the node of our k-d tree (or SS-
tree), but that might not be the case. If you think about it, when we place an order to
a retailer, their inventory goes down, but the inventory in our container does not nec-
essarily reflect that.

 There are a number of issues to take into account: the retailer could sell goods
through other channels (either another e-commerce site or a brick-and-mortar shop),
and we need to update our copy of the inventory when that happens. We need to com-
municate over a network, so we need to be careful about race conditions to avoid plac-
ing orders twice or missing them.

11Unfortunately, as mentioned, with HTTP/1.1 we can’t decide this timeout that is set on the servers. We have
to adjust to the settings of shops’ servers, and in particular to the longest of those timeouts. So, in the example,
assume that 8 seconds is the longest time after which a request to one of these servers is guaranteed to fail.
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 While we could think of workarounds for both issues, it is best to switch to a differ-
ent approach. Figure 11.8 shows an ever more complex architecture for our app that
includes a DB (which could be something like Memcached, a SQL DB, or a combina-
tion of both) and another service whose goal is just running (as a daemon, inde-
pendently on the main app) and periodically asking the retailers’ servers for an
updated inventory. Once a response is received asynchronously, the service will
update the local DB with the fresh values.

This also means that when we run the nearest neighbor search, we need to make sure
that our in-memory copy of the inventory for the shops is up-to-date. Here we will also
have to compromise between performance and accuracy, because making one DB call
(even if mediated through a fast cache) is likely going to be too slow. So we probably
want to have another daemon running on our server’s machine on a thread in the
application server that gets the diff from the database, only for the values changed
from the last update, goes through the list of shops (kept in some shared memory
area), and updates those values.

11.3.3 Lessons learned

We have delved into our e-commerce application, iterating from a coarse-grained
design for a centralized application to the smallest details of a distributed system.

 While this discussion can’t be exhaustive, and isn’t meant to be, I hope it was use-
ful to provide you with an idea of how you can structure the design process that leads
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Figure 11.8 An even more advanced design, including a daemon that asynchronously polls shops’ 
servers to sync the local DB to their inventories
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from an algorithm to a full, production-ready application that leverages it. Hopefully,
it also provided useful pointers to the possible issues you could face in the develop-
ment of a web application and what you could look for if you’d like to keep learning
in this area.

 Now it’s time to move on and present you with a few more problems, in completely
different contexts, that can be solved using nearest neighbor search.

11.4 Other applications
Maps aren’t the only field of application for nearest neighbor search. They were not
even the application for which k-d trees were originally invented; k-d trees just hap-
pened to work very well on this domain, but these containers were meant to solve
problems in higher dimensional spaces, rather than in 2-D or 3-D space.

 To give you an idea of the vast number of fields that can leverage these algorithms,
we’ll briefly go through a few examples on very different domains.

11.4.1 Color reduction

The problem is simple: you have an RGB bitmap image using a certain palette; for
example, the usual 16 million RGB, where each pixel of the image has three channels
associated with it—red, green, and blue—and each of these colors has an associated
intensity value between 0 and 255. Figure 11.9 shows an example of how a bitmap
image is encoded. For instance, if a pixel is meant to be completely red, it will be
associate with the tuple (R=255, G=0, B=0),12 a darker blue pixel with something like
(0, 0, 146), and a yellow one with (255, 255, 0); black is (0, 0, 0), and white is (255,
255, 255).

12Meaning that the intensity will be maximum for the red channel and minimum for the other two channels.

Red: 255
Green: 255
Blue: 255

Red: 255
Green: 0
Blue: 0

Red: 255
Green: 255
Blue: 0

Red: 207
Green: 207
Blue: 0

Figure 11.9 RGB bitmap format. An image is made of tiny points, its pixels, and for 
each of them its color is determined by the combination of three primary colors: red, 
green, and blue, each of which can have an intensity between 0 and 255.
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To store such an image, we need 3 bytes per pixel.13 For an image with a resolution of
1280 x 720 pixels,14 this means 2.7649.800 bytes, more than 2 MBs; and 1920 × 1080
pixels15 images require almost 6 MBs at 16M colors.

 To save space, you could either use a compressed format, which could cause a loss
of information or transform the data to a different space,16 or reduce the number of
colors you use for each pixel. Suppose that you are storing images for a specific pur-
pose, such as images of road signs to be fed to a machine learning model for training.

 If you don’t care about the background, road signs themselves use a very limited
set of colors, so you can decide that it is fine to down-sample the colors you use to a
256-color scale.17 This will allow a factor of 3 savings for your storage, which means
4 GBs for every thousand pictures stored (if you are storing or processing them on the
cloud, this likely means a huge savings of time and money).

 So the problem is this: How do you transform each image from one color scale to
the other by keeping the highest fidelity?

 You will have to choose 256 colors and “bin” each of the 16M original colors into
these 256 buckets. The key is how you choose the destination colors scale. There are,
of course, many ways to do that; you could choose the same 256 colors for all images,
perhaps by sampling uniformly the original 16M scale, but you could also decide for
each image the best scale to reduce the loss of information.

 How you choose this scale was actually the subject of an interview question I was
asked by one of the best engineers with whom I had the pleasure to work. We’ll leave it
as an exercise for the reader to think about how this problem can be best solved, so we
avoid spoiling the question.

 But once you somehow come up with the best choice for the 256 colors to use, how
do you transform each pixel from one scale to the other?

 Here is where nearest neighbor search comes into play: we create a k-d tree, or
SS-tree, containing each of the 256 selected colors for the destination scale; the
dimension of the search space will be, as you can imagine, 3.

 For each pixel in the original image, we search its nearest neighbor in the tree,
and store the index of the color in the destination scale closest to the original color of
the pixel. Listing 11.9 shows pseudo-code for these operations, using an SS-tree.

 
 
 
 
 

13If we store it uncompressed. Formats such as JPG or WEBM store a compressed version of the image with a
slight loss in quality but using sensibly less memory—at least one order of magnitude less.

14An image at 720p resolution, also known as HD. Today this is even considered poor quality.
15Resolution 1080p or full HD. Still, far from the 4K resolution that’s the standard these days.
16JPG algorithm transforms the image from pixel space to frequency space.
17Although this is unlikely to be the case if you are trying to train a robust model, bear with me just for the sake

of illustrating this. 
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tree ← SsTree(sampledColors, 3) 
for pixel in sourceImage do              
  (r, g, b) ← pixel.color                   
  sampled_color ← tree.nearestNeighborSearch(r, g, b) 
  destIndex[pixel.index].color_index ← sampled_color.index 

You can see how simple it is to perform such advanced tasks when you have the right
data structure! That’s because all the complexity is encapsulated in the implementa-
tion of the SS-tree (or k-d tree or equivalent), and that’s also why the main goal of this
book is helping readers to recognize the situations where they can use these data
structures—that alone will make you stand out as a developer, producing faster and
more reliable code.

11.4.2 Particle interaction

In particle physics simulations, scientists need to model systems where a high number
of atoms, molecules, or sub-atomic particles interact in a closed environment. For
instance, you could simulate the evolution of a gas when the temperature changes, or
a laser beam hits the gas, and so on.

 Figure 11.10 shows a simplification of what such a simulation could look like.
Considering that at an average 25°C room temperature there are approximately 1022

molecules in a square meter of air, you can imagine that even with small boxes and
rarefied gases, your simulation should handle billions of billions of items for each step
of the simulation.

 These particle simulations are all about computing the interaction between parti-
cles, but with such numbers, checking how each particle interacts with any other parti-
cle is simply not feasible. There would be ~1040 pairs to check, and that number is just
too big for any traditional computer.18

 Moreover, it doesn’t always even make sense: electrical force and gravity have a lim-
ited range of action, and so outside of a certain radius the magnitude of the interac-
tion between two particles would be negligible.

 You see where I’m going, right? This is the perfect use case for either a n-nearest
neighbor search, where we approximate the simulation by assuming that each particle

Listing 11.9 Down-sampling image colors using NN-search

18Quantum computers could come to the rescue, though, in these situations: check out Learn Quantum Comput-
ing with Python and Q#, by Sarah C. Kaiser and Christopher E. Granade (Manning Publications, 2021).

Creates an SS-tree starting from the list of 256 sampled colors. Here 
we explicitly pass the dimension of the search space, 3, just for clarity 
(it can be inferred from the points in the list, of course). We assume 
that each of the sampled colors in the container will be associated with 
its index in the destination color scale.

Goes through each pixel in the source image

In the most generic case, pixels could be 
modeled as objects with more fields than 
just color; for instance, their position in 
the image. If that’s so, we just need the 
RGB components for the NN search.

Finds the nearest neighbor of current color In the destination image, sets the color index
for the transformed pixel based on the index in
the destination color scale of the sampled color

that is closest to the original pixel’s color.
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is only influenced by the n closest particles to it (and by tuning n we can trade-off pre-
cision for speed), or alternatively we can only check the interaction of each particle with
the ones inside the radius of action of the four fundamental forces (or a subset of them,
depending on the type of particles).

 Listing 11.10 describes a possible implementation of such a simulation leveraging
an SS-tree to perform range-based queries and filter, for each particle, the surround-
ing particles with which it is relevant to compute the interaction. The catch is that the
k-d tree (or equivalent DS) used needs to be updated after every step of the simula-
tion (since the position of each particle changes), but even so, the speedup that can
be obtained is impressive.

function simulation(numParticles, simulationComplete)
  particles ← initParticles(numParticles) 
  while (not simulationComplete)     
    tree ← SsTree(particles, 3)                
    forces = {ō for particle in particles}   
    for particle in particles do  

Listing 11.10 Particle interaction with range search

Radius of

interactio
n

Neighbors
Velocity

Particle

Figure 11.10 A simplified 
representation of particle 
interaction. Several particles of 
different types interact in closed 
environment (for instance, gas 
particles in a sealed box). Each 
particle has a an associated 
velocity. For each particle, we 
compute the interaction only with 
the closest neighbors, to save 
computational resources.

Defines a function to run the simulation, to which we pass the number 
of particles and a predicate that becomes true once the simulation is 
complete (might be based on number of iterations or other conditions; 
for instance, the system getting into a stable state)

First we need to initialize our n particles: depending on the 
simulation we could desire a random initialization or setting 
a specific configuration.

Runs 
a loop 
until the 
simulation 
completes

At each step of the simulation, we 
need to initialize an SS-tree (or 
similar DS) with the current 
configuration of the system. Since 
the position of the particles changes 
at each step, we need to update the 
tree or create a new one every time. 
We assume the simulation is in a 3-D 
environment, but there are special 
cases where the dimension of the 
tuples could be different.

Initialize an array holding, for 
each particle, the resultant 
force operating on it. Each 
entry is a 3-D vector (for the 
assumption made above), 
holding the vector sum of all 
forces acting on a particle. 
Initially we set elements to ō, 
the null vector.

Iterates over 
each particle
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      neighbors ← tree.pointsInSphere(particle.position, radius) 
      for neighbor in neighbors do                           
        forces[particle] += computeInteraction(particle, neighbor)      
    for particle in particles do
      update(particle, forces[particle]) 

11.4.3 Multidimensional DB queries optimization
As we saw in chapter 9, k-d trees support multidimensional range queries (MDRQ),
searches that select intervals in two or more dimensions of a multidimensional search
space. (For instance, as we suggested in chapter 9, a query that searches every
employee between thirty and sixty years old and that earns between 40 and 100 thou-
sand dollars per year). 

 These queries are common in business applications, and many databases support
optimized techniques to speed them up. While you won’t find it in MySQL, Post-
greSQL has supported NN search indexes since version 9, and Oracle implements
them in Extensible Indexing.

 When indexing tables with a single key field (and many non-key fields), we can use
a binary search tree to provide fast (logarithmic) lookup in searches based on the
indexed field.

 K-d trees provide a natural extension of that use case when we need to index tables with
composite keys. While traversing the tree, we will cycle through all the fields in the com-
posite key. Moreover, k-d trees provide methods for exact match, best match (the nearest
neighbor search), and range search; partial match queries could also be supported. 

For a particle, find its neighbors, that is, the other particles whose effects 
will be more relevant on the current one. In this example, we use a 
spherical range search within a certain radius, for instance, a threshold at 
which interaction is not relevant anymore. This value depends on the 
problem, obviously. Alternatively, we could also decide to only compute the 
interaction with the m closest points, for some m.

For each of the selected
“neighbors,” computes the

force resulting from the
interaction of the two

particles

In this configuration, we compute the force
between particles A and B twice: once when

particle==A and neighbor==B, and once
when particle==B and neighbor==A.

This is harmless, though inefficient. With a
small change we can keep track of the pairs

updated and make sure to compute the
interaction only once.

Once all forces are computed, cycles through all particles 
again and updates their position and velocity. We should also 
take into account interaction with the box boundaries; for 
instance, inverting the velocity if the particle hits the walls, 
assuming an elastic collision (or more complex interaction in 
case of inelastic collision).

Partial queries on k-d trees
Although we haven’t included partial queries in our containers’ API, implementing
them is straightforward—we perform a regular exact match traversal on the fields in
the query, while we follow both branches in levels corresponding to fields of the keys
that are not filtered in the query.

For instance, if we use a k-d tree for geospatial data, and we look for all the points
on a line parallel to the x axis, such that x==C, we would traverse both branches in
the nodes at odd levels (where we split on y), while at even levels (corresponding to
x coordinate splits), we would only traverse the branch containing C. 
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Figures 11.11 and 11.12 show an example of how a partial query can be run on a k-d tree.

(continued)
Figures 11.11 and 11.12 show how a partial range search works on a k-d tree.

Alternatively, we can also use the existing pointsInRectangle method, passing a
range spanning from the minimum possible to the maximum possible value for those
fields we are not going to put restrictions on. For instance, in this example, we would
set these criteria:

{x: {min:C, max:C}, y:{min=-inf, max=inf}}

Figure 11.11 An example of running a partial query on a k-d tree. The example shows a partial range 
query on a 2-D tree with fields x and y, where the search specifies a criterion only on x. Take all points 
whose x value is between -1.1 and 1.7, regardless of the value of y. In the first step, filtering is applied 
on the x coordinates of the root, since the first split is on the x coordinate. The second step, on nodes 
C and B, doesn’t perform any filtering, because the split on those nodes is on the y coordinates, while 
the partial search is only about an x range. The x coordinates of nodes C and B are checked to determine 
if they should be included in the results.
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Many SQL queries can be directly translated into calls to our data structure’s methods.
Let’s see a few examples of how that is possible.

 First, let’s set the context. Imagine we have a SQL table with three fields: name,
birthdate, and salary. The first two could be enough for a primary key,19 but we also
want to create an index on salary, because for some reason we run a lot of queries on
salary. Thus, our index will use a 3-D tree with the same fields.

Table 11.1 shows a few examples of SQL snippets translated into calls to k-d tree’s
methods.      

19Of course, especially if we have a lot of data, we have no guarantee that these two fields will be unique, because
two people can share the same birthdate and name. Let’s assume, just to keep our example simple, that this is
not the case.
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Figure 11.12 Continuing the example in figure 11.11 about running a partial query on a k-d tree. The third 
step, in the top part, shows another filtering step: nodes D and E’s split-coordinate is again x, so we can prune 
the branches on which we will search. On the last step, since we are at the leaf level, we only check whether 
nodes G and F should be added to the results (only F will).
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11.4.4 Clustering2021 22  

Finally, we get to one of the most important applications of nearest neighbor search:
clustering. This application is so important that we will pledge a whole chapter, the
next chapter, to explaining two clustering algorithms that use NN search at their core:
DBSCAN and OPTICS.

 We’ll provide a proper description of what clustering is in the next chapter. For
now, suffice it to say that clustering is an unsupervised learning method, where a
machine learning model is fed with a set of unlabeled points, and it outputs a possible
grouping of these points in meaningful categories. For instance, we could develop a
clustering algorithm that, given a dataset of people (with age, education, financial sit-
uation, and so on), groups them in categories that share similar interests. The algo-
rithm won’t be able to tell us what these categories are, though. It’s a data scientist’s
job to study the algorithm output and see, for instance, that one category matches
middle-class teenagers, another seems to fit college-graduated baby boomers, and so
on. This kind of algorithm is often used to target online advertisement.

Table 11.1 Translating SQL queries into calls to k-d tree methods (assuming a k-d tree is used to
Implement multi-indexing on the table described in this section)

Operation Exact match search

SQL20 SELECT * FROM people WHERE name=”Bruce Wayne” AND 
birthdate=”1939/03/30” AND salary=150M

k-d tree tree.search((”Bruce Wayne”, ”1939/03/30”, 150M))

Operation Range search

SQL SELECT * FROM people WHERE name>=”Bruce” AND birthdate>”1950” AND 
birthdate<”1980” AND salary>=1500 AND salary<=10000

k-d tree21 tree.pointsInRectangle({name:{min:”Bruce”, max: inf}, 
birthdate:{min:”1950”, max:”1980”}, salary:{min: 1500, 
max:10000}})

Operation Partial search

SQL SELECT * FROM people WHERE birthdate>”1950” AND birthdate<”1980” 
AND salary>=1500 AND salary<=10000

k-d tree tree.partialRangeQuery({birthdate:{min:”1950”, max:”1980”}, 
salary:{min: 1500, max:10000}})

k-d tree22 tree.pointsInRectangle({name:{min:-inf, max: inf}, 
birthdate:{min:”1950”, max:”1980”}, salary:{min: 1500, 
max:10000}})

20Select * is usually frowned upon, and for good reason. We’ll use it here to keep code simple, but you should
only select the fields you actually need to use.

21In our example implementation in listing 9.12, we passed a tuple of min-max objects
22As an alternative to implementing explicitly the partial match query, we can use the pointsInRectangle

method by carefully choosing the ranges for the fields that have no restrictions.
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 Clustering is also used as a preliminary step for other more sophisticated algo-
rithms, because it provides a cheap way to break down large datasets into coherent
groups. We’ll see this and lot more in the next chapter.

Summary
 Nearest neighbor search can be used to improve geographical matching of

physical resources; for example, finding the closest shop to a customer.
 When we move from theory to real-world applications, we have to take many

factors into account and adjust our NN search algorithm to take into account
business logic; for instance, allowing filtering of the resources among which we
search or weighting the results according to some business rules.

 We also have to deal with the limitations of physical IT systems, including mem-
ory restrictions, CPU availability, and network constraints. 

 Distributed web applications impose new issues that need to be taken into
account when designing a system. It’s not enough to come up with a good algo-
rithm; we need to choose/design one that also works in the real system we are
building.

 NN search is useful in a number of other areas, from simulations in particle
physics to machine learning.
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Clustering

In the previous chapters we have described, implemented, and applied three data
structures designed to efficiently solve nearest neighbor search. When we moved to
their applications, we mentioned that clustering was one of the main areas where an
efficient nearest neighbor search could make a difference. We had to delay this dis-
cussion, but now it’s finally time to put the icing on the cake and get the most out of
our hard work. In this chapter, we will first briefly introduce clustering, explaining
what it is and how it relates to machine learning and AI. We’ll see that there are dif-
ferent types of clustering, with radically different approaches, and then we will pres-
ent and discuss in detail three algorithms that use different approaches. By going

This chapter covers
 Classifying different types of clustering

 Partitioning clustering

 Understanding and implementing k-means

 Density-based clustering

 Understanding and implementing DBSCAN

 OPTICS: Refining DBSCAN as hierarchical 
clustering

 Evaluating clustering results
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through the whole chapter, readers will be exposed to the theoretical foundations for
this topic, learn about algorithms that can be implemented or just applied to break
down datasets into smaller homogeneous groups, and also, in the process, get a deeper
understanding of nearest neighbor search and multi-dimensional indexing.

 But before we start, let’s quickly introduce an example of a problem that motivates
the use of clustering. Throughout the previous chapters in part 2 of this book, we have
developed this example of an e-commerce site, starting from the early days when the
internet became mainstream. Now it’s time to bring our company into the 2010s and
add a data science team. In fact, for sales to thrive, we will need to perform customer
segmentation in order to understand our customers’ behavior and categorize custom-
ers based on what we know about them:1 their purchasing habits and financial situa-
tion, as well as their demographics, age, level of education, and country or state where
they live, which are all factors that influence people’s taste and spending capacity.

 Customer segmentation partitions customers into homogeneous groups sharing
similar purchasing power, purchase history, or expected behavior. Clustering is one
step of this process, where the groups are formed from raw, unlabeled data. Cluster-
ing algorithms don’t output a description of the groups; they just return a partitioning
of the whole customer base, and then data scientists need to perform further analysis
of the different morphotypes to understand how these groups are composed. Once
this knowledge is derived, it can be used by marketing teams to tailor targeted cam-
paigns toward each of these groups (or some of them, if some of the groups are cru-
cial to the company’s wealth). For instance, on a video streaming website (such as
Netflix), data scientists might be able to identify a group of users that will likely watch
comedies, another group more interested in action movies, and so on.

 In real-world examples, customers have hundreds of features that are considered
for marketing segmentation; here, for the sake of visualization and to make explana-
tions easier, we will use a simplified example, with just two features: annual income
and average monthly expenses on our e-commerce site. We will pick up this example
again later in the chapter, but first, we will give you some more context and the tools
to perform clustering analysis.

12.1 Intro to clustering
In recent years, especially from the second half of the first decade of this century, a
single branch of AI got so much momentum that now it’s often considered in the
media and public opinion as synonymous to AI. I’m talking, of course, about machine
learning (ML), which in turn has been lately (since ~2015) increasingly identified with
deep learning (DL).

 The truth is that deep learning constitutes just a part of machine learning, gather-
ing all those models built with deep (intended as “with many layers”) neural networks,
and machine learning, in turn, is just a branch of artificial intelligence.

1 That’s also the reason why every company, online or offline, tries to discover as much information about you
as possible: data is paramount in this era.
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 In particular, machine learning is the branch that is focused on developing mathe-
matical models that describe a system after learning its characteristics from data.

 ML and deep DL can achieve impressive, eye-catching, and sometimes incredible
results (at the time of writing you can think of, for instance, life-like artificially gener-
ated faces, landscapes, and even movies created by GANs2), but they can’t, and neither
do they aim to, build an “intelligent” agent—something closer to the romantic idea of
an artificial consciousness that cult movies like Short Circuit or War Games gave us. That
is rather the goal of general artificial intelligence.

12.1.1 Types of learning

The main classification of machine learning models is based on the type of “learning”
they perform, in particular focusing on the way we provide feedback to the model
during training:

 Supervised learning—These models are trained on labeled data; that is, for
each entry in the training set, there is a label (for classification algorithms) or a
value (regression algorithms) that is associated to that entry. Training will tune
models’ parameters in order to increase the accuracy of the model in associat-
ing the correct class or value to new entries. Examples of SL are object detec-
tion (classification) or predictive models to estimate goods’ prices (regression).

 Reinforcement learning—Rather than providing explicit labels associated to
the data, the model performs some kind of task, and only at the end does it
receive feedback about the outcome (stating either success or failure). This is
one of the most interesting areas of research at the time of writing, and some
examples include game theory (for instance, an agent learning to play chess or
Go) and many areas of robotics (such as teaching a robotic arm to juggle).

 Unsupervised learning—This category differs from the first two because in this
case the algorithms are not presented with any feedback on data, but their goal
is rather to make sense of data by extrapolating its inner (and often hidden)
structure. Clustering is the main form of unsupervised learning.

We will obviously focus on unsupervised learning in the rest of the chapter. Clustering
algorithms, in fact, take an unlabeled dataset and try to gather as much information as
possible about its structure, grouping together similar data points while setting apart
dissimilar ones.

 Although at first it might seem less intuitive than supervised or reinforcement
learning, clustering has several natural applications, and possibly the best way to
describe clustering is by exemplifying a few of them:

2 Generative Adversarial Networks are a particular type of deep neural networks, where two competing models
are trained to generate artificial content (based on a training set) and to discriminate artificial from real con-
tent. Their co-evolution increases the lifelikeness of the content generated.
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1 Market segmentation—Take purchase data and find groups of similar customers.
Since they behave in the same way, it’s likely that a marketing strategy would
work (or fail) consistently across a group (if segmentation is done properly).

An algorithm won’t output labels for the groups; it won’t tell us if a group is
“students under 25” and another “mid-aged book writers, with a passion for
comics.” It will only gather similar people together, and then data analysts can
further examine the groups to understand more about their composition.

2 Finding outliers—Find data that stands out. Depending on the context, it could
be noise in a signal, a new species of flowers in a rain forest, or even a new pat-
tern or behavior in customer analytics.

3 Preprocessing—Find clusters in the data and process each cluster separately (and
possibly in parallel). This obviously provides a speedup, but it also has another
side-effect. Since it reduces the max amount of space needed at any single time,
when a huge dataset is broken up into smaller pieces, each piece can fit in
memory or be processed on a single machine, while the whole dataset can’t.
Sometimes you can even use a fast clustering algorithm (for instance, canopy
clustering) as a preprocessor step for a slower clustering algorithm.

12.1.2 Types of clustering

Clustering is an NP-Hard3 problem, and as such it is computationally difficult (impos-
sible for today’s real datasets) to solve it exactly. Moreover, it is hard to even define
objective metrics that can assess the quality of a solution! Figure 12.1 explains this con-
cept. For some cluster shapes, our intuition tells us that the two rings should be in dif-
ferent clusters, but it’s hard to come up with a metric function that objectively states
so (minimum distance, for instance, wouldn’t work). And this becomes even harder
for high-dimensional datasets (where our intuition can’t even help us validate these
metrics, because it’s hard to represent and interpret anything beyond 3-D spaces).

3 The NP-Hard class of problems includes those problems that are at least as hard as the hardest problems in
NP; as we have already seen in chapter 2, the NP class contains those problems that can be solved in polynomial
time on a non-deterministic machine, and in particular, the problems that are in NP but not in class P can’t be
solved in polynomial time on a deterministic machine. To date, determining if there is any problem in NP-P
is one of greatest challenges in computer science.

Figure 12.1 A dataset that’s challenging to cluster. On the left, the ideal clustering that matches 
our intuition. Next to it, non-optimal results produced by metrics like proximity or affinity propagation.
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For these reasons, all clustering algorithms are heuristics that converge more or less
quickly to a locally-optimal solution.

 Under the category labeled “clustering,” we group several data-partitioning algo-
rithms, using approaches completely different from each other. All these approaches
can be applied to the problems described in the previous section almost transparently,
although, obviously, each approach has strengths and flaws, and we should select the
best-fitting algorithms based on our requirements.

 A first relevant distinction is made between hard and soft clustering, as also shown
in figure 12.2:

 In hard clustering, to every point the output assigns a single cluster, one and
only one (or at most one, if the clustering algorithm can also detect noise).

 In soft clustering, for each point P and each group G, the output provides a
probability that P belongs to G.

The other main criterion to classify clustering algorithms differentiates partitioning
clustering from hierarchical clustering:

 Partitioning clustering, aka flat clustering, outputs a division of the input dataset
into partitions, so no cluster is the subset of another, nor does it intersect any
other cluster.

 Hierarchical clustering produces a hierarchy of clusters that can be then inter-
preted and “sliced” at any given point, depending on parameters set for the
algorithm.

Obviously these two criteria are orthogonal; for instance, you can have hard partitioning
clustering algorithms (such as k-means) or soft hierarchical ones (such as OPTICS).

 Other criteria often used to classify these algorithms are centroid-based versus
density-based, and randomized versus deterministic.

Figure 12.2 The difference between hard and soft clustering can be explained in terms of the 
membership function they adopt. Hard clustering’s outputs are either 0 or 1 for each point and 
each cluster, with the constraint that it can be 1 for only one of the point-cluster combinations. 
Soft clustering’s membership function outputs a probability between 0 and 1 (any value in-
between) and for each point, it can be non-zero for multiple clusters. 
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 In the next section, we’ll first describe an algorithm for partitioning clustering:
k-means, the progenitor of all clustering algorithms. Then we’ll move to a different
type of flat clustering, DBSCAN, and finally we’ll pick up the discussion on hierarchi-
cal clustering and introduce OPTICS, which is also density-based. Table 12.1 summa-
rizes the “identity card” for the three algorithms presented in this chapter.

Don’t worry; in the next sections for each of these properties we will explain in detail
what it means and provide examples to make the distinction clearer.

12.2 K-means
Let’s start our discussion with a classic algorithm, one with a history of success going back
to the 1950s: k-means, a partitioning algorithm that gathers data in a predetermined
number of spherical clusters.

 Figure 12.3 illustrates how k-means works. We can break down the algorithm in
three high-level steps:

1 Initialization—Create k random centroids, random points that can or cannot
belong to the dataset and will be the centers of the spherical clusters.

2 Classification—For each point in the dataset, compute the distance to each cen-
troid, and assign the aforementioned point to the closest among the centroids.

3 Recentering—The points assigned to a centroid form a cluster. For each cluster,
compute its center of mass (as described in section 10.3), and then move the
cluster’s centroid to the center of mass computed.

4 Repeat steps classification and recentering until no point, at step 2, switches to a
different cluster, or the maximum number of iterations is reached.

Steps 2–4 of this algorithm are a deterministic heuristic that computes exact distances
between points and centroids, and then updates the centroids to the center of mass of
each cluster. However, the algorithm qualifies as a Monte Carlo randomized algorithm
because of its first step, where we use random initialization. Turns out this step is cru-
cial for the algorithm. The final result, in fact, is heavily influenced by the initial
choice of the centroids. A bad choice can slow down convergence, which, in turn,
given that the maximum number of iterations is bounded, will likely lead to an early

Table 12.1 Summary of the characteristics of clustering algorithms presented in this chapter

Categories k-means DBSCAN OPTICS    

Membership Hard Hard Soft

Structure Flat Flat Hierarchical

Strategy Centroid-based Density-based Density-based

Determinism Randomized Deterministic Deterministic

Outliers detection No Yes Yes



406 CHAPTER 12 Clustering

stop and a poor result. And because the algorithm will remove centroids to which no
points are assigned—a very bad initial choice with several centroids close to each
other—this could lead to an unwanted reduction of the number of centroids in the
early stages of the heuristic (see figure 12.4).

1. Randomly add centroids 2. Assign points to closest centroid

3. Update centroids
   (compute center of mass)

4. Assign points to closest centroid

Figure 12.3 An example of the k-means algorithm with k==3. Dataset points are initially lightly shaded. 
Step 1: k centroids (shaped as pentagons) are randomly created. Each centroid is assigned a different 
color: RGB. Step 2: For each point, measure the distance to all centroids, and assign the point to the 
closest one. At the end, each centroid C will define a cluster, a sphere centered at C and whose radius 
is the distance to the furthest point assigned to C. The clusters are highlighted in the same color as their 
centroids. Step 3: Update the centroids: for each cluster, compute its center of mass. Step 4: Repeat 
steps 2 and 3 j times. Some points will switch to a different cluster.

Figure 12.4 A very unlucky choice of initial centroids (shown as polygons). All centroids are gathered 
together in one corner of the dataset. The black line shows an approximation of the border between the 
regions determined by each centroid (on each line, ideally, the distance between the centroids it 
separates is the same). Since the centroid represented with a hexagon is further away than the other 
two, no point will be assigned to it, so it will be removed from the list of centroids. The choice appears 
also unbalanced for the other two centroids, although the next update steps will (slowly) rebalance the 
situation, moving the square toward the center of the cluster on the right.
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To mitigate this issue, in practice k-means is always used with a random-restart strat-
egy: the algorithm is run several times on a dataset, each time with a different random
initialization of the centroids, and then results are compared to choose the best clus-
tering (more about this in the last section of the chapter).

 Listing 12.1 shows the code for the main method performing k-means clustering.
We broke down the main steps into separate functions to get cleaner, more easily
maintainable code and we’ll delve into each step in the next pages. You can also check
out implementations of the method on the book’s repo on GitHub.4

function kmeans(points, numCentroids, maxIter)
  centroids ← randomCentroidInit(points, numCentroids)
  clusterIndices[p] ← 0 (∀ p ϵ points)                
  for iter in {1, .., maxIter} do                    
    newClusterIndices ← classifyPoints(points, centroids)
    if clusterIndices == newClusterIndices then          
      break
    clusterIndices ← newClusterIndices         
    centroids ← updateCentroids(points, clusterIndices) 
  return (centroids, clusterIndices) 

The algorithm can be seen as a search heuristic converging to a (local) optimum, with
slightly more complex than normal functions to compute the score and the gradient
step. At line #6, we have a stop condition that checks if the algorithm converged. If
the classification hasn’t changed in the last step, then the centroids will be the same as
in the previous step, so any further iteration will be futile. Since these functions are
quite expensive to compute at each step, and convergence is not guaranteed, we add
another stop condition by capping the execution to a maximum number of iterations.
As mentioned, we abstracted away the logic of the update and score functions in sepa-
rate methods. But before looking at those, it’s interesting to check out the random ini-
tialization step, which is often underestimated. Listing 12.2 shows the implementation
we suggest for this function.

Listing 12.1 k-means clustering

4 See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#k-means.

Method kmeans takes a list of points and an integer, the number of 
clusterings it should create (remember, one clustering per centroid). 
We also pass maxIter, the maximum number of iterations. This 
function returns a pair, the list of centroids and the list of centroid 
indices associated to each point.

Initializes the list of centroids. Different strategies can be used for 
random initialization, and non-random initialization functions are 
viable (more on this in the next listing).

Initializes the list with the 
cluster index for each 
point. At first, each point 
belongs to the same big 
cluster containing the 
whole dataset.

Repeats the 
main cycle (at 
most) maxIter 
times

Updates the 
assignment of points 
to clusters. Stores the 
result in a temporary 
variable to compare 
the new classification 
with the one from the 
previous iteration.

If no point has switched 
clusters, the algorithm 
converged and it can 
exit.

Otherwise, copies over 
the assignments from 
the temporary variableUpdates the centroids based on the new classification

Once the algorithm converges, we return both the 
centroids and the assignments for each cluster.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#k-means
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function randomCentroidInit(points, numCentroids)
  centroids ← sample(points, numCentroids)      
  for i in {0, .., numCentroids-1} do   
    for j in {0, .., dim-1} do            
      centroids[i][j] ← centroids[i][j] + randomNoise()             
  return centroids                          

While there are several viable alternatives (for instance, randomly drawing each coor-
dinate from the domain’s boundaries, or using actual dataset’s points), a solution that
gets us several advantages is randomly perturbating k points casually drawn from the
dataset:

 First, we don’t have to worry about the domain’s boundaries. If each centroid’s
coordinate was generated completely at random, we would have to first scan the
dataset to find the acceptable range for each coordinate.

 Even paying attention to the dataset’s boundaries, sampled points could end up
in sparse or empty regions, and as such they could later be removed. Instead, by
uniformly drawing points from the dataset, the centroids will be close to points
in the data and . . . 

 . . . centroids will be drawn with higher probability in areas with higher density
of points.

 Randomly perturbating the points, however, helps reduce the risk that all the
points will be concentrated in the denser areas.

The code in listing 12.2 is also intuitive, though there are a couple of interesting
points to raise.

 At line #2 we use a generic sampling function that draws n elements from a set
without repetition; the details of this method are not important here, and you don’t
need to worry about them. Most programming languages will provide such a function
in their core libraries,5 so it’s unlikely you will have to implement it.6

 We can move to the classification step, described in listing 12.3. Method classify-
Points is a brute-force search of all the point-centroid pairs, whose goal is finding the
closest centroid to each pair. If you’ve read the book thus far, you should by now feel

Listing 12.2 randomCentroidInit

5 For instance, in Python you can import sample from module random, or in JavaScript you can use underscore
library’s sample method.

6 But if you do, then you should check out chapter 11 of Practical Probabilistic Programming by Stuart Russell (Man-
ning Publications, 2016), where it is neatly explained.

Method randomCentroidInit takes the list of points 
in the dataset and the number of centroids it should 
create. It returns the list of centroids generated.

Initializes the list of centroids 
by randomly sampling (without 
replacement) numCentroids 
points from the dataset

Cycles
through

the list of
centroids

(their
indices)

For each centroid, cycles through its coordinates (assuming 
dim, the number of coordinates, is, for instance, a class 
variable; otherwise, you could use |centroids[i]|).

Updates the current 
coordinate by adding 
some random noise

Returns the list of centroids
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goose bumps when you hear “brute-force” and, as a conditional reflex, think, can we
do any better? We’ll talk about this question a couple of sections down the road.  

function classifyPoints(points, centroids)
  clusters ← []    
  for i in {0, .., |points|-1} do        
    minDistance ← inf                    
    for j in {0, .., |centroids|-1} do    
      d ← distance(points[i], centroids[j])  
      if d < minDistance then   
        minDistance ← d        
        clusters[i] ← j
  return clusters       

For the moment, let’s see the last helper method we need to implement to complete
the k-means algorithm, the one updating centroids, described in listing 12.4. 

function updateCentroids(points, clusterIndices)
  centroids ← []  
  for cIndex in uniqueValues(clusterIndices) do     
    for j in {0, .., dim-1} do                   
      centroids[cIndex][j] ← 
               mean({points[k][j] | clusterIndices[k] == cIndex}) 
  return centroids        

To update centroids, as we’ve mentioned, we will just compute the center of mass for
each cluster. This means that we need to group all points by the centroid they are
assigned to, and then for each group, compute the mean of the points’ coordinates.

 This pseudo-code implementation doesn’t apply any correction to remove cen-
troids that have no point assigned to them—they are just ignored. The issue with the

Listing 12.3 classifyPoints

Listing 12.4 updateCentroids

Method classifyPoints takes the list of points in the 
dataset and the current list of centroids. It returns the list 
of the centroids (technically, their indices) associated with 
each point in the dataset.

Initializes the list of cluster assignments
Cycles through the list of points 
in the dataset (their indices)

Initializes the minimum distance 
(between points[i] and any centroid) 
to the maximum possible value

Cycles
through

 the list of
centroids

(again, their
indices)

Computes the distance between the 
current point and the current centroid 
and stores it in a temporary variable

Checks if the distance computed is 
smaller than the minimum found so far

If it is, updates minDistance and assigns 
the i-th point to the j-th centroidReturns the list of clusters

Method updateCentroids takes the list of points in the 
dataset and the classification of points with regard to 
current clusters (centroids). It returns the list of the 
centroids computed for each cluster.

Initializes 
the array of 
centroids

Goes through all (unique) centroids’ 
indices. Assuming the clusters’ 
indices go from 0 to a certain value 
m, without any “hole,” this could be 
expressed as the range between 0 
and max(clusterIndices).

Cycles through all coordinates 
(assuming dim, the number of 
coordinates, is, for instance, a 
class variable; otherwise, you 
could use |centroids[i]|).

Each centroid’s coordinate is computed as the mean of
the corresponding coordinate of all points assigned to it.Returns the centroids
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centroids array is also not tackled; the array is simply initialized to the empty one,
assuming it will be resized dynamically while adding new elements to it. But of course,
in a real implementation, both issues should be taken care of, according to what each
language allows for initialization and resizing of arrays.

 If you’d like to take a look at real implementations of k-means, you can find a
Python version on the book’s repo on GitHub. At https://github.com/andreaferretti/
kmeans you can also find a nice resource (unrelated to the book) that, like a Rosetta
Stone, contains implementations of this algorithm in many programming languages
(you can find a version for most of the mainstream languages).

 Now that we have described how k-means is implemented, let’s take another look
at how it works.

12.2.1 Issues with k-means

Figure 12.5 shows the result of applying k-means to an artificial dataset. The dataset
has been carefully crafted to represent the ideal situation where k-means excels. The
clusters are easily (and linearly7) separable, and they all are approximately spherical.

 First, let’s start with a positive note about k-means. Figure 12.5 shows how it man-
ages to correctly identify clusters with different density; for instance, the two clusters
in the bottom-left corner have a larger average distance between points (and hence a
lower density) than the cluster in the top-right corner. This might seem like some-
thing to take for granted, but not all clustering algorithms will deal so well with het-
erogeneous distributions. In the next section, we’ll see why this is a problem for
DBSCAN.

7 In a d-dimensional space, two sets S1 and S2 are linearly separable if there exists at least one (d-1)-dimensional
hyperplane that divides the space such that all points of S1 are on one side of the hyperplane, and all points
of S2 are on the other side of it.

Figure 12.5 A typical clustering produced by 
k-means. Dataset’s points are plotted as circles, 
and centroids are shown as thick-edged Xs.

https://github.com/andreaferretti/kmeans
https://github.com/andreaferretti/kmeans
https://github.com/andreaferretti/kmeans
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That’s all for the good news: you can also see that there are a few points that are not
close to any of the spherical clusters. We added some noise to the dataset as well to show
one of k-means’ critical issues: it can’t detect outliers, and in fact, as shown in figure
12.5, outlier points are added to the closest clusters. Since centroids are computed as
centers of the mass of the clusters, and the mean function is sensitive to outliers, if we
don’t filter out outliers before running k-means, the undesirable consequence is that
the centroids of the clusters will be “attracted” by outliers away from the best position
they could hold. You can see this phenomenon in several clusters in figure 12.5.

 The issue with outliers, however, is not the worst problem with k-means. As men-
tioned, this algorithm can only produce spherical clusters, but unfortunately, in real
datasets not all clusters are spherical! Figure 12.6 shows three examples where k-means
clustering fails to recognize the best clustering.

Figure 12.6 Three examples where the clustering result produced by k-means can never be optimal.
(Left) Two concentric rings (two centroids). (Right) A spiral (three centroids: the optimal solution here 
would be to have a single cluster). (Bottom) Two linear clusters close to each other.
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Not-linearly separable clusters can’t be approximated with spherical clusters, and as
such, k-means can’t separate non-convex clusters like clusters shaped as two concen-
tric rings. Moreover, in all those situations where the clusters’ shape is not spherical
and the points can’t be separated correctly using minimum distance from a centroid,
k-means will struggle to find good solutions.

 Another issue with k-means is that the number of clusters is a hyper-parameter,
meaning that the algorithm is not able to determine the right number of clusters
automatically,8 and instead it takes the number of centroids as an argument. This
means that unless we have some insight deriving from domain knowledge and sug-
gesting to us the right number of categories into which we should cluster the dataset,
then to find the right number of clusters for a dataset, we will need to run the algo-
rithm multiple times, trying different values for the number of centroids, and compar-
ing the results using some kind of metric (visual comparison is only possible for 2D
and 3D datasets). We’ll talk about this in section 12.5.

 These issues are certainly limiting, although there are domains in which we can
assume or even prove that data can be modeled well with spherical clusters. But even
in the best-case scenario or in intermediate situations where a spherical cluster is still a
good approximation, there is another issue that can limit the application of this clus-
tering algorithm: the curse of dimensionality.

12.2.2 The curse of dimensionality strikes again

We already bumped into the curse of dimensionality when we described k-d trees in
chapter 9: a data structure that works well for low-to-medium-dimensional spaces but
behaves poorly in high-dimensional spaces.

 It’s not a coincidence that we find this issue again for k-means. This algorithm is a
search heuristic that minimizes the Euclidean distance of points to cluster’s centroid.
In high-dimensions, however

 The ratio between volume and surface grows exponentially.
 Most points of a uniformly distributed dataset are not close to the center of

mass, but rather far away toward the surface of the cluster.
 If data is uniformly distributed in a hypercube (a domain where each feature is

uniformly distributed in a fixed range), then in high dimensions most points
are close to the faces of the hypercube.

 Approximating a hypercube with its subscribed hypersphere will leave out most
of the points.

 To include all the points, we need the hypersphere superscribed to the hyper-
cube, and as we saw in section 10.5.1, the amount of volume wasted grows expo-
nentially with the number of dimensions.

8 As we have seen, k-means can discard some centroids, but this effect is very limited and unpredictable.
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 In a d-dimensional space, with d >> 10, under certain reasonable assumptions
for data distribution, the nearest neighbor problem becomes ill-defined,9

because in high dimensions the ratio between the distance from a target to the
nearest and farthest neighbor becomes almost 1. For instance, if points are
equally spaced (for example, placed on a grid), then the 2d closest points to any
centroid are all at the same distance from it. This means that the nearest neigh-
bor of a point becomes ambiguously defined.

In simple terms, for higher-dimensional datasets, unless the distribution of clusters is
exactly spherical, the spheres needed to include all points are so large that they will
likely overlap each other for a significant portion of their volume; moreover, for close-
to-uniformly distributed datasets and when many centroids are used, the search for
the nearest centroid can be inaccurate. This, in turn, leads to slower convergence,
because some points can be assigned back and forth to different, almost equally close
centroids.

 In summary, we need to keep in mind that k-means is a good option only for low-
to-medium-dimensional (with at most around 20 dimensions) datasets where we know
that clusters can be accurately approximated with hyperspheres.

12.2.3 K-means performance analysis

When we do know that a dataset meets the pre-conditions to apply k-means, however,
this algorithm is a viable option and produces good results quickly. How quickly?
That’s what we are going to ascertain in this section.

 Let’s assume we have a dataset with n points, each point belonging to a d-dimensional
space (hence each point can be represented as a tuple of d real numbers), and that we
would like to partition the points into k different clusters. 

 If we examine each sub-step in listing 12.1, we can conclude that

 The random initialization step takes O(n*d) assignments (d coordinates for
each of the n points).

 Initializing cluster indices takes O(n) assignments.
 The main cycle is repeated m times, where m is the maximum number of itera-

tions allowed.
 Assigning points to centroids takes O(k*n*d) operations, since for each point,

we need to compute k d-dimensional (squared) distances, and each requires
O(d) operations to be computed.

 Comparing two points classifications requires O(n) time, but this can be amor-
tized inside the method doing the partitioning, with a careful implementation.

9 Beyer, Kevin, et al. “When is “nearest neighbor” meaningful?” International conference on database theory.
Springer, Berlin, Heidelberg, 1999.
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 Updating the centroids requires computing, for each centroid, d times (one for
each coordinate10) a mean over at most n points, and so a total of O(k*n*d)
operations. If we can assume that the points are distributed evenly among clus-
ters, each cluster will at most contain n/k points, and therefore the average
worst-case running time becomes O(k*(n/k)*d) = O(n*d).

The running time for the algorithm is therefore O(m*k*n*d), with O(n+k) extra mem-
ory needed to store the points classification and the list of centroids.

12.2.4 Boosting k-means with k-d trees
When we described the code for k-means, we saw that the partitioning step, where we
assign each point to exactly one of the centroids, is a brute-force search among all
combinations of points and centroids. Now we wonder, can we speed it up in any way?

 In section 10.5.3 we saw how k-means can help SS+-trees’ performance by making
them more balanced when used in split heuristics. But is it possible that the opposite
is also true? You might see where I’m going with this: Is it possible to replace brute-
force search with something more efficient?

 If you think about it, for each point we are looking for its nearest neighbor among
the set of centroids, and we already know a data structure or two to speed up this search!

 But rather than SS+-trees, in this case the context would suggest we could try k-d
trees for three reasons. Before reading them, try to pause for a minute and think
about why we could prefer k-d trees. If you can’t think of all three reasons, or if you
don’t have a completely clear idea about why these reasons hold, you can look at sec-
tions 9.4 and 10.1 that explain these concepts in more detail.

 The reasons why k-d trees would be better suited than SS+-trees for the nearest cen-
troid search are

 The size of the dataset (the centroids) is small: hence there is a very large prob-
ability that it will fit into memory. In this case, k-d trees are the best choice if the
other two conditions also hold.

 The dimension of the search space goes from low to medium. We know this is the
case (if we have done our homework!) because k-means also suffer from the curse
of dimensionality, and shouldn’t be applied to high-dimensional datasets.

 K-d trees can offer a theoretical worst-case upper bound that is better than
brute-force search: O(2d + d*log(k)) for k d-dimensional centroids. SS+-trees,
however, can’t offer better-than-linear worst-case running time.

Moreover, the data structure used will have to be recreated from scratch at each itera-
tion of k-means’ main cycle, so we won’t be dealing with a dynamic dataset that would
cause a k-d tree to become imbalanced over time.

 The fact that we have to create a new dataset at each iteration, at the same time, is
one of the biggest cons of using this approach, because we will have to pay this extra

10On GPUs and processors designed for vector computing, operations can be executed simultaneously on all
coordinates of the d-dimensional tuples with higher efficiency.
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price. Also, we will need O(k) extra memory to store it. It won’t change the asymptotic
memory print of the algorithm, but in practice it will be relevant, especially if k, the
number of centroids, is high.

 In most applications, though, it is reasonable to expect to have k << n. In other
words, the number of centroids will be several orders of magnitude smaller than the
number of points.

 Listing 12.5 shows how we can change the pseudo-code for method classify-
Points to use a k-d tree in place of brute-force search.

 As you can see, the code is much shorter than the version in listing 12.3, because
most of the complexity of the search is now encapsulated in the KdTree class.

function classifyPoints(points, centroids)
  clusters ← []    
  kdTree ← new KdTree(centroids)        
  for i in {0, .., |points|-1} do   
    clusters[i] ← kdTree.nearestNeighborIndex(point)
  return clusters      

Notice that since we would like to find out the index of the centroid closer to each
point, we assume that the KdTree object can keep track of the indices of its points in
the initialization array, and that we have a query method that returns the index of the
closest point, rather than the point itself. It’s not hard to find a workaround if this is
not the case. We can keep a hash table associating centroids to their indices and add
an extra step to retrieve the index of the centroid returned by the KdTree.

 Performance-wise, since creating a k-d tree for the centroids will require
O(k*log(k)) steps, each of which can require up to O(d) operations (because we are
dealing with d-dimensional points), then the whole classification step will require
O(d*k*log(k) + n*2d + n*d*log(k))= O(n*2d + d*(n+k)*log(k)) steps, instead of
O(n*k*d) operations.

 Formally, we can work out the exact conditions for which O(n*2d + d*(n+k)*log(k))
< O(n*k*d); for our purpose, however, we can just informally use some intuition to see
that

 n*2d < n*k*d ⇔ d << k

 d*(n+k)*log(k) < n*k*d ⇔ (n+k)*log(k) < n*k ⇔ n < n*k/log(k)–k This
can be shown to hold for n > k, but plotting the difference between the two
sides shows that for a fixed n, the difference grows as k grows, so the savings are
more noticeable when there are many centroids.

Listing 12.5 classifyPoints using k-d trees

Method classifyPoints takes the list of points in the 
dataset and the current list of centroids. It returns the list 
of the centroids (technically, their indices) associated with 
each point in the dataset.

Initializes the list of cluster assignments to an empty list
Creates a KdTree instance, initializing 
it with the list of centroids

Cycles through the list of points 
in the dataset (their indices)

Gets the index of the nearest 
centroid for this point by 
querying the KdTree

Returns the list of clusters
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The whole algorithm, assuming that clusters are evenly distributed with approximately
n/k points each, would then run in O(m*(n*2d + d*(n+k)*log(k) + n*d)) = O(m*(n*2d

+ d*(n+k)*log(k))) and so, in theory, and net of the constant multipliers and imple-
mentation details, it seems that it could be a good idea to use a data structure such as
k-d trees to improve nearest neighbor search.

 As we have seen, however, if the theoretical margin is small, sometimes a more
complex implementation only beats asymptotically worse solutions for large, or at
times very large, inputs. To double-check if, in practice, it is worth it to go through the
trouble of creating and searching a k-d tree at each iteration, we ran some profiling
that you can check out on the book’s repo.11

 Once again, we used a Python implementation to do the comparison. By now it
should go without saying, but these results are obviously only significant for this lan-
guage and this particular implementation. Nevertheless, they do prove something.

 For k-d trees, we used SciPy’s implementation12 provided in module scipy.spatial.
If you have read this book’s earlier chapters, you probably remember one of the golden
rules we mentioned. Before implementing something yourself from scratch, look to see
if there is something trustworthy already available. In this case, SciPy’s implementation
is not only likely more reliable and efficient than the version we could write ourselves
(since SciPy’s code has been already tested and tuned at length), but it also implements
the query method, performing NN search, by returning the index (relative to the order
of insertion) of the point returned. That’s exactly what we need for our k-means
method, and it will save us from storing extra data to get from points to indices.

 Figure 12.7 shows the result of profiling for the Python method cluster_points
implemented with brute-force search, and k-d tree’s nearest neighbor. 

 If you look closely at the four charts in figure 12.7, you can see how the line for the
k-d tree implementation is more stable through the various values of k, while the slope
of the upper line for the brute-force search algorithm becomes steeper as k grows.

 This trend is even more apparent if we look at the data from a different angle, by
keeping n fixed and plotting the running time as a function of k, as we do in fig-
ure 12.8.

 So, we can say that at least in Python, implementing the points partitioning sub-
routine by using k-d trees provides an advantage over the naïve brute-force search.

 
 
 
 
 
 
 

11See http://mng.bz/A0x7.
12See http://mng.bz/KM5g.

http://mng.bz/A0x7
http://mng.bz/KM5g
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Figure 12.7 Running time comparison between classifyPoints implementations using brute-force 
search (darker line) and k-d tree’s nearest neighbor (lighter). The running times are shown as functions 
of n, the number of points, for fixed values of k, the number of centroids. (Top left) k==5, the method 
using k-d tree, is always slower, and its running time grows faster. (Top Right) k == 50, the method 
using a k-d tree, is still slower, but its growth is similar to the brute-force one. (Bottom Left) k==75, the 
method using brute force, is initially taking a similar amount of time, but as n grows, the curves for the 
two running times diverge and k-d tree implementation grows more slowly. (Bottom Right) k==200, the 
k-d tree implementation, takes half the time of the brute-force approach even for small values of n, and 
it grows much more slowly.

Figure 12.8 Running time comparison between classifyPoints (left) and k_means (right) 
implementations using brute-force search and k-d tree’s nearest neighbor. The running times are shown 
as functions of k, the number of centroids, for fixed values of n, the size of the dataset. The charts are 
plotted for n==1500, but they show the same trend for all tested values of n > 1000. When comparing 
the two plots, it’s also evident how the classifyPoints method accounts for most of the running 
time of this k-means implementation.
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12.2.5 Final remarks on k-means

To conclude this section on k-means, let’s summarize our conclusions:

 K-means is a centroid-based hard-clustering method.
 If implemented with an auxiliary k-d tree, the running time for the algorithm is

O(m*(n*2d + d*(n+k)*log(k))).
 K-means works well on low-to-medium-dimensional data, when cluster shapes

are spherical and the number of clusters can be estimated a priori, but works
well even if the dataset doesn’t have a homogeneous distribution.

 K-means works poorly on high-dimensional data, and when clusters can’t be
approximated with hyperspheres.

Now that we have described the progenitor of all clustering algorithms, we need to fast-
forward 40 years to the invention of the next algorithm we are going to present.

12.3 DBSCAN
The paper introducing DBSCAN was published in 1996, presenting a novel approach
to address the problem.13 DBSCAN is an acronym for “Density-based spatial clustering
of applications with noise,” and the main difference in the approach with respect to
k-means is already clear from its name. While k-means is a centroid-based algorithm,
and as such builds clusters as convex sets around points elected as centroids, a density-
based algorithm defines clusters as sets of points that are close to each other, close
enough that the density of points in any area of a cluster is above a certain threshold.
The natural extension of this definition, by the way, introduces the concept of noise
(also referred to as outliers) for those points that are in low-density regions. We will for-
mally define both categories in a few lines, but first, we still have a few high-level con-
siderations on the algorithm.

 Like k-means, DBSCAN is a flat hard-clustering algorithm, meaning that each
point is assigned to (at most) one cluster (or no cluster, for outliers) with 100% confi-
dence, and that all clusters are objects at the same level, no hierarchy of these groups
is kept.

 In k-means, random initialization of the centroids has a major role in the algo-
rithm (with good choices speeding up convergence), so much so that often several
random restarts of the algorithm are compared before choosing the best clustering.
This isn’t true for DBSCAN, where points are cycled through somewhat randomly. But
this has a lower influence, if any, on the final result; therefore, this algorithm can be
considered deterministic.14

13Ester, Martin, et al. “A density-based algorithm for discovering clusters in large spatial databases with noise.”
Kdd. Vol. 96. No. 34. 1996. The approach used is closely related to another paper from 1972: Ling, Robert F.
“On the theory and construction of k-clusters.” The Computer Journal 15.4 (1972): 326-332.

14Technically, if two runs of DBSCAN cycle through the points in the same order, then the final result will be
exactly the same. For k-means to be considered deterministic, we should instead replace the random initializa-
tion with a deterministic one.
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 DBSCAN, finally, extends the concept of single-linkage clustering15 (SLC) by intro-
ducing a minimum points-density required to consider two points connected to each
other. This reduces the single-link chain effect, the worst side effect of SLC, causing inde-
pendent clusters connected by a thin line of (noise) points to be mistakenly classified
as a single cluster.

12.3.1 Directly vs density-reachable
To understand how DBSCAN works, we need to start with a few definitions. Please use fig-
ure 12.9 as a reference while going through them to help check your understanding:

 Point p, in figure 12.9, is said to be a core point because there are at least min-
Points points (including p itself) within distance ϵ from it (where, in the exam-
ple, minPoints==3).

 Point q is directly reachable from p because point q is within distance ϵ from p,
which is a core point. A point can only be directly reachable from a core point.

 A point w is reachable (or, equivalently, density-reachable) from a core point (such
as p) through a path of core points p=w1, ..., wn=w, if each wi+1 is directly
reachable from wi. From the previous definition of direct-reachability, it follows
that all points in the path, except w, need to be core points.

 Any two points that are density-reachable from each other are, by definition, in
the same cluster.

 If there is any point r that is not reachable from any other point in the dataset, then
r (and all the points like r) is marked as an outlier (or, equivalently, as noise).

The algorithm is built around the concept of core points: each of them has at least a
certain number of neighbors within a specific distance. This can be seen from a differ-
ent angle as well: core points are points in areas with at least a minimum density.

 Core points (such as p, q, and so on in figure 12.9) that are reachable (meaning,
adjacent) to each other belong to the same cluster. Why? Because we conjecture that
high-density areas (as opposed to the low-density majority of the domain) define
clusters. But all points that are within a distance ϵ from a core point p belong to the
same cluster as p’s too.

15Single-linkage clustering (SLC) is a class of bottom-up hierarchical clustering algorithms where, at each step,
the pair of clusters at minimum distance is merged (initially every point is in its own cluster).

Core point

Density
reachable

Outlier
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r2 r3
r4Directly
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w

Figure 12.9 Core points, directly 
reachable points, and reachable 
points, given a radius ϵ and a 
threshold minPoints (the 
minimum number of points in a 
core region) equal to 3; hence, 
core points need to have at least 
two neighbors within distance ϵ.
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12.3.2 From definitions to an algorithm

Moving from the definitions in the previous section to an algorithm is surprisingly
simple.

 For a given point p, we need to check how many of its neighbors lie within a radiusϵ. If there are more than a certain number m, then we mark p as a core point and add
its neighbors to the same cluster; otherwise, never mind; we do nothing. Figure 12.10
illustrates this step that is going to be repeated for every point in the dataset, with the
help of a set to keep track of the points that we want to process next (in any order) for
the current cluster.

Figure 12.10 A few steps of the main loop of DBSCAN. When core points are processed (the 
first three steps in the figure) all their undiscovered neighbors are added to current cluster and 
to a set (not a queue) of points to be processed. Conversely, when the current point being 
processed is not a core point, like v in the last step, then no further action is taken.
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Now we have to ask ourselves what happens when we process a point w that is not a
core point, but is directly reachable from a core point p. Is it okay if we don’t take any
action while processing w? 

 As you can see from figures 12.9 and 12.10, if p is a core point and w is directly
reachable from it, then the distance between w and p must be at most ϵ; therefore,
when we check p, we will add all of p’s neighbors within radius ϵ to the same cluster as
p, and hence w will end up in the same cluster as p.

 What if there are two core points p and q that are density-reachable from each
other, and are both reachable from w? Well, by definition, there will be a chain of core
points w1, ..., wn between q and p, so in turn each core point in the path will be
added to the same cluster as q, and finally so will p as well when it’s wn’s turn.

 What if p and q are core points that are not reachable from each other, but are
both reachable from a point w? Can w be a core point? 

 Let’s reason ad absurdum:16 suppose that w is reachable from p, a core point, that it
is processed before w. Hence, there is a chain of core points p1, ..., pn, each reach-
able from the previous one, that connects p to w. 

 Suppose also that w, by the time pn is processed, has already been added to another
cluster, different from p’s. This means that there is a core point q, for which w is reach-
able from q (and hence there is a chain of core points q1, ..., qk, and so on), but p
is not reachable from q because they are in different clusters.

 Now, w can be a core point, or not a core point.
 If w was a core point, then there would be a chain made of the core points q, q1,

..., qk, w, p1,... , pn, p, where all points are reachable from each other; therefore,
by definition p would be reachable from q, and this goes against our initial hypothesis.

 It follows that w can’t be a core point. It must be a non-core point reachable from
at least two different core points, a situation illustrated in figure 12.11.

 In these cases, reachable points can be added to either cluster, but the difference
will be just about a single point. It also means that the two clusters are separated by an
area with lower-than-threshold density (although not completely empty). 

 The final result won’t be influenced by the order in which points are processed,
because sooner or later we will discover that all density-reachable points belong to the
same cluster. Nevertheless, there is an efficient way and a bad way to process the points.
Depending on the order we follow, we might be forced to use different methods to keep
track of the clusters.

 The bad way is this: If we processed points in a completely random order, then we
would need to keep track of the cluster assigned to each point (initially each point
being in its own cluster), but we would also need to keep track of which clusters need
to be merged (every time we process a core point, we’ll have to try17 to merge at least
minPoints-1 clusters); this becomes complicated to handle and requires an ad hoc
data structure, the disjoint set we described in chapter 5.

16Reductio ad absurdum, from Latin “reduction to absurdity” is a logical argument that proves a statement by show-
ing that, if false, it would lead to an impossible result.

17Some of the neighbors of the core point could have already been merged.
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If, instead, we process the neighbors of each core point p right after finishing with p,
as shown in figure 12.10, then we can just build clusters in a sequence, growing each
cluster point by point until no further point can be added to it, without any need of
merging clusters or keeping track of the history of merges.

 By following this order, points like q and p in figure 12.11 will never be added to
the same cluster, and it doesn’t really matter to which of them a (so-called) edge point
like w is merged. As a matter of fact, edge points are the only points for which
DBSCAN is not entirely deterministic, because they can be added to any of the clus-
ters from which they are reachable, and the one cluster to which they are eventually
added depends on the order used to process the dataset’s points.

 There is one last question we need to ask: How many times do we need to iterate
DBSCAN’s main loop? That will be exactly once per point. This is completely different
from k-means, where we had many iterations of a few steps on the whole dataset. While
k-means is a search heuristic adjusting some parameters to move to a local minimum,18

DBSCAN is a one-pass deterministic algorithm computing the best partitioning (and at
the same time identifying outliers) based on the points’ density in different areas.

12.3.3 And finally, an implementation

Once we have outlined how the algorithm works at a high level, we are ready to write
an implementation of DBSCAN, shown in listing 12.6. A Python implementation is
also available on the book’s repo on GitHub.19

function dbscan(points, eps, minPoints) 
  currentIndex ← 0                           
  clusterIndices ← 0 (∀ p ϵ points)    

18As we have seen in the previous sections, the cost function that k-means minimizes is the Euclidean distance
to centroids (and, indirectly, the in-cluster Euclidean distance).

Listing 12.6 DBSCAN clustering

19See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#dbscan.
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Figure 12.11 An edge point w is directly reachable 
from at least two different clusters. In this example, 
minPoints is set to 4; the path from q to p is 
highlighted with thicker arrows.

Method dbscan takes a list of points, the radius of the dense area 
defining core points, and the minimum number of points needed in 
the dense area for a point to be a core point. This function returns 
an array of the cluster indices associated with the points (or, 
equivalently, a dictionary associating points to cluster indices).

Initializes the current cluster’s index to 0. 
We will use the special value 0 to mark a 
point as unprocessed, while the other 
special value -1 will be used to flag outliers. 
Valid cluster indices start from 1.

Initializes a list with the cluster index 
for each point. At first, each point is 
marked as unprocessed.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#dbscan
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  kd ← new KdTree(points) 
  for p in points do   
    if clusterIndices[p] != 0 then   
      continue
    toProcess ← {p}       
    clusterIndices[p] ← -1  
    currentIndex ← currentIndex + 1
    for q in toProcess do           
      neighbors ← kd.pointsInSphere(q, eps) 
      if |neighbors| < minPoints then
        continue
      clusterIndices[q] ← currentIndex 
      toProcess ← toProcess + {w in neighbors | clusterIndices[w] ≤ 0} 
  return clusterIndices    

If you recall, we mentioned in chapter 11 that data structures such as k-d trees and SS-
trees are often used in clustering. For k-means and DBSCAN, a multidimensional
indexing structure is used to speed up range queries. You might have figured this out
from the definition of core points, given that to decide whether a point p is a core point,
we need to check how many dataset points there are in its neighborhood within a cer-
tain radius from p.

 And while for k-means we need to perform nearest neighbors queries, for DBSCAN
we will instead run range queries, looking for all the points within a hypersphere.

 You can also find a Python implementation on the book’s repo,20 as well as a Jupy-
ter Notebook21 to experiment with the algorithm.

 Obviously, for DBSCAN as well as for k-means, it is possible to use brute-force lin-
ear search to find each point’s neighborhood. For k-means, however, the speedup is
nice but not vital (usually k-means implementations don’t bother about this), for
DBSCAN the performance gain would be dramatic. Can you guess why? Before going
further and reading the explanation, try to think about it for a minute.

 The difference with DBSCAN is that the search extends on the whole dataset,
while for k-means we only look for the closest among k centroids (and usually k << n).

20See http://mng.bz/ZPza.
21See http://mng.bz/RXEO.

Creates a k-d tree to speed range queries. 
It initializes it with the full dataset.

Cycles through each point in the dataset

If p’s cluster index is not 0 anymore, it 
means that the point has already been 
processed, so it can be skipped here.

Initializes the set of points that will have to be 
processed while constructing the current cluster. 
Initially, p is the only point in the dataset.

Marks p as
processed
by initially

flagging
 it as an

outlier

We are creating a new cluster, so we can 
increment the index of the current cluster. This 
implementation doesn’t worry about having all the 
cluster’s indices as consecutive integers: in other 
words, whenever we find out that p is an outlier, we 
skip the current index. This can be easily fixed, for 
instance, by using a Boolean flag.

Cycles
through each
point q in the
list of points

to process

Performs the range query collecting all 
points in the hyper-sphere with center q. 
In this implementation, we assume the 
function does include the point q itself (as 
per the implementation in listing 9.11).

Otherwise, adds q to current cluster 
by setting its cluster index

If the number of points in q’s neighborhood 
(including q itself) is less than minPoints, 
then we don’t need to do anything (q at 
this point is still marked as noise).

Updates the list of points
to process by adding all of
q’s neighbors that haven’t

yet been processed

Returns the 
classification of 
points in the dataset 
(by means of their 
cluster indices)

http://mng.bz/ZPza
http://mng.bz/RXEO


424 CHAPTER 12 Clustering

 If we have n points in the input dataset, then the difference, given the running
time of the whole algorithm, is between O(n2) and O(n*log(n)), assuming that the
range queries take each O(log(n)).22 Just as a reminder, with one million points in
our dataset, this means going down from ~1012 (a trillion) operations to ~6*106 (six
million).

12.3.4 Pros and cons of DBSCAN

We have already mentioned a few characteristics peculiar to DBSCAN that help us
overcome some limits of other clustering algorithms like k-means or single-linkage
clustering. Let’s quickly review them here:

 DBSCAN is able to determine the number of clusters (given the hyper-parameters
with which it is called), while k-means needs this number to be provided as a
parameter.

 It only takes two parameters, that can also be derived by the domain (possibly
through a preliminary scan to collect statistics on the dataset).

 DBSCAN can handle noise in the datasets by identifying outliers.
 It can find arbitrarily shaped clusters and can partition non-linearly separable

clusters (see figure 12.12 and compare it to figure 12.6 for k-means).
 By tuning the minPoints parameter, it is possible to reduce the single-link

effect.
 The algorithm is almost entirely deterministic and the order in which points

are processed is mostly irrelevant. A different order can only change the assign-
ment of points on the edge of clusters when they are equally close to more than
one cluster (as we have seen in figure 12.11).

22The running time of these queries, as we saw in chapter 9, can’t be upper-bounded by anything better than
O(n) in the worst case. However, the running time of range queries on hyper-spheres depends on the radius
of the sphere, and under certain assumptions on the value of ϵ, O(log(n)) can be an accurate estimate for
the average running time.

Figure 12.12 The three example datasets in figure 12.6, where k-means was failing: processing them 
with DBSCAN, and with the right choice of parameters, we can obtain a proper clustering for each of them.
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So much for the good news. As you can imagine, every rose has its thorns, and
DBSCAN has some shortcomings as well:

 DBSCAN is almost entirely deterministic, but not completely. For some applica-
tions, it might be a problem if points at the border of two or more clusters are
aleatorily assigned to one or another.

 DBSCAN also suffers from the curse of dimensionality. If the metric used is the
Euclidean distance, then as we saw in section 12.2.2, in high-dimensional spaces
all neighbors of a point are at the same distance, and the distance function
becomes basically useless. Luckily, other metrics can also be used with DBSCAN.

 If a dataset has areas with different densities, it becomes challenging, or some-
times impossible, to choose parameters ε and minPoints such that all clusters
will be partitioned correctly. Figure 12.13 shows an example illustrating how the
result produced by DBSCAN is sensitive to the choice of parameters, and figure
12.14 shows another example with areas of different density that make it impos-
sible to choose a value for epsilon that will cluster both areas properly.

 Related to this aspect, one of the problems with successfully running this algo-
rithm is that it can be challenging to find the best values for its parameters
when there is no previous knowledge of the dataset.

Hyperparameter23 tuning, as it often happens in machine learning, is crucial and not
always easy. Setting minPoints is usually straightforward. As a rule of thumb, for

23In machine learning, the parameters passed to an algorithm, and fixed before learning starts, are often called
hyperparameters to distinguish them from the parameters of the model (for instance, the weights of a neural
network) produced by the algorithm.

Figure 12.13 Using the first example dataset in figure 12.12, we can see how sensitive to the choice of 
parameters (in particular of ϵ) the result of DBSCAN is. All the examples ran DBSCAN on the same dataset 
with parameter minPoints set to 3 (the dimension of the domain plus 1). (Left) Using a value too small for ϵ causes the dense area to be too small, so data is partitioned into too many small clusters. A few points, 
plotted with X-shaped markers, are even marked as outliers. (Center) When the right value for the domain is 
chosen, the result is that DBSCAN partitions data perfectly into two concentric rings. (Right) When the 
radius ϵ is set to a value so big that the dense area of inner points extends to points of the outer ring, then 
the whole dataset is mistakenly assigned to the same cluster.
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d-dimensional datasets, you choose minPoints > d, and values around 2*d are often
ideal. For particularly noisy datasets it is also recommended to use larger values of this
parameter to strengthen the noise filtering. Conversely, determining the right value
for ϵ is often challenging and requires either deep domain knowledge, or extensive
tuning. Figure 12.13 shows, by keeping fixed minPoints, how values of ϵ that are too
small (for a given dataset) cause an excessive fragmentation of the dataset into small
clusters, while values that are too large have the opposite effect, reducing the ability of
the algorithm to spot different clusters.

Clearly, the need for such a tuning would bring us back to a situation similar to using
k-means, where we needed to know in advance how many clusters we wanted. And
while in this two-dimensional example it might seem easy to find what the “right”
number of clusters should be, when we move to higher-dimensional spaces, we lose
the possibility of using our intuition, and determining the right values of the algo-
rithm hyperparameters based on the number of clusters becomes impossible.

 In the next couple of sections, we will examine two different ways to cope with
hyperparameters and address their issues.

12.4 OPTICS
As we saw in the last section, DBSCAN is a powerful algorithm that is able to identify
non-linearly separable clusters of any shape; however, it has a weak spot connected to
the parameters regulating the density thresholds. In particular, it is hard to find the
best value for epsilon, the radius of the core-region determining what points are
reachable from each other. When a dataset has areas with different densities, then it
becomes even more impossible to find a value that works equally well for the whole
dataset (as shown in figure 12.14).

Figure 12.14 An example of a dataset with areas of heterogeneous density for which it’s not possible to find 
a single value of ϵ that fits all areas. The dataset has a low-density cluster in the left area and two high-density 
clusters, close to each other, in the top-right corner. (Left) With a low value of ϵ, the low-density cluster is 
broken into many small clusters surrounded by noise. (Right) With higher values, the two clusters on the right 
are merged. There is no value for which these clusters are correctly separated and at the same time the one 
on the left is recognized as a single cluster.
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 It doesn’t matter if we try to search for this value manually or semi-automatically
(see section 12.5). If we stick with the DBSCAN algorithm alone, the algorithm is not
enough to handle non-uniform datasets.

 It didn’t take too long until computer scientists came up with a new idea that could
help in these situations: the key step missing was “Ordering Points To Identify the
Clustering Structure,” which the authors turned into an acronym, OPTICS,24 to name
the algorithm they had invented.

 When we were discussing DBSCAN, we talked about the order in which points are
processed. For DBSCAN, the only thing that matters is that points in the same cluster
(that is, core points reachable from each other) are processed together; however, as
we have seen, this is more a matter of optimization so that we don’t have to keep a dis-
joint set and merge clusters when we find a pair of directly reachable points, because
the order of processing may only influence the assignment of non-core points on the
edge of clusters.

 The idea behind OPTICS is that, instead, this order does matter, and in particular
it can make sense to keep expanding a “frontier” for the current cluster by adding the
unprocessed point that is closest to the cluster (if it is reachable from the cluster).

 Figure 12.15 illustrates this concept in a simplified scenario. In order to choose the
right point, it’s obviously necessary to keep track of the distances of all undiscovered
neighbors of a cluster,25 and for this purpose, the authors of the paper introduced two
definitions: to each point, they associated a core distance and a reachability distance.

12.4.1 Definitions

The core distance of a point p is the minimum distance for that point to be consid-
ered a core point. Since the definition of a core point, given in section 12.3 for
DBSCAN, depends on the parameters ϵ, the radius of dense regions, and minPoints

24Ankerst, Mihael, et al. “OPTICS: ordering points to identify the clustering structure.” ACM Sigmod record.
Vol. 28. No. 2. ACM, 1999.

25Here we adopt the definition of “neighbor of a cluster” meaning a point that is a neighbor (and hence reach-
able) of any point currently in the cluster.

Reachability
distance of P2

P2

P3

P4
Cluster’s
border

P1

d1

d2

d3

d4

Cluster’s
frontier

Figure 12.15 Considering the distance of 
undiscovered points (P1 to P4) from (points 
within) a certain cluster. The key idea in 
OPTICS is “discovering” these points from the 
closest to the furthest; in the example, P3 
would be the next one to be processed.
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(M for short, in the following formulas), the minimum number of points needed to
define a dense region, these definitions also depend on those hyperparameters:

Naturally, if a point is not a core point (and so less than M points are in its ϵ-neighbor-
hood), its core distance is undefined. Conversely, its core distance will be the distance
of its M-th nearest neighbor:26 if this happens, core distance can be interpreted as the
minimum value that we can assign to the parameter ϵ for p to be a core point (given a
fixed value for minPoints).

 Once we have defined the core distance, we can use it to define a new kind of met-
ric, the reachability distance between two points: 

Reachability distance is not symmetric. Given a point q, the reachability distance of p
from q can be interpreted as the minimum value of ϵ for which p is density-reachable
from q; therefore, it must be at least p’s core distance (for the closest minPoints to p),
or the actual distance between p and q. Moreover, if p and q are nearest neighbors (in
particular if there is no point closer to p than q), then this value is the smallest value
we can assign to ϵ in order for p and q to belong to the same cluster.

12.4.2 OPTICS algorithm
Once given these two definitions, we can easily describe the algorithm. Its core idea is
similar to DBSCAN, adding points to the current cluster only if they are reachable
from points already in the cluster. However, OPTICS is also completely different. For
starters, it doesn’t produce just a flat partitioning of the points, but instead it builds a
hierarchical clustering. We’ll get back to this in a minute.

 OPTICS takes the same parameters as DBSCAN, but ϵ, in this case, has a different
meaning. It’s the largest radius that will be considered to determine the core and reach-
ability distance. For this reason (and for disambiguation, as we’ll see), in the rest of the
chapter we will refer to this parameter for OPTICS as ϵMAX. By using this approach, the
algorithm simultaneously constructs density-based clusterings for an infinite number of
values of ϵ (all values between 0 and ϵMAX), and hence for an infinite number of densities.

 In the formulas in the previous sub-section we have seen that these distances are
set to undefined if the ϵ-neighborhood of a point doesn’t have enough neighbors.
This also means that the reachability distance from a point q (to any other core point)
will be undefined if it’s not a core point, with M-1 neighbors within a radius ϵMAX.

26Assuming we consider p as its own neighbor . . . technically, since we agreed that for p to be a core point there
needs to be M points within a radius ϵ from p, to compute the core distance we take the distance of its (M-1)-th
neighbor.

core-distanceε M, p( )
Undefined

M th smallest distance in Nε p( )

if Nε p( ) M<

otherwise–



=

reachability-distanceε M, p q,( )
Undefined

max core-distanceε M, q( ), distance q p,( )( )

if Nε p( ) M<

otherwise



=
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 Therefore, if we set ϵMAX to a large value, then we will have fewer points marked as
noise and, in a way, we will leave more open options because we will allow larger values
for the core distance, and we will have more points with a defined value for reachabil-
ity distance.

 However, a larger radius for the core density areas means that these areas will con-
tain more points, and this makes the algorithm slower.

 In the main section of the algorithm, in fact, for each point processed we need to
update the reachability distance of all undiscovered points in its ϵ-neighborhood. The
more points it contains, the slower the algorithm will be.

 As we briefly mentioned, OPTICS’ main cycle grows the current cluster27 C by add-
ing the closest point to the cluster’s frontier, which is the point with the smallest
reachability distance from any point already in C. The cluster is formed in a way simi-
lar to DBSCAN’s because all points reachable from the cluster’s seed (the first point
processed for a new cluster) are added to it. However, forming these clusters is not the
direct objective of OPTICS.

 When a new point is “discovered” and processed, its reachability distance from the
cluster is set in stone. This cluster-to-point distance is not to be confused with the
reachability distance between two points. For a point q and a cluster C, we define the
reachability distance of q from C as the minimum of the reachability distance from p
to q, for all points p in C: 

If when we process a point p, we update the reachability distances of all points in itsε-neighborhood, and we keep a priority queue with all the undiscovered points in the
neighborhoods of any point in C, then we can be sure that

1 The reachability distance of all the points at the frontier of the cluster (all the
points that are neighbors to at least one point in the cluster) is correctly stored.

2 The value stored is the smallest of the reachability distances from any of the
points already processed to q (although we only care about the current cluster’s).

3 The top of the queue holds the closest point to cluster C:
a Technically, at the top of the queue we have the point q with an associated

value ϵq (the smallest value for ε for which q would still be reachable from C)
such that, considering any other points w in C’s frontier, ϵq  ϵw.

4 Therefore, any of the points still to be processed will have at least the same
reachability distance from C, or higher.

27Technically, as we have noted, it simultaneously grows an infinite number of clusters for all the possible values
of density allowed, but for the sake of simplicity, we will focus on a single cluster in the description, the one
that would be obtained with ϵ=ϵMAX.

reachability-distanceε M, q C,( ) = max reachability-distanceε M, q p,( ) p pεC ∀{ }



430 CHAPTER 12 Clustering

Listings 12.7 and 12.8 describe the main OPTICS algorithm, while on the book’s repo
on GitHub,28 you can find a Python implementation of the algorithm and this Jupyter
Notebook to experiment with it.

function optics(points, epsMax, minPoints)
  reachabilityDistances ← null (∀ p ϵ points)
  ordering ← []                                 
  kdTree ← new KdTree(points)                  
  for p in points do                     
    if p in ordering then
      continue
    ordering.insert(p) 
    neighbors ← kdTree.pointsInSphere(p, epsMax)     
    if |neighbors| >= minPoints then       
      toProcess ← new PriorityQueue()             
      toProcess, reachabilityDistances ← updateQueue(
          p, neighbors, toProcess, 
          reachabilityDistances, epsMax, minPoints)   
      while not toProcess.isEmpty() do
        q ← toProcess.top()              
        ordering.insert(q)          
        toProcess, reachabilityDistances ← updateQueue(
          q, kdTree, toProcess, ordering,
          reachabilityDistances, epsMax, minPoints) 
  return ordering, reachabilityDistances 

The algorithm’s core (also illustrated in figure 12.16 on a simplified example) consists
of a cycle through each point in the dataset. Entries are processed in chunks of contig-
uous, reachable points (the starting point is chosen either randomly or according to
its position in the dataset), and non-core points are “skipped” (similar to what hap-
pened in DBSCAN).

28See http://mng.bz/j4V8.

Listing 12.7 OPTICS Clustering

Method optics takes a list of points, the (maximum) radius of the 
dense area defining core points, and the minimum number of points 
needed in the dense area for a point to be a core point. This function 
returns a tuple: an array for the order in which points were processed 
(an array of indices), and a second array with the reachability distance 
for each point.

Initializes the reachability distance of each point to null
Initializes the ordering for the points. 
Initially an empty array; we’ll add the 
elements as they are processed.

Creates a k-d tree to speed range 
queries. It initializes it with the full 
dataset.

Cycles
through

each point
in the

dataset

Checks if point p hasn’t yet 
been processed; if it was 
processed, just skips it

Otherwise,
adds p as
the next

point in the
ordering

Performs the range query collecting 
all points in the hyper-sphere with 
center p. In this implementation we 
assume the function does include 
the point p itself (as per the 
implementation in listing 9.11).

Checks if p is a core point; hence, 
if the query at line #9 returns at 
least minPoints points

Creates a new
priority queue
for the points

reachable from
p, which will
be processed

next

Updates the queue (by adding all 
points directly reachable from 
p); also updates the reachability 
distance for p’s neighbors

Cycles through all 
points in the queue, 
ordered by their 
reachability distance

Extracts from the 
queue the point q 
with the smallest 
reachability distance 
(from the set of points 
already processed)

Adds q as the next 
point in the ordering

Updates the queue (by adding all points
directly reachable from q) and the

reachability distance for q’s neighbors

Returns the ordering for
dataset’s points and their

reachability distances

http://mng.bz/j4V8
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 The points that are reachable from the ones already processed are kept in a prior-
ity queue and extracted according to their reachability distance (the smallest reach-
ability distance from any of the processed points is on top of the queue, as we have
already seen).

Figure 12.16 An example of how OPTICS constructs the ordering and list of reachability distances. Notice 
that the choice of the first point is completely arbitrary; it can even be random. Here we chose to start from 
P1 just for convenience, to present a cleaner example. Likewise, at step (E) we could have chosen P6 
instead of P5: if that happened, we wouldn’t have been able to compute its reachability distance from P5 
(or vice versa). Choosing a larger value for ϵMAX would help avoid these situations.
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There is a key piece of code still missing, the updateQueue method. That’s where the
reachability distances are actually updated (together with the priority queue). Listing
12.8 bridges this gap. The main purpose of this method is to go through all points q in
the ϵ-neighborhood of a point p (the point that is currently being processed) and
update q’s reachability distances by checking to see if p is closer to it than any of the
other points previously processed.

 As you can see from figure 12.16, we use the priority queue to keep track of the
(intermediate) reachability distances for points and set these distances in stone only
when a point is processed. Moreover, we can see that the reachability distance of the
first point to be processed for each of the clusters will certainly be either undefined or
larger than ϵMAX.

function updateQueue(p, kdTree, queue, processed, rDists, eps, minPts)
  neighbors ← kdTree.pointsInSphere(p, eps)   
  if |neighbors| < minPoints then                    
    return queue, rDists
  for q in neighbors do      
    if q in processed then   
      continue
    newRDist = max(coreDistance(p, eps, minPts), distance(p, q))
    if rDists[q] == null then                      
      rDists[q] ← newRDist        
      queue.insert(q, newRDist)    
    elsif newRDist < rDist[q] then   
      rDist[q] ← newRDist            
      queue.update(q, newRDist)      
  return queue, rDists       

I realize that the discussion so far has been quite abstract. To understand the real pur-
pose of computing these values for the reachability distance and the ordering of pro-
cessing for the dataset, and how they can be used to build a hierarchical clustering, we
need to get ahead of ourselves and take a look at figure 12.17, which shows a reach-
ability plot that can be considered the output of OPTICS (and also requires a further
step after the main algorithm, as we’ll see in the next section).

Listing 12.8 OPTICS updateQueue

Method updateQueue takes a point p, a k-d tree with all the points 
in the dataset, the queue of points reachable from the current cluster, 
an array with the points that have already been processed, an array 
with the dataset’s reachability distances, and the parameters epsilon 
and min points. It returns a tuple with the queue and the array of 
reachability distances (possibly updated during this call).

Performs the range query collecting all points in the hyper-sphere with center q

Checks if p is a core point
(if and only if the query at

line #2 returns at least
minPts points). If it isn’t,

returns without
performing any action.

Cycles through all unprocessed 
points in p’s ϵ-neighborhood

Computes
the

reachability
distance of
q from p

Checks if the reachability
distance of q from the
previously processed

points is null

If it is, q hasn’t been added to the queue yet, so 
insert it now, and set the reachability distance for q.

Otherwise, checks if the reachability distance 
of q from p is smaller than from the previously 
processed points (meaning, if p is closer to q 
than those points)If that’s the case, updates q’s reachability 

distance and its priority in the queue Returns the updated queue and 
array of reachability distances
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12.4.3 From reachability distance to clustering

The first thing you should notice in figure 12.17 is that the plot is determined by three
parameters: minPoints and ϵMAX are the arguments passed to OPTICS, but there is also
another value ε that is used as a threshold for the reachability distance. Obviously, as
you can imagine, ϵ  ϵMAX; this threshold is used in a step that is performed separately
on OPTICS’ results (we’ll describe it in a few lines).

 Setting a threshold ϵ for the reachability distance means deciding that the radius
of the core region around points is equal to ϵ. This is equivalent to running DBSCAN
with that particular value as radius.

 The reachability plot shown in figure 12.17 is a special plot composed of two inter-
connected charts. The top one simply shows the final (flat) clustering that we obtain
by setting the threshold to ϵ, while the bottom one shows the ordered sequence of
reachability distances and explains how the clustering was derived. Clusters and reach-
ability distances are filled with matching colors, so it’s easier to see what points in the
top half match the sections in the bottom half (outliers are marked using black, and
for the sake of convenience and to properly plot all values, we assign εMAX instead of
undefined to the reachability distance of outliers). By doing so we are, in practice,
loosening the requirements for the reachability criterion for these points, but since

Figure 12.17 A reachability plot. The top chart shows the clustered dataset, the bottom half the 
reachability distances of points in the dataset, in the same order as points are processed by OPTICS. 
Outliers are shown in black (with an X marker in the top plot); clusters are assigned the same shade (or 
color, if you are reading the digital version) in both charts (dashed lines link clusters across the charts). 
The reachability distances are computed by OPTICS given parameters minPoints and ϵMAX. Further, 
there is a parameter ϵ that determines the cutoff point for reachability distances and therefore the actual 
partitioning into clusters.
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it’s already the largest possible value that we can assign to the threshold ϵ, it won’t
change anything in the following steps.

 So, how do we form these clusters, given ϵ ϵMAX? Figure 12.18 illustrates the idea
behind this algorithm (at a high level, combining it with elements of OPTICS). We start
looking at reachability distances, following the ordering in which points were processed
by OPTICS, so that we know that the reachability distance of the next point is the small-
est possible among all undiscovered points (keep in mind that the reachability distances
stored are points-to-cluster distances, and that’s also why ordering is important!).

Figure 12.18 An example of the algorithm to derive a flat clustering from OPTICS’ reachability 
distances. Notice that while the reachability distances are built on the chart left-to-right, points are 
examined in order of their reachability distance, starting from a randomly chosen entry (so this 
particular order for the points was chosen, in this example, just for convenience).
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We start from the first point processed—call it P1—and create a new cluster C1; being the
first point of a new cluster, P1’s reachability distance is undefined, so we still don’t know
if P1 is an outlier or part of a cluster. We can only tell after the next step, shown in part
(A) of figure 12.18, by checking the reachability distance (from C1) of the next point P2. 

 Since this value is smaller than ϵ (in the example, 0.8), then we add P2 to C1 and
move to the next point P3, also added to C1 as shown in (B) and (C). From a visual
point of view, in the reachability chart you can see that the reachability distance for P2
is below the threshold line (parallel to the horizontal axis) for ϵ=0.8.

 When we get to P4, we realize that its reachability distance from C1 (or technically
from any of the points processed before P4) is larger than ϵ, and hence P4 is not reach-
able from C1. Since the points are processed in order of reachability distance from the
current cluster, this means that there is no point still to be processed that can be
reachable from points in C1 if the radius of core regions is equal to ϵ; hence, we
“close” the current cluster and start a new one. 

 We start a new cluster for P4, but we don’t know how to classify it yet. When we check
P5’s reachability distance (D), we discover that it is also larger than ϵ, and this means that
the algorithm has detected that P4 is an outlier (because it’s not reachable by any point
in the dataset, given parameters minPoints and ϵ). Notice that the radius that matters
here is ϵ. By using a higher value for ϵMAX, we have simply instructed OPTICS to filter out
as noise only those points with a reachability distance larger than ϵMAX, while for points
with a reachability distance at most ϵMAX, we simply defer the decision to this second step.
In practice, this allows us to compute reachability distances only once, and try several
values for ϵ (up to ϵMAX ) in this second step with minimal computational effort.

 We repeat the process one more time (E) for P6, and since its reachability distance
(from P5) is smaller than ϵ, we know that it’s reachable from P5 and we can add both
to the same cluster (F). If there were more points to process, we would have contin-
ued in the same way.

 One final remark before moving to the implementation, shown in listing 12.9. Notice
that if we run OPTICS twice starting with the same point, the dataset will be processed
in the same order, and the results will be identical (net of possible ties on reachability
distance). Therefore, OPTICS can be considered as completely deterministic.

function opticsCluster(ordering, reachabilityDistances, eps) 
  currentClusterIndex ← 0  
  incrementCurrentIndex ← false    
  clusterIndices ← -1 (∀ p ϵ points)         

Listing 12.9 OPTICS opticsCluster

Method opticsCluster takes the ordering and reachability distances 
produced by optics, and a parameter eps<=epsMax, used to extract a 
flat clustering from the (infinitely many) possible clusterings computed by 
OPTICS. It returns an array of the cluster indices associated with the 
points (or, equivalently, a dictionary associating points to cluster indices).

Initializes the index of the current cluster
Initializes a flag that is used to keep

track of when a previous cluster ended

Initializes 
the indices 
of the cluster 
assignments. 
Initially all 
points are 
marked as 
outliers.
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  for i in {0, .. |ordering|} do   
    if reachabilityDistances[ordering[i]] == null or
         reachabilityDistances[ordering[i]] > eps then 
      incrementCurrentIndex ← true                
    else
      if incrementClusterIndex then 
        currentClusterIndex ← currentClusterIndex + 1   
        clusterIndices[ordering[i-1]] ← currentClusterIndex  
      clusterIndices[ordering[i]] ← currentClusterIndex 
      incrementCurrentIndex ← false   
  return clusterIndices 

One note on the method opticsCluster: In the original paper, the authors presented
a slightly different method using points’ core distance to decide if a new cluster
should be started. The version presented here stems from the consideration that if the
reachability of a point q is undefined or above the threshold ϵ, while point p, the suc-
cessor to q in the processing order, has a reachability distance that’s below ϵ, then q
must be a core point. p’s reachability distance from the set of points processed before
q, in fact, must also be undefined or greater than q’s; otherwise p would have been
processed before q. Consequently, p’s reachability distance in the plot is the reach-
ability distance between p and q, and according to section 12.4.1, that’s only defined if
q is a core point.

12.4.4 Hierarchical clustering

Now that we have learned how to produce a flat clustering from OPTICS results, we
are in good shape to proficiently use the algorithm. We had mentioned, though, that
OPTICS is a hierarchical clustering algorithm. What does that mean and how does it
work with OPTICS?

 Hierarchical clustering algorithms produce a multi-layer partitioning of a dataset.
This result is often represented with a dendrogram, a tree-like structure that holds a
stratified structure. I like to think of exploring dendrograms as analogous to coring:
we can take a section of the dendrogram and see what the flat clustering associated
with that section looks like.

 But enough with the abstract analogies; let’s delve into an example to clarify how
this works!

Cycles through all points in the 
order they were processed

Checks if the reachability distance of a point is 
undefined or larger than the core radius epsilon

If so, then we
need to close the

current cluster.

Otherwise, checks if
it needs to start a

new cluster (by
incrementing

current index)

Actually
performs the

increment

If incrementClusterIndex
is true, it means that we have

found the first point in the new
cluster with a non-null

reachability distance; this
means that the current point

is reachable from the previous
point in the ordering (which,

because of the way OPTICS
work, will certainly have a

reachability distance that’s
either null or too large). So,

we need to include the
previous point as well in the

current cluster.

Adds the i-th point in the 
ordering to current cluster

Since we added the current point to a 
cluster, we know that we need to check if 
the next points are also reachable from it.

Returns a flat clustering, an array 
with the cluster index of each point
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 Figure 12.19 shows a reachability plot obtained from the same reachability dis-
tances and ordering as the one in figure 12.17, but with a different value for ϵ. Using a
larger value for this radius, obviously the reachability areas around points are larger
and fewer clusters are formed.

Does this clustering make more sense than the one shown in figure 12.17? It’s hard to
say just by looking at it; answering the question would probably require some domain
knowledge or the tools that we will present in the next section. But since there is now
just a single noise point surrounded by three clusters, we might think it makes sense
that the points on the left half of the dataset all form a single cluster. To obtain that,
we can try a larger value for ϵ, as shown in figure 12.20.

 With ϵ==0.7 the goal is reached, but there is a catch: the two clusters on the right
are also merged into a single one! This happens because the two peaks in the reach-
ability distance plot, highlighted in figure 12.20, that mark the edges of clusters C1
and C3 in the same figure, have values smaller than 0.7, so these two small clusters are
reachable from the biggest ones next to them.

 Is there a way to keep C3 separated from C4, but C1 merged to C2? For DBSCAN, we
have seen in figure 12.14 that this is not possible. For OPTICS, a flat clustering sepa-
rating one but not the other would only be possible if there was a value of ϵ smaller
than C3’s threshold but larger than C1’s. As figure 12.21 illustrates, this is not the case.

Figure 12.19 A reachability plot similar to the one in figure 12.17, but with a 
different choice for ϵ. With a larger value, fewer clusters are formed.
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Figure 12.20 Another reachability plot from the same results for OPTICS with a 
larger value for ϵ: 0.7. Unfortunately, the value is too large, and clusters C3 and C4, 
that we would like to keep distinct, are merged.

Figure 12.21 Yet another reachability plot with ϵ==0.695. This value is smaller 
than the reachability distance between clusters C1 and C2, but it’s not small enough 
to keep clusters C3 and C4 separated.
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We seem to be back to the old issue with DBSCAN: it is not possible to find a single
value of ϵ that works for the whole dataset, since there is one “half” of it (where x<0)
that has a sensibly lower density than the rest of the dataset. (You can also see this from
the reachability distances: the area, originally in green, on the right, [starting at index
50 on the lower graph] has a dramatically lower average for the reachability distance.)
This is where the hierarchical clustering’s added value comes into play; when we run
the main OPTICS algorithm, we produce an ordering and a reachability plot. These
don’t provide a clustering immediately, but they are (or rather imply) a set of flat
clusterings that we can obtain by “cutting” the reachability plot with a specific value ofϵ taken from [0, ϵMAX].

 If we try all possible values of epsilon and keep track of the resulting clustering, we
can analyze how the partitioning evolves. The best way to perform this analysis is
through a dendrogram, a tree-like structure shown in figure 12.22, where—for the
sake of clarity—the x axis only shows as lowest-level entries the eight clusters (plus
some noise) in figure 12.17, while it would normally have one entry per point in the
dataset. Notice how the clusters and noise points are ordered along the x axis of the

Figure 12.22 The 
dendrogram built from the 
result produced by OPTICS, 
on our example dataset, with 
parameters ϵMAX=2.0 and 
minPoints=3. For the sake 
of clarity, we omit the bottom 
portion of the dendrogram for ϵ<0.5. The clusters formed for ϵ==0.5 are named from C1 to 
C7, and are considered the 
basic units in this plot 
(normally we would start 
from the single points). Super-
clusters merged from them are 
named CA to CF.
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dendrogram: all points in this plot must follow the same order as in the reachability
plot (which, in turn, is the same order points are processed by OPTICS).

 Now, looking at a dendrogram you can see why this is called hierarchical cluster-
ing: it keeps track of a hierarchy of clusters going (top to bottom) from a single clus-
ter containing the whole dataset, to N singletons, which are proto-clusters with a single
dataset point in them. Moving from the top of the dendrogram to its bottom means
virtually exploring all the possible values for ϵ, and the flat clusterings associated with
those values: when, in figures 12.17, 12.19, and so on, we chose ϵ=0.5 or ϵ=0.6. We
were figuratively cutting a section of the dendrogram and taking a peak at the clusters
formed at that level. As we have seen, though, cutting such a section with a line per-
pendicular to the ϵ axis (meaning a line where ϵ is constant through the whole data-
set) doesn’t work for our non-uniform dataset.

 The great thing about having a hierarchy of clusters, though, is that we don’t have
to cut this dendrogram at the same height for the whole dataset! In other words, we
can use different values of ϵ in different branches of the dendrogram. How do we
decide which branches and what values? Well, with 2-D datasets, we can be guided by
our intuition, but in higher dimensions, it can stem from domain knowledge or be
derived by some metric. For instance, in our example, we can consider the partition-
ing after the first split in the dendrogram, CE and CF, and compare their average den-
sity. Since density is clearly very different between the two branches, we can come up
with two different values for ϵ in each of them, based on the statistics of each subset:
higher where density is lower (or, equivalently, where the average reachability distance
is higher).

 If the result is not yet satisfactory, we can keep traversing each branch of the den-
drogram repeating this step, until one of the following happens:

 We reach a point were both branches have similar characteristics.
 We get the desired number of clusters (if we have an idea from domain knowl-

edge).
 We are satisfied by the result of some metric we have defined (see the next

section).
 Or we chose a threshold for the max depth we can traverse the tree, and we

reach it.

Figure 12.23 shows how this would work for our example, assuming we are satisfied
with traversing the dendrogram only up to the first split. You can see that now, instead
of a segment, we have a step function cutting through the reachability plot and the
dendrogram. In figure 12.23, while we only retain three clusters, CF, C6, and C7, we
have left the border of all CF’s sub-clusters visible in the chart.
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12.4.5 Performance analysis and final considerations

Hierarchical clustering is powerful, but also resource-consuming, compared to flat
clustering. While it is estimated in the original paper that the core OPTICS algorithm
runs approximately 1.6 times slower than DBSCAN (on the same datasets), keeping
the hierarchical clustering and building and exploring the dendrogram obviously also
require extra memory and computation.

 For the core algorithm, a quick glance at listing 12.6 and 12.7 shows us that the code
processes each point exactly once (because each point is added to and removed from
the priority queue once), and runs one region-query for each point processed; how-
ever, entries in the priority queue can be updated multiple times, potentially each time
a point is processed. The size of the priority queue depends on the size of the dense
regions, and the larger ϵMAX, the more points will be in the queue. Potentially, the queue
could contain all the points starting from iteration 1 (if ϵMAX  max pairwise distance),
and all points in the queue could be updated each time a new point is processed. Like-
wise, the time needed for nearest neighbor searches, even if using worst-case bounded
structures such as k-d trees, depends on ϵMAX, and if the radius of the region searched is
large enough, these queries become linear scans of the dataset.

Figure 12.23 The 
dendrogram built from the 
result produced by OPTICS, 
on our example dataset, with 
parameters ϵMAX=2.0 and 
minPoints=3. For the sake 
of clarity, we omit the bottom 
portion of the dendrogram for ϵ<0.5. Here we apply two 
different thresholds in two 
branches of the dendrogram.
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 For these reasons, the worst-case running time of the algorithm is quadratic! Nev-
ertheless, it can be shown that with an appropriate choice for ϵMAX, the nearest neigh-
bor search can be performed in amortized logarithmic time, and similarly the size of
the priority queue can be bound.29 Therefore, with a wise choice of ϵMAX, the average
running time can be as low as O(n*log(n)) for a dataset with n points.

 The original paper contains a more formal description of the algorithm and the
theory behind it, and an automated procedure to build a hierarchical clustering struc-
ture from the reachability plot. It’s a good starting point if you’d like to deepen your
understanding of this algorithm.

 For more interesting reading, see the paper on DeLiClu,30 an advanced algorithm
that extends OPTICS with ideas from single-linkage clustering, allowing us to avoid
the parameter ϵMAX altogether, and at the same time optimizing the algorithm and
improving its running time. 

12.5 Evaluating clustering results: Evaluation metrics
At this point in the chapter, we have learned about three different (and increasingly
complex and effective) clustering algorithms, their strengths, and their weaknesses.
Despite being so different from one another, there is one thing that all of these algo-
rithms have in common: they require a human to set one or more hyper-parameters
in order to achieve the best result.

 Setting these parameters manually can be beyond challenging: while with 2-D data-
sets it’s possible to take a look at the resulting clustering and decide if it looks good or
not, with higher-dimensional datasets we don’t have the luxury of using our intuition.

 It is time to define a more formal way to assess the quality of a clustering. It’s finally
time to talk about evaluation metrics.

 To best develop this discussion, we’ll revive our initial example: customer segmen-
tation for our e-commerce site, based on two features, annual income and average
monthly bill on the platform. Figure 12.24 shows a synthetic dataset with a realistic dis-
tribution (based on data from a real website). The dataset has been preprocessed,
normalizing the points. Data massaging is a standard step in data science; it helps
make sure that features with larger values have the same weight on the final decision.
For instance, in our example, we can reasonably assume that the annual salary is in
the range $100K–200K, while the average monthly expenses on the website are some-
where between $500–1,000. If that was the case, one feature would have values three
orders of magnitude larger than the other, and the dataset would be completely
skewed. In other words, if we used Euclidean distance to measure how close two
points are, the difference in annual salary would contribute overwhelmingly more

29Also, by using a Fibonacci heap, the “update priority” method, lowering priorities, would only require an amor-
tized O(1) running time, so even a linearithmic number of calls would at most require O(n*log(n)) total
time.

30Achtert, Elke, Christian Böhm, and Peer Kröger. “DeLi-Clu: boosting robustness, completeness, usability, and
efficiency of hierarchical clustering by a closest pair ranking.” Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, Berlin, Heidelberg, 2006.
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than the difference in monthly expenses to the final distance between two customers,
making the second feature irrelevant.

 To avoid this effect, we perform a normalization step by subtracting the mean of each
feature to every single point, and then dividing by the feature’s standard deviation.31

 On the left side of figure 12.24, we show a possible clustering for the dataset. You
don’t need to be a domain expert to see that this appears to be a bad choice for the
number of clusters.

Can we write a method or a mathematical formula to express the (poor) quality of this
choice?

 Let’s start from a consideration: What are the consequences of a bad clustering?
Looking at the picture, we can see that points that should belong to different clusters
(for example the four clusters in the top-right quadrant) are instead grouped
together. As a result, points that are far away from each other are all in the same clus-
ter. And if we think about the very definition of k-means, its target is minimizing the
squared Euclidean distance of the points to their centroids. When too few centroids
are created (as in the example), this will force many points to be assigned to a single
centroid, even if far away. Therefore, the average distance of points in each cluster
from their centroid will be higher than if we chose the right number of centroids!

31This is called z-score normalization and has the advantage of producing data with zero-mean and unit-variance.
There are other ways to perform feature scaling; to learn more take a look, for instance, at chapter 2 of Machine
Learning in Action, by Peter Harrington (Manning Publications, 2012).

Figure 12.24 A synthetic dataset showing customers of a hypothetic e-commerce 
website after feature scaling. On the right, a possible (bad) clustering for the dataset.
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 If we run the algorithm several times, with different values for the number of cen-
troids, we can compute the average (or median) distance of points from their centroids,
and choose the lower value. Is that good enough?

 Well, we are close, but not quite there. If you think about it, whatever the value of k
(the number of centroids) that we tested last, if we choose k+1, with one more cen-
troid the average distance will drop a little further because each centroid will have
fewer and closer points in its cluster. If we take this to an extreme, by choosing k=n
(one centroid per point in the dataset) we will obtain an average distance-to-centroid
equal to zero (because each point will have its own centroid).

 How can we counter-balance this? The truth is that we can’t really balance it easily,
but there is an easy empiric method that helps us choose the best value. We’ll see that
in a minute.

 First, let’s make another important point clear: the distance of points from cen-
troids is only one of many possible metrics. Incidentally, this metric only works for
centroid-based clustering algorithms; it wouldn’t be applicable to OPTICS or
DBSCAN. A similar metric that would also work for those algorithms is the intra-cluster
distance: the average pair-wise distance between points in the same cluster. Another
interesting measure, useful when dealing with categorical features, is the total cohe-
sion (similar to the distance to cluster center, but using the cosine distance instead of
the Euclidean distance).

 In the rest of this section, we’ll adopt the intra-cluster average distance as our metric.
Now, however, it’s time to reveal the elbow method, an empirical tool that’s used in clus-
tering as well as across machine learning to spot the best value for hyper-parameters.

 Figure 12.25 shows an example of applying the elbow method to our customers
dataset to determine the best number of clusters based on intra-cluster average dis-
tance. But it would also be possible to use the same method to decide on the best
value for ϵ or minPoints if we were using DBSCAN instead.

Figure 12.25 The elbow 
method used to determine the 
best value for the number of 
clusters into which the dataset 
in figure 12.24 should be split. 
You can guess where the name 
comes from.
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From figure 12.25 you can guess where the name of this method comes from: the plot
looks like a bent arm, and we want to choose the value corresponding to the elbow,
the point where the growth of the function changes drastically.

 For our example, that value is k=6. After that, the metric value improves very little.
For real datasets, the transition can be less neat (in this case, clusters are very compact
and far from each other, so once we reach the optimal number of clusters, the
improvement with adding another centroid is almost null), but there is often a point
that’s like a watershed: on its left, the slope of the curve is closer to (or larger than)
-45°; on its right, it’s closer to 0°.

 There are, of course, a few details to take into account to successfully implement
this method. First, since k-means is a randomized method, it’s important to run it sev-
eral times per value of k. Then you can pick the best value among all the runs (and
also store the clustering produced, as we do in the Notebook on the book’s repo), or
the average or median value for the metric, depending on your goal.32 Moreover, you
need to carefully choose the best metric for your problem. You might want to mini-
mize the distance of points inside one cluster to make sure clusters are as homoge-
neous as possible, or, for instance, maximize the distance between different clusters to
make sure you have a neat separation between different groups.

 Listing 12.10 summarizes the steps that should be performed to successfully apply
the elbow method (up to the plotting, not included for obvious reasons). As men-
tioned, you can check it out in the Notebook on the book’s repo.

function kmeansElbow(points, ksToTest, maxIter, runsPerK)
  results ← {}     
  for k in ksToTest do 
    M ← []                                                
    for i in {1,..,runsPerK} do              
      (centroids, clusters) ← kmeans(points, k, maxIter) 
      M[i] ← intraClusterDistance(points, centroids, clusters)
    results[k] ← min(M)
  return results   

32If you are optimizing the choice for the current dataset, picking the best result makes sense. If you’ll have to
run the algorithm on several datasets with similar characteristics, then you might need to find a value that can
generalize well, and using the median could be your best bet.

Listing 12.10 The elbow method

Method kmeansElbow takes a list of points, a list of values to test for k (aka 
numCentroids), the number of clusterings it should create, maxIter, the maximum 
number of iterations for k-means, and how many runs of the algorithm are needed for 
each value of k tested. This function returns an associative array with the best value 
for the intra-cluster distance metric obtained for each number of centroids tested.

Initializes the associative array with the results
Cycles

through all
the values

for k to
test

Initializes an array 
to keep track of the 
results (because we 
are running the 
algorithm several 
times for each 
value of k)

Repeats runsPerK times

Runs k-means with 
the given input and 
hyper-parameters

Computes the 
intra-cluster 
distance metric 
on the output of 
the algorithm

Chooses the best result of the intra-cluster 
distance metric among all runs with the 
current value for the number of centroids

Returns the results (optionally you could save the clustering 
corresponding to the best metric value for each value of k 
and return the list of clusterings as well)
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12.5.1 Interpreting the results

To check whether the elbow method works, we have stored the results producing the
best metric values for each value of k tested (the ones that are plotted in figure 12.25),
and we can take a look at some of them in figure 12.26 to verify that our choice makes
sense. And indeed, with k=5 we would have too few centroids, and two clusters would
be assigned to the same centroid (left chart, bottom-left corner), while with k=7, a sin-
gle “natural” cluster gets split by two centroids (right chart, middle).

Once we have established that six clusters are the best choice for our dataset, we can try
to interpret the result of the clustering. We can see the top-right corner, for instance,
that is made of customers with high annual income and who spend generously on the
website. A bit to the right of these clusters, there is another interesting group: people
who, despite a lower income, spend almost as much in monthly purchases as the wealth-
iest cluster. In the lower left corner, we can see two clusters of people with low incomes
that also don’t spend a lot of money on e-commerce. These two groups can either be
marketed to together, or further analysis can be performed to understand the differ-
ences and target products more appropriately to each group. Considering that they are
bringing in limited income, though, the marketing section could rather ask the data sci-
ence team to focus on the two clusters toward the center of the chart: middle-class cus-
tomers that could be encouraged with targeted campaigns, and that can be asked to fill
out surveys that will help the marketing team improve customers’ satisfaction. 

 We have seen just one example in action of how clustering can help your company
thrive, but there are many, many more. Now it’s your turn to apply these powerful
techniques to your data!

Figure 12.26 Best k-means clustering for our example dataset with k equals 5, 6, and 7. You can notice that 
6 is indeed the ideal value, and the smallest value that has enough centroids for the dataset natural clusters.
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Summary
 Clustering is the main application of unsupervised learning, used to make

sense of unlabeled data, discovering patterns in raw data.
 Some applications of clustering are marketing segmentation, noise detection

(for instance, in signals), and data preprocessing.
 The oldest clustering algorithm, k-means, is the easiest to implement, but also

has limitations in the shape of the clusters. It can only spot convex clusters and
can’t handle non-linearly separable data.

 A different approach to clustering, DBSCAN is about identifying groups based
on the density of the points. It can handle any shape and non-linearly separable
data, but it doesn’t work well with datasets with areas of heterogenous density.
Moreover, it’s hard and unintuitive to choose the best values for the algorithm
hyper-parameters.

 OPTICS, a newer method based on DBSCAN, builds a hierarchical clustering
and allows us to handle datasets with varying density. It also makes it easier to
choose the values of the parameters.

 To assess the quality of a clustering for a dataset, we can use evaluation metrics
such as intra-cluster distance, inter-cluster distance, or total cohesion.

 The elbow method is a tool that provides graphical feedback to choose the best
values for the algorithms’ hyper-parameters.
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Parallel clustering:
 MapReduce and

 canopy clustering

In the previous chapter we introduced clustering and described three different
approaches to data partitioning: k-means, DBSCAN, and OPTICS.

This chapter covers
 Understanding parallel and distributed computing

 Canopy clustering

 Parallelizing k-means by leveraging canopy 
clustering

 Using the MapReduce computational model

 Using MapReduce to write a distributed version of 
k-means

 Leveraging MapReduce canopy clustering

 Working with MR-DBSCAN 
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 All these algorithms use a single-thread approach, where all the operations are
executed sequentially in the same thread.1 This is the point where we should question
our design: Is it really necessary to run these algorithms sequentially?

 During the course of this chapter, we will answer this question, and present you
with alternatives, design patterns, and examples that will give you the tools to spot
opportunities for code parallelization and use the best practices in the industry to eas-
ily achieve major speedups.

 After going through this chapter, readers will understand the difference between
parallel and distributed computing, discover canopy clustering, learn about Map-
Reduce, a computational model for distributed computing, and finally be able to rewrite
the clustering we saw in the previous chapter to operate in a distributed environment.

13.1 Parallelization
Although the RAM model (presented in appendix B) is traditionally single-threaded
and algorithm analysis usually focuses on sequential execution and improving the run-
ning time of single-process applications, parallelization, when applicable, can allow for
tremendous speed-ups, and it should be in the tool belt of every software engineer.

To give you an idea of the kind of speed-up we are talking about, I saw an application’s
running time go down from 2 hours to less than 5 minutes by leveraging Kubernetes
and Airflow to distribute data download and processing into small chunks, instead of
processing the same data sequentially. Of course, splitting data and processing each
chunk separately is not always possible; it depends on the domain and on the algorithm.

 So, this is the point where we ask ourselves, is clustering a domain where we can
parallelize execution and get away with it?

 Can we break down our datasets and apply the algorithms we discussed in chapter
12 to each partition independently?

1 Multi-processor machines can, however, apply optimizations where some operations are executed in parallel
across different cores. This level of parallelization, however, is limited by the number of cores on a chip—cur-
rently at most in the order of a hundred, for the most powerful servers.

Multi-threading in coding interviews
When it comes to algorithm analysis in coding interviews, you might find that there
are diverging opinions on this point. As a personal anecdote, during a round of inter-
views, I found two interviewers with opposite positions, one considering paralleliza-
tion “cheating” to solve the problem we were discussing, and another expecting the
interviewee to suggest parallelization to solve it. Keep this in mind during your next
interview. Of course, it also depends on the specific problems and on where the inter-
viewer wants to lead you, but asking the interviewer about your options for multi-
threading and parallelization is often a good idea (provided you know what you are
talking about!)
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13.1.1 Parallel vs distributed
Before we get to the point, a disclaimer is due: usually with the term parallel computing
we only address computations that run on multiple CPUs on the same system—multi-
threading, in synthesis. When we think about using multiple CPUs across several
machines communicating through a network, then we are instead referring to what’s
called distributed computing. Figure 13.1 shows a diagram that illustrates this difference.

 Parallel computing is limited by the number of CPUs on a single machine, while
distributed computing is a better approach for scaling out systems and processing

Figure 13.1 A schematic view of the difference between parallel and distributed 
computing models

Parallel

Distributed
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huge datasets. On the other hand, if a dataset can fit into a single machine’s memory,
the parallel computing approach results are sensibly faster, since the processes can
communicate through shared memory, while nodes in distributed systems need to
exchange information through a network (at the time of writing, the latency2 is 100ns
vs 150ms,3 so a factor of 106).

 In this chapter, we’ll often use the term parallel computer to refer to both. The com-
putational models we present are software abstractions that could run seamlessly on
threads on a single machine or on a distributed system, and the only discriminant
would be the size of the input and the resources needed, not the algorithms we use.

13.1.2 Parallelizing k-means
Let’s now get more specific in order to answer this question: Can we make k-means a
parallel algorithm?

 Looking at each step of the algorithm separately will help us “divide and conquer” the
problem. Please refer to section 12.2 for the description and implementation of k-means.

 The first step is initialization, creating an initial guess for the centroids. If this is
done completely at random, this step is independent of the dataset and its running
time is only proportional to the number k of clusters; therefore, the fully randomized
version is not worth parallelizing. Parallelization could be necessary when points are
drawn independently from a distribution without replacement. We’ll see how to dis-
tribute this step in section 13.3.2.

 Step 3, re-centering, computes the center of mass for each cluster. We will tackle this
first because each cluster is processed independently and computing the center of mass
for a cluster only needs the points in it. We can definitely parallelize this step, with one
process for each cluster, so that the execution time will be one of the longest running
threads. If the sequential version needs n*d sums and k*d divisions, where n is the num-
ber of points in the dataset and d its dimension (the cardinality of each point), assuming
a uniform split to clusters (best-case scenario, of course) each process will perform
d*n/k additions and d divisions. If all threads finished at the same time and ran at the
same speed as the original sequential algorithm, we would obtain a k-fold speed-up.

 Step 2, classification, is more complicated to parallelize. In theory, we would need
to check all points’ distances in order to assign them to the right centroid. Thinking
about this more carefully, though, do we really need all points? If you refer to figure
12.3 in chapter 12, it seems apparent that a point will only switch to a cluster adjacent
to its current assignment, and never to one far away. Also, if a centroid c’ moved fur-
ther away from a second cluster C (assuming the centroid of the second cluster didn’t
move), it would be impossible for a point in C to be assigned to c’. We would need to
be very careful, though, with the assumptions we made, so this step would be some-
what more complicated to parallelize.

2 References: http://mng.bz/Wdql and http://norvig.com/21-days.html#answers. 
3 Considering a WAN or high-performance cloud service. Local clusters in datacenters, when properly config-

ured, can lower this latency by two orders of magnitude, down to 1ms.

http://mng.bz/Wdql
http://norvig.com/21-days.html#answers
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 Even by just parallelizing step 3 of the k-means algorithm, we can obtain a nice
speed-up with respect to the sequential version.

 Can we do better? Yes, we can, in at least two different ways; to see how, we will need
first to introduce a new algorithm and then a game-changing programming model.

13.1.3 Canopy clustering
What if we could run a quick, coarse-grained pseudo-clustering, before running any
real clustering algorithm, to get an idea of the distribution of data?

 Canopy clustering is normally used for this purpose. It groups points into spherical
regions (circles in our 2-D examples), like k-means, but unlike it, these regions can
overlap, and most points are assigned to more than one region.

 The canopy clustering algorithm is faster and simpler than k-means, because it runs
in a single pass, doesn’t have to compute the centroids for the canopies (spherical pseudo-
clusters), and doesn’t compare each point to each centroid; instead, it elects one point in
the dataset as the center of each canopy and adds points around it to the canopy.

 The algorithm can be made even faster if, instead of the exact distance metric for
points in k-dimensional space, a fast approximate metric is used. This gives a less pre-
cise result that can be refined by using a proper clustering algorithm as a next step. As
we’ll see in the next section, using canopy clustering to bootstrap other algorithms
can both speed up convergence and reduce the running time.4

 Figure 13.2 shows how canopy clustering works through an example, while listing
13.1 describes its pseudo-code.

function canopyClustering(points, T1, T2)
  throw-if T1 <= T2    
  centroids ← points            
  canopies ← []                  
  while not centroids.isEmpty() do         
    p ← centroids.drawRandomElement()     
    canopy ← {p}       
    for q in points do   
      dist ← distance(p, q)                                                  
      if dist < T1 then 
        canopy.insert(q) 
        if dist < T2 then                                 
          centroids.remove(q)                             
    canopies.add(canopy)              
  return (canopies, centroids) 

4 It can both reduce the number of iterations needed and reduce the number of operations performed in each
iteration.

Listing 13.1 Canopy clustering

Method canopyClustering takes a list of points and two thresholds, T1 
and T2, and returns a list of canopies, that is, sets of points with overlap.

Checks that T2 is a smaller radius than T1; otherwise, throws an error Initializes the set of potential 
canopy centers to the whole dataset

Initializes the output (a list of 
canopies) to an empty list

While there are still points in the 
list of possible canopy centroids . . .

. . . extracts one point at random 
from the list of centroids and 
removes it from the listInitializes current canopy to a 

singleton with just point p

Cycles
through all

points in
the dataset
(technically

we could
already
skip p)

Computes
the distance

between p
and q

Checks if q is closer to p than threshold T1

If it is, adds q to current canopy

If q is also closer than T2, 
then removes it from the 
list of possible centroids, 
so that it won’t be the 
centroid of a new canopy

Adds the current canopy 
to the method resultReturns the list of canopies created and the list of their centroids
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At a high level, the algorithm can be described by a few simple steps:

1 Select and remove a random point p from the dataset and initialize a new can-
opy with it (lines #6–7).

2 For each remaining point q, check if the distance between p and q is smaller
than a threshold T1 (lines #8–10); if it is, add q to current canopy (line #11).

3 If said distance is also smaller than a second threshold T2, remove q from the list of
possible canopy centroids (lines #12–13) so it won’t be the center of a new canopy.

4 Repeat steps 1–3 until no point is left (line #5).

This process produces spherical agglomerates with radius (at most) T1; the inner radius
T2 identifies the critical distance within which points can be confidently considered to be
related to each other (or equivalently, in same cluster). While a point q (at steps 2–3)
could have already been added to a different canopy, if it’s within the inner radius of cur-
rent canopy’s centroid c, we are confident the pair (q, c), is maximally correlated, and
even if we chose q as a centroid, we couldn’t form a canopy that better fits q.

 If you are wondering why we can rely on these distances and how we can come up
with a good value for T2 (and T1), you are on top of the main issue: these parameters
usually need to be tuned (trying a few different ones and checking the number/quality

T1

T2
T2

CA

T1

T2CA
T1

CB CA

CC
CB

CD

CE

Figure 13.2 An example of canopy clustering running on a dataset. The first three sub-figures show 
the creation of tree canopies, starting from randomly chosen points. Circles filled with a solid color other 
than the lightest shading are points removed from the list of possible centroids, while pentagons are 
the centroids of canopies. The solid-color points are removed from the list because they lie within the 
inner radius (T2) from the centroids (as shown in the first three steps). The last sub-figure shows the 
clusters created after a few more steps. Note that there are still some lightly shaded points, so at least 
three more canopies (that will partially overlap the five shown) will be created to include those points.
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of the canopies), and sometimes good initial estimates for these distances come from
experience and domain knowledge. For instance, if you were clustering geographical
data about cellphone cells and you knew that no two cells are further away than a few
kilometers, you would have a hint about T1.

 Deciding these values is not as big deal as it may seem; it is not important to come
up with the best possible value, but rather to find an acceptable one for both parame-
ters. As we mentioned, this algorithm only provides a coarse-grain clustering.

13.1.4 Applying canopy clustering
Canopy clustering is often used as a pre-processing step for k-means, but it can also be
used for DBSCAN and OPTICS. As a matter of fact, for those algorithms it has one fur-
ther advantage. But we’ll get to that in a moment. First, let’s talk about how to com-
bine canopy clustering and k-means.

 The easiest way is quite intuitive. We can take the coarse-grained clusters (with
overlap) output by canopy clustering, and for each of them compute their center of
mass. Because these clusters can overlap each other, some points will belong to more
than one of them; therefore, we can’t just treat these canopies as the result of an itera-
tion of k-means! However, we can use their centroids to bootstrap k-means, replacing
the default (random) initialization step with a more balanced choice.

 Alternatively, we could run canopy clustering with coarse values of T1 and T2, and
improve the initialization step by making sure to draw a fraction of the initial centroids
from each of these areas. If the canopy clustering returned m<=k pseudo-clusters, draw
k/m centroids from each of them. In practical experiments, this bootstrapping provided
a relevant speed-up in convergence for k-means.

 If you remember what we discussed in chapter 12, DBSCAN (section 12.3) has a
weak spot when applied to datasets with non-uniform density, and OPTICS (section
12.4) can partially remedy this issue, at the cost of a heavier computational load and
some experimenting with its parameters. Ideally, what we would need is to run
DBSCAN independently on areas with different density and tune its parameters (or
just the value for ϵ) for each of these areas separately.

 Using canopy clustering as a first step can help us with this issue. If we run
DBSCAN on each pseudo-cluster separately, we can expect smaller regions to have a
more uniform density, and regions with different density to be—likely—assigned to
different pre-clusters.

 After computing all the clusters for these areas, however, we still aren’t done.
Because the pseudo-clusters were (possibly) overlapping, the local clusters might also
overlap. Besides checking to see if we should merge clusters that overlap, there is a
more subtle effect: as shown in figure 13.3, two non-overlapping clusters could have
points that are in each other’s ϵ-neighborhood! So, we need to also check those
pseudo-clusters whose hyperspheres are closer to each other than the larger of the val-
ues of ϵ used for those areas (in case DBSCAN was called on them with different values
for its hyper-parameters).
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 The good news is that for such canopies,
we don’t have to check every combination of
points drawn from their Cartesian product,5

but only the points in the external ring of
each of them, at a distance from the can-
opy’s center greater or equal to T2-ϵ.

 Now the issue is that we can parallelize the
execution of DBSCAN on each pseudo-
cluster, but to put together all the results, we
need to check all the pairs of clusters pro-
duced by each parallel run, and all the (fil-
tered) pairs of points in the Cartesian
product between the external rings of these
clusters. Do we need to run these checks in a single thread on a single machine, hence
going back to sequential execution?

13.2 MapReduce
For a long time, engineers have struggled to efficiently parallelize execution of algo-
rithms like DBSCAN, at least from a practical point of view, because of both hardware
limits and lack of software infrastructure. The most used distributed programming
model was GRID computing, until it was realized that a different approach would
make computation not just faster, but potentially more robust. That’s when the
MapReduce programming model was adopted on a large scale, after being patented
and used by Google in the early 2000s.

 Although there are several implementations of MapReduce, (or we should say there
are several products leveraging MapReduce to provide tools that orchestrate distrib-
uted resources to solve tasks, such as Apache Hadoop, Hive, or CloudDB), I believe its
main value is in the model it provides, which can be applied to a plethora of tasks.

 For this reason, we’ll try to explain how it works through an example.

13.2.1 Imagine you are Donald Duck . . . 
Imagine Donald Duck dozing on his hammock—as always—on a lazy afternoon, when
suddenly a phone ringing louder than normal (and more annoyingly than normal!)
wakes him up. He knows before even answering that he is being gently summoned by
his lovely uncle Scrooge McDuck, and he needs to rush to the Money Bin—a kind
request to which he gladly responds, in order to avoid being disowned (and over-
whelmed by debt).

 Long story short: as always, his good old Uncle Scrooge has a long, boring task for
Donald to attend to. This time, since he is securing the Money Bin main room and has
to move all the coins to a different, giant, safe, he wants to take advantage of the situa-

5 The Cartesian Product between two sets is the multiplication of the two sets to form a new set, containing all
the ordered pairs such that the first element belongs to the first set and the second element belongs to the
second set.

p
q

p’s ε-neighborhood

Figure 13.3 Non-overlapping canopy pseudo-
clusters could still be considered as belonging 
to the same cluster by DBSCAN, if both have 
points close to their border, and the closest 
points are within each other’s ϵ-distance.
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tion (surprise, surprise!) and count and catalog all the coins in his Money Bin . . . by the
next morning.

 We are talking about millions of coins, so it would be humanly impossible to do
this on one’s own. When Donald Duck regains his senses (he understandably fainted
when Uncle Scrooge broke the news), he figures out that he’ll need all the help he
can get, so he runs to Gyro Gearloose’s and convinces him to create a hoard of robo-
clones that will be able to learn how to recognize different coins and catalog them.

 This step is the “classical” parallelization step: you break the work down (into piles
of coins) to several copies of your software (the counting/catalogue routine), and
write down, for each pile, what coins you found and how many of them there are. For
instance, a machine could produce a list like this:

£1: 1034 pieces
50¢: 53982 pieces
20p: 679 pieces
$1: 11823 pieces
1¢: 321 pieces

So, problem solved? Well . . . not really. Robo-clones are expensive and take time to
build, so even a genius like Gyro could only provide a hundred of them by quickly
rewiring some not-so-well-behaved robo-waiters he created in one of his experiments.
Now they became quite fast at counting money, but each of them has a huge pile of
coins, resulting in a long list of coin types with their quantities. Figure 13.4 illustrates
the situation: once they’re finished, it’s up to Donald to add up the hundreds of
entries in all those hundreds of lists. 

 After fainting again and being woken up using Uncle Scrooge’s ammonia (he’ll be
charged for it, it goes without saying), good old Donald crawls to Gyro’s lab with a des-
perate cry for more help.

 Unfortunately, Gyro can’t afford to build more counting machines! But he
wouldn’t be a genius if he couldn’t solve this problem.

 And to do so, he won’t have to build anything; just getting some help and using a dif-
ferent algorithm will do. After doing a quick computation in his head, he estimates that
there are about two hundred different types of coins. So he rounds up the whole family
and gives a task to each of them: they will have to handle five types of coins each, but
they won’t have to count them. They will receive a few lists (well, a hundred of them)
from the counting machines, but each list will only have five entries for the same five
types of coins, together with how many of them the individual counting machine found.

 To achieve this, he provides each counting machine with an address to locate each
member of the McDuck family—for instance, an email address such as huey
.mcduck@duckmail.com—and a dictionary that is the same for each machine and
that lists the types of coins handled by each member of the family. To simplify things,
we can imagine that each member is assigned all the coins from a single country. For
instance, as shown in figure 13.5, Huey could get all US dollars, Dewey all UK sterling
pounds, Louie all Euros, and so on. But in a real application, each of them could get
any combination of coin denominations.

mailto:huey.mcduck@duckmail.com
mailto:huey.mcduck@duckmail.com
mailto:huey.mcduck@duckmail.com
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Once a machine is done counting, it goes through the members of the family and
sends them each an email with the total number of coins found for each of the types
they are responsible for. Then each family member will have to sum the values in each
list, for each type of coin, and send the final result to Uncle Scrooge—just a few hun-
dred integer additions per duck; a tedious job, maybe, but one that shouldn’t take too
long (just make sure not to let Fethry anywhere near a computer!).

 For instance, if Daisy Duck is assigned the $1, 50¢, 25¢, and 1¢ coins, then all the
machines will send her a short list that looks like this:

25¢: 1.034 pieces
$1: 11823 pieces
50¢: 53982 pieces
1¢: 321 pieces

Counting
machine 1

List 1 List 2 List 3

Donald
Duck

List 100

Counting
machine 2

Counting
machine 3

Counting
machine 100

Pile of
coins

Pile of
coins

Pile of
coins

Pile of
coins

Figure 13.4 A first attempt to parallelize coin counting. In this configuration, poor Donald 
still has to sum hundreds of lists with hundreds of entries each.
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Figure 13.5 shows the shift in paradigm. While before the person who had to make
sense of all the lists was the bottleneck of the computation, now, introducing a new

Figure 13.5 Revised coin counting process, using MapReduce and a little help. Now, each counting machine 
produces several lists, one for each member of the McDuck family at level 2. They, in turn, will have to check 
a hundred lists, but each with just a few entries, and sum up the values in each list by entry.

List 1-$ List 1-£ List 1-€

Output Huey
$ Output Dewey

£

Donald
Duck

Final Output
(Merged)

Output Louie
€

List 1

List 2-$ List 2-£ List 2-€ List 2 List
100-$

luckyduck@duckmail.comhuey.mcduck@duckmail.com

Huey Dewey Louie Gladstone
Gander
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intermediate level in the workflow, and breaking down the work so that each entity at
this level has a limited amount of work to do makes the difference.

 The key, though, is that the results outputted at level 1 can be partitioned in
groups and each of these groups can then be handled separately at level 2.

13.2.2 First map, then reduce

Time to abandon our cartoon heroes for a more life-like example, where both levels
of this parallel computation would be performed by machines. The operation at level
1 is called Map, because it maps each entry in the input dataset (more precisely, in the
portion of the dataset handled by a machine) into something else, extracting the
information that’s relevant for computing the final result. The mappers in our exam-
ple could likely just run a “coin-recognition” software, without keeping a count,6 and
send lists containing unsorted occurrences of coins to the machines at level 2. Some-
thing like this:

$100: 1
50¢: 1
$100: 1
$1: 1
25¢: 1
…

Here, the info extracted by mappers is just the presence of a coin.
 Then the machines at level 2 would specialize in counting. Every machine at level

2 would receive all the entries for occurrences of a certain group of coins, and do
something with them (counting them, for example, but it could also sum up their
values or filter them). This step is therefore called Reduce, because it takes info limited
to a homogeneous group of entries and combines (aka reduces) them to get our final
result.

 As mentioned, the key disadvantage of the classic, “flat” parallel computation is
that composing the results of all the parallel threads/processes/machines would be
the bottleneck of the whole process. If a single process has to spawn the threads and
then get their results and combine them, it will still have to sequentially access the
entire dataset at least once, and even if it also parallelizes the process that combines
the intermediate results, it still remains a bottleneck, as shown in figure 13.6. On the
left half, you can see that for basic parallelism, the “intermediate output” is all sent to
the orchestrator that has to gather it and sort it to the machines in layer 2. 

 In MapReduce, however, every step is intrinsically parallel. Data is already broken
down into pieces that can be processed independently and results are routed to the
reducers by each mapper on its own, without passing through a central orchestrator.

6 Typically a per-key count on mappers’ output would be done by a third abstraction, the combiners, that are
sort of like mini-reducers operating on the same machines as mappers, and only on the output of individual
mappers. Instead of a list with a ton of entries with value 1, the mapper would send out a list with just a few
entries, reducing both bandwidth and the workload for reducers.
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MapReduce

Output M

Data
chunk 2

Data
chunk 3

Data
chunk N

Input

Layer 1
Map

Intermediate
output

Layer 2
Reduce

Intermediate
output

Data
chunk 1

Mapper 1 Mapper 2 Mapper 3 Mapper N

Mapper A

Output A Output B Output C

Orchestrator
Final output

(Merged)

Mapper B Mapper C Mapper M

List 1-A List 1-B List 1-C List 1-M

List 2-A List 2-B List 2-C List 2-M List N-A List N-B List N-C List N-M

List 3-A List 3-B List 3-C List 3-M

Figure 13.6A Comparing the classical approach to parallel computing to MapReduce. We assume that in 
both cases, data is already broken down into chunks and can be passed by location, that is, by providing 
something like a file handle without the need for the orchestrator to read the data. In the basic parallel 
approach, using processes (either running on threads or on different machines), the orchestrator needs to 
spin up the threads and make sense of their results. It can either combine these results itself, or spawn more 
processes to combine them (as shown in the figure), but it will be the bottleneck either way.



461MapReduce

Basic parallelism

Input

Layer 2

Layer 1

Intermediate
output

Intermediate
output

Output MOutput A Output B Output C

Data
chunk 2

Data
chunk 3

Data
chunk N

Data
chunk 1

Orchestrator

Orchestrator

Orchestrator

List 1 List 2 List 3 List N

Thread 1

Thread A Thread B Thread C Thread M

Thread 2 Thread 3 Thread N

Orchestrator

Orchestrator

Final output
(Merged)

Figure 13.6B Continues from figure 13.6A
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Technically, the reducers are the ones that read the information from each mapper,
while the mappers’ task is to create temporary files for each reducer in a specific loca-
tion (different for each reducer—imagine, for instance, that each mapper creates a
different folder or a dedicated virtual disk for each reducer).

 Besides speed, the MapReduce approach has another advantage: if a machine
crashes, that single machine can be replaced without having to restart the whole com-
putation. This, in turn, can help us increase availability and reduce latency by allocat-
ing redundant resources to preventively cope with malfunctions.

 One thing needs to be clear. In MapReduce there is also an orchestrator, a leader
node that controls the computation (spinning up the computational nodes, or request-
ing existing resources, assigning the input chunks to the mappers, planning how to
route intermediate results to reducers, and handling/recovering from errors). The dif-
ference from canonical parallelism, though, is that this special node doesn’t actually
read the input or compute it, and that intermediate results don’t have to pass through
it, so it’s not a bottleneck for computation. An objection could be that the primary node
is still a bottleneck for availability, because if the leader node crashes, the computation
can’t be completed; however, using replicas (either live copies or primary-replica), we
could get availability guarantees through (limited) redundancy.

 There are catches, of course. The first one is that not all computations are suitable
for the MapReduce model (or for parallel execution altogether). In general, if data
entries are somehow connected, and scattered pieces of data influence each other’s
contribution to the final result, then parallelization could be impossible: time series
are a good example of data that normally needs to be processed sequentially, because
the final result depends on the sequence of adjacent data.

 For MapReduce, requirements are even higher. In order to gain an advantage
from applying it, we need data that can be grouped by some attributes/fields, and that
can be reduced for each of these groups separately.

 The operation performed in reducers, moreover, must be associative, so that the
order in which the intermediate sub-lists are outputted by mappers must not matter.

 It’s worth noting that if, instead of cataloging all the coins, we would like to just
count how many of them there are (without distinguishing their type) or compute the
total value, we wouldn’t need reducers. Each parallel process would just output its
total, and then they could be added by a single central process.

 The second catch is that there is no centralized entity that splits the work and dis-
tributes it evenly to the reducers, so one can get very busy while another waits without
anything to do. Going back to our story, for instance, while Daisy Duck will have to
worry about US currency, Gladstone Gander is assigned all rare coins from small
countries (lucky him), and thus the lists he gets are almost all empty, and he has to
perform just a few additions.

13.2.3 There is more under the hood

We have seen a few advantages of the MapReduce model, but there is also more to its
success that can’t be seen at a high level. In chapter 7, when talking about caches and
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multi-threading, we discussed locks and synchronization. Every parallel computation
with a shared state will need synchronization, be it to aggregate results, break down
data, and assign it to computing units (threads or machines), or just check that the
processing is complete.

 The key advantage of MapReduce is that it intrinsically limits shared state to a min-
imum (by embracing functional programming concepts such as immutability7 and
pure functions8), providing a programming paradigm, a way to specify the problem,
that forces us to state a problem in such a way so as to eliminate shared state9 and han-
dle the synchronization still needed under the hood.

13.3 MapReduce k-means
To efficiently parallelize any algorithm, we first need to answer two questions: How do
datapoints influence computation, and what data do we really need at any time to per-
form a certain step?

 In the case of both k-means and canopy clustering, the way we compute the various
steps dictates a MapReduce implementation. Let’s examine each step of k-means
separately:10

 In the classification step, when we assign points to canopies/clusters, for each
point the operation is computed independently, and the only thing that matters
is the list of centroids. So, we can shard the data however we like, as long as we
pass all the centroids to each mapper.

 In the re-centering step, to update k-means’ centroids, for each centroid we only
need the data assigned to it, and each point is assigned to a single centroid, so
we can partition the dataset and process each group separately.

 Initialization is trickier for k-means; we would need to draw points randomly
from the full dataset, and this would seem to hinder parallelization. We can,
however, employ a few possible strategies to distribute the computational load:
– Randomly shard the dataset and then independently draw centroids at ran-

dom from each shard (although it can be tricky to obtain an overall uniform
distribution of samples).

– Run canopy clustering first and feed those canopy centroids to k-means as the
initial choice of centroids. Then the question becomes, can we also distribute
canopy clustering? Although a little trickier, it turns out that we can do that.

7 Methods of an immutable data structure, rather than changing the object A on which they are called, create a
new object B whose state is the result of applying the called method to A. For instance, the method that
appends an element to a list L1 would create a brand-new list L2 with |L1| + 1 elements and leave L1
unchanged. 

8 A pure function is any function that doesn’t have a side effect: it takes 0, 1, or more inputs, and returns an
output (possibly in the form of a tuple), without relying on any change to the input or to the global state. In a
sense, a pure function is exactly like a mathematical function.

9 That’s also the reason why, as discussed in the previous sub-sections, it can’t be applied to all those problems
that cannot be formulated in a way that eliminates shared state.

10Notice that here we will list k-means steps from the easiest to the hardest to parallelize.
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It follows that parallelizing canopy clustering is the key step here, and also the trickiest
part. We’ll worry about it later in this chapter. Before delving into this step, let’s give a
high-level description of the full algorithm for distributed k-means:

 Initialize the centroids using canopy clustering.
 Iterate (at most m times).

– Points classification:
 Shard the dataset and send the shards, together with the list of centroids,

to mappers. 
 Each mapper assigns points to one of the centroids. Send the data to the

reducers, aggregated by the centroid chosen (ideally there will be one
reducer per centroid).

– Centroids update:
 Each reducer will compute the center of mass of its cluster and return the

new centroid.

This is also summarized11 in listing 13.2 and shown in the example in figure 13.7.

function MRkmeans(points, numShards, numClusters, maxIter, T1, T2)
  shards ← randomShard(points, numShards)    
  centroids ← MRcanopyCentroids(points, numClusters, T1, T2) 
  mappers ← initMappers(numShards, classifyPoints, shards)   
  reducers ← initReducers(numClusters, centerOfMass)  
  for i in {0, .., maxIter-1} do                   
    newCentroids ← mapReduce(centroids, mappers, reducers)

Listing 13.2 MapReduce k-means

11Keep in mind that this is not a real implementation, so we can take some shortcuts to try and explain the fun-
damental ideas more clearly. A Hadoop MapReduce job, for instance, would look different.

Method MRkmeans takes a list of points, the number of 
desired chunks in which the dataset should be sharded, the 
number of desired clusters, and two thresholds, T1 and T2, 
to be used for the canopy clustering initialization step.

Breaks down the dataset into numShards random shards. This is 
usually done automatically by the primary node of MapReduce, 
but in this case, we will use a customized version.

Initializes the centroids by using a
distributed version of canopy clustering

Initializes numShards mappers; each will
run the classifyPoints method and

will hold a copy of one of the dataset’s
shards. The mappers will be alive (and

hold the same copy of the input) for the
whole lifetime of this method.

Initializes numClusters reducers, one per centroid. The reducers will run the
centerOfMass method (computing the center of mass of a set of points) and

will be alive for the whole method’s lifetime, but they won’t hold any data.

Repeats
the main

cycle at
most

maxIter
times Runs one iteration of MapReduce, using the mappers and reducers already 

created. Mappers will receive the current list of centroids as input (in addition, 
each mapper already holds one shard of the dataset points). Reducers will read 
their input (points in one of the clusters) from the mappers. Each reducer will 
output the coordinates of a centroid, and the results produced by all reducers 
will be combined in a list, assigned to a temporary variable.
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    if centroids == newCentroids then                 
      break
    else 
      centroids ← newCentroids       
  return combine(mappers, centroids)  

The first thing you should know is that we are not talking about good old plain
MapReduce in this case. The base model of computation is MapReduce, but since the
k-means heuristic consists of repeating some steps m times, we will need to start the
computation several times. This is illustrated by the workflow in figure 13.7: the out-
put of each MapReduce job, a list of centroids, is also the input of the next job, and
moreover sharding the dataset and distributing it to the mappers is a step that doesn’t
need to be repeated for each job, because there is no reason why the shard assigned to
a mapper should change.

 For these reasons, rather than running m times MapReduce separately, we can use a
more efficient (in this context) evolution of this programming model, Iterative
MapReduce.12

12A good starting point to delve into Iterative MapReduce is http://mng.bz/8NG5.

If no centroid has changed, the algorithm 
converged so it can exit the main cycle

Otherwise, copies over the assignments 
from the temporary variable

Uses combiners or run mappers a last time to get the 
final classification of points, given current centroids

Figure 13.7 A flowchart describing the workflow of k-means, implemented with iterative MapReduce

http://mng.bz/8NG5


466 CHAPTER 13 Parallel clustering: MapReduce and canopy clustering

The idea is that we spin up mappers and reducers once, sharding data during the con-
figuration of the mappers and assigning point shards to each mapper only once. Then
we iterate the classic MapReduce cycle until needed, passing only the current list of cen-
troids as input to all the mappers. Thus, the amount of data per job to be passed to each
mapper is going to be several orders of magnitude smaller than the dataset size, and ide-
ally it will also be significantly smaller than the size of each shard. We can pass the num-
ber of mappers to create an argument to our enhanced k-means method, and tune this
parameter based on the size of the dataset and the capacity of each mapper.

 Figure 13.8 illustrates well how the computation proceeds from this point. Each
mapper performs the classification step on the fraction of points assigned to it. Then
reducers (ideally one per cluster) will read data from each mapper: the i-th reducer
will only get the points assigned to the i-th centroid (or to the centroids assigned to
the reducer, if more than one). 

Figure 13.8 An iteration of k-means main cycle implemented with iterative MapReduce. With respect 
to figure 13.7, the first step shown here is the sharding + configuration, while the rest of the figure 
shows a single iteration of “Iterative MapReduce.”
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Notice how reducers don’t get any information about current centroids (in the illus-
tration, in fact, in the reducer steps old centroids are shown as semi-transparent poly-
gons) because each reducer only needs all the points13 that belong to a cluster, in
order to compute its center of mass.

 Each reducer eventually outputs the centroid computed (and just that; no points
returned, to save bandwidth and ultimately time) and the MapReduce primary will
combine the k results (where k is the number of centroids/reducers) into a single list,
that will be fed again to the mappers in the next iteration of the cycle!

 Once the cycle is over, we only get centroids as result. We can run the mappers one
last time outside of the cycle to get the points assigned to each cluster (in this step, at
line #12 of listing 13.2, we can imagine a new set of reducers will be used: dummy pass-
through nodes, just returning their input).

 This implementation of k-means only uses canopy clustering to bootstrap conver-
gence with a better-than-random initial choice of centroids. Distributing the classifica-
tion and re-centering steps is already a great improvement, and there is a good chance
that the improvement you get is already enough to satisfy your requirements.

 Still, even if canopy clustering is faster than an iteration of k-means and can be
made even faster by using a cheap approximated metric instead of Euclidean dis-
tance, for huge datasets the risk is that you can waste most of the gain obtained by dis-
tributing the implementation of k-means through MapReduce if you run canopy
clustering on a single machine. Moreover, sometimes this option isn’t even available
for huge datasets that won’t fit on any machine.

 Luckily for us, we can apply MapReduce to canopy clustering as well!

13.3.1 Parallelizing canopy clustering

Canopy clustering is a bit trickier to redesign as a distributed algorithm because it
has only one step: drawing canopy centroids from the dataset and filtering out points
within a certain distance from them so that they won’t later be selected as centroids.
The issue is that in this step, for each centroid drawn from the dataset, we need to go
through the whole dataset for the filtering part. In theory, for each centroid we
would just need to process those points in its canopy, but we can’t identify them in
advance!

 To get to a good solution, it can be useful to think about the real goal for canopy
clustering: we want to get a set of canopy centroids that are no closer to each other
than some distance T2. The key point is that between any two of these canopy’s cen-
ters, the distance must be above a minimum value, so that the canopies won’t overlap
too much. As we mentioned, this distance is similar to the “core distance” in DBSCAN,
and points within a radius T2 can be assumed to belong to the same cluster with high
probability.

13Technically, computing the mean of a set of values could also be distributed: a combiner would need to take
as input the shards’ centroids and the number of points in each shard to compute the overall center of mass.
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 Suppose we shard our initial dataset, as shown in the top step of figure 13.9. If we
then apply canopy clustering to each shard independently, we’ll get a certain number
of centroids, probably different from mapper to mapper. If we recombine these cen-
troids together, however, we have no guarantee that they will respect the requirement
of being not closer than T2 from each other, because centroids from different shards
haven’t been compared to each other.

 It’s not time to give up yet, though! Luckily, there is an easy solution to this issue,
and the solution is still . . . canopy clustering!

 In fact, if we gather all the centroids from each mapper together, we can apply the
canopy clustering algorithm again to this new (smaller) dataset, refining the selection,
and this time guaranteeing that no two points in the output from this second pass will
be at a closer distance than T2. Check the last row in figure 13.9 to get an idea of how
this second pass works. The solution is also efficient because the size of the new data-

1. Shard dataset

3. Feed data 
to reducers

4. Reduce step:
canopy clustering
for centroids

Reducer

Reducer

Output:
canopy centroids

Input:
points

2. Map step: canopy
clustering for points

Mapper 1 Mapper 2 Mapper 3

Mapper 1 Mapper 2 Mapper 3

T1 T2

Canopy
centroid

Discarded 
centroids

Canopy
centroid

Figure 13.9 Canopy clustering implemented with MapReduce
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set (containing only the centroids produced by the mappers) is orders of magnitude
smaller than the original dataset (assuming the distances T1 and T2 have been chosen
properly), and therefore in step 2 we can spin up a single reducer and run canopy
clustering on a single machine and on all the centroids from step 1.

 At this point, we need to make a consideration. When used as a preliminary step
for k-means, the algorithm has a slightly different goal (and different output) than
when used as a standalone coarse-grained clustering algorithm:

 To k-means, we only have to return a list of centroids.
 The standalone algorithm will also need to return, for each canopy, the points

belonging to it.

Therefore, we need to treat these two cases separately. 

13.3.2 Centroid initialization with canopy clustering

Let’s start with canopy clustering as the initialization step for k-means. Listing 13.3
summarizes a possible implementation for the MR job performing this task. At first
glance, we don’t need to do anything other than what we have shown in the previous
section: we just return the output of the reducer, the list of centroids.

 But there is a catch (there always is!): How do we decide how many centroids
should be returned by canopy clustering?

 The answer is that we can’t control it directly, but only through the values of the
two distance thresholds passed to the algorithm, and only to some extent. In the end,
the algorithm is a randomized heuristic and the number of canopies created can vary
at each run, even with the same values for the hyper-parameters.

function MRcanopyCentroids(points, numCentroids, T1, T2, numShards)
  shards ← randomShard(points, numShards)   
  mappers ← initMappers(numShards, canopyClustering, shards)
  reducers ← initReducers(1, canopyClustering)          
  while true do

Listing 13.3 MapReduce canopy centroids generation

Method MRcanopyCentroids takes a list of points, the number of 
desired centroids, and two thresholds, T1 and T2, to be used for the 
canopy clustering initialization step. It also takes the number of shards.

Breaks down the dataset into numShards random shards. This is 
usually done automatically by the primary node of MapReduce, but 
in this case, we will use a customized version.

Initializes numShards mappers; each will run the canopyClustering method 
and will hold a copy of one of the dataset’s shards. The mappers will be alive (and 
hold the same copy of the input) for the whole lifetime of this method. Initializes a single

reducer that will run
canopyClustering on

the set of all centroids
returned by all mappers.

This node also will be
alive for the whole

method’s lifetime, but it
won’t hold any data.

Repeats until convergence (it might be a good 
idea to set a max number of iterations, and 
also save the closest result found)
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    centroids ← mapReduce(T1, T2, mappers, reducers) 
    if |centroids| == numCentroids then     
      break
    elsif |centroids| > numCentroids then   
      delta ← random(T2)              
      T2 ← T2 + delta                 
      T1 ← T1 + delta                 
    else    
      T2 ← T2 – random(T2)    
  return addRandomNoise(centroids)     

So, we need to think outside the box to handle this. Because there is a strong random
component that influences the result of each run, we can run canopy clustering sev-
eral times and take the result that is closer to our expectation. This might not be
enough, though, because the variance between different runs is limited, and if we
start with the “wrong” values for the thresholds, the algorithm could always output too
many (or too few) centroids.

 To solve this issue, we have two options: either manually tuning these thresholds
after each run, or, alternatively, performing some kind of search in the domain of the
thresholds, trying different values for them, either by adding at each run a random
value to our initial choice for T1 and T2, or by tuning the thresholds depending on the
number of canopies returned (lowering T2 when too few centroids are selected in the
last run, and raising it when we get too many). If we’d like to get really fancy, we can
even use ML to find the best values.

 While the former idea is a brute-force, fully randomized search, a better targeted
solution seems more promising, because we could direct the search toward values that
should work better for our goal. We can use the same idea behind gradient descent,14

although with a simpler algorithm that just decides the direction of the update, with-
out worrying about slopes and gradients. For instance, we could run a cycle where we
adjust the value for the inner threshold (and, when needed, also the one for the outer

14Gradient descent is an optimization algorithm for finding local minimums of a function F. It explores the
function’s domain in a systematic way, taking steps proportional to the gradient of F at current point X, which
(simplifying) can be geometrically interpreted as the direction of greatest change for F at X.

Runs MapReduce, using the mappers and reducers already created. 
Mappers will receive the current values for the thresholds (in addition, 
each mapper already hold one shard of the dataset points). The single 
reducer will read their input (the canopy centroids selected for each 
shard) from the mappers and return a refined list of centroids.

If the number of centroids 
matches the desired result, 
breaks out of the cycle

Otherwise, checks if the 
algorithm returned more 
centroids than needed

We need to get fewer centroids, so we can try raising the threshold so canopies will be larger 
and each will hold more points in their inner perimeter. Since T1 must be larger than T2, we 
need to increment that value as well to be sure. The random value added needs to be some 
function of T2, to be sure that the delta is meaningful.

If, instead, we need more 
centroids, we can try making 
the inner threshold smaller.

Returns the centroids after adding some random noise to them (as 
described in chapter 12, for k-means we might want to select centroids 
close to the dataset points, but not exactly the ones in the dataset)
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threshold) depending on the difference between the result we get from canopy clus-
tering and the number of centroids we need.

 Considering the random factor in this algorithm, however, this is clearly still a naïve
search over the possible values of T2, and it could possibly lead to an infinite loop. To
correct this situation, we could add a stop condition (and an argument) checking that
a maximum number of iterations is not exceeded. At the same time, we could also store
the result that is closest to our request in a temporary variable that we update at each
run, and return this result whenever the maximum number of iterations is reached
without finding a set of canopies with exactly numCentroids entries. Most of the time it
can be acceptable if we return, for instance, 101 centroids instead of 100 (the point
being, the caller will have the chance to check the result and decide).

 We leave it to the readers, as an exercise, to extend listing 13.3 in order to handle
the thresholds choice automatically, and we’ll instead move on to describe the distrib-
uted version of the full canopy clustering distributed algorithm, the one returning not
only the canopy centroids, but also the overlapping sets of points that are associated
with each canopy. 

13.3.3 MapReduce canopy clustering

The classification step, assigning each point to one or more canopies, can be imple-
mented in a few different ways:

 As a follow-up of the method described in listing 13.3. However, because classifi-
cation will involve all points, if we don’t distribute this step, we will lose most of
the advantage of running the algorithm to choose centroids in parallel.

 In the same method as centroids initialization, but with a different MapReduce job.
 In the same MapReduce job we described in the previous section, with the

reducer that is in charge of also performing classification at the same time that
it chooses which centroids should be kept. In particular, the reducer would get
from mappers all the lists of points assigned to each centroid, so rather than
cycling through all dataset points again, it could reuse these lists (we’ll see later
in this section how it will need to combine them).

The first option is rather easier, but naïve. Implementing the classification step at least
in the same method as the choice of centroids gives us two main advantages:

 We can, in theory, reuse the same mappers, which already hold onto their
shards of data, by just passing them the list of canopy centroids.

 When we perform classification, there is an issue with the centroids filtering we
perform in the reducers. So far, we have been able to ignore it, but running cen-
troid filtering and classification together allows us to solve this issue efficiently.

Figure 13.10 shows what might happen when we filter out one or more centroids during
the reduce step in our previous algorithm. We haven’t mentioned this issue until now
because it only affects the algorithm when we assign points to canopies, while it is irrel-
evant when we only care about centroids, as in the k-means initialization steps.
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The problem is that when we filter out any one of the centroids selected during the
map step, a fraction of the points in its canopy might not be covered anymore, not
even by the centroid that was chosen in its place. See the left side of figure 13.10,
where the centroid marked as a star is drawn from the list of centroids, and as a result,
the other centroid within the inner radius T2 from the selected one is filtered out;
however, the shaded area (highlighted by shading) is not covered by the canopy cen-
tered at the other centroid (the star).

 While sometimes the lost coverage is made up for by other canopies, this isn’t
always the case: the right side of the same figure shows an example where a few points
remain uncovered after a specific choice of centroids to keep.

 There are several options for solving this issue:

 Consider the “lost” points as outliers (this is not really reliable, though, because
they might lie in the middle of some big cluster that can’t be covered by a single
canopy).

 Enlarge canopies: the discarded centroids can be appropriately marked during
a run of canopy clustering every time one of the centroids is chosen. During
this phase, it is possible to keep track of the outer radius associated with each
canopy, and make it large enough to cover all points in the canopy of the
removed point. The cheapest way to do so is to set the radius of all canopies to
T1+T2, but this would obviously be increasing the overlapping between canopies.

 Go through unassigned points (those that are not within a distance T1 from any
of the survived centroids) at the end of the classification step and assign them
to the closest centroid. This solution will limit to the minimum the overlapping
of canopies (each canopy’s radius will be at most T1+T2, but as small as the dis-
tance to the furthest of these new points), but it will be more costly.

 If we perform classification in the same MapReduce job as the choice of cen-
troids, we can find an efficient solution. Mappers will also have to produce a list
with the sets of points associated to each centroid and pass these sets to the
reducer along with the list of centroids for each shard. In the reducer, an ad
hoc variant of canopy clustering is run, and when a centroid c is drawn, the sets
assigned to all centroids within a radius T2 from c are merged and assigned to

Lost
coverage

Discarded
centroid

Lost point

Figure 13.10 How filtering out centroids in the reducer step of MapReduce canopy clustering 
influences the dataset coverage by canopies. (Left) When a centroid C is discarded because it 
is too close to one that has been chosen, part of the area covered by C’s canopy becomes 
uncovered. (Right) This can result in some points lying outside of any canopy.
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c’s canopy. This is the best solution in terms of performance, because it saves
one iteration over all points in all shards and only requires a single reducer.
The downside is that it needs many lists of canopies to be transferred to the
reducer, and a custom version of the canopy clustering algorithm that handles
merging centroids.

Listing 13.4 summarizes a high-level implementation of canopy clustering leveraging
MapReduce, with classification performed in the same method, but in a second
MapReduce job with respect to the choice of centroids. Lines #2–5 run the same algo-
rithm that in listing 13.3 performs the distributed computation of canopy’s centroids.
Lines #6–9, on the other hand, run the code specific to this version, performing the
assignment of each point p to all the canopies for which p is within a distance T1+T2
from the canopy’s center. As we have mentioned, choosing a larger radius ensures that
no points will remain uncovered.

function MRcanopyClustering(points, T1, T2, numShards)
  shards ← randomShard(points, numShards)   
  mappers ← initMappers(numShards, canopyClustering, shards) 
  reducers ← initReducers(1, canopyClustering)     
  centroids ← mapReduce(T1, T2, mappers, reducers)       
  mappers.setMethod(classifyPoints)  
  reducers ← initReducers(|centroids|, join)       
  canopies ← mapReduce(T1+T2, mappers, reducers)   
  return (canopies, centroids)                       

Listing 13.4 MapReduce canopy clustering

Method MRcanopyCentroids takes a list of points, the number of 
desired centroids, and two thresholds, T1 and T2, to be used for the 
canopy clustering initialization step. It also takes the number of shards.

Breaks down the dataset into numShards random shards. This is 
usually done automatically by the primary node of MapReduce, but 
in this case, we will use a customized version.

Initializes numShards mappers; each will run the canopyClustering method 
and will hold a copy of one of the dataset’s shards. The mappers will be alive (and 
hold the same copy of the input) for the whole lifetime of this method.

Initializes a single 
reducer that will run 
canopyClustering 
on the set of all 
centroids returned by 
all mappers. This node 
will also be alive for 
the whole method’s 
lifetime, but it won’t 
hold any data.

Runs MapReduce, using the mappers and reducers already created. Mappers will receive 
the current values for the thresholds (in addition, each mapper already holds one shard 
of the dataset points). The single reducer will read their input (the canopy centroids 
selected for each shard) from the mappers and return a refined list of centroids.

Updates the method run in the mapper nodes. Ideally, the same 
machines can be reused, so we don’t need to shard the dataset 
again or transfer the shards to new machines (this, however, might 
not be possible in all MapReduce implementations). The new 
method to run is a simple classification step going through all 
points, and for each point checking which centroids are within 
distance T1+T2. Each mapper will take the list of canopy centroids 
as input (plus its shard of the initial dataset).

Initializes a set of 
reducers, one for each 
canopy created from 
the first MapReduce 
job. Each reducer will 
get the points assigned 
to a single specific 
canopy (centroid) and 
will return the list of 
all points assigned to 
that canopy.

Runs the new 
MapReduce job and gets 
the final list of canopies 
(following the same 
order as centroids)

Returns both the list of centroids 
and the list of canopies



474 CHAPTER 13 Parallel clustering: MapReduce and canopy clustering

The method performing these assignments, classifyPoints,15 is run in the mappers
for each shard separately. As for k-means, this step can be performed independently
on each point, as long as the mapper has the full list of centroids.

 The output of each mapper will be a list of lists with one entry per centroid: the list
of points associated with that centroid. Notice that each point can be associated with at
least one, but potentially many centroids. Each mapper will have entries for several cen-
troids, and each centroid will have points assigned to it across several mappers: that’s
why in this MR job we also need one reducer per canopy (that is, per centroid).

 Each reducer will then work on a single canopy, merging the lists for that canopy
produced by each mapper; the final result will be the list of canopies produced by
each reducer.

 This subroutine described in lines #6–8 is also illustrated in figure 13.11.

15The implementation of classifyPoints is omitted. It can be derived from listing 12.3 by changing the con-
dition checked, remembering that we don’t look for the closest centroid in this case, but need all centroids
within a certain distance. Also, this function would be the right point where the issue with unassigned points
could be addressed; remember that the easiest, one-size-fits-all solution can be using a threshold distance equal
to T1+T2.

1. Shard
dataset

3. Feed data 
to reducers

4. Reduce step:
join all results

Output:
canopies, centroids

Input:
points, centroids

2. Map step:
points
classification

Centroids

Mapper 1 Mapper 2 Mapper 3 Mapper 4

Mapper 1 Mapper 2 Mapper 3 Mapper 4

T1+T2

Reducer 1 Reducer 2 Reducer 3 Reducer 4

Figure 13.11 An example of a MapReduce job to classify points into canopies, given a list of centroids
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This concludes our discussion on canopy clustering, and we encourage the reader to
try to write down a job for this algorithm with one of the open source implementa-
tions of MapReduce, for instance, Hadoop, or check out Mahout, a distributed linear
algebra framework by Apache foundation, that does implement a distributed version
of canopy clustering.16

13.4 MapReduce DBSCAN
So far, so good. Our first attempt at distributed clustering was with k-means and we
were in luck: we discovered that it can be easily rewritten as a distributed algorithm
because its steps can be performed independently for each point (classification) or
each cluster (re-centering). We applied MapReduce to canopy clustering as well, even
if its first step, drawing the canopies centroids, was not immediately parallelizable and
required a deeper reasoning to obtain the best clustering.

 To close the circle and complete the topic, in this section we are going to discuss
how to apply the MapReduce paradigm to a clustering algorithm that is intrinsically
non-parallelizable, at least at first glance: DBSCAN.

 As we saw in section 12.3, in DBSCAN the clustering is computed by exploring and
leveraging the relations between points that are therefore interconnected. Sharding a
dataset would change the ε-neighborhood of most points, and some of the core points
might not be recognized as such because their ε-neighborhoods are scattered across
several shards.

 Although it is possible to think about a MapReduce job computing the size of the
ε-neighborhood of each point with a distributed computing model, the core of
DBSCAN relies on sequentially going through points and their neighbors, and thus it
seems it would make more sense to explore different options.

 We already discovered in section 13.1.4 that we could use canopy clustering as a
first step, apply DBSCAN to each canopy separately, and then iteratively merge clus-
ters in neighboring canopies when points close to their borders or in the overlapping
regions are within each other’s ε-neighborhood.

 This approach becomes problematic for a few reasons:

 It’s hard to keep track of the canopies that needs to be checked, and of the
points inside the canopies to compare. All pairs of canopies need to be com-
pared to check whether they overlap or their distance is smaller than ϵ, and then
for each pair of canopies all points need to be compared to the other canopy.

 Given the shape of the envelopes (hyperspheres), it is complicated to compute
the distance between points in a canopy’s external rings and the other canopy
(see section 10.4.3 and figure 10.23 to get an idea of the complicated geometric
implication for the 2-D case, which gets even more complicated for hyper-
spheres in higher dimensions).

16See http://mng.bz/E2EX.

http://mng.bz/E2EX
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 Getting the thresholds passed to canopy clustering right is complicated;
because of the spherical shape of canopies, we will have to use a larger-than-
needed T1 radius and a significant overlapping between canopies to capture the
relations between clusters in different canopies.

 When the overlapping between canopies is large, points get assigned to several
canopies, and thus they will need to be processed several times for each pair of
canopies. This easily becomes a computational nightmare, making vain all the
effort we did to parallelize.

This solution can therefore work limitedly in certain specific cases, in specific configu-
rations, but doesn’t work in high-dimensional datasets.

 Nevertheless, the basic idea is valid, and we can make it work by simply changing the
way we shard the dataset. Instead of relying on random sharding or spherical canopies,
we can break the dataset into a regular grid, where each cell is of the same size. Cells are
hyper-rectangles instead of hyper-spheres, and for each coordinate the domain can be
split differently, causing the cells’ (rectangles’) sides to each be of a different length.

 This is an improvement over dealing with canopies, because identifying points
close to the borders becomes easy. We can just check that the absolute value of the dif-
ference between the point and the border along some coordinate is smaller than a
threshold, instead of computing the distance between a point and a hyper-sphere;
moreover, it’s also easier and cheaper to shard the dataset into grid cells.

 But it gets even better! Instead of having to compare points close to the borders of
adjacent cells, we can define the cells to be slightly overlapping, and precisely to be over-
lapping, for each coordinate, over a rectangular area of side ϵ, as shown in figure 13.12.

This way each adjacent cell overlaps the next one over a length of 2ϵ, and the ϵ-neigh-
borhood of each point in the overlapping section will be part of at least one of the two
adjacent cells (for instance, point p in the figure has its ϵ-neighborhood completely

q
p

p’s ∊-neighborhood

Cell 1 Cell 2
S1 S2

S1’s outer marginS1’s inner margin

r
w

Figure 13.12 Sharding data for MapReduce DBSCAN (MR-DBSCAN). After dividing the 
domain into equally sized cells, for each shard we need to include all points in one cell, plus 
all the points within a distance equal to ϵ from its borders. In practice, instead of the cells, 
we take a rectangle obtained by stretching the cell further in all directions, and each of the 
sides will measure like the corresponding cell’s side plus 2ϵ. This way, core points close to 
the cells’ borders will have their ϵ-neighborhood contained in either shard.
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contained in S1). The trick, therefore, is that if p is a core point in one of the shards, it
will also be a core point in the union of the shards, and hence its neighbors on both
sides of the cells’ border should be directly-reachable17 from p, and in turn end up in
the same cluster. Therefore, if p is assigned to cluster C1 for shard S1, and to cluster C2
for shard S2, it follows that clusters C1 and C2 should be merged. 

 Vice versa, if we consider any point that is outside the shard’s border, like r in fig-
ure 13.12, which is on the left of S1’s inner margin, then we know for sure that

 Its distance from the shard’s border is larger than ϵ, and therefore itsϵ-neighborhood doesn’t intersect S1’s outer margin.
 If there is a point z in S2 that is reachable from r, then there must be a chain of

core points that are directly reachable from z and r (for the definition of reach-
ability, see section 12.3.1), and at least one of these points—call it w—must be in
either S1’s inner or outer margin, because these areas extend exactly for a length
equal to 2ϵ, which is exactly the diameter of the core points’ ϵ-neighborhood.

 Therefore, we can ignore r, because we’ll join its cluster to z’s when we exam-
ine point w.

The consequence of what we informally proved18 here is that, instead of comparing
each point in a cell to all the points close to the border of the adjacent cells, we can
just keep track of the core points within a distance ϵ from a cell’s border (or 2ϵ from a
shard’s border), and merge those clusters that have a point in either that inner or
outer margin that is a core point in either of the adjacent cells. 

 Figure 13.13 shows an example of how a MapReduce job would perform a distrib-
uted clustering of a 2D dataset using DBSCAN, and the reduction described in this
section and listing 13.5 uses pseudocode to describe the step needed.

function MRdbscan(points, numShards, eps, minPts)
  shards, adjList, marginPoints ← gridShard(points, numShards, eps) 
  mappers ← initMappers(numShards, dbscan, shards, eps, minPts)  

17See section 12.3.1 for a definition of reachability and some examples.
18For a formal proof and a detailed description of the algorithm, see He, Yaobin, et al. “MR-DBSCAN: A scalable

MapReduce-based DBSCAN algorithm for heavily skewed data.” Frontiers of Computer Science 8.1 (2014): 83-99.

Listing 13.5 MapReduce DBSCAN

Method MRdbscan takes a list of points, the 
number of desired cells in which the dataset 
should be sharded, and the parameters for 
DBSCAN algorithm, the radius and minimum 
number of points that define a dense zone.

Breaks down the dataset into numShards regular cells; each cell will be extended for a 
length eps in all directions to define a shard, and all of these are saved into shards. Since 
we need grid-based sharding, we do need a customized sharding function. This method also 
needs to return the list of adjacent shards (better if a list of pairs of adjacent shards, without 
duplicates), and the list of points in the margin regions for each pair of adjacent shards.

Initializes numShards mappers; each will run the
DBSCAN clustering method and will hold a copy of

one of the dataset’s shards. The mappers will be
alive (and hold the same copy of the input) for the

whole lifetime of this method.
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  reducers ← initReducers(adjList, mergeClusters, marginPoints)
  clusters, noise, mergeList ← mapReduce(mappers, reducers)   
  return combine(clusters, noise, mergeList)                 

Initializes one reducer for each pair of shards in the adjacency 
list. The reducers will run the mergeClusters method and will 
be alive for the whole method’s lifetime, and they will hold data 
about the adjacent shards they operate on, and the margin 
points between those two shards.

Runs MapReduce using the mappers and reducers already created. Mappers will use the 
shards of data they already hold as input. Reducers will read their input (clusters and 
outliers local to shards) from the mappers (plus, they already hold info about which points 
are in the margin area between each pair of adjacent shards). Each reducer will output a list 
of clusters to merge, and a list of outlier points to keep for each pair of shards.

Before returning, we need to
combine the results from reducers

by merging clusters (possibly
re-indexing clusters in a global way)

and fixing the list of outliers.

1. Shard dataset

3. Feed data 
to reducers

4. Reduce step:
Merge clusters
in adjacent cells

Output:
Clusters, outliers

Input:
Points, grid

2. Map step:
DBSCAN

Mapper 1 Mapper 2 Mapper 3 Mapper 4

Mapper 1 Mapper 2 Mapper 3 Mapper 4

Reducer 1 Reducer 2 Reducer 3 Reducer 4

C2

C4

C5

C6 C8C7

C3 C3
C4

C8C7
C6

C5 C5

C6 C8C7

Merge C2,C5
Remove C6

Merge
C3,C7
C4,C8

Merge C5,C7Merge C2,C3 C1

C2 C8

C2
C1C1

C2

C4

C1 C3

Figure 13.13 An example of MapReduce DBSCAN running with four cells. We’ll need one mapper for each 
(extended) cell, and one reducer for each pair of adjacent cells. Because the dataset in the example is small, 
and we use just four cells with a large value for ϵ, the fraction of points in the margin is unrealistically high. 
In real situations, there are relatively fewer points in the borders, and the savings obtained by distributing the 
algorithm is orders of magnitude higher.
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The first step is sharding the dataset according to a regular grid. Each grid cell is then
expanded in all directions with a further area of side ϵ, and shards are formed by fil-
tering all points within these expanded rectangles (which, it’s important to remem-
ber, overlap along their common edges with adjacent cells).

 Each mapper performs DBSCAN clustering on its shard, and at the next step, a
reducer is spun up for each pair of adjacent shards (in this example, we used a 2x2
grid, so there are four pairs of adjacent grid cells).

 Reducers need to receive, from each mapper, the list of clusters found, the list of
noise points (if any), and the list of points in the margin region between the two
shards that the reducer will process.

 The reducer then checks to see if there is a core point in the shared margin
region, and if so, it merges the two clusters to which the points belong. In the example
in figure 13.13, we deliberately used a global incremental indexing for clusters at this
stage, but in reality, this global indexing is not easily achievable with a single pass!
That’s because we don’t know in advance how many clusters a mapper will find. Merg-
ing clusters can also be handled locally, but at some point, an extra step will be
needed to re-index all clusters globally.

 If we suppose that clusters have global indexing, however, we can handle merging
clusters using a data structure with which you should already be familiar: the disjoint
set, which we described in chapter 5.

 You might have noticed that there are some edge cases we should keep in mind.
Clusters in one shard, for instance, can be subsets of a bigger cluster in another shard.
In the example, reducer 2 gets clusters C1 and C6, with the latter completely included
in the former; in this case, even if no point in the margin regions is a core point, obvi-
ously19 we need to merge the two clusters (or, equivalently, get rid of C6).

 Likewise, if a point p is classified as a core point in one shard and noise in the
other, there won’t be clusters to merge: p will already be in the right cluster, but we
also need to be careful, because it should be removed from the list of outliers.

 The output of each reducer will be a list of local clusters to merge, or, alternatively,
the disjoint set keeping track of the merges. A further brief composition step can take
care of producing the list with the point assignments to the final clusters and the list
of outliers, based on reducers’ output.

 The pseudo-code for this MapReduce job is simpler than any other job in this
chapter, but don’t be fooled—most of the complexity is hidden in the methods grid-
Shard, dbscan, and mergeClusters.

 Method dbscan is exactly the same method that we described in section 12.3. In
most languages, we will be able to reuse it without any modification. gridShard, in its
most naïve version, just iterates over points and computes the index of the cell by per-
forming a modulo division (plus a few checks to see if the point is in the margin of

19C6 doesn’t qualify to merge with C1, because none of its points in the margin region are core points; therefore,
we need to explicitly perform some extra check (for instance, for each pair of clusters, verify if one is a subset
of the other) to recognize these situations.
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adjacent cells). We’ll address some problems connected to this method later in this
section, but we won’t get into the details of its implementation.

 Finally, method mergeClusters is a nice application of disjoint set, the data struc-
ture we described in chapter 5. Listing 13.6 shows a possible implementation of this
method that treats argument clustersSet like an instance of disjoint set shared
among all reducers. While this is not practically possible,20 it is conceptually equiva-
lent to having the reducers emitting a list of clusters to merge and perform the opera-
tions on the disjoint set in the combiner stage, after reducers finish their job. For this
reason, we can consider clustersSet like a facade21 simplifying the process of emit-
ting a pair of clusters to merge and sending the pair to the combiner, where the actual
disjoint set is created and merge operations are performed.

function mergeClusters(shard1, shard2, marginPoints, clustersSet)
  for p in marginPoints.intersection(shard1, shard2) do 
    if shard1.isCorePoint(p) or shard2.isCorePoint(p) then 
      if shard1.isNoise(p) then     
        shard1.markNoise(p, false)  
      elsif shard2.isNoise(p) then 
        shard2.markNoise(p, false)
      else
        clustersSet.merge(shard1.getCluster(p), shard2.getCluster(p)) 
  return clustersSet, shard1, shard2        

The implementation goes through all points in the margin region between the two
shards (use figure 13.12 as a reference) and checks if any of these points is a core
point in at least one of the shards. Then we just need to make sure it’s not a noise

20It wouldn’t make sense to have a shared object in the MapReduce model! Can you explain why? (Hint: Besides
technical challenges, do we really want to introduce shared state?)

21See https://en.wikipedia.org/wiki/Facade_pattern.

Listing 13.6 Method mergeClusters

Method mergeClusters takes two shards, extending two adjacent 
cells, a set of margin points, and a disjoint set on the list of clusters. 
We assume that clusters have already been re-indexed globally, and 
that clustersSet is a facade emitting a pair of clusters to merge.

For each margin point in the intersection between the two shards, 
assume marginPoints is an instance of a class handling these kinds 
of operations, abstracting away the complexity that is not relevant to 
this method.

Checks if p is a core point
in at least one of the two
shards (also, we assume

the shard objects created
by mappers handle this
kind of method). If it is

not, we can ignore it.

Checks if p is classified as noise, as an outlier, in the first shard

If it is so, it will be in a cluster in shard2, 
and we only need to remove it from the list 
of outliers in shard1.

Same thing if it is an outlier in shard2 (also, remember 
it can only be an outlier in one of the shards, as it’s a 
core point in at least one)

If p is not an outlier in either shard, it means it is 
assigned to a cluster in both; hence, we need to 
merge those clusters.

The relevant information we updated is all 
in the set of clusters and the two shards. 
Assuming we pass these structures by value 
(at least the shards), we can return them at 
the end of the method.

https://en.wikipedia.org/wiki/Facade_pattern
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point in the other shard (handled as an edge case) and merge the two clusters (C1 will
be in shard1 and C2 will be in shard2). Optionally, we can check that C1 and C2 are not
one subset of the other and handle that case differently.

 There is one final detail we need to address before wrapping up the discussion on
MapReduce DBSCAN: the sharding step. Before continuing reading, stop for a min-
ute and think about how this case is different from what we have seen before, and
what issues we could face in this step.

 Do you see the problem? Deterministically sharding points according to a rectan-
gular grid will not be as cheap as the random sharding we have seen so far! Before
running and even configuring the MapReduce job to perform this sharding, in fact,
we would need to run a single-thread process creating the grid and assigning each
point to a shard, depending on the point’s position. If the grid has m cells, and the
dataset holds n points with d coordinates each, then this step will require, in the worst
case, O(n*d*m) comparisons.

 To speed things up, we can use an R-tree. As mentioned in chapter 10, R-trees can
hold non-zero-measure objects, and in particular shapes like rectangles (see figure
10.5). We can therefore create an R-tree whose items are the grid cells, and for each
point find the closest cell. Since R-trees have linear-time worst-case running time, how-
ever, we don’t improve our asymptotic result (but in most cases R-trees will result, in
practice, in faster than naïve search).

 To seriously speed things up, however, what we really need is to distribute even the
sharding step with a new MapReduce job. We know that each point can be compared
to cells independently; therefore, if we split the dataset into random shards, each
shard can be processed by a battery of mappers. Reducers, at the same time, will just
group points by extended cell(s),22 and finally produce (not randomly, this time) new
shards that can then be used in the first step of the MR-DBSCAN job (the one illus-
trated in figure 13.13). As a further optimization, since reducers for this job (shard-
ing) will already have all the data for a cell, we can repurpose the same machines to be
the mappers in the MR-DBSCAN job.

 It’s also worth mentioning that the number of adjacent cells grows linearly with the
dimension of the space, since the number of faces of a d-dimensional hypercube is equal
to 2*d. This means that the sharding algorithm can scale out to higher dimensions.

 Finally, it’s worth mentioning that because we are performing this sharding step as
an independent MapReduce job, we are forced to use a regular grid. On the contrary,
the article by He et al. presenting MR-DBSCAN23 uses a different, more sophisticated
approach, where statistics on the dataset are collected in a first pass through the data-
set, splitting the domain into an irregular collection of parallel rectangles (see figure
13.14) each with ideally uniform density. Then, leveraging the statistics collected, we
can also tune the parameters for DBSCAN to adapt to the different density found in
different cells.

22Since cells are overlapping, a point can be assigned to more than one cell.
23He, Yaobin, et al. “MR-DBSCAN: A scalableMapReduce-based DBSCAN algorithm for heavily skewed data.”

Frontiers of Computer Science 8.1 (2014): 83-99.
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Summary
 Canopy clustering is an algorithm for computing a coarse-grained pseudo-

clustering of a dataset, with the advantage of being very inexpensive compared to
more accurate clustering algorithms such as k-means or DBSCAN. 

 We distinguish between parallel computing, running some software in several
threads on the same machine, and distributed computing, where several
machines and possibly resources on the cloud are used to run software in a joint
effort.

 MapReduce is a computational model that leverages the cloud to scale out pro-
cessing of large datasets.

 k-means, canopy clustering, and DBSCAN can all be rewritten as distributed
algorithms by using the MapReduce model.

ε
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Figure 13.14 An example of an irregularly shaped grid for sharding a dataset in     
MR-DBSCAN. Notice that shards (dashed-lines rectangles) are built by expanding 
cells in each direction for a distance equal to ϵ, the dense region’s radius.



Part 3

Planar graphs and
 minimum crossing number

The final part of this book has a single data structure as its main thread:
graphs. They will be used, however, more as a touchstone to compare different
techniques throughout chapters whose main focus will be on optimization
algorithms.

 We won’t delve into the basics of graphs, but we still start this part with a brief
introduction to their basic concepts and a few cornerstone algorithms to tra-
verse graphs.

 These are necessary to describe an interesting, often neglected problem that
has broad application in our industry: displaying graphs in the two-dimensional
plane. This is a difficult problem that can’t be solved efficiently on classical com-
puters. Nevertheless, it’s one for which approximate solutions are often enough,
and this gives us a good reason to introduce optimization algorithms, the real star
of part 3.

 The final chapters of this book will describe three optimization techniques
that are widely used to tackle optimization problems and drive today’s AI and big
data effort: gradient descent, simulated annealing, and genetic algorithms.

 Chapter 14 is a short introduction to graphs, condensing the basics of this
fundamental data structure needed to understand part 3. It also illustrates DFS,
BFS, Dijkstra’s, and A* algorithms, and describes how to use them to solve the
“minimum-distance path” problem.



 Chapter 15 introduces graph embeddings, planarity, and a couple of problems we will
try to solve in the remaining chapters: finding the minimum crossing number (MCN),
embedding a graph, and drawing a graph nicely.

 Chapter 16 describes a fundamental algorithm in machine learning, gradient
descent, and shows how it can be applied to graphs and embeddings.

 Chapter 17 builds on the previous chapter and presents simulated annealing, a more
powerful optimization technique that tries to overcome gradient descent shortcom-
ings when we have to deal with non-differentiable functions or functions with multiple
local minima.

 Chapter 18, finally, describes genetic algorithms, an even more advanced optimiza-
tion technique that helps with faster convergence.
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An introduction to
 graphs: Finding paths
 of minimum distance

We already described the basics of trees in appendix C and used several kinds of
trees in the previous chapters: binary search trees, heaps, k-d trees, and so on. You

This chapter covers
 Introducing graphs from a theoretical point of view

 Learning strategies for implementing graphs

 Finding the best route for deliveries

 Introducing search algorithms on graphs: BFS and DFS

 Using BFS to find the route that traverses the fewest 
blocks

 Finding the shortest route with Dijkstra’s minimum 
distance algorithm

 Finding the quickest route with A* algorithm for 
optimal search
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should now be familiar with them. Graphs could be considered a generalization of
trees, although in reality the opposite is true, and it is trees that are a special case of
graphs. A tree, in fact, is a connected, acyclic undirected graph. Figure 14.1 shows an
example of two graphs, only one of which is a tree. Don’t worry if you are not sure
which one, because in this chapter we’ll take a closer look at the meaning of those
properties in the definition of trees, and they will help us to better explain graphs’
properties and make sense of these examples.

But to do so we need to follow a meaningful order and so, we first need to give a for-
mal definition of graphs and understand how we can represent them.

 Once we have laid that foundation, we can start modeling interesting problems
with graphs and developing algorithms to solve them.

 In particular, here we will focus on the “shortest distance” problem. In chapters
8–11 we developed our example of an e-commerce platform by introducing k-d trees
and nearest neighbor search to find the closest hub for deliveries, so that parcels need
to travel the least possible distance. Nevertheless, there will still be some road to travel
to get our orders to the customers, and our margin gets thinner if we waste time and
gas for each delivery.

 Conversely, if we were able to optimize the route fared, we could save some money
for each parcel, and a lot of money at scale, on thousands or millions of deliveries.

 In this chapter we will solve this problem, finding the best route to make a single
delivery (from a warehouse to the customer’s home), by using graphs; we will tackle
the problem at different levels of abstraction, demonstrating how search algorithms
such as BFS, Dijkstra, and A* (pronounced “A-star”) work.

14.1 Definitions
A graph G is usually defined in terms of two sets:

 A set of vertices V: independent, distinct entities that can appear in any multiplic-
ity. A graph can have 1, 2, 100, or any number of vertices but, in general, graphs
don’t support duplicate vertices.

 A set of edges E connecting vertices: an edge is defined by a pair of vertices, the
first one usually denoted as the source vertex, and the second one called the des-
tination vertex. 

v1

v2 v3

v4

v5

v6v2

v1

r

v4v3

v5

Figure 14.1 Two graphs, only one of which 
is also a tree. Can you tell which one?
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So, we write G=(V,E) to make it clear that the graph is made
of certain sets of vertices and edges; for instance, the graph
in figure 14.2 is formally written as

G = ([v1, v2, v3, v4], [(v1,v2),(v1,v3),(v2,v4)])

An edge whose source and destination are the same is
called a loop (see figure 14.3). Simple graphs can’t have any
loops, nor can they have multiple edges between the same
pair of nodes. Conversely, multigraphs can have any number
of edges between two distinct vertices. Both simple graphs
and multigraphs can be extended to permit loops.

 We won’t bother with multigraphs in this book; instead
we’ll focus on simple graphs, usually without loops.

 We can express the previous definitions more formally.
Given the set of edges E

 For simple graphs, E ⊆ {(x, y) | (x, y) ∈ V2 ∧ x  y}

 For simple graphs supporting loops, E ⊆ V2
 It’s also possible to associate a weight to each edge. In this case, the graph is called

a weighted graph or, equivalently, a network, where each edge becomes a triplet, and the
set of graph’s edges becomes

 For simple graphs, E ⊆ {(x, y, w) | (x, y) ∈ V2 ∧ w ∈ ℝ ∧ x  y}

 For simple graphs supporting loops, E ⊆ V2× ℝ
 Figure 14.3 shows an example of a weighted graph with loops.

14.1.1 Implementing graphs

The previous section formally defines graphs; however, when we move from theory to
practice, we often have to face new issues and cope with constraints.

 As much as mathematical notation makes it clear how we should represent graphs
on paper, we need to decide, for instance, what’s the best way to store them into a data
structure.

 There are several questions to answer, depending on the context: Should we store
labels for vertices and edges, or should we just assign an index to vertices using natural
numbers, and enumerate edges following the natural ordering of pairs of indices?

 While storing vertices is relatively easy (using lists, and possibly a dictionary to asso-
ciate each vertex to its label), there is also another question that goes beyond any con-
text: How should we store edges?

 That question is not as trivial as it might seem: the caveat is that at some point we
will want to check to see if there is an edge between two vertices, or maybe find all out-
going edges of a certain vertex. If we just store all edges in a single list, either sorted or
unsorted, then we will have to scan the whole list to find out our answers.
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Figure 14.2 An example 
of a (directed) graph

1.0

v1

v2 v3

v4

33

-0.5

0.0

3.1

Figure 14.3 A directed 
weighted graph, with loops. 
(Edge labels are omitted for 
the sake of clarity.)
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 Even with a sorted list, that means accessing O(log(|E|)) elements for the opera-
tions in the previous paragraph, and O(|E|) for listing all edges going into a vertex.

 No surprise, it turns out we can do better. There are two main strategies to store a
graph’s edges:

 Adjacency lists—For each vertex v, we store a list of the edges (v, u), where v is
the source and u, the destination, is another vertex in G.

 Adjacency matrix—It’s a |V|×|V| matrix, where the generic cell (i,j) contains
the weight of the edge going from the i-th vertex to the j-th vertex (or true/
false, or 1/0, in case of un-weighted graphs, to state the presence/absence of
an unweighted edge between those two vertices).

Before examining pros and cons of both strategies, let’s illustrate them with an exam-
ple. Given the graph in figure 14.2, its adjacency list representation is the following
dictionary mapping vertices to lists of edges:

1 -> [(1,2), (1,3)]
2 -> [(2,4)]
3 -> []
4 -> []

The adjacency matrix representation is the following:

As you can see, they are very different. One aspect that stands out immediately is that
in the adjacency matrix, most cells are filled with 0s. This stems from the fact that the
graph in figure 14.2 only has a few edges, of the many possible.

 We know that because edges are pairs of vertices, in a simple graph the maximum
number of edges is O(|V|2). What’s the minimum number, though?

 It can be anything; a graph can even (hypothetically) have no edges at all. A con-
nected graph, however, must have at least |V|-1 edges.

V1 V2 V3 V4

V1 0 1 1 0

V2 0 0 0 1

V3 0 0 0 0

V4 0 0 0 0

Table 14.1 Weaknesses and strengths of graph representations

Operation Adjacency list Adjacency matrix

Edge insert O(1) O(1)

Edge delete O(|V|) O(1) 

List of outgoing edges O(|E|) O(|V|)
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Keeping this in mind, we’ll now provide a definition, one that will be handy later in
this section:

 A graph G=(V,E) is said to be sparse if |E|=O(|V|); G is said to be dense when
|E|=O(|V|2).

 In other words, sparse graphs have a number of edges comparable to the number
of vertices, which are therefore loosely connected to each other, while in dense
graphs, each vertex is connected to most of the other vertices.

 Table 14.1 summarizes the pros and cons of the two different representations of
graphs. In a few words, the adjacency list representation is better for sparse graphs
because it requires a lot less memory, and because for sparse graphs |E| |V|, and
thus most operations can be performed efficiently.

 For dense graphs, conversely, since the number of edges is close to the maximum
possible, the adjacency matrix representation is more compact and efficient. More-
over, this representation allows more efficient implementation of some algorithms on
graphs, such as the search of connected components or transitive closure.

 In general, when no assumption can be made on the graph, and unless it is other-
wise required by the context, the adjacency list representation is preferred because it
is more flexible and it supports adding new vertices more easily.

14.1.2 Graphs as algebraic types

There is another aspect of graph representation that is orthogonal to the way we store
edges: consistency.

 To be fair, inconsistencies are much more likely to happen with the adjacency list
representation, but they are still possible in certain situations, even using the adja-
cency matrix.

 The problem is the following. Regardless of its representation, consider the follow-
ing graph: G=([1,2], [(1,2), (1,3), (2,2)]).

 The graph G has two vertices, [1,2], but it has an edge whose destination is the ver-
tex “3”. This can happen for any reason; for instance, sloppiness in deleting vertex
“3”, or an error while adding edges.

List of ingoing edges O(|E|) O(|V|)

Space needed O(|E|+|V|) O(|V|2)

Vertex insert O(1) O(|V|)a

Vertex delete O(|V|+|E|)b O(|V|)a

aThis is an optimistic bound, assuming the adjacency matrix can be resized dynami-
cally. Otherwise, a truer bound is O(|V|2).

bWe need to check all edges to remove those whose destination has been deleted.

Table 14.1 Weaknesses and strengths of graph representations

Operation Adjacency list Adjacency matrix
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 Moreover, the graph has a loop, the edge (2,2). What if G was supposed to be a
simple graph without loops?

 Of course, we can add validation to our Graph class’ methods to prevent these situ-
ations, but the data structure itself can’t guarantee that these errors won’t happen.

 To overcome these limitations, we can define our graphs as an algebraic type;1 this
way, we define graphs as one of the following:

 The empty graphs.
 A singleton, a single vertex with no edges.
 The connection between two graphs G and G’. We define one or more edges

whose source is in G and destination is in G’.
 The union of two graphs G=(V,E) and G’=(V’,E’). We just compute the union

of both the vertices and edges set to obtain G”=(V ∪ V’, E ∪ E’).

This representation prevents the inconsistencies we talked about and guarantees that
we won’t get malformed graphs, but also allows us to formally define algorithms as
transformations on graphs and mathematically prove their correctness.

 Trying to understand graphs as an algebraic type is a useful exercise to help you
gain a deeper understanding of this data structure. At the same time, we need to
acknowledge that considering the overhead for these operations, practical uses are
limited and mostly relegated to functional languages providing pattern matching on
types, such as Scala, Haskell, or Clojure.2

14.1.3 Pseudo-code

To complete the discussion, listing 14.1 provides an overview of the class that we’ll use
for graphs in this book. It uses adjacency lists and models edges and vertices as classes,
allowing us to implement different types of graphs by changing the details of these
models (for instance, allowing weighted edges).

class Vertex
  #type string
  label 

class Edge
  #type Vertex
  source
  #type Vertex
  dest

1 An algebraic data type is one particular kind of composite type, formed by combining other types, usually with a
definition “by induction,” with one or more base types, and operators to combine them. This presentation nicely
explains how to define them in C++ and what the benefits are: https://www.youtube.com/watch?v=ojZbFIQSdl8

2 For an example with Haskell, see: Mokhov, Andrey. “Algebraic graphs with class (functional pearl).” ACM SIG-
PLAN Notices. Vol. 52. No. 10. ACM, 2017. A Scala implementation (ongoing, at the time of writing) can be
found here: https://github.com/algebraic-graphs/scala.

Listing 14.1 The Graph class

https://www.youtube.com/watch?v=ojZbFIQSdl8
https://github.com/algebraic-graphs/scala
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  #type double
  weight
  #type string
  label 

class Graph
  #type List[Vertices]
  vertices
  #type HashTable[Vertex->List[Edge]]
  adjacencyList

  function Graph()
    adjacencyList ← new HashTable()

  function addVertex(v)
    throw-if v in vertices
    vertices.insert(v)             
    adjacencyList[v] ← []          

  function addEdge(v, u, weight=0, label=””)
    throw-if not (v in vertices and u in vertices)
    if areAdjacent(v, u) then               
      removeEdge(v, u)            
    adjacencyList[v].insert(new Edge(v, u, weight, label)) 

  function areAdjacent(v, u)
    throw-if not (v in vertices and u in vertices)
    for e in adjacencyList[v] do   
      if e.dest == u then  
        return true
    return false

As for concrete implementation, a Java version can be found on the book repo on
GitHub,3 and a JavaScript version is provided by the JsGraphs library; the latter will
also implement the algorithms described in the next sections.

14.2 Graph properties
As we mentioned, graphs are very similar to trees. They are both made of entities (ver-
tices) connected by relations (edges), with a couple of differences:

 In trees, vertices are usually called nodes.
 In trees, edges are somewhat implicit. Since they can only go from a node to its

children, it’s more common to talk about parent/children relations than
explicitly list edges. Also, because of this, trees are implicitly represented with
adjacency lists.

3 See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph.

When we add a new vertex, provided it’s not a 
duplicate, we first need to add it to the vertices 
list.

But we also want to initialize the adjacency 
list for the new vertex; it will simplify our 
lives later!

Checks if the vertices are 
adjacent, that is, if there is 
already an edge from v to u

If so, removes the old one 
first (this method is 
omitted, but can be derived 
from areAdjacent)

Adds a new edge, 
created based on 
the arguments, to 
the adjacency list 
for the source 
vertex

Iterates through all edges in the 
adjacency list for the source vertex

As soon as it finds an edge whose destination matches u, 
we can return true. If none matches, the vertices are not 
adjacent.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph
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Furthermore, trees have other peculiar characteristics that make them a strict subset
of the whole set of graphs. In particular, any tree is a simple, undirected, connected,
and acyclic graph.

 We have illustrated in the previous section what simple graph means. In fact, a tree
cannot have multiple edges between two nodes, nor can it have loops; instead, only a
single edge between a node and each of its children is allowed.

 Let’s now see what the other three properties mean.

14.2.1 Undirected

As we mentioned in section 1, a graph is directed when all its edges can be traversed
in a single direction, from source (the first vertex in the edge’s pair) to destination.

 In undirected graphs, conversely, the edges can be traversed in both directions.
The difference is shown in figure 14.4.

An undirected graph can easily be represented as a directed graph, by expanding
each undirected edge (u,v) into a couple of directed edges (u,v) and (v,u).

 Vice versa is usually not true, and many directed graphs can’t be transformed into
their undirected isomorphic counterpart.4

 So, unless the application context suggests otherwise, representing directed
graphs is the least restricting choice.

 It’s also worth noting that if the adjacency matrix representation is used, undi-
rected graphs can be represented using only half the matrix, because they always have
a symmetrical adjacency matrix: A[u,v] = A[v,u] for every pair of vertices u,v.

14.2.2 Connected

A graph is connected if, given any pair of its vertices (u,v), there is a sequence of verti-
ces u, (w1, …, wK), v, with k 0, such that there is an edge between any two adjacent
vertices in the sequence.

 For undirected graphs, this means that in a connected graph, any vertex can be
reached by all other vertices, while for directed graphs, it means that each vertex has at
least an in-going or an out-going edge.

 For either kind, it means that the number of edges is at least |V|-1.

4 Any directed graph where there is an edge (u,v), but not the inverse edge (v,u), can’t be transformed into an
isomorphic undirected graph (meaning an undirected graph with the same shape, that is, with the same set of
vertices, connected in the same way).
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Figure 14.4 An undirected graph (A) versus a 
directed graph with the same vertices (B). The two 
graphs are not equivalent; in particular, the latter 
can’t be transformed into an equivalent undirected 
graph.
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Figure 14.5 shows a few examples of connected and disconnected undirected graphs.
The notion of connected graph makes the most sense for undirected graphs, while for
directed graphs we instead introduce the notion of strongly connected components, illus-
trated in figure 14.6.

In a strongly connect component (SCC), every vertex is reachable from every other vertex;
strongly connected components must therefore have cycles (see section 14.2.3).

 The notion of strongly connected components is particularly important. It allows
us to define a graph of the SCCs, which is going to be sensibly smaller than the origi-
nal graph, and run many algorithms on this graph instead. We can gain a great
increase in speed by first examining a graph at a high level, and then (possibly) study-
ing the interaction within each SCC.

A tree is usually regarded as an undirected graph, at least in graph theory; but in
implementations, each node usually stores the links to its children and only some-
times to its parent. If references to parents are not stored in children, then each edge
is not traversable from child to parent, making it a de facto directed edge.

v1
e1

v2

v4

v3

e2

e3

v1

v2

v4

v3

e2

e1

v1
e1

v2

v4

v3

e2

e3

e4

e5

v1
e1

v2

v4

v3

e2

(A)

(C)

(B)

(D)

Figure 14.5 Connected graphs ((A), (B)) 
versus disconnected graphs ((C), (D))
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Figure 14.6 Only graph (B) is strongly 
connected, but graph (C) has two strongly 
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14.2.3 Acyclic

A cycle, in a graph, is a non-empty sequence of edges (u,v1), (v1,v2), …, (vK,u) that
starts and ends at the same vertex.

 An acyclic graph (shown in figure 14.7) is a graph that has no cycle.
 Both directed and undirected graphs can have cycles, and as such there is a subset

of acyclic graphs that is of special interest: directed acyclic graphs (DAGs).
 A DAG has a few interesting properties: there must be at least one vertex that has

no incoming edge (otherwise, there would be a cycle); moreover, since it’s acyclic, the
set of edges defines a partial ordering on its vertices.

Given a directed acyclic graph G=(V,E), in fact, a partial ordering is a relation  such
that for any couple of vertices (u,v), exactly one of these three conditions will hold:

 u  v, if there is a path of any number of edges starting from u and reaching v.
 v  u, if there is a path of any number of edges starting from v and reaching u.
 u <> v; they are not comparable because there isn’t any path from u to v or vice

versa.

Figure 14.8 shows a couple of generic DAGs and a chain: the latter is the only kind of
DAG defining a total ordering on its nodes.
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Figure 14.8 A few examples of DAGs. (A) A 
connected DAG. (B) A topological sorting for 
the graph; notice that the output of topological 
sorting is just a sequence of vertices, and that 
edges are not considered. Nevertheless, they 
are shown to demonstrate how they only go left-
to-right, if vertices in the topological sorting are 
listed horizontally (from left to right). (C) A 
disconnected DAG. (D) A couple of possible 
topological sorting examples for the graph in 
(C). (E) A chain graph: for this DAG, there is only 
one possible topological sorting.
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The partial ordering on DAGs provides a topological sorting, an ordering of the vertices
such that, for any edge in the graph, the edge’s starting point occurs before its ending
point; usually each graph has several equivalent topological orderings. All chains, like the
one in figure 14.8 (E), certainly have a single unique topological sorting, but it’s also pos-
sible that a non-chain graph also has a single topological sorting (see figure 14.8 (A–B)).

 DAGs and topological ordering have many fundamental applications in computer
science, spanning from scheduling (at all levels) to resolving symbol dependencies in
linkers.

14.3 Graph traversal: BFS and DFS
To perform searches on a graph, as well as to apply many other algorithms, it is neces-
sary to traverse the graph following its edges.

 As with trees, there are many possible ways to traverse a graph, depending on the
order in which outgoing edges are traversed. In trees, however, it’s always clear where
to start the traversal: from the root. By starting from the root, we are always sure that we
can traverse a tree and reach all its nodes. In graphs, however, there isn’t a special ver-
tex like a tree’s root, and in general, depending on the vertex chosen the starting point,
there might or might not be a sequence of edges that allows us to visit all vertices.

 In this section, we will focus on simple directed graphs; no other assumption will
be made. We are not restricting ourselves to strongly connected graphs, and in gen-
eral, we don’t have further domain knowledge to choose the vertex from which we
should start the search. Consequently, we can’t guarantee that a single traversal will
cover all the vertices in the graph. On the contrary, several “restarts” from different
starting points are normally needed to visit all the vertices in a graph: we’ll show this
while discussing DFS.

 Initially, however, we will focus on a specific use case: considering the starting point
as “given” (externally chosen, without the algorithm knowing much about it) and tra-
versing the graph from it. Based on these assumptions, we will discuss the two most
common traversal strategies used on graphs.

14.3.1 Optimizing delivery routes
It’s time to go back to the problem with which we introduced this chapter: we have a
single delivery to perform from a source point, the warehouse or factory where goods
are stocked, to a single destination, the customer’s address.

 The hypothesis that we handle deliveries one by one is, obviously, already a simpli-
fication. In the general case, it would be too expensive, and delivery companies try to
gather together orders from the same warehouse to nearby destinations to spread the
costs (gas, the employee’s time, and so on) over several orders.

 Finding the best route passing through several points, however, is a computation-
ally hard problem;5 conversely, the best route for the single-source, single-destination
case can be found efficiently.

5 Have you ever heard of the “traveling salesman problem,” or TSP? That’s one of the most-studied hard problems.
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 We’ll develop a generic solution for this problem incrementally, across this and the
next few sections, starting with a further-simplified scenario and removing those sim-
plifications step by step, while presenting more complex algorithms to solve these
cases.

 So, to start our discussion, we need to think about our goal: What’s the “best”
route? We can assume, for instance, that the best route is the shortest route, but we
could also prefer to find the fastest route or the cheapest one, depending on our
requirements.

 For the moment, let’s assume we want the shortest route. If we simplify the sce-
nario and ignore factors such as traffic, road conditions, and speed limits, then we can
hypothesize that the shorter the distance, the faster we can travel it.

 But even this simplified scenario can be made simpler. Figure 14.9, for instance,
shows a portion of a city where roads form a regular grid. This is a common situation
in many cities in the United States, while elsewhere in the world it’s not necessarily as
common. In Europe, many city centers have a plan originally designed during the
Middle Age or even earlier, and roads are far less regular.

For the moment we can imagine restricting to this ideal situation, but why do that?
Well, because it makes our job easier. If all blocks are the same, and can be approxi-
mated with squares (or rectangles whose sides’ proportions are close to squares’),
then we don’t have to worry about real distances; we can just count the number of
blocks traveled to compute the length of a route. The problem would be trivial to
solve . . . if it wasn’t for one-way streets! Once we have a minimum viable solution
working for this simplified scenario, we can think about developing it to cover more
life-like situations.
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Figure 14.9 An example map: a portion of San Francisco’s downtown, where blocks form a 
regular grid
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 Figure 14.10 shows the graph that can be built over the map shown in figure 14.9,
where we added a vertex at each road intersection, and an edge going from vertex v to
vertex u means that from the intersection modeled with v to the one modeled with u,
there is a road that can be traveled in that direction (and not necessarily in the oppo-
site direction, from u to v).

If all roads could be traveled in both directions, we would just go west on Market from
the warehouse until we crossed 10th St., and then south on 10th down to our destination.

 Given the road signs in figure 14.9, however, this is not possible, and we need to
take detours. In the next sub-section, we’ll see how.

14.3.2 Breadth first search

Listing 14.2 shows the pseudo-code for Breadth First Search (BFS), whose goal, as the
name suggests, is to widen the search as much as possible, keeping a perimeter of
already visited vertices, and expanding this perimeter to the neighboring vertices.
This is shown in figure 14.11, where the graph in figure 14.6 (C) is used to demon-
strate the first few steps of this algorithm. 

function bfs(graph, start, isGoal)       
  queue ← new Queue() 
  queue.insert(start)

Listing 14.2 The bfs method
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Figure 14.10 Building a graph on the map in figure 14.8. We added a vertex to each road 
intersection (some vertices are, however, omitted for better readability) and edges connect 
adjacent intersections connected by a one-way street (two-way streets are modeled with a 
couple of edges).

Method bfs takes a graph, a starting point vertex, 
and a predicate (isGoal) that takes a vertex and 
returns true if the goal of the search is reached. 
Method bfs returns a pair with the goal vertex, and 
a dictionary encoding the shortest paths.

Initializes
a simple

FIFO
queue

Adds the starting point to the queue, so that 
it will be extracted on the first iteration
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  distances ← new HashTable() 
  parents ← new HashTable()    
  for v in graph.vertices do   
    distances[v] ← inf
    parents[v] ← null
  distances[start] ← 0                   
  while not queue.empty() do        
    v ← queue.dequeue()         
    if isGoal(v) then                         
      return (v, parents)
    for e in graph.adjacencyList[v] do  
      u ← e.dest
      if distances[u] == inf then            
        distances[u] ← distances[v] + 1    
        parents[u] ← v
        queue.enqueue(u)
   return (null, parents)     

At its core, this algorithm keeps a queue of vertices that will be visited next, the
so-called frontier. Vertices are kept in a specific order, so that they are processed from
the one closest to the source, to the ones furthest away. The container used to keep
track of the vertices in the frontier could be a priority queue, but it would be overkill.
Because the metric we use to compute the distance of each vertex from the source is
just the number of edges traveled, it turns out that the algorithm naturally discovers
vertices in the same order in which they need to be processed. Furthermore, each ver-
tex’s distance can be computed at the time of discovery (the first time each vertex is
found while visiting another vertex adjacency list).

 So, besides the initialization performed in lines #2–9, the core of the BFS algo-
rithm is the loop at line #10: a vertex v is dequeued and visited. After (optionally)
checking whether we reached the search’s goal (if so, we can already return v), we
start exploring v’s neighborhood (aka its adjacency list, all its outgoing edges). If we
find a vertex u that we hadn’t discovered yet, then we know that its distance from the

Creates a new hash table to keep track of the distance 
of every vertex from vertex start, that is, the 
minimum number of edges that needs to be traversed 
to get from vertex start to each of the other vertices

Also creates another hash table to keep track, for each vertex u, 
of the vertex through which u was reached. This dictionary can 
later be used to reconstruct the path from start to the goal.

Initializes vertex distances to infinity (or, equivalently, 
to the largest value that can be stored) For the starting point only, we need 

to set its distance (from itself) to 0.

Starts a loop, running until the queue is 
empty. It will run at least once, because 
of line #3.

Dequeues the head of the queue 
(equivalently, extracts the top of a 
priority queue). This will become 
the current vertex.

If we reached the goal, we are 
done; just return current vertex. 
The function isGoal can abstract 
the condition checked to find the 
goal vertices: it can be reaching 
one or more specific goal vertices, 
or getting to vertices that satisfy a 
certain condition.

Iterates over 
the outgoing 
edges for 
current 
vertex

If this vertex hasn’t been discovered yet (its 
distance has never been set), then the path 
with fewer edges from start to u certainly 
passes through v (because of the way we are 
expanding the search frontier). Notice that 
because all edges are assigned distance 1, 
this condition is only true the first time we 
discover a vertex, reaching it in the least 
number of hops from the source.

Consequently, the first time a vertex is 
discovered, sets its distance, its parent, and 
then adds it to the queue so it can later be 
visited in a future iteration

If the goal is never reached, we need to return 
null or, equivalently, another value that signals 
that the search failed.
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source will be the distance to get to v plus 1; therefore we can set the distance for u
and add u to the tail of the queue.

 How can we be sure that u is going to be visited in the right order, that is, after all
vertices closer to the source than u and before the ones further away than u?

 This can be proved by induction on the distance of vertices. The base of the induc-
tion is the initial case. We add the source vertex with a distance 0. This vertex is the
only one at distance 0, and so any other vertex added later can’t be closer than (or as
close as) the source.

 For the inductive step, we assume that our hypothesis is true for all vertices at dis-
tance d-1, and we want to prove it for vertex v at distance d; therefore, v is extracted
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Figure 14.11 BFS in action. In this example, we show a single-source, all-vertices run computing the 
distance between a source and all vertices in the graph. The algorithm explicitly maintains a queue 
with the vertices in the frontier, which will be explored next. The vertices are naturally ordered by their 
distance from the source, so a regular queue can be used, though conceptually the algorithm behaves 
as if it was using a priority queue. Dashed edges in the first four sub-figures are those edges traversed 
from source to current vertex (the one at the top of the queue on the left), while the dotted, semi-
transparent edges in the bottom figure are those edges that aren’t included in the shortest paths from 
the source vertex to the rest of the graph.
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from the queue after all vertices at distance d-1 and before all vertices at distance d+1.
From this, it follows that none of the vertices in the queue can have distance d+2,
because no vertex at distance d+1 has been visited yet, and we only add vertices to the
queue when examining each visited vertex’s adjacency list (so, the distance of a vertex
added can only grow by 1 unit with respect to its parent). In turn, this guarantees that
u will be visited before any vertex at distance d+2 (or further away) from the source.

 For the inductive hypothesis, moreover, we are sure that all vertices at distance d-1
are visited before v, so all vertices at distance d are already in the queue, and hence
they will be visited before u.

 This property allows us to use a simple queue instead of a priority queue. Not bad,
considering that the former has a O(1) worst-case running time for enqueuing and
dequeuing its elements (while heaps, for example, need O(log(n)) steps for each
operation), allowing us to keep the running time of BFS linear. It’s a worst-case O(|V|
+ |E|), linear in the largest between the number of vertices and edges. For connected
graphs, this can be simplified to O(|E|).

 We mentioned that checking whether search has reached the goal (line #12) and
the whole concept of goal vertex are optional. We can also use BFS to just compute
the paths and distances from a single source to all the other vertices in the graph.6 It’s
worth noting that as of today there is no known algorithm that can find the shortest
path to a single destination more efficiently than BFS. In other words, it’s asymptoti-
cally equivalently expensive to compute the single-source-single-destination shortest
path, and the single-source-all-destinations shortest paths.7

 If we were interested in all the distances between all the pairs of vertices, we would
have better options than running BFS |V| times (but that’s out of scope here).

14.3.3 Reconstructing the path to target

Quite often, besides computing the minimum distance of a certain vertex from a
source vertex, we are also interested in discovering the shortest path to that vertex,
meaning which edges should be followed, and in which sequence, to get from source
to destination.

 As shown in the bottom part of figure 14.11, we can obtain a tree considering the
“parent” relation between visited and discovered vertices: each vertex u has exactly
one parent, the vertex v that was being visited when u was discovered (line #15 in list-
ing 14.2).

 This tree contains all the shortest paths from the source vertex to the other verti-
ces, but the output of the BFS algorithm is just a dictionary, so how can we reconstruct
these paths from the parents container that is returned?

 Listing 14.3 describes the algorithm. It starts from the goal vertex (the last vertex
in the path) and reconstructs the path backward at each step, looking for the parent

6 By either removing the checks for goal or passing a function that always returns false as the isGoal argument.
7 Just to be clear, this is different than computing the optimal route through several or all vertices. Single-source-

all-destinations only computes the optimal paths from the source to each other vertex taken individually.
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of the current vertex. In simple graphs, since there is only one edge between an
ordered pair of vertices, if we know that we moved from vertex v to vertex u, the edge
traversed becomes implicit. In multigraphs, we would have to keep track of the actual
edge chosen at each step.

function reconstructPath(parents, destination)
  if parents[destination] == null then  
    return null
  current ← destination
  path ← [destination] 
  while parents[current] != null do          
    current ← parents[current]          
    path.insert(current)           
   return reverse(path)  

The code in listing 14.3 assumes that the parents dictionary is well formed, that the
graph is connected, and that there is a path from source to destination. If all of that
holds true, there are only two cases where the current vertex can have a null parent:
either current is the destination vertex (and in that case, it means it wasn’t reachable
from the source), or current is the source vertex.

 If parents[destination] != null, in fact, this means that the destination was
reached by traversing a path from the source (because of the way BFS works), and it
can be proven by induction that there must be a chain of vertices between those two
vertices.

 Let’s see the algorithm in action on the result of the run shown in figure 14.11.
bfs, on that graph, using v1 as source, returned the following values for parents:

[v1 → null, v2 → v3, v3 → v1, v4 → v3, v5 → v3, v6 → v5].

If we start at v5, for instance, we see that parents[v5]== v3, and this means that we
need to add v3 to path after v5, and then look at its parent, and so on.

 Right before line #9, we have path==[v5, v3, v1], and reversing it, we get the
sequence of vertices we were looking for.

Listing 14.3 The path reconstruction method

Method reconstructPath takes the parents dictionary 
produced by bfs and the destination vertex. It returns the 
path from the source (implicit here, determined by parents) to 
destination.

Checks that the destination was reachable 
from the source; otherwise, it returns null

Initializes the path that will be returned, as the list of vertices that 
will be visited (in reverse order, starting from the destination) Loops until we get to the source, the 

first vertex whose parent will be 
null (there will be at least one; this 
is guaranteed by the way bfs works)

Moves backward through the 
path, going from current 
vertex to its parent, that is, 
the vertex that was visited, 
during bfs, when current 
was discovered

Adds this parent to the path

Out of the loop, before 
returning the path we need to 
reverse it, because right now 
the list contains vertices from 
destination to source
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14.3.4 Depth first search

BFS, as we have seen, uses a clear strategy to traverse a graph. It starts from the closest
vertices to a source, and then it propagates in all directions like a wave, in concentric
rings: first all the vertices at distance 1, then the next ring, with all the vertices at dis-
tance 2, and so on.

 This strategy is, as we have seen, quite effective when we have to find the shortest
paths from a source to the other vertices in a graph; at the same time, of course, this is
not the only possible strategy to traverse a graph.

 A different approach, for instance, is to traverse paths “in depth.” It’s like when
you are in a maze looking for the exit: you keep going as far away from the source as
possible, choosing your direction at each intersection, until you hit a dead end (in
graph terms, until you get to a vertex without any untraveled outgoing edges). At that
point, you retrace your steps up to the previous bifurcation (the previous vertex with
at least an untraveled edge), and choose a different path.

 This is the idea behind Depth First Search (DFS), basically the opposite strategy from
BFS. This algorithm, described in listing 14.4, can’t be used to find shortest paths, but
it has numerous important applications in graph theory, and also in practice.

function dfs(graph, v, time=0, in_time={}, out_time={})
  time ← time + 1               
  in_time[v] ← time                  
  for e in graph.adjacencyList[v] do       
    u ← e.dest
    if in_time[u] == null then 
      (time, in_time, out_time) ← dfs(graph, u, time, in_time, out_time) 
  time ← time + 1                           
  out_time[v] ← time  
  return (time, in_time, out_time)  

Figure 14.12 shows an example of DFS traversal on the same graph we used to illus-
trate BFS and using the same vertex, v1, as a starting point. You can see how the
sequence of vertices visited is completely different (and not just because of the way we

Listing 14.4 The dfs visit of a vertex (and its neighborhood)

Method dfs takes a graph, a starting point vertex, and a few 
accessory arguments to keep track of the time of discovery 
for this vertex, and returns the same arguments updated.

Increments the “time” counter. This is needed to 
keep track of the order of discovery of vertices.

Current vertex has just 
been visited, so record it

Iterates over all the 
outgoing edges of vertex v

If a vertex in-time is still null, then it hasn’t been discovered yet (provided 
proper initialization of this argument). If the edge’s destination vertex u hadn’t 
already been discovered, then we should traverse the edge e and visit u.

Recursively calls
dfs on vertex u,

and updates all
the auxiliary data,

including the
time counter

Once all outgoing edges have been 
traversed, increments the time by 
one extra unit (notice that time 
might already have been 
incremented in the recursive calls)

Since we are leaving this vertex for good (we 
traversed all its outgoing edges), we can set 
its out-time.

Returns 
updated values 
for the time
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break ties about which edge to traverse first). The most noticeable detail is, perhaps,
that we use a stack instead of a queue to keep track of the next vertices to be visited.

Similarly to BFS, there is no guarantee that a single run of a DFS traversal will visit all
vertices in the graph. This is shown in figure 14.13, where instead of starting the tra-
versal from v1, we choose to start from v4. Because the graph has two strongly con-
nected components, and the first one can’t be reached from v4, this unavoidably
means that vertices v1 to v3 can’t be visited in this traversal.

 To complete the traversal of the graph, we need to start another traversal in one of
the remaining vertices, the ones that haven’t been visited before: this is shown in

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8Starting
point

v1 v3

VertexStack

Top
v1

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

Current path
v2
v3
v1v1

v3

v3
v1

v5 v5
v3
v1

v6

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

Visited

Traveled
edgee1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

Already on
the stack

v2
v3
v1

v3
v1

v5

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

v5
v3
v1

v6
v5
v3
v1

v6

v4

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

v5
v3
v1

v6

v4

v3
v1

Already on
the stack

Pop all vertices without
untravelled edges

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8
v3
v1 v1

Already
visited

e1

v1

v2 v5

v4

e3

e5

e4
v3 v6e2 e6

e7

e8

v1

Figure 14.12 DFS in action. The algorithm implicitly (usually, in recursive implementations—
otherwise explicitly) maintains a stack with the next vertices to be traversed. If the stack is 
kept explicitly, it is also necessary to remember which edges have been travelled.
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figure 14.14 where the new traversal starts from vertex v3, and avoids the three vertices
that hadn’t already been visited in the first run. 

 To complete the discussion, listing 14.5 shows the code to perform a full DFS tra-
versal of a graph, with restarts.

function dfs(graph)
  time ← 0              
  in_time ← null (∀ v ϵ graph)  
  out_time ← null (∀ v ϵ graph)
  for v in graph.vertices do         
    if in_time[v] == null then       
      (time, in_time, out_time) ←
          dfs(graph, v, time, in_time, out_time)   
  return (in_time, out_time)                  

Listing 14.5 The dfs traversal of a graph
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Figure 14.13 DFS in action. The starting point is crucial in the graph’s traversal; both DFS and 
BFS couldn’t reach all vertices, for instance, if the traversal started at vertex v4 (or, for what is 
worth, v5 or v6). In this figure, vertices are also marked with the “time” they are processed, and 
the time they are removed from the stack. These values are relevant for several algorithms.

Method dfs takes a graph, traverses all of its 
vertices, and returns two dictionaries with the 
times at which each vertex was entered and exited.

Initializes the “time” counter. This is needed to 
keep track of the order of discovery of vertices.

Initializes the enter and exit 
times for each vertex to null

Iterates over all the vertices in the graph

If a vertex v’s in-time is still null, 
then it hasn’t been discovered yet.

If so,
starts

 a dfs
traversal

from v Once all vertices have been visited, 
returns the enter and exit times
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It’s also possible to pass a callback to method dfs, so that during traversal it can be
called on each vertex visited. This can be used for a number of things, from updating
the graph (changing vertices’ labels or any other attribute associated), to computing
certain arbitrary operations on graphs. All you need to do is pass the callback as an extra
argument in listings 14.4 and 14.5 and call the callback as the first thing in listing 14.4.

 You can also see that in figures 14.13 and 14.14, we also added the “times” at which
vertices are visited and exited (after that their whole adjacency list has been tra-
versed). These values are fundamental for several applications, such as computing the
topological sorting (for DAGs: just order vertices by reversed out-time), finding cycles
(if a neighbor of the currently visited vertex has an in-time, but not an out-time), or
computing connected components.

A final note on performance: as for BFS, this algorithm also has a linear running time
O(|V| + |E|) and requires O(|V|) recursive calls (or, equivalently, O(|V|) extra space
for the stack).

14.3.5 It’s queue vs stack again
When we look at these traversal algorithms, the first thing that should be clear is that
their purposes, the contexts in which they are applied, are fundamentally different.
BFS is used when the source vertex S is known, and we want to find the shortest path
to a certain goal (a specific vertex, all vertices that can be reached from S, or a certain
condition).
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Figure 14.14 DFS in action. Following up on the example in figure 14.13, we can resume the traversal 
and get to all the vertices by randomly selecting one of the vertices left, and restarting DFS from it.
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 DFS, however, is mostly used when we need to touch all the vertices, and we don’t
care where we start. This algorithm provides great insight into a graph’s structure, and
it’s used as a basis for several algorithms, including finding a topological sorting for
DAGs, or computing the strongly connected components of a directed graph.

 The interesting bit about these algorithms is that their basic version, performing
only the traversal, can be rewritten as the same templated algorithm where newly dis-
covered vertices are added to a container from which, at each iteration, we get the
next element. For BFS, this container will be a queue and we’ll process vertices in the
order they are discovered, while for DFS, it will be a stack (implicit in the recursive
version of this algorithm), and the traversal will try to go as far as possible before back-
tracking and visit all vertex’s neighbors.

14.3.6 Best route to deliver a parcel

Now that we have seen how BFS works and how to reconstruct the path from a source
to a destination, we can go back to our example and apply BFS to the graph in figure
14.10; the result is shown in figure 14.15. 

 In this case, the shortest path is pretty obvious—it’s the closest possible path to the
“straight-line distance” between the source and the destination, and it’s also the path
of minimum Manhattan Distance.8

 And yet, by just removing the edge between vertices v9 and vE, the result would
have to change completely. Try it out as an exercise to work out the solution for this
modified case (manually or by writing your own version of BFS and running it).

8 The Manhattan Distance, also known as block distance, is the sum of the absolute difference of the Cartesian
coordinates of two points. The name comes from the fact that on the island of Manhattan, most streets have a
grid layout, and so the shortest path between two intersections has a distance equal to the sum of the block’s sides.
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vertices, computed using BFS on the graph in figure 14.10. The shortest path is shown 
with dashed arrows, while distances are shown next to each vertex.
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14.4 Shortest path in weighted graphs: Dijkstra
Simplifying our scenario allowed us to use a simple and fast algorithm, BFS, to obtain
an approximated shortest path for our deliveries. While our simplification works well
for modern city centers, such as for downtown San Francisco, it can’t be applied to
more generic scenarios. If we need to optimize deliveries for a wider area in San Fran-
cisco, or in other cities lacking this regular road structure, approximating distances
with the number of blocks traveled doesn’t work well anymore.

 If we move from San Francisco (or Manhattan) to Dublin’s center, for instance, as
figure 14.16 shows, streets don’t have a regular layout anymore, and blocks can greatly
vary in size and shape, so we need to take into account the actual distance between
each pair of intersections, which won’t be their Manhattan distance anymore.
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Figure 14.16 An example of city map (Dublin’s city center), where the simplifications used to apply BFS for 
shortest paths wouldn’t be possible
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14.4.1 Differences with BFS

Like BFS, Dijkstra’s algorithm takes a graph and a source vertex as input (optionally a
goal vertex as well), and computes the minimum distance from the source to the goal
(or equivalently, with the same asymptotic running time, to all the other vertices in
the graph). Differently than for BFS, though, in Dijkstra’s algorithm the distance
between two vertices is measured in terms of edges’ weight. Consider figure 14.17,
which shows a directed, weighted graph that models the map shown in figure 14.16.

 In this context, the minimum distance between two vertices u and v is the mini-
mum sum, across all paths from u to v, of the weights of edges in the path. If there is
no such path, that is, if there is no way to go from u to v, then the distance between
them is considered to be infinite.

Figure 14.18 shows, on a simpler example graph, how Dijkstra’s algorithm works. It is
similar to BFS, with two main differences: 

 The metric used is the sum of weights instead of path lengths.
 Consequently, the container needs to be used to keep track of the next vertices

to be visited: we can’t make do with a plain queue anymore; we need a priority
queue.
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Figure 14.17 Overlaying a directed weighted graph over the map in figure 14.16. Edges’ weights are the 
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Everything else, the logic of the algorithm and the auxiliary data used, is similar to
BFS. That’s very convenient for us because we can rewrite this algorithm from listing
14.2 with minimal changes. If you think that this similarity is a coincidence, though,
hold your breath untill section 14.5.9

14.4.2 Implementation

Listing 14.6 describes Dijkstra’s algorithm in detail. Comparing it to listing 14.2, you
can see how it resembles the BFS algorithm, so much so that we can use the same algo-
rithm shown in listing 14.3 to reconstruct the shortest path for Dijkstra’s as well. None-
theless, we need to be even more careful about performance in this case.

function dijkstra(graph, start, isGoal) 
  queue ← new PriorityQueue() 
  queue.insert(start, 0)  
  distances[v] ← inf (∀ v ϵ graph | v <> start) 
  parents[v] ← null (∀ v ϵ graph)            
  distances[start] ← 0                                  
  while not queue.empty() do            
    v ← queue.top()                
    if isGoal(v) then     
      return (v, parents)
    else
      for e in graph.adjacencyList[v] do
        u ← e.dest
        if distances[u] > distances[v] + e.weight then  
          distances[u] ← e.weight + distances[v]  
          parents[u] ← v
          queue.update(u, distances[u])
  return (null, parents)  

9 Please do not literally hold your breath! And no, not even if you are speed-reading.

Listing 14.6 Dijkstra’s algorithm

Method dijkstra takes a graph, a starting point vertex, and a 
predicate (isGoal) that takes a vertex and returns true if the goal 
of the search is reached. Method dijkstra returns a pair with the 
goal vertex (if reached) and a dictionary encoding the shortest paths.

Initializes a priority queue. This 
concretely could be a heap, for instance.

Adds the starting point to the priority queue, using its distance 
(0) as its priority, so that it will be extracted on the first iteration

Creates a new hash table to keep track of the distance of each vertex from 
vertex start, that is, the sum of the weights of edges that need to be 
traversed to get from vertex start to each other vertex. Initializes the 
distance to infinity for all vertices in the graph, except for start.

Also creates another hash table to 
keep track, for each vertex u, of the 
vertex through which u was reached. This 
dictionary can later be used to reconstruct 
the path from the start to the goal.

While we initialized the vertex 
distances to infinity (or, equivalently, 
to the largest value that can be 
stored) for most vertices, for the 
starting point only, we need to set its 
distance (from itself) to 0.

Starts a loop, running until the 
priority queue is empty. It will run 
at least once because of line #3.

Extracts the top of the priority 
queue. The vertex extracted 
will become current vertex for 
this iteration, v.

If we reached the goal, we are 
done, and it just returns the 
current vertex. The function 
isGoal can abstract the 
condition checked to find the 
goal: it can reach one or more 
specific target vertices or get to 
vertices that satisfy a certain 
condition.

Iterates over 
the outgoing 
edges for the 
current vertex

If vertex u
hasn’t been
visited yet,

then maybe its
distance from
start can be
made shorter

by passing
through v.

If so, we need to update u’s 
distance, its parent, and then 
update the queue, so that u will be 
popped from it at the right time 
(that is, when it becomes the 
closest vertex to the frontier of 
visited vertices).

If the goal is never reached, we need to return null or, equivalently, another value 
that signals that search failed. We can still return the parents dictionary to 
reconstruct the shortest paths to all the vertices that were reachable from start.
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14.4.3 Analysis

While in BFS each vertex was added to the (plain) queue and never updated, Dijks-
tra’s algorithm uses a priority queue to keep track of the closest discovered vertices,
and it’s possible that the priority10 of a vertex changes after it has already been added
to the queue. 

 This is due to a fundamental difference. BFS only uses the number of edges tra-
versed as a metric, and if we use the edge’s weight instead, then it’s possible that a
path including more edges has a lower weight than another path including fewer
edges. For instance, looking at figure 14.18, there are two paths between v1 and v2; the
path v1→v3→v2 only traverses 2 edges, but its total weight is 8, while the other path,
v1→v3→v5→v2 has length 3, but its total weight is just 5. The second path is longer,
and visits one more vertex between v3 and v2, so the distance to v2 will be initially set
to 8 (when v3 is visited), and then updated to 5 when it’s v5’s turn to be visited.

10We’ll use a min-heap to store vertices in the frontier, and their distance from source is used as priority. 
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Figure 14.18 Running Dijkstra’s algorithm on a directed graph (derived from the example in figure 14.10)
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Because of this behavior, every time a new vertex is visited, potentially all its neigh-
bors’ priorities can be updated.

 In turn, this influences the asymptotic performance of Dijkstra’s algorithm, which
depends on how efficiently this “update priority” operation can be implemented. In
detail, for Dijkstra’s algorithm, we can implement the priority queue as

 An array (sorted or unsorted, as described in appendix C)
 A heap
 A Fibonacci heap

The running time using an array for the priority queue is going to be O(|E|*|V|),
because each vertex will require O(|V|) operations to update priority or to adjust the
queue after extraction.

 With the remaining two choices, the running time is O(|V|*log(|V|) +
|E|*DQ(|V|)) where

 |V| is the number of vertices on the graph.
 |E| is the number of edges.
 DQ(|V|) is the (average) running time of each “priority update” operation.

Table 14.2 summarizes the running time of Dijkstra’s algorithm, relating it to the
implementation of priority queue used.

The best theoretical result is obtained with a Fibonacci heap, for which the amortized
time to decrease the priority of an element is O(1). However, this data structure is
complicated to implement and inefficient in practice, so our best bet is using heaps.
As we saw in section 2.9, d-way heaps allow us to have a more efficient implementation
in practice.

14.4.4 Shortest route for deliveries
So far in this section, we’ve discussed how Dijkstra’s algorithm works, how we can
implement it, and its performance.

 Now there is only one thing left to tackle: how we apply this algorithm to our exam-
ple and find the shortest route to deliver an order to a customer.

 The good news is that it’s actually straightforward. Once we have created the graph
in figure 14.17, we can just apply the algorithm to it (or to the example in figure
14.10, exactly how we did for BFS) and reconstruct the shortest path.

 The result for this section’s example is shown in figure 14.19, where we computed
and showed the shortest distance from the source vertex (vS) to every other vertex.

Table 14.2 Running time of Dijkstra’s algorithm, on a connected graph G=(V,E)

Array Heap Fibonacci Heap

Running Time O(|E|*|V|) O(|E|*log(|V|)) O(|V|*log(|V|) + |E|)a

aAmortized.
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Notice that there are some edges, drawn with a thin dotted line, that don’t belong to
any shortest path, while the shortest path to our destination, vG, is highlighted with
thick dashed lines.

 This example is perfect to illustrate the need of algorithms such as Dijkstra’s
because there are two paths between vS and vG that add up almost to the same distance,
and our intuition would likely go for the longest one, because it looks more linear.

 One final consideration: As we mentioned, applying the algorithm was straightfor-
ward, but only because of one property of this graph. It doesn’t have any edge with
negative weight. Any such edge would, in fact, violate the assumption behind the algo-
rithm: that if we expand the frontier of visited vertices by choosing the closest unvis-
ited vertex at each iteration, then at the time a vertex is visited, we know its minimum
distance from start.

 This happens because Dijkstra’s algorithm (like BFS) is a greedy algorithm, a kind of
algorithm that can find the solution to a problem by making locally optimal choices. In
fact, to decide which vertex to visit next, we only need to take into account the outgoing
edges of the vertices we’ve already visited. Greedy algorithms can only be applied to
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Figure 14.19 The result of running Dijkstra’s algorithm on the example in figure 14.17. Notice that there 
are two paths from source (VS) to destination (VG) whose length is very close; see how hard it would be to 
spot the shortest (and yet counterintuitive) one. Dashed lines are used for edges in the shortest path, solid 
lines are used for edges that are traversed, but don’t end up in the shortest path, and finally dotted lines 
are used for those edges that aren’t even traversed (because, at some point, it’s clear that any path 
including them would be longer than the shortest path found).
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certain problems: having negative edges makes a problem unfit to be solved with any
greedy algorithm, because locally-optimal choices won’t be possible anymore.

 Negative-weight edges might seem counterintuitive, but they are actually quite
common. If we measure distances using the gas consumed to travel between two verti-
ces, and the goal is to not end up with an empty tank, then an edge corresponding to
a road with a gas station could have a negative weight. Likewise, if we associate a cost
to the gas, then an edge that allows us to perform a second delivery or a pick-up could
have negative cost because we could earn extra money if we travel it.

 To cope with negative edges, we need to use Bellman-Ford’s algorithm, an ingenious
algorithm that uses the dynamic programming technique to derive a solution that takes
into account negative-weight edges. Bellman-Ford’s algorithm is more expensive to run
than Dijkstra’s; its running time is O(|V|*|E|). Although it can be applied to a broader
set of graphs, it too has some limitations: it can’t work with graphs with negative-weight
cycles11 (at the same time, though, it can be used as a test to find such cycles).

14.5 Beyond Dijkstra’s algorithm: A*
As we have seen, BFS and Dijkstra’s algorithms are very similar to each other; it turns
out that they both are a particular case of the A* (pronounced “A-star”) algorithm.

 This algorithm, shown in listing 14.7, is not just more generic; it improves the per-
formance of Dijkstra’s algorithm in at least two different situations. Before delving into
those scenarios, though, let’s focus on the differences between these algorithms and A*.

function aStar(graph, start, isGoal, distance, heuristic)
  queue ← new PriorityQueue()  
  queue.insert(start, 0) 
  distances[v] ← inf (∀ v ϵ graph | v <> start)
  fScore[v] ← inf (∀ v ϵ graph | v <> start)  
  parents[v] ← null ( v ϵ graph)   

11If a graph has a negative-weight cycle, defined as a cycle for which the sum of edges’ weights is negative, then
discussing shortest paths could be meaningless. By repeatedly traversing the cycle, in fact, one could get to an
arbitrarily low total cost.

Listing 14.7 The A* algorithm

Method aStar takes: a graph; a vertex; the starting point; a predicate (isGoal) 
that takes a vertex and returns true if the goal of the search is reached; a 
function (distance) that takes an edge and returns a float, the distance between 
its two vertices; a function (heuristic) that takes a vertex v and returns a float, 
an estimate of the distance between v and the goal. Method aStar returns a pair 
with the goal vertex (if reached), and a dictionary encoding the shortest paths.

Initializes a priority queue. This could be concretely, for instance, a heap.

Adds the starting point to the priority queue, using its distance (0) 
as its priority, so that it will be extracted on the first iteration

Creates a new hash table to 
keep track of the distance of 
each vertex from vertex 
start, that is, the sum of the 
weight of edges that needs to 
be traversed to get from 
vertex start to each other 
vertex. Initializes these 
distances to infinity for all 
vertices but vertex start.

Also creates a new hash 
table for the f-score of a 
vertex, capturing the 
estimated cost to be 
sustained to reach the goal 
from start in a path 
passing through a certain 
vertex. Initializes these 
values to infinity for all 
vertices but vertex start.

Finally, creates another hash table to keep track, for each vertex u, of 
the vertex through which u was reached. This dictionary can later be 
used to reconstruct the path from start to the goal.
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  distances [start] ← 0 
  fScore[start] ← heuristic(start)
  while not queue.empty() do     
    v ← queue.top()               
    if isGoal(v) then  
      return (v, parents)
    else
      for e in graph.adjacencyList[v] do  
        u ← e.dest
        if distances[u] > distances[v] + distance(e) then   
          distances[u] ← distance(e) + distances[v]       
          fScore[u] ← distances[u] + heuristic(u)  
          parents[u] ← v
          queue.update(u, fScore[u])
  return (null, parents)    

As we can see at line #1 of listing 14.7, this generic definition of A* takes two extra
arguments, a distance function, and a heuristic. They both contribute to the computa-
tion of the so-called f-score at line #18. This value is a mix of the cost of reaching the
current node u from the source and the expected cost needed in order to reach the
goal from u.

 By controlling these two arguments, we can obtain either BFS or Dijkstra’s algo-
rithm (or neither). For both of them, the heuristic will need to be a function that is
identically equal to 0, something we could write like lambda(v) → 0. Both of these
algorithms, in fact, completely disregard any notion of or information about the dis-
tance of vertices to goal.

 For the distance metrics, the situation is different:

 Dijkstra’s algorithm uses the edge’s weight as a distance function, so we need to
pass something like distance = lambda(e) → e.weight.

 BFS only takes into account the number of edges traversed, which is equivalent
to considering all edges to have the same weight, identically equal to 1! And
thus, we can pass distance = lambda(e) → 1.

While we initialized the vertex distances to infinity (or, equivalently, 
to the largest value that can be stored) for most vertices, for the 
starting point only, we need to set its distance (from itself) to 0.

Starts a loop, running until the priority queue is 
empty. It will run at least once, because of line #3.

Extracts the top of the priority queue. 
The vertex extracted will become the 
current vertex for this iteration, v.

If we reached the goal, we are done, and just return the current vertex. 
The function isGoal can abstract the goal condition checked: it can be 
reaching one or more specific goal vertices or getting to vertices that 
satisfy a certain condition.

Iterates over the 
outgoing edges 
for current 
vertex

If vertex u hasn’t been visited
yet, then maybe its distance

from start can be made
shorter by passing through v.

If so, we need to update
its distance and its

parent, and then update
the queue, so that u will
be popped from it at the
right time (that is, when

it becomes the closest
vertex to the frontier of

visited vertices).

Updates the f-score for u 
combining the distance between 
start and u (for which we 
already have its exact value) 
and an estimate of the cost of 
reaching the goal from u

If the goal is never reached, we need to return null or, equivalently, 
another value that signals that search failed. We can still return the 
parents dictionary to reconstruct the shortest paths to all the 
vertices that were reachable from start.
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In practice, 99.9% of the times, you’d better directly implement Dijkstra’s algorithm
or BFS, and not as a special case of A*. This brings us to a golden rule about keeping
things simple that I learned from a great engineer I worked with.

NOTE Do not make your code more generic than needed. You shouldn’t
consider writing a generic version of something until you have at least three
different variants that could be implemented as minor changes of the same
generic code.12

General purpose code, such as the generic version of A* shown in listing 14.7, usually
carries some overhead, for instance, to call methods or lambdas like distance, instead
of just retrieving an edge’s length, or for BFS, using a priority queue instead of a faster
plain queue. It also becomes increasingly hard to maintain and reason about.

 So, from these considerations, it should be clear that A* hasn’t been developed to
provide a generic method to be parameterized. And yet, it can be extremely useful.

 As we mentioned, in fact, there are at least two good reasons to implement A*, two
contexts in which A* provides an advantage over Dijkstra’s.

 Let’s be clear from the beginning: this is not always true; in the general case,
Dijkstra’s algorithm is asymptotically as fast as A* (or the latter might not even be
meaningfully applicable).

 A* gains an advantage only in some contexts where we have extra information that
we can somehow use.

 The first case where we can use A* to drive search faster to the goal is when we
have information about the distance from all or some vertices to the goal(s). Figure
14.20 explains this situation better than a thousand words! Notice that in this particu-
lar case, the key factor is that the vertices, modeling physical places in the real world,
carry extra information with them (their position, which is fixed) that can help esti-
mate their distance to the final goal. This isn’t always true and is usually not the case
for generic graphs.

 To put it differently, the extra information here doesn’t come from the graph, but
from domain knowledge.

 The good news is somewhat limited though, because there is no a priori guarantee
that A* will perform better than Dijkstra’s algorithm. On the contrary, it’s easy to craft
an example where A* will always do as badly as Dijkstra’s algorithm. Check out figure
14.21 to get an idea how we can tweak our previous example to fool A*! The key, here
and always, is the quality of the extra information captured by the heuristic function:
the more reliable and closer to real distance the estimate, the better A* performs.

12Of course, using patterns like template or strategy will help keep your codebase DRY and easier to maintain,
but the point is that implementing general purpose methods or classes will make your code less clean and
maintainable, so you need to balance out both aspects.
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517Beyond Dijkstra’s algorithm: A*

14.5.1 How good is A* search?

If we were in a class and this was a live presentation, this should be your follow-up
question: Can we craft an example where A* performs consistently worse than Dijks-
tra’s algorithm?

 It turns out we can, easily: if we take the example of figure 14.21 and change just
the weight of the edge from v1 to vG, setting it to any value smaller than 2, and at the
same time we keep the same estimates, then we would be sure that A* would visit every
other vertex before getting to the goal, while Dijkstra’s would never visit v6 and,
depending on the order it processes edges out of vS, it might also skip vertices v2 to v4.

The key for this example is that the heuristic overestimates the distance to goal for v1
(and a few more vertices): A*, it turns out, minimizes the estimated cost, which can be
different from the actual cost, and whenever this estimate is pessimistic, we get into
trouble.

 The previous example, in fact, shows how using the wrong estimates can make the
search unnecessarily slower, which is inconvenient but sometimes acceptable. Things
could be much worse, however, because we could also find examples where A* returns
a solution whose cost is not optimal. In figure 14.22, the estimate for vertex v3 is
bloated, and consequently vertex vG is reached through a different path before even
visiting v3. Remember that once the goal is reached, the search stops and so the
wrong (non-optimal) path is returned.

 While sometimes this can be considered acceptable, in practice, we usually want to
avoid it, and we luckily have a way to guarantee this.

 It can be proved, in fact, that A* is complete13 and optimal when the heuristic func-
tion satisfies two conditions: it must be admissible and consistent.

13Completeness guarantees that only a finite number of nodes will have to be visited before reaching the goal.
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 Admissible (aka optimistic)—Such a heuristic never overestimates the cost to
reach the goal.

 Consistent—A heuristic is consistent if, given a vertex v and any of its successor u,
the estimated cost for u is at most the estimated cost for v, plus the cost of getting
from v to u. In formula, heuristic(u)  distance(v, u) + heuristic(v).

As one of our reviewers of this book suggested, there is an even clearer way to remem-
ber the difference between these two conditions: admissible means it’s not overestimat-
ing the cost of a path, and consistent means it’s not overestimating the cost of an edge.

 When we plan to use A* search, the first thing we need to ensure is that we have a
heuristic function that is both admissible and consistent. This condition is necessary
and sufficient to ensure the optimal solution will be found.14

 What does all of this mean for our problem—delivering goods to customers? Well,
to speed up the search for the best route, we can use the “straight-line distance to the
customer’s address” as the heuristic. This will guide search, favoring paths that get
closer to the goal over those that are directed away from it; in turn, it will require us to
visit fewer vertices before reaching the goal.

 Figure 14.23 shows how A* would find the best route for our previous example, the
one to which we applied Dijkstra’s algorithm in figure 14.19. While running Dijkstra’s
algorithm, we would have had to visit all vertices whose distance from the source is
smaller than 1356 (the total distance of the shortest path from source to goal). A* can
reach the goal faster and, although it still visits some vertices not on the shortest path,
it doesn’t go through vertices vA, vB, vC, vF, vN, vR, which are instead visited by Dijkstra’s.

 In this particular example, with A* we can save traversing 6 edges over 23, which is
quite good (a 25% save), especially considering that there are two paths with a very
close weight, differing by just 2 meters.

 Considering road distance as edges’ weight and straight-line distance as the heuris-
tic, we can see that straight-line distance is certainly optimistic, because the road dis-
tance can never be shorter; at best it can be the same.

 Straight-line distance is also a consistent heuristic. In fact, if we apply our choices
to the condition for consistency, we get

straight_line(u, goal)  road_distance(v, u) + straight_distance(v)

which is certainly true, since straight_line(v,u) road_distance(v,u), and straight-
line distance, being a Euclidean distance, certainly abides by triangle inequality.15

 While this condition always holds, the value of the heuristic for a vertex u can be
larger than the value assigned to its parent v. For example, in figure 14.23, consider
vertices vE and vD: the straight-line distance between vertex vD and the goal is larger

14For trees, admissibility alone is a sufficient condition. Can you explain why? Hint: In a tree, how many paths
from root to a goal vertex pass through a given node u?

15Given three points A, B, and C belonging to a Euclidean space, it always holds true that distance(A,C) 
distance(A,B) + distance(B,C).
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than its parents’, vE’s. This happens because not all vertices are connected by an edge
(or rather, two directional edges), and so, for example, from vE (which is the closest
vertex to the goal), you can reach vG only with a detour, by first going through vD.

 It can be proved that if, instead, the graph was fully connected, we would also visit
vertices according to their straight-line distance from the goal. In other words, the
value of the heuristic would monotonically decrease during the traversal.

 Then again, most useful graphs are not fully connected, and luckily we don’t need
this strict condition for A* to be able to find the optimal solution, but we can make do
with a consistent and admissible heuristic.

 These properties can guarantee that the best solution will be found, but should we
also aim to get the most accurate estimate possible? There might be many admissible
and consistent heuristics, but does the algorithm find the best route faster if we
choose one with a more precise estimate? 

 Needless to say, when we have to compute thousands of routes per hour, using a
more efficient search can save a lot of computation, allowing shipments to leave the
factory faster and ultimately saving money.

 Once again, we can get a theoretical guarantee about A* performance: if we fix the
heuristic and distance, then for any consistent heuristic, A* will not just be optimal,
but also optimally-efficient. This means that no other algorithm is guaranteed to
expand fewer nodes than A*.

Figure 14.23 Applying A* to the example graph in figure 14.19: while with Dijkstra we would have had 
to visit all vertices whose distance from source is smaller than 1356, A* reaches the goal faster, and 
although it still visits some vertices not in the shortest path (highlighted with a shaded background in the 
table on the right), we can avoid paying a visit to vertices vA, vB, vC, vF, vN, vR.

v3
v4

v5
v6
v7

vS 0

Vertices visiting order
v d(v) h(v) f(v)

410 410
205 545 750
277 601 878
477 520 997
365 655 1020

408 672 1080

v8 727 498 1225

v1 499 724 1223

v9 897 340 1237
vE 1147 92 1239

vD 1226 107 1333

v2 555 764 1319

vG 1356 0 1356

vM 695 1257563

vL 598 1306708
vK 502 1320818

vH 275 13431068

vJ 398 1336938
v

Pearse St.

W
es

tla
nd

 R
ow

Nassau St.

Merrion Square N.

Merrion Square

Ki
ld

ar
e 

St
.

Fr
ed

er
ic

k 
St

.

Ta
ra

 S
t.

Lo
m

ba
rd

 S
t.

1711

1581

1498

1298

656

1247

1117

1007

1226

1147

897

727

477

1356

1208

1068

938

818

708

563

499

408

365

277

205

0
vS

v1

v2

v5

vA

v8

vB

vE

vG

vJ

vF

v3

vD
vC

vH

v9

v6

Start vertex

Goal vertex

v4
v7

vK

vL

vMvN

vO
vP vQ

vR

130
150

160

72
43

43

120

200

250

170

210

205
280

240

250

252

110

93

230

79

130150

150

170140

130

120

230

200

160

83

110

130

170

170

145

93

134

64

56
56

555

410

520

498

390

305

107

340

355

0

150

92

275

398

344416
498

502

628

598

545
655724

601
672

764

695

764

Shortest
path

distance from start

Edges not
traversed

estimated
distance
to goal

Traversed edge not
in the shortest path



520 CHAPTER 14 An introduction to graphs: Finding paths of minimum distance

 That being said, the closer the estimate is to the actual distance of a vertex to the
goal, the faster the algorithm will reach the goal. As an example, try to come up with a
better heuristic for the graph in figure 14.23. (Hint: What could be more precise than
straight-line distance?)

 While we are happy to have a way to guarantee that A* will find the optimal
solution, we also mentioned that sometimes it is acceptable to settle for a sub-optimal
one. Especially when the cost of traversal is high, or there are constraints on the
response time, we might want to choose a non-admissible heuristic that guarantees
faster convergence.

14.5.2 Heuristics as a way to balance real-time data

That concludes our discussion about optimality of search. We also mentioned there is
at least one other scenario where A* can prove itself particularly useful. Let’s briefly
explore it.

 The great power of having this heuristic function is that we can use a different met-
ric with respect to the distance and convey more information about the domain. Heu-
ristics could even combine several data, as long as the value returned by a heuristic is
scaled appropriately to make sense when compared to the edge’s distance. For
instance, it would make little sense (and cause terrible performance) to use meters for
edges’ weights and seconds (or even millimeters) for the heuristic’s estimates; how-
ever, we can always scale millimeters to meters or, if the heuristic conveys information
about the average time needed to reach the goal from each vertex, then we could mul-
tiply it for the roads’ average or minimum speed to obtain a quantity that could then
be added to any edge’s weight.

 But we can also take this to the next level by decoupling even more the purposes of
the distance and of the heuristic. Imagine that we are computing the best route on the
go, instead of a priori, like a car navigator does.

 First, we switch our metric from distance to travelling time, and the time needed to
traverse a road changes depending on traffic, weather, areas closed to transit during
certain hours, and so on.

 However, the average time needed when following a certain route is known in
advance, and we can use that as a compass to balance our live decisions.

 Suppose, for instance, that now you are also planning deliveries on a larger scale,
and you need to ship some goods from Naples to Florence. When you get to Rome, the
faster route would be through the motorway passing east of the city, and it usually would
take slightly less than three hours. However, your navigator realizes that for the next 10
miles on that route there is heavy traffic, while going around Rome on the west side, the
traffic is all clear. If the navigator just used Dijkstra’s algorithm, the next edge to expand
would be the shorter time for the next 10 miles, and it would lead you west.

 Unfortunately, that would add at least one hour to your trip. A* can come to the
rescue and balance the short-term advantage of a traffic-free motorway section with
the long-term gain of a shorter and usually faster route.
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 Although this example is extremely simplified, you get the point. A* can better bal-
ance long-term costs with local choices, and that’s why it has been the state-of-the-art
in AI, for example, for pathfinding in video games.16

 The next step to improve these navigation algorithms would be considering how
requests for shortest path are handled in a vacuum. Especially during rush hours,
when many users will request the shortest path between similar locations, suggesting
the same route to all of them could lead to unnecessarily high traffic on some roads,
and very low traffic on others. Wouldn’t it be great if a more balanced routing system
could take into consideration all requests involving the same segments, spread the
traffic over several routes, and minimize the congestion due to vehicles sharing the
same road?

 That goal is ambitious, out of scope for this book, and out of reach of classic com-
puters. That’s why quantum developers17 are working on it, with encouraging results.

Summary 
 Graph is a data structure that can model many problems, and in general it works

well when there are entities connected by some kind of proximity relation.
 While usually the adjacency list representation works better for most problems,

for some problems with dense graphs the adjacency matrix is preferable.
 There are many possible ways to explore a graph, but the most common are

Breadth First Search (BFS) and Depth First Search (DFS).
 Dijkstra’s algorithm extends BFS when the shortest path needs to be computed

in terms of the minimum edges’ weight, not just the minimum number of
edges.

 A* provides an improvement on Dijkstra’s when we have extra information
besides the edges’ weight, information that can be conveyed into a heuristic
estimating the distance from each vertex to the goal. 

16Other applications of A*, Dijkstra’s and BFS range from IP routing to graph theory and even garbage
collection.

17You can read the details here: http://mng.bz/w99B. Graph theory is one of those fields that can be revolution-
ized by quantum computing; for an introduction to practical quantum computing, check out Quantum Com-
puting for Developers, by Johan Vos (Manning Publications, 2021), and Learn Quantum Computing with Python and
Q#, by Sarah C. Kaiser and Christopher E. Granade (Manning Publications, 2021).

http://mng.bz/w99B
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Graph embeddings and
 planarity: Drawing

 graphs with minimal
 edge intersections

Now that we have introduced graphs properly in chapter 14, we are ready to take
the next step: drawing a graph. So far we’ve talked about graphs in abstract terms,
yet we had to visualize them in a certain way to describe how shortest path algo-
rithms work. In chapter 14 we did it manually and took it for granted, but what
about an automated approach to embed these data structures in a Euclidean space,
and in particular in the 2-D plane?

This chapter covers
 Embedding graphs on a 2-D plane

 Defining graph planarity

 Introducing complete and bipartite complete graphs

 Discussing algorithms to find out if a graph is planar

 Defining minimum crossing number for non-planar graphs

 Implementing algorithms to detect crossing edges
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 This is not always needed for all graph applications, nor it is always possible; there
are, however, many applications where the way we lay a graph’s vertices and edges on a
surface is crucial. Take, for instance, printed circuits board (PCB) design, shown in figure
15.1. The way electronic components (vertices) and conductive tracks (edges) are
positioned on the board is crucial not just to the good functioning of the circuit, but
also to optimizing the manufacturing process and reducing the amount of copper
used, as well as the overall costs.

 In this chapter, we are going to gradually introduce the main concepts about
graph embeddings, focusing on 2-D planes, planar graphs, and how to minimize the
intersections of the edges when a graph is not planar.

While we explain these concepts, we’ll also lay the groundwork to build an application
that takes a graph and displays it nicely on the screen (or, equivalently, on paper).

15.1 Graph embeddings
Graphs are an amazing data structure. In chapter 14 we just scratched the surface,
talking about Dijkstra’s and A*, and there are many other cool applications for
graphs. You must have heard of knowledge graphs,1 or graph databases2 such as
Neo4J, just to name a few that are hyped these days. 

1 A knowledge graph is an extremely advanced data structure that organizes data in the form of a graph provid-
ing in a single DS the data itself and a way to understand it. Google’s knowledge graph, for example, is used
to refine searches through semantics.

2 Graph databases leverage the fact that modern data is highly interconnected, to allow organizing and querying
information in a semantic way, using the graph’s edges to model dynamic relations between pieces of data (the
graph’s vertices). This can be thought of as taking a relational DB, like a classical SQL DB, and making it more
flexible and even more powerful. Take a look, for instance, at Neo4J in action, or Fullstack GraphQL.

R1

R2
R3

R4

C2

T1

C1

C3 V

G

Figure 15.1 An example of an electronic circuit, and a graph embedding from which the circuit’s layout 
may have been derived. Looking at the graph, all electronic components have a vertex dual (with different 
shaded colors by type), and the joints have been modeled with vertices on the graph (to cope with the 
fact that we need to restrict to horizontal and vertical segments for conductive tracks).
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 But graphs are also used to model more tangible applications; for example, a printed
circuit board can be represented as a graph, where electronic components are the ver-
tices, and conductive tracks on the board (usually made out of copper) are the edges.3

Besides that, we as humans often need to visualize a graph for better comprehension.
Consider, for instance, a flow chart (which, not surprisingly, is a graph), like the one
shown in figure 15.2.

When we can visualize it, it’s easy both to follow the flow and to get a high-level idea of
its overall structure. Check out its formal definition, in terms of graph’s vertices and
edges:

G = (
V = [Start, A, B, A==B, A<B, swap(A,B), A=A-B, Output: B, End],   
E = [Start -> A, A -> B, A==B -[Yes]-> Output: B, A==B -[No]-> Output: B, 

➥ A<B -[Yes]-> swap(A,B), A<B -[No]-> A=A-B, swap(A,B) -> A=A-B, A=A-B -> 

➥ A==B, Output: B -> End]
)

Was it as easy to understand as looking at its drawing?
 I think that we can agree there is fundamental value in drawing graphs, at least

when we are supposed to understand and manually process them. Although this is not
always the case,4 there are many examples where we do want to visualize graphs, for
instance in flow charts, UML diagrams, PERT charts, and so on.

3 In this case, for PCBs, the edges are limited to polylines made of perpendicular segments.
4 For instance, nobody would be expected to understand Google’s knowledge graph by taking a glance at it

(especially considering that it has a humongous number of vertices and edges): that graph, or graph databases,
is not meant to be processed by the human mind, but through algorithms.

Figure 15.2 A flow chart (in this example, one for the algorithm computing the greatest common divisor 
(GCD) of two numbers) is a special type of graph.
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 The next thing we need to agree (or not) upon is that not all visualizations are
equally useful. Look at figure 15.3 and compare it to figure 15.2. I don’t know about
you, but rather than using the diagram in figure 15.3, I might as well look at the defi-
nition of the graph: that’s how confusing it feels. 

The key difference between the two layouts is that in figure 15.3, edges cross each
other multiple times, making it difficult to follow them. In figure 15.2, no edges were
crossing—this is a planar embedding for a planar graph! Don’t worry, we’ll define those
in a minute. Before that, there is one further consideration: the drawing could get
even worse, if you think about it—at least in figure 15.3, edges don’t overlap with
vertices.

15.1.1 Some basic definitions
In the previous section, we saw how drawing a graph without intersections between its
edges makes the visualization a lot clearer. But is it always possible to do so to avoid
these intersections?

 Hold on to this question; we’ll come back to it. Meanwhile, we can look at a couple
of definitions that we’ll use during this and later chapters.

 Drawing a graph on a plane can be thought of as placing vertices on a 2-D Euclid-
ean space. Informally, we can imagine each vertex as a point in ℝ2 (the set of all pairs
of real numbers), and each edge as an arc (or a polyline) between two vertices.

 More formally, we can define a planar embedding as an isomorphism (a 1:1 map-
ping) between an abstract graph G and a plane graph G’.

Figure 15.3 The same flow chart as in figure 15.2, but with a different layout. Can you still make sense 
of it?
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 A plane graph, in turn, is defined as a pair of finite sets (V, E), denoted as vertices
and edges respectively, such that

 V is a subset of ℝ2.
 Every edge e ϵ E is a section of a Jordan curve passing through two vertices.
 No two edges have the same pair of endpoints.
 No edge intersects a vertex (other than its endpoints) or any other edge.

We still owe you a definition: a Jordan curve is a planar, simple and closed curve, a
non-self-intersecting continuous loop in the plane. See figure 15.4 for a few examples.

A planar graph is thus defined as an abstract graph G for which there exists a planar
embedding.

 Now back to our question, which we can reformulate using our definitions: Are all
graphs planar?

 The answer is, unfortunately, no, not all graphs are planar. The first algorithm to
check whether a graph is planar was given by the Polish mathematician Kazimierz Kura-
towski; his theorem characterizes planarity in terms of forbidden graphs. It states, in fact,
that for a graph to be planar, it can’t contain two specific non-planar graphs as its sub-
graphs.

 These two graphs are the simplest non-planar graphs: the complete graph K5 and
the complete bipartite graph K3,3; Kuratowski’s theorem states that “a graph is planar
if and only if it doesn’t contain as a subgraph neither K5 nor K3,3, nor any subdivision of
those two graphs.”

 This was an amazing result, but to appreciate it better, we should first consider a
few more definitions.

15.1.2 Complete and bipartite graphs

A complete graph is a graph where each vertex is connected by an edge to each other
vertex in the graph. In these graphs, the number of edges is maximal for simple
graphs, being quadratic with respect to the number of vertices: |E| = O(|V|2).

Jordan Curves Non-Jordan Curves
Figure 15.4 Examples of Jordan and non-Jordan curves. A Jordan curve is a closed curve whose 
border doesn’t have intersection points (it’s not “twisted” like the last two examples). Notice 
how a rectangle (or any polygon’s perimeter) is a valid Jordan curve. For graphs’ edges we’ll use 
sections of Jordan curves, so the only restriction will be that it must not self-intersect in any point.
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 Notice, however, that a complete graph
doesn’t contain loops; therefore, the exact
number of edges of a complete graph with n
vertices is n * (n-1) / 2, where |V| == n.

 Complete graphs are denoted with the
letter K, from Kuratowski’s initials, and a
subscript that indicates the number of verti-
ces in the graph; therefore, K5 (figure 15.5)
denotes the complete graph with 5 vertices,
and in general, Kn is the complete graph
with n vertices.

 A bipartite graph is a connected graph
where vertices can be partitioned into two
groups, let’s call them A and B, such that
vertices in group A are only connected to
vertices in group B (in other words, each
vertex in group A can’t have any edge to
another vertex within group A, and likewise
for group B).

 A complete bipartite graph just has all the
possible edges between the two groups of
vertices—again, loops are not allowed.

 Kn,m is the generic complete bipartite
graph with two partitions of n and m verti-
ces each, and K3,3 (figure 15.6) is the com-
plete bipartite graph with two partitions
having 3 vertices each.

 A complete bipartite graph whose parti-
tions have size n and m has exactly n * m
edges.

 The generic embedding (not necessarily
planar) is defined similarly to what we did
in the previous section; it’s an isomorphism
Γ between a graph G and a subset G’=(V,E)
of ℝ2, such that:

1 V is a subset of ℝ2

2 Every edge e ϵ E is a section of a Jordan curve5 between two vertices.
3 No two edges have the same pair of endpoints.
4 No edge intersects a vertex (other than its endpoints).

5 A Jordan curve is a planar, simple and closed curve, a non-self-intersecting continuous loop in the plane.

Figure 15.5 An embedding of a complete 
graph with 5 vertices. Is this the best way to 
draw it?

Figure 15.6 An embedding of K3,3. Again, 
do you think there could be a more convenient 
embedding for this graph?



528 CHAPTER 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections

Basically, with respect to the definition of a plane graph and planar embedding given
in section 15.1.1, we only waive the requirement that no edges can ever cross.

15.2 Planar graphs
Kuratowski’s theorem might seem counterintuitive, defining a planar graph in terms
of what it can’t contain. It was, however, an important tool to

1 Recognize that two categories of graphs (complete and complete bipartite) are
non-planar (except for their smallest specimens), and there’s no need to try to
find ways to avoid intersections when drawing them.

2 Mathematically prove when a graph isn’t planar.

Although it was a great tool for mathematical proofs, using it for an algorithm that
automatically checks if a graph is planar was another story.

 We’ll see how to implement a planarity testing algorithm later in this section. First,
let’s finish our discussion of Kuratowski’s graphs.

 If we look at figure 15.5, that embedding of K5 has 5 points where edges cross; for
each abstract graph G, however, there are infinitely many possible embeddings. As you
can imagine, there are infinitely many ways you can draw G, moving each vertex a little
bit (or a large bit) in any direction, and even using a different curve for the edges (for
instance, infinitely many curves instead of segments).

 This holds true for K5 as well, obviously. Now the point is, are all these embeddings
equivalent, with respect to the way edges cross
each other? 

 Well, we already know a way to draw K5 so
that 5 pairs of edges cross, so if we can find
another way where its edges cross more, or less,
we have evidence that not all embeddings are
the same.

 Long story short, figure 15.7 shows an
embedding for K5 with just a single cross-point
between two edges.

 Therefore, we can say that the answer to this
question is no, they aren’t all equivalent. As a
matter of fact, working to find the “best”6 possi-
ble embedding for graphs will be our quest for
the rest of this book.7

6 We’ll also have to discuss what makes an embedding the best or at least better: “having fewer intersections” is
a good starting point, though.

7 While we present ways to solve this problem, we’ll introduce new algorithms and techniques that can also be
applied to other areas besides graphs.

Figure 15.7 A better embedding for K5. 
In this case we have only one crossing 
point, indicated by the fat arrow. Notice 
that there are still infinitely many 
embeddings equivalent to this one.
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15.2.1 Using Kuratowski’s theorem in practice

Kuratowski’s theorem states that K5 and K3,3 are the “simplest” graphs that don’t have a
planar embedding. What did he mean by “simplest”? Well, in this case it means that
that there isn’t any smaller graph (meaning with fewer vertices or edges) that isn’t pla-
nar, and so every sub-graph of either K5 or K3,3 has a planar embedding. 

 I’ve always found it curious that there are two base cases. It wasn’t possible to find a
single base graph because these two are fundamentally anisomorphic, but at the same
time, it’s quite remarkable that any other non-planar graph can be reconducted just
to these two.

 You might wonder how we know both that there is no way to draw these graphs
without intersections, and that there isn’t any simpler graph that’s not planar. Well,
Kuratowski proved it, so we can trust his theorem.

 But in case you still have doubts, you can also try to scramble the vertices in figure
15.7 and see if you can find a planar embedding; make yourself comfortable, because
it might take a while, until you realize it’s not possible!

 The other half of the claim, that there isn’t any smaller non-planar graph, is easier
to show. Let’s focus on K5 and first look at a graph with fewer vertices, in particular K4,
shown in figure 15.8. 

At first sight, if we draw this graph naively, it seems like it has a pair of crossing edges.
It’s easy, however, to move one of the vertices past the crossing point to obtain a pla-
nar embedding.

Figure 15.8 Two embeddings for K4. Although it would seem like a good 
candidate for non-planarity, it’s enough to move one vertex around to find a planar 
embedding, as shown on the right.
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 The other possibility to rule out is that there is a non-planar graph with fewer edges
than K5; however, if we look at figure 15.7, it’s immediately obvious that if we remove
either edge 1->5 or edge 2->3, then we also
get rid of the one intersection in the
drawing, as shown in figure 15.9. Since a
complete graph is symmetrical and
relabeling-invariant,8 we can obtain an
equivalent embedding (ignoring the labels)
regardless of which edge we remove from K5.

 In conclusion, the largest sub-graphs of
K5 are planar, and hence any other graph
with 5 or less vertices and less than 9 edges
is planar.

 The same thing can be shown for K3,3;
investigating its sub-graphs can be a good
exercise to gain a better understanding of
bipartite graphs and embeddings.

15.2.2 Planarity testing

Checking to see if a graph is planar is trickier than you might think. Even checking
whether an embedding is planar isn’t that easy: that’s one of the tasks our brain per-
forms easily, but it’s not that simple to replicate with an algorithm. If we want to avoid
resorting to computer vision (and we usually do, for this kind of task9) we need to
restrict the way we draw edges, for instance, limiting to straight-line segments or
Bézier curves, so that we can use math formulas to compute if they intersect. Still, the
computational effort needed to check the number of intersections on a large graph
remains considerable.

 And this is just for a single embedding. Determining if a graph is non-planar
means proving that for any possible embedding we can come up with, there is at least
an intersection.

 We already introduced Kuratowski’s work on planar graphs, providing the first
method to determine if a graph is planar.

 Planarity, however, had already been studied for a long time, and in fact Euler, in
the 18th century, came up with an invariant (proved only in 1811 by Cauchy) provid-
ing necessary conditions for a graph to be planar.

 Although these conditions are not sufficient, so they can’t be used to prove planar-
ity, they are cheap to compute and, when violated, they rule out planarity.

8 It doesn’t matter how we label the vertices, because vertices are isomorphic: equivalent one to another, and
each adjacent to all the other vertices.

9 Besides being computationally heavy, state-of-the-art computer vision needs a large dataset and a long time to
train, and obviously it doesn’t provide a deterministic algorithm.

Figure 15.9 Any graph obtained by removing 
an edge from K5 can be embedded in the plane 
without any intersection.
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 The two conditions we can more easily implement in our tests are

 Given a simple, connected graph G=(V,E) with at least 3 vertices, G is planar
only if |E|  3|V| - 6.

 If |V| > 3 and G doesn’t have any cycle with length 3, then G is planar only if
|E|  2|V| - 4.

So, as a first step in a planarity test algorithm, we can check, in linear time O(V+E), both
conditions:10 if either doesn’t hold, we already know that the answer is “non-planar”.

 There are several algorithms to test for planarity. While none of them is particu-
larly easy to implement, many are also inefficient: the first efficient algorithm, run-
ning in worst-case linear time, was derived only in 1974 by Hopcroft and Tarjan.

 The inefficient algorithms that had been developed before would take up to
O(|V|3), or even worse, as we’ll see.

 One way to try to improve the situation is by using the divide-and-conquer strategy
to break down the original graphs into smaller subgraphs that can be tested separately.

 This is possible thanks to the following two lemmas:

 A graph is planar if and only if all its connected components are planar.
 A graph is planar if and only if all its biconnected components are planar.

In chapter 14 we have already given the definition of connected graph: G is connected
when from any vertex v ϵ G it is possible to find a path to any other vertex u ϵ G. If a
graph is not connected, we can define its connected components as the maximal dis-
joint subgraphs of G that are connected.

 A biconnected graph is a connected graph with the additional property that there is
not a single vertex v ϵ G such that removing v from G will disconnect the graph. An
equivalent definition of a biconnected graph can be given: G is biconnected if for any
pair of vertices u, v ϵ G there exist two disjoint paths between them. These two paths,
therefore, can’t have any edge in common or any vertex except for u and v.

 The proof of the first lemma is trivial. For a disconnected graph, because there are
no edges between its connected components, it’s sufficient to draw each component
such that it won’t overlap with the others.

 As a consequence of the two lemmas, we can split any graph G into its biconnected
components and apply the planarity testing of choice to each of them separately.

15.2.3 A naïve algorithm for planarity testing

Since we have mentioned more than once that there is an (inefficient) algorithm
based on Kuratowski’s theorem that is fairly straightforward to implement, let’s actu-
ally start from there. Listing 15.1 shows a template method that wraps any planarity
testing algorithm, making sure we break down a graph into its connected (or, even
better, biconnected) components and running the testing on each of them.

10The first condition can be checked in constant time if we have the information about the size of the graph.
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 In chapter 14 we have seen how we can find the connected components of a graph
using DFS; finding biconnected components is slightly more complicated, but it can
still be done using a modified version of DFS.11 

function planarityTesting(graph, isPlanar)  
  components ← biconnectedComponents(graph) 
  for G in components do               
    if not isPlanar(G) then  
      return false
  return true   

Now we need to define the actual method performing planarity testing on each bicon-
nected (or connected) component. Listing 15.2 shows the method based on Kura-
towski’s theorem.

 The algorithm leverages the inductive definition of a graph. While trees can be
defined by induction on the number of vertices (we construct larger trees by adding
children to a root), given a graph G=(V,E), it can be inductively grown in two differ-
ent ways.

 As we have seen in chapter 14, in fact, it could be

 G’=(V+{v}, E): we add a new vertex to G.
 G’=(V, E+{(u,v)}) | u, v ϵ V: we add a new edge to G.

function isPlanar(graph)
  if |graph.vertices| < 5 then return true 
  if violatesEulerConstraints(graph) then return false
  if isK5(graph) or isK3_3(graph) then return false 
  for v in graph.vertices do                           
    subG ← graph.remove(v)                                  
    if not isPlanar(subG) then return false 
  for e in graph.edges do  

Listing 15.1 Planarity testing template algorithm

11We won’t have the space here to describe this algorithm, but you can find a description online at https://
en.wikipedia.org/wiki/Biconnected_component.

Listing 15.2 Planarity testing based on KK’s theorem

Method planarityTesting is a template meta-function taking a 
graph and a planarity testing algorithm, and applying the algorithm 
passed to all the biconnected components of the graph. If any fails the 
planarity testing, the graph is non-planar.

Breaks down the graph into 
its biconnected components 
(you could use connected 
components to keep it simple)

Cycles through the graph’s components

If any component isn’t planar, 
the whole graph is non-planar.

If all components are planar, we can return true.

Since this algorithm leverages the inductive nature 
of graphs, we start with the base case. Graphs with 
fewer than 5 vertices are definitely planar.

Checks if the number of edges and vertices violates Euler’s 
constraints for planar graphs. If so, this can’t be planar.

Finally, if this graph is 
(isomorphic to) either K5 
or K3,3, then it definitely 
can’t be planar.

Cycles through the 
graph’s vertices

Creates a sub-graph by 
removing v and all the 
edges adjacent to v

If the sub-graph so 
created is not planar, 
neither is graph.

Cycles through all edges in graph

https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Biconnected_component
https://en.wikipedia.org/wiki/Biconnected_component
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    subG ← graph.remove(e)                
    if not isPlanar(subG) return false     
  return true             

When it comes to decomposing G, therefore, we need to consider two sets of subgraphs: 

 Induced subgraphs—All the graphs that could be obtained by individually remov-
ing each vertex of G (induction rule 1), and all the edges in turn touching the
vertex removed.

 Spanning subgraphs—All the graphs that could be obtained by individually
removing each edge of G (induction rule 2).

These two sets of graphs are recursively checked at lines #5–7 and #8–10, respectively.
Since the algorithm is recursive, we need a base case: we could use the empty graph,
trivially, but since we know that all graphs with 4 or fewer vertices are planar, we can
stop our recursion earlier (see line #2) and save computational resources.

 The only thing remaining is checking if the current input is a non-planar graph.
Normally we would just use another base case (actually, 2), at line #4, where we check
to see if recursion brought us either K5 or K3,3 (for Kuratowski’s theorem, we know
that this means non-planar). In this case, though, we added another check at line #3,
using Euler’s inequalities to our advantage: as we saw in section 15.2.2, if the graph we
are examining has too many edges for its vertices, it must be non-planar.

 To see how the utility methods performing these checks work, let’s take a look at
listings 15.3, 15.4, and 15.5.

function violatesEulerConstraints(graph)
  (n,m) ← (|graph.vertices|, |graph.edges|)   
  if m > 3 * n - 6 then                   
    return true    
  if not hasCycleOfLength3(graph) and m > 2 * n - 4 then 
    return true
  return false

The method to check Euler’s constraints, shown in listing 15.3, is directly derived
from the formulas in section 15.2.2. The hardest part is verifying that a graph doesn’t
have any cycle of length 3: this can be done using a modified version of DFS that
returns all cycles, and runs in linear O(V+E) time. Since this is quite expensive and
requires a non-trivial effort to write and maintain the code, the benefit of including
this second check is debatable and—especially on your first try—it might not be worth
it: you can start with checking the first constraint only, and remove the if at line #5.

Listing 15.3 Planarity testing utility methods: Euler’s invariants

This time creates a sub-graph by 
just removing the current edge.

If the resulting sub-graph isn’t 
planar, neither is graph.

If we made it all the way to this line, 
then the graph is planar.

Checks Euler’s invariants on a graph
Temporary variables for number 
of vertices and edges in graph

First constraint: If a 
graph is planar then 
|E|  3|V| - 6.

Second (stricter) constraint: If a graph is planar and doesn’t 
have any cycle of length 3, then |E|  2|V| - 4.
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function isK5(graph)  
  if |graph.vertices| == 5 and |graph.simpleEdges| == 10 then 
    return true    
  return false

Listing 15.4 shows the method to check if a graph is (isomorphic to) K5. Obviously it
needs to have 5 vertices (!), but we also know how many edges it should have, exactly
10. Notice that here we are talking about simple edges, where source and destination
are distinct (so, no loops).

function isK3_3(graph)      
  (n,m) ← (|graph.vertices|, |graph.simpleEdges|) 
  if n == 6 and m == 9  then                       
    if isBipartite(graph) and partitionsSize(graph) == (3,3) then    
      return true    
  return false

Listing 15.5 shows the method to check if a graph is (isomorphic to) K3,3. This is a bit
more complicated because it’s not enough to check that the count of vertices (6) and
edges (9) is right. We also need to check that the graph is bipartite and that both par-
titions have size 3.

 This brings us to the last step we need to implement: finding out if a graph is bipar-
tite, and retrieving the two partitions.

 To do so, we exploit a property of bipartite graphs: a graph is bipartite if and only
if it’s possible to color its vertices with exactly two different colors, such that there isn’t
any pair of adjacent vertices with the same color. Figure 15.10 shows a few examples to
clarify this definition.

 We can perform graph coloring easily by modifying the BFS algorithm:

1 We represent the source vertex as a red hexagon.
2 Once we extract a vertex from the queue, we color all its neighbors with the

opposite color: for example, blue squares (as shown in figure 15.10) if the cur-
rent vertex is a red hexagon, and vice versa.

3 If any of the adjacent vertices is already colored with the same color as the cur-
rent vertex, then the graph is not bipartite.

Listing 15.6 shows the pseudo-code for a method returning the two partitions while it
checks if the graph is bipartite. You can also take a look at a Java implementation on

Listing 15.4 Planarity testing utility methods: K5 testing

Listing 15.5 Planarity testing utility methods: K3,3 testing

Method isK5 takes a graph and checks if 
it is the complete graph with 5 vertices.

Graph K5 has 5 vertices and exactly 10 edges
(not counting loops). Here we assume that

graph.simpleEdges returns all edges in a
graph except for possible loops.

Method isK3_3 takes a graph and checks if 
it is the complete bipartite graph with two 
partitions of three vertices each.

Temporary
variables for

number of vertices
and edges in graph

Graph K3,3 has 6 vertices and 
exactly 9 edges (not counting 
loops): here we assume that 
graph.simpleEdges 
returns all edges in a graph 
excluding loops.

That’s not enough, though. We also need to check that the
graph is bipartite and the two partitions have the right size.
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the book’s repo on GitHub12 or a JavaScript implementation provided by JsGraph, the
JavaScript library that has been used to draw most of the examples of embeddings in
this chapter.

function isBipartite(graph)
  queue ← new Queue()                 
  queue.insert(chooseRandomVertex(graph)) 
  colors ← new HashTable()                
  colors[queue.peak()] ← red                           
  while not queue.empty() do            
    v ← queue.dequeue()                              
    for e in graph.adjacencyList[v] do              
      u ← e.dest
      if colors[u] == colors[v] then  
        return (false, null, null)
      if u not in colors then                             
        colors[u] = (blue if colors[v] == red else red)
        queue.enqueue(u)
   return (true, {v | colors[v] == red}, {v | colors[v] == blue}) 

12See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph

Listing 15.6 Checking if a connected graph is bipartite

Figure 15.10 Bipartite graphs and coloring. All 
graphs are colored with the minimum possible 
number of colors. On the left, two examples of 
bipartite graphs; on the right, non-bipartite 
graphs. As you can see, two colors are not 
enough for these graphs (we also use different 
shapes, along with shading, for the vertices to 
help with visualizing the difference).

Method isBipartite takes a graph, and returns 
true if it is bipartite, together with the two partitions. 
The argument must be a connected, non-empty graph. Initializes a 

simple FIFO 
queue

Adds a random vertex of the graph to the queue, 
so that it will be extracted on the first iteration

Creates a new hash table to keep 
track of the color of each vertex

We (arbitrarily) pick the color red 
for the starting point (currently 
at the top of the queue).

Starts a loop, running until the 
queue is empty. It will run at 
least once, because of line #3.

Dequeues the head of the 
queue. This will become 
the current vertex.

Iterates over 
the outgoing 
edges for the 
current 
vertex

If the neighbor has already been colored with 
the same color as v, the graph is not bipartite.

If, instead, u hasn’t been 
colored yet, we can assign 
it a different color and add 
it to the queue.

At this point, we know the graph is bipartite, so we 
can easily partition the vertices based on their color.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph


536 CHAPTER 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections

15.2.4 Improving performance

This is the bulk of the simplest algorithm we have to test graph planarity. We know it’s
inefficient, but exactly how inefficient?

 It’s a recursive algorithm, where from each call to the method can stem several
recursive calls; the depth of the recursion is already linear in the size of the original
graph G=(V,E), because we remove one vertex or one edge at a time.

 The breadth of the recursion tree (the number of recursive calls) is also linear,
although in the size of the graph that is currently run on, let’s call it G’=(V’, E’).
This is because the two for loops cycle through all vertices and all edges in G’.

 We can write a formula for the running time. If |V’|=n, |E’|=m, then

T(n,m) = n * T(n-1, m) + m * T(n, m-1)
T(0,0) = 1
T(0,*)=1
T(*,0)=1

For a recurrence relation13 of the form T(n) = n * T(n-1), the solution depends on
the value of the base term. If as in this case, T(0) = 1, then T(n) = n! – this, at least,
when we have a single variable. Our specific case, where we have two variables, grows
even faster.

 The last thing we want in a formula for an algorithm’s running time is a factorial—
a function that grows faster than the exponential function. This means that the algo-
rithm, as presented in listing 15.2, can only be used for small graphs.

 When you see a factorial pop up in your calculations, it will likely mean that you
are computing the same thing over and over again, multiple times.

 This is the case for our algorithm as well; let’s see an example, with a small graph
with just three vertices. Let G=({1,2,3}, E) be our initial graph. For the sake of our
example, we won’t bother with its edges, but focus on the recursion on vertices.

 The for loop at line #4 of listing 15.2 will issue three calls14 for the following
graphs:15

(V’,E’)=({2,3}, E-{1}), ({1,3}, E-{2}), ({1,2}, E-{3})

Each of those graphs will in turn produce two calls:

({3}, E-{1,2}), ({2}, E-{1,3}),
({3}, E-{1,2}), ({1}, E-{2,3}),
({2}, E-{1,3}), ({1}, E-{2,3})

13A recurrence relation is an equation that recursively defines a sequence of values, where each term of the
sequence is defined as a function of the preceding terms. Check out appendix B for more on how to solve
recurrence relations.

14Imagine, for the sake of providing a simple example, that at line #2 we are using the empty graph as a base to
halt the recursion.

15We write E-{1} as a shortened notation for E-{(1,v) | vϵ{2,3}, (1,v) ϵE},  and similarly for the other
vertices.
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As you can see, in the second round of calls, each graph appears twice. If we also con-
sider the recursion on the edges, it gets much worse.

 Usually this kind of expansion ends up in a memory crash long before the recur-
sion gets closer to the base cases.

 The most common strategy for coping with this is to avoid the duplicates by one of
the following:

 Define a better recursion that avoids the duplicates (not always possible).
 Prune the search tree avoiding duplicated work (branch and bound algorithms).
 Compute and store the results for the smaller cases and read them when

needed while computing larger problems (dynamic programming algorithms).

For this problem, we can reasonably go for the third option and use memoization16 to
provide a sort of cache of the results of the algorithm for smaller problems.

 This will give us some improvement, but as we’ll see, the most efficient algorithms
developed for planarity testing, instead, order the edges to be added or removed at
each step in such a way to guarantee a linear number of steps (therefore using the first
of the strategies in the list).

 By avoiding computing things twice, we guarantee that we will examine each dis-
tinct subgraph at most once, so that the number of steps becomes bounded by the
number of possible subgraphs. For a graph with n vertices and m edges, there are 2n

induced subgraphs (because there are 2n subset of vertices) and 2m spanning subgraphs
(considering the subset of edges). The total number of possible subgraphs is thus
bounded by 2n+m, which is better than factorial, but still too large to consider the algo-
rithm usable for graphs with more than ~20 vertices.

 There are other small improvements that we can add; although not as impactful as
avoiding duplicates, they all contribute to speeding up the algorithm. For instance, we
can improve our halting condition. We don’t need to wait until we get down to K5 or
K3,3; any complete graph with 5 or more vertices, or any complete bipartite graph with
both partitions having 3 or more vertices, is certainly non-planar.

 Most of these cases, however, are already caught by Euler’s invariants.
 Listing 15.7 shows the pseudo-code for the improved method; you can find a Java

implementation on the book’s repo17 or a JavaScript implementation provided by
JsGraph.

function isPlanar(graph, cache={})
  if graph in cache then return (cache[graph], cache)     
  if |graph.vertices| < 5 then return (true, cache)
  if violatesEulerConstraints(graph) then          

16See appendix E on recursion and the use of memoization to prevent stack overflow.
17See https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph

Listing 15.7 Planarity testing with cache

First, we check if the graph 
is in our cache. The cache 
can be as simple as a 
dictionary, as long as 
graphs are serializable.

If the number of edges and vertices violates Euler’s constraints for planar graphs, 
we know the graph is not planar. Before returning, we need to update the cache so 
this graph won’t be checked again in another branch of the computation.

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#graph
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    cache[graph] ← false
    return (false, cache)
  if isComplete(graph) or isNonPlanarCompleteBipartite(graph) then 
    cache[graph] ← false     
    return (false, cache)
  for v in graph.vertices do   
    subG ← graph.remove(v)                            
    (planar, cache) ← isPlanar(subG, cache)  
    if not planar then
      cache[graph] ← false
      return (false, cache)
  for e in graph.edges do                
    subG ← graph.remove(e)
    (planar, cache) ← isPlanar(subG, cache)
    if not planar then
      cache[graph] ← false
      return (false, cache)
  cache[graph] ← true            
  return (true, cache)

15.2.5 Efficient algorithms

The algorithm presented in listing 15.7 is still too slow to be affordable on large
graphs. Still, it can be a feasible, low-cost18 option that can work on small graphs.

 There are far better algorithms that have been developed for planarity testing.
While they take different approaches to provide an answer (and a planar embedding)
in linear time, they all have something in common: they are fairly complicated.

 As in, “research papers spanning dozens of pages” complicated. Describing them
in detail goes beyond the scope of this chapter, but we’ll briefly describe a few promi-
nent ones and provide pointers for the interested readers.19

 Be aware that the effort to implement these algorithms might be consistent. Also
keep in mind that if your constraints can be relaxed, and you can accept an algorithm
that provides a reasonable embedding, even without guarantees that it will be planar,
you can use simpler heuristics to generate embeddings (more on this later).

 As we mentioned, the first linear-time algorithm for planarity testing was devel-
oped in 1974 by Hopcroft and Tarjan,20 improving a previously-developed21 O(|V|2)
variant. Their idea is based on vertex addition, so the algorithm starts bottom-up,

18In terms of effort to write and maintain the code.
19For a comprehensive summary, check out Patrignani, Maurizio. “Planarity Testing and Embedding,” in

Handbook of Graph Drawing and Visualization, (Chapman and Hall/CRC, 2013), 1–42.
20Hopcroft, John; Tarjan, Robert E. (1974), “Efficient planarity testing,” Journal of the Association for Computing

Machinery, 21 (4): 549–568
21Tarjan, R. E. “Implementation of an efficient algorithm for planarity testing of graphs.” unpublished imple-

mentation, Dec (1969).

Instead of looking for K5 or K3,3 only, we check whether it is 
complete (since the graph has at least 5 vertices, it’s definitely 
non-planar) or complete bipartite (in this case, we also need to 
check that the smallest of the two partitions has size 3).

Cycles 
through 
the graph’s 
vertices

When we perform a recursive call, 
we need to update the cache as 
well. Besides the cache, the 
algorithm stays the same.

Cycles through all edges in graph. 
Follows the same pattern as for vertices.

If we made it all the way to this line, then 
the graph is planar; we need to update 
the cache and return true.



539Non-planar graphs

keeping the possible planar embeddings for each incrementally-built induced
subgraph22 of the original one. 

 As we previously mentioned, this strategy defines a different approach to recur-
sion: bottom-up rather than top-down, incremental and not divide-and-conquer, but
above all, by carefully reconstructing the original graph one vertex at the time, it
avoids analyzing all sub-graphs, and only performs a linear number of steps.

 The key is that while adding vertices, the algorithm keeps track of the possible
embeddings of the sub-graph.

 Fast-forward to 2004, when a brand-new approach23 was developed by Boyer and
Myrvold: it’s an edge-addition method, so it incrementally adds edges instead of verti-
ces. It’s still linear, O(|V|+|E|), but it has the great advantage of avoiding any require-
ment for specific data structures to store the candidate embeddings. This algorithm is
currently one of the state-of-the-art solutions to find planar embeddings for planar
graphs; the best part is that you can find an open source implementation online on
boost.org: http://mng.bz/5jj7. 

 The last algorithm we are going to mention is the planarity testing algorithm24 by
Fraysseix, de Mendes, and Rosenstiehl, which is the other state-of-the-art algorithm in
this area. It characterizes planar graphs in terms of a left-right ordering of the edges
in a depth-first search tree, and its implementation is DFS-based, although obviously
the DFS method needs to be modified accordingly, and it uses Trémaux trees, special
spanning trees produced by a DFS visit of a graph.

15.3 Non-planar graphs
Now that we have at least one planarity testing algorithm in our tool belt, we can look
at our task, visualizing graphs nicely on screen, with more confidence. Some of the
planarity testing algorithms also output a planar embedding, and that gives us a good
starting point.

 And yet, we have a long way to go.
 Let’s start with two considerations:

 Is reducing the number of crossing edges the only criterion we should follow?
 We know not all graphs are planar . . . should we just give up on non-planar

graphs?

Let’s focus on the first question. What do you think? Take a minute to imagine what
other characteristics make a good visualization and, vice versa, what could go wrong
with this.

 Then take a look at figure 15.11 to corroborate your thoughts.

22As we have already seen, an induced subgraph is obtained by removing one or more vertices from the original
graph.

23Boyer, John M.; Myrvold, Wendy J. (2004), “On the cutting edge: simplified O(n) planarity by edge addition”
(PDF), Journal of Graph Algorithms and Applications, 8 (3): 241–273

24de Fraysseix, Hubert; Ossona de Mendez, Patrice; Rosenstiehl, Pierre (2006), “Trémaux trees and planarity,”
International Journal of Foundations of Computer Science, 17 (5): 1017–1029.

http://mng.bz/5jj7
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 Looking at it, we can see that there are at least three different aspects that contrib-
ute to the poor look and comprehensibility of the visualization:

1 The most evident effect is that it’s impossible to read any text. This is because
elements are unnecessarily far from each other, and we need to zoom out to see
the whole chart.

2 Some edges are all twisted and windy, making it harder to follow them.
3 Compared to figure 15.1, the relative position of the elements fails to suggest

the direction of flow. Adjacent nodes are far from each other, with nodes mod-
eling other unrelated steps in between.

OK, this is what’s wrong with the chart in figure 15.11. Can we transform these consid-
erations into requirements to have a better visualization? Let’s try this:

1 Adjacent vertices (aka vertices connected by an edge) must be placed as close as
possible in the plane. Of course, we need some sort of a compromise because
we don’t want vertices to get too close (otherwise they would overlap with each
other or hide the edge between them), and also if a vertex v is adjacent to many
others, we can’t afford too many of these vertices to cluster around v.

2 Draw edges in the simplest possible way: either segments or arcs of ellipses
should work.

3 Reduce the number of edges crossing. Aim for no intersections if a graph is pla-
nar or as few as possible for non-planar ones.

In the next chapters, we will see how these requirements can be translated into math-
ematical expressions to model a cost function that can reflect how good a graph is.

 We’ll use the rest of this chapter to talk in more depth about the third point.
 As we have seen, there are graphs for which it’s not possible to find an embedding

without any edge crossing.

Figure 15.11 Another embedding gone berserk for the flow chart in figure 15.1
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For non-planar graphs G, however, we can define a value, called a crossing number,
that is the smallest possible number of edge crossings of all the possible embed-
dings of G to ℝ2.

 Planar graphs, obviously, have a crossing number equal to 0; both non-planar
graphs we saw earlier in the chapter, K5 and K3,3, have a crossing number equal to 1.

15.3.1 Finding the crossing number

Kuratowski’s theorem tells us the necessary and sufficient condition for a graph to be
planar, but it doesn’t help much with computing the minimum crossing number of
non-planar graphs. The problem of finding the crossing number for a non-planar
graph has been investigated far less than planarity testing/embedding. While there
are several efficient algorithms that provide planar embeddings for planar graphs, to
date there isn’t an efficient algorithm that can find the minimum crossing number for
generic graphs.

 As a matter of fact, it has been proven that determining the crossing number of a
generic graphs is an NP-complete problem.

 There are, however, notable exceptions25 if we narrow the field; for example, it has
been recently proven26 that there is a simple algorithm to check if a non-planar graph
has crossing number 1.

 Assuming that G is a non-planar graph (and hence it has at least 5 vertices, as a con-
sequence of Kuratowski’s theorem), for each pair of non-adjacent27 edges a→b, c→d,
we remove both edges, and add a new vertex v, and 4 new edges a→v, v→b, c→v, v→d.

25Clancy, Kieran, Michael Haythorpe, and Alex Newcombe. “A survey of graphs with known or bounded crossing
numbers.” arXiv preprint arXiv:1901.05155 (2019).

26Haythorpe, M. “QuickCross--Crossing Number Problem”.
27Two edges are adjacent if they have at least one vertex in common; in a pair of non-adjacent edges, therefore,

all the four vertices are distinct.

Edge intersections in higher dimensional spaces
Interestingly enough, if we move from the plane to 3-D space, it becomes trivial to
find an embedding to ℝ3 such that no edges cross. If we consider the following Jordan
curve C(t), a surface defined as

then we can map each vertex to a distinct point on the curve and draw edges as seg-
ments between the vertices. It can then be proven that there is no way to choose a
set of four points from C(t) such that they all lie on the same plane, and therefore
the segments between pairs of points can’t cross each other.

C t( )

x t=

y t2=

z t3=





 t 0≥,=
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If the new graph obtained is planar, then the crossing number of the original graph is
exactly 1.

 Some of the most interesting results in this area focus on complete and complete
bipartite graphs. Guy’s and Zarankiewicz’ conjectures postulate a formula for the
crossing number of these graphs, but they haven’t been proven so far.

 Guy’s conjecture hypothesizes that the minimum crossing number of the generic
complete graph with n vertices is given by

Zarankiewicz’ conjecture, however, provides an estimate for complete bipartite graphs
with two partitions having n and m vertices, respectively:

As of today, both formulas have been proven to hold as upper bounds, meaning that
the crossing number for these graphs is not larger than the value computed using the
formulas, and they have not yet been disproved as lower bounds.

 If we try to apply these results to the two graphs we have already introduced, we get 

So, for K5 and K3,3 the expectation is consistent with what we have mentioned and with
our experience. As a matter of fact, Guy’s conjecture has been proven to hold true as
an exact value for n  12, while Zarankiewicz’ for n,m  7.

 If we consider, for instance, graph K6, shown in figure 15.12, the expected (and
proven) crossing number is 3.

 And yet, it’s significantly harder to obtain an embedding with minimal crossings
between edges. An example embedding is shown in figure 15.13.
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15.3.2 Rectilinear crossing number

Have you noticed that so far, we’ve only drawn graphs using segments? While this has
served our purpose well, and we’ve always been able to draw graphs with the mini-
mum number of intersections, this is not always true.

 In fact, we need to introduce a new definition: the rectilinear crossing number of a
graph G is the minimum number of edges crossing in a straight-line drawing of G; that
is, an embedding on the plane for G where edges are drawn as straight-line segments.

 When we restrict to straight-line segments for the edges, we are using a fraction of
the possible embeddings. It shouldn’t be surprising, therefore, that the rectilinear
crossing number of a graph is never smaller than its crossing number.

 Now, can it be larger? It has been proven that for any graph G with a crossing num-
ber smaller than or equal to 3, it’s possible to come up with a straight-line drawing
with minimal crossings: in other words, whenever the crossing number cr(G) is 3 or
less, it matches the rectilinear crossing number, rcr(G).

 Although this is great, because it means that planar graphs can indifferently be
drawn as straight-line or curve-line drawings, the result can’t be generalized. There
exist, in fact, graphs for which cr(G) = 4 < rcr(G). Figure 15.14 shows the original
example used for the proof in a paper28 from 1993. In the left half of the figure, you
can see a straight-line drawing of the graph, with 12 edge intersections. This is also the
rectilinear crossing number of the graphs, and no matter how much you move verti-
ces around, you can’t get fewer intersections, as long as you only draw edges with
straight line segments.

28Bienstock, Daniel, and Nathaniel Dean. “Bounds for rectilinear crossing numbers.” Journal of Graph Theory 17.3
(1993): 333-348.

Figure 15.12 A naïve embedding for K6: there are 
15 crossing pairs of edges with this layout.

Figure 15.13 A minimum crossing 
embedding for K6, with just 3 intersections.
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On the other hand, the right half of figure 15.14 shows that by using cubic Bézier
curves and moving a few edges to the external face of the first embedding, we can
reduce the number of intersections to just 4; this is also the crossing number for this
graph.

 The interesting part is that by using this graph as a starting point, it is possible to
construct graphs with a crossing number equal to 4, but with a rectilinear crossing
number arbitrarily large (potentially up to infinity). For the proof and the construc-
tion rules, please refer to the original article.

 For complete graphs, it’s known that for n 10, rcr(Kn)>cr(Kn); unfortunately,
we can’t do any better for our examples for K5 and K6: even using generic Jordan
curves, the best embedding we can get for K6 is the one shown in figure 15.15, which
still has three intersections.

 Nevertheless, using arcs allows us to choose a simpler and more regular layout for
the vertices.

So, long story short, if we draw large graphs using only straight-line segments, chances
are that we have to accept a larger number of edge intersections than is actually possible,

Figure 15.14 The simplest graph for which the rectilinear crossing number is larger than the 
crossing number. Intersections are highlighted by the little arrows.

Figure 15.15 An alternative 
minimum crossing embedding 
for K6: using curves for the 
edges allows us to keep a more 
regular layout for the vertices.
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because the rectilinear crossing number is larger than the crossing number for many
graphs. Does that mean we have to dismiss this way of drawing graphs? Not at all!

 First, as we have seen, for all planar graphs and all graphs whose crossing number
is smaller than 4, we can use the straight-line drawing without any loss; not all the
other graphs with cr(G)  4, moreover, have a worse rcr(G) than their cr(G).

 It turns out that for practical purposes, we are often more interested in drawing
planar or almost-planar graphs, because flow-charts, PERT diagrams, workflows, and
so on are usually fairly sparse graphs, which in turn are less likely to have a high cross-
ing number. After all, from Euler’s invariants we know that planar graphs must be
sparse (because the number of edges is linear in the number of vertices).

 Second, even if curve-line embeddings can lead to fewer crossing points, it doesn’t
mean that it’s easy to find one. As a matter of fact, these drawings are much harder to
find with an algorithm because we have to optimize many more parameters. Besides
the position of the vertices, we also have to find the ideal curves that reduce the num-
ber of intersections. This will add at least one or two parameters per edge, if Bézier’s
quadratic or cubic curves are used, making the search space much larger and harder
to search. The number of parameters, in fact, goes from O(V) to O(V+E), which in turn
is O(V2) in the worst case.

 Third, using curves requires a larger computational power. The algorithm to check
if two segments intersect is significantly easier than checking if two curves do (and it
can be made even easier with some restrictions on the position of the vertices). This
means that even computing the number of intersections in a candidate solution is
more expensive with curve-line drawings.

 In the next chapters, we will focus on straight-line drawings, but we’ll also show
how to extend them to curve-line graphs.

15.4 Edge intersections
The last bit of code we need to make our initial fully randomized algorithm for
minimal-crossing embeddings is the method that checks if two edges intersect.

 In this section we’ll start discussing the variant for straight-line drawings; since
edges are drawn as segments, it’s easier to check if they intersect.

 Then we’ll move to Bézier curves, briefly explaining how they work, the subset of
curves we’ll allow, and how to check for intersections for elements of this subset.

15.4.1 Straight-line segments
Let’s start with the intersection between two segments. After all, we have also said that
we decided to focus on straight-line drawings, so we’ll devote more space to discussing
this case.

 An initial strategy to cheaply screen pairs that are not intersecting is shown in fig-
ure 15.16. If we draw a box, parallel to the axes, around each of the two segments,
then obviously the two segments can’t cross if the boxes do not intersect. In turn, the
two boxes can’t intersect if the projections of the two segments over the Cartesian axes
don’t intersect on both the x and y axes.
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This condition, having the projected segments not intersecting, is sufficient, but not
necessary for establishing that two segments do not cross. Figure 15.16 (B) shows how
there can be segments whose boxes intersect, but that don’t cross.

 So, we have an asymmetric situation:

 If we find out that the projections of the segments do not intersect over one of
the two axes, we can conclude that the segments do not intersect.

 Otherwise, we can’t make any assumptions, and we need to further investigate.

We can do that in many ways, for instance, by verifying that the extremes of a segment
fall on the opposite sides of the line passing through the other segment, as shown in
figure 15.17.

This, however, requires a bit too much fiddling with edge cases (for instance, parallel
segments), so I prefer a different, more elegant, method I recently discovered.
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Figure 15.16 Examples of non-intersecting segments: the bounding-box check 
can only rule out an intersection, but cannot confirm it.
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Figure 15.17 Segment intersection: if bounding boxes have a non-null intersection, 
the discriminant becomes whether or not the vertices of segment CD (or HG) are on 
opposite sides of the line passing through the segment AB (EF), and vice versa.
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 The gist of it is shown in figure 15.18. It doesn’t involve bounding boxes; rather, we
want to find the intersection point of the lines passing through the segments and then
check that it lies within both segments. There are, actually, three possible cases:

 The intersection of the two lines, point P, lie outside of both segments.
 P lies inside one of the two segments, but not both.
 P lies within both segments.

The third case is the only one where we have an
intersection.

 How do we find P? Well, first, more precisely,
we will use vectors and semi-lines rather than just
lines.

 We define vectors v=BA=(Bx-Ax,By-Ay) and
w=DC=(Dx-Cx,Dy-Cy). These vectors start from the
second point in the segment and end at the first
one. Now, remember that vectors can be trans-
lated seamlessly, so, for instance, we can move
the v so that it starts where w ends, or vice versa,
and compute their sum or product. For instance,
considering the vector u that is shown in figure 15.19 (A) (and that we’ll define in a
few lines), we show it sharing point A with v out of convenience, so that it’s apparent
how the two vectors are orthogonal.

 Assuming that vectors v and w aren’t parallel (which we can easily check by taking
their cross product), the lines passing through them will cross at one point P, that
might or might not lie inside the segments. Either way, there must be two real num-
bers, h and g, such that the scaled vectors h*v and g*w, when their start point is set to B
and D respectively, both end exactly at point P, as shown in figure 15.19 (B).

In other words, the coordinates of point P can be expressed in terms of both vectors,
and the following equation must hold:

B + h*v = D + g*w                                               (1)
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Figure 15.19 A vector approach to check whether the point of intersection of the two 
lines falls within both segments
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Figure 15.18 Checking whether the 
point of intersection of the two lines falls 
within both segments
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Notice that B and D can also be considered vectors: in particular, the vectors that go
from the origin to those two points.

 We had mentioned we would define a new vector u. Well, now is the time to
consider it:

u = (-vy,vx) = (Ay-By,Bx-Ax)

This vector has a special property; its dot product with vector v is zero:

u·v = v·u = vxvy - vyvx = 0
Going back to equation (1), we can multiply both sides by u, which is not null (as
long as A and B are distinct points, which we assume as a hypothesis, because distinct
vertices can’t be assigned to the same point). Doing so we get

B·u + h*v·u = D·u + g*w·u ⇒ B·u = D·u + g*w·u

As such we eliminate the unknown h and solve the equation for g:  

Similarly, we can define vector z = (-wy,wx), such that z·w = 0, and derive a formula
for h:

All that’s left is reasoning about the meaning of these two solutions. Looking at figure
15.19, can you tell which one, between h and g is, for this example, larger than 1?

 If you notice, in this particular example vector, BP is smaller than vector BA, and as
such, h must have a value between 0 and 1. The scalar g must be larger than 1, because
vector DP is longer than DC.

 For the former situation, clearly P is within the segment BA, while for the latter, it’s
clearly outside DC.

 When either value is 0 or 1, it means that P coincides with one of the segment’s end-
points. If both h and g are equal to either 0 or 1, then we have an edge case where the
two segments have a vertex in common. These two edge cases are shown in figure 15.20.

 In conclusion, if we assume that all 4 vertices are distinct, then the two segments inter-
sect if and only if both 0 h 1 and 0 g 1 (but only at most one of them is either 0 or 1). 
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Listing 15.8 shows the code to compute the scaling coefficient (either of h or g; which
one depends on the order of the points we pass) for one segment with respect to the
other.

function vectorScalingFactor(A, B, C, D)  
  v = (B.x-A.x, B.y-A.y)
  w = (D.x-C.x, D.y-C.y)
  u = (-v.y, v.x)
  return ((B.x-D.x) * u.x + (B.y-D.y) * u.y) / (w.x * u.x + w.y * u.y) 

We reuse this coefficient in listing 15.9, where we check the intersection between two
graph edges.

function edgesIntersection(e1, e2) 
  h = vectorScalingFactor(
      e1.source, e1.destination, e2.source, e2.destination) 
  g = vectorScalingFactor(
      e2.source, e2.destination, e1.source, e1.destination)
  return 0  h  1 and 0  g  1 and not (h in {0,1} and g in {0,1})  

15.4.2 Polylines
In our examples in chapter 15 we have drawn a few flowcharts by using polylines for
edges, and specifically a subset of all polylines where the only segments allowed are
parallel to the Cartesian axes. In this configuration, checking for intersections
becomes somewhat easier, because while it’s true that for each edge we need to con-
sider the segments composing it, checking the intersections of two segments that can
either be vertical or horizontal becomes much easier and boils down to checking their
endings’ coordinates.

Listing 15.8 Method vectorScalingFactor

Listing 15.9 Method edgesIntersection
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Figure 15.20 Two edge cases for the vectorial method. 
In the first case, segments AB and CD, we have 0 h 1 
and g==1. Therefore, vertex C lies on the segment AB. 
The second example, segments A’B’ and C’D’, has 
h==0 and g==1. In this case, two of the endpoints must 
be the same, and in fact B’==C’.

Method vectorScalingFactor takes four 
points, assuming they are the endpoints of 
segments AB and CD, and returns the scaling 
factor that needs to be applied to vector CD 
in order to end exactly on segment AB.

Method edgesIntersection takes two edges and returns true 
if and only if the segment representations of the edges intersect.

We assume, for the sake of space, that the edge’s properties source and 
destination return points, which in turn have x and y fields for their coordinates.

As we have seen, there is
an intersection if both h

and g are between 0 and
1, but if both are exactly
0 or 1, then the edges

are just adjacent.
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 One important difference with this representation is that the number of intersec-
tions between two edges is not just 0 or 1 anymore; they can intersect multiple times—
one more reason to prefer other styles over polylines.

15.4.3 Bézier curves
An interesting and flexible alternative to polylines is provided by Bézier curves. These
curves are a valuable solution because they can be drawn with a variable degree of pre-
cision, depending on the computational resources available. Bézier curves have a
beautiful mathematical formula and are both flexible and precise. Going into the
details of how they work is beyond the scope of this book, but we’ll try to give a quick
introduction that should be enough to get you started. To the interested reader that
would like to delve into this topic, we have two freely available online resources:

 Sederberg, Thomas W. “Computer aided geometric design” (2012).
 “A Primer on Bézier Curves”, https://pomax.github.io/bezierinfo/.

Let’s start building our intuition with the geometric definition of Bézier curves, shown
in figure 15.21 for a quadratic curve.

 A quadratic curve requires three points: two endpoints (S and E in figure 15.21)
and a control point (C1). First, we have to draw the two segments between the end-
points and C1. Then we need to choose two points on those segments, under the con-
straint that if the point on SC1 (call it A) is such that SA/SC=t, then B, the endpoint on
EC1, must satisfy EB/EC1=(1-t). These two points, A and B, will be the endpoints of
another segment, AB, on which we choose a point Pt such that APt/AB=t. 

 If t==0, then Pt==A, while when t==1 then Pt==B. The collection of all these points
Pt, for all values of t between 0 and 1, makes a quadratic Bézier curve between A and B.

 Notice how the segment AtBt is always tangent to the curve.

S E

C1

t=0.25
25%

t=0.5

t=0.75

50%
75%

Pt

Pt

Pt

At Bt
(1-t)=0.25

t
1-t

S E

C1

Figure 15.21 How a quadratic Bézier curve is drawn. A quadratic curve requires three points: two 
endpoints (S, E) and a control point (C1, or just C for the sake of clarity here henceforth). First we have 
to draw the two segments between the endpoints and C. Then, we can draw segments whose endpoints 
are on SC and EC, under the constraint that if the endpoint on the former, call it A, is such that SA/SC=t, 
then B, the remaining endpoint, must satisfy EB/EC=(1-t). Finally, on segment AB, we choose a point 
P such that AP/AB=t.

https://pomax.github.io/bezierinfo/
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For cubic Bézier curves the procedure becomes a bit more involved, as shown in fig-
ure 15.22. There are two control points, C1 and C2, and we first have to draw the seg-
ments C1C2 and select a point Ct on this segment. We’ll have to note the ratio between
the two subsegments created by this point, t=C1Ct/C1C2.

 Then we select two points At and Bt on the segments between the endpoints and
the closest control point, such that SAt/SC1=t and C2Bt/C2E=t.

 Finally, for the three points At, Bt and Ct, we need to go through the same steps we
performed for a quadratic curve, and select a point Pt.

Technically a Bézier curve is an iterative linear interpolation. When we select points
At, Bt, (and Ct) we apply linear interpolation (varying the ratio t), and likewise we can
do this for the segments between the generated points.

 So, if we start with two segments (quadratic curve), we can apply linear interpola-
tion twice to find the curve’s points. With three initial segments (cubic curve), we pick
three points, which in turn define two new segments, and so on; we thus apply linear
interpolation three times.

 Following this definition, even a straight-line segment can be expressed as a Bézier
curve. It has no control points and just 1 segment, so we apply linear interpolation
once.

S E
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Bt
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25
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75%
Ct

Wt
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Figure 15.22 Drawing a cubic Bézier curve. You can appreciate the increased complexity 
compared to quadratic curves.
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 In this edge case, it’s easy to see that the generic point Pt is given by the vectorial
equation:

We won’t derive it for a quadratic curve, but here is how it will look:

In general, for a Bézier curve with n-2 control points, we can express its generic point
as

using the conventions: S=Q0, E=Qn and Ci=Qi ∀ i=1,..,n-1.

15.4.4 Intersections between quadratic Bézier curves

In our examples, we are only going to use a subset of the set of Bézier curves—symmet-
ric quadratic Bézier curves where the control point lies at exactly the same distance
between the two endpoints. This way, we can simplify the way we reason about the
curve and the way we look for intersections.

 Looking at figure 15.23, we can see a few interesting facts:

 The curve is always going to be a section of a parabola.
 We can store point C by using a single real value (the distance from the line

passing through the endpoints).
 The tangent to the curve that’s parallel to

segment SE is exactly halfway between the
same segment and point C.

We’ll see later why the third point is especially
important for us.

 First, we need to give a brief overview of the
methods that can be used to check intersections
between Bézier curves:

 Bézier subdivision is a method based on convex
hull 29—For a Bézier curve with n-2 control
points, its convex hull is the polygon with n
sides whose vertices are the endpoints and
control points. Figure 15.24 illustrates how
it’s possible to compute the intersection of

29The convex hull of a shape is the smallest convex set that contains it.
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Figure 15.23 A quadratic Bézier 
curve where the control point lies at 
the same distance from the endpoints. 
The tangent to the curve parallel to 
the segment SE is at a distance of 
d/2 from that segment, where d is the 
distance of point C from segment SE.
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two curves by comparing their convex hulls.
If they do not overlap, the curves do not
intersect; otherwise, the curves are each split
in half and the two halves of one curve are
checked for overlap against the two halves of
the other curve. This step can be iterated
until either there is no overlap between any
pair of sections, or the curves are split into
sections so small that they can be approxi-
mated with segments (within a certain
acceptable error). Then, we can just use the
algorithm in section 15.4.1 to check that no
pairs of segments intersect.

 Bézier clipping—For generic Bézier curves, this is the most efficient method, but
also the most complicated. We won’t get into the details for this one.

 Interval subdivision—This is similar to Bézier clipping, but it adapts better to our
stricter requirements. The difference is that in this case, we first find the vertical
and horizontal tangents to the curve. By splitting the curve, making sure that the
points where its tangent is parallel to one of the axes are at the extremes of each
segment, we guarantee that in each segment the curve is monotone (because a
function can change its trend only in such points), and that for each value point
on the x axes, there is only one point belonging to the curve in each one of these
sections. Figure 15.25 illustrates how it works for a generic Bézier curve. In turn,
we can use these properties to further split the curve by halving each segment
along the x axis and computing the exact point on the curve. This point will be
one of the corners of each section’s bounding box, and we can easily compare
the bounding boxes of two curves. They will all be parallel to the Cartesian axis,
so we just need to check a few inequalities to find out if they intersect.

Applying the interval subdivision method to symmetric quadratic Bézier curves is even
simpler, because these curves have at most two points where its tangent is parallel to
one of the axes. Moreover, we can easily compute an initial, coarse-grained bounding
box for each of these curves. As shown in figure 15.26, they all lie within the rectangle
delimited by the line passing through its endpoints, the parallel to the former tangent

Tangents
First split
using tangents Further split

Figure 15.25 The interval subdivision method in action on a generic Bézier curve

Convex hull No intersection:
discarded halves

Figure 15.24 The Bézier subdivision 
method in action (first iteration). The 
points shown are the actual control 
points of cubic curves. This method 
can obviously also be applied to 
quadratic, quartic, or generic curves.
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to the apex of the curve (at distance d/2 from segment SE, as we have previously men-
tioned), and the perpendicular lines to SE passing to those endpoints.

 Therefore, we can informally define the algorithm to check for intersection of two
symmetric quadratic Bézier curves as the following steps:

1 Compute the bounding boxes of the two curves, as shown in figure 15.26 (A).
2 If the bounding boxes do not intersect, return 0; if they do, continue.
3 Compute the vertical and horizontal tangents to each curve, and use them to

split the curve into two or three sections (depending on if they have both tan-
gents or just one).

4 Recursively
a For each of the sections of curve C1, check which sections in curve C2 it overlaps.
b If no two sections overlap, return 0.
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Figure 15.26 The interval subdivision method used to check intersections between two symmetric, 
quadratic Bézier curves (A). (B) Compute the bounding boxes using what we know about the curve’s 
tangents at apex. Here, they overlap. (C) We thus need to move forward, computing the tangents to the 
curve parallel to the axes, and use them as pivot points at which we can split the curves. Each section 
is now monotonic and can be interpolated with a segment. Each pair of sections from the two curves will 
at most cross in one point. (D) For each section in curve C1, compute the intersections using only the 
overlapping sections in curve C2 (then sum the results for each of the three cases). (E) We can split each 
section further by halving it. Only some sub-sections will still overlap, and we can iterate steps (D-E) until 
they become small enough that the error in approximating a curve with a segment is within a given 
threshold.
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c Otherwise, return the sum30 of the intersections for the remote calls among
the overlapping pairs:
i For each pair of overlapping sections.
ii Split each of the overlapping sections in half.
iii If the sections are small enough to be approximated with segments, com-

pute the segments’ intersection.
iv Otherwise, recursively check the four sections resulting from the split.

If we compare this algorithm to the one in section 15.4.1 for segment intersection, the
main difference that stands out is that this algorithm is recursive (or equivalently iter-
ative), while for segments we only need to perform a constant number of operations.

 This means that if we use curves instead of segments, computing the edge crossing
at each iteration of an optimization algorithm is going to be much more expensive.

 Moreover, with quadratic curves we already have four possible intersections for
each pair of edges, and for cubic curves it’s obviously even worse: we have more
parameters to optimize, and each change can make a greater difference.

 That’s why we are focusing on straight-line drawings. One should really double-
check the requirements and discuss the benefits and costs, before deciding to embark
on the more challenging enterprise of curve-line embeddings.

15.4.5 Vertex-vertex and edge-vertex intersections

So far, we have delayed the discussion about validating an embedding by checking
that no pair of vertices share the same position, and that no edge crosses a vertex.

 There are many ways to draw edges, as we have seen, but there are also many ways
to draw vertices: they can be punctiform, they can be drawn as circles, but they can
also be drawn as squares, octagons, or any kind of polygon, really. Depending on these
choices, we’ll need a different algorithm.

 Here, we’ll assume that vertices are drawn with circles (punctiform vertices being
an edge-case, a circle with a radius close to zero), and edges are drawn with segments.
This will give you the tools to handle the simplest solution and a basis to build more
complex ones, if needed.

 For vertices, in particular, if you choose to use squares or regular polygons, you can
always consider the circumscribed circle31 or minimum bounding circle32 of the polygon and
change the constraints considering these circles instead of the actual shape of the
vertices.

 Using circles makes our lives a lot easier; it allows us to just check the distance
between two vertices (between their centers) or between a vertex and an edge.

30Remember that while two segments only cross at most in one point, two parabolas can cross in up to four
points. Once we split both curves along the tangent points, each section can only cross another section at most
once.

31The circumscribed circle is a circle passing through all vertices of a polygon.
32The minimum bounding circle is the smallest circle covering all points in a set.
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For two vertices, the algorithm is trivial: we just need to check that the distance
between their centers is larger than the sum of their radii. Figure 15.27 shows why.

 To make sure an edge doesn’t overlap with a vertex (which is not an endpoint for
the edge), we need to make sure that the distance between the edge and the vertex is
larger than the vertex’s radius.

 In turn, when edges are drawn with straight-
line segments, this forces us to check three dis-
tances. If the distances between the two seg-
ment’s endpoints (S, E in figure 15.28) and the
vertex’s center (let’s call it C) are smaller than
the vertex radius, then we certainly have an inter-
section. Even if these distances are larger,
though, the vertex could intersect the edge
somewhere in the middle, so we need to check
the distance between the line passing through
the segment and the vertex’s center, and that the
point of minimum distance between the vertex
and the line falls inside the segment.

 To find the point-to-segment distance, we can
use the following formula (which we won’t derive
here):

And finally, to check if the intersection between the line passing through the segment
and the line of minimum distance to a vertex (a line perpendicular to the segment
passing through a vertex) falls within or outside a segment, we can use the same algo-
rithm we developed for segment intersection, using points S and E on one side, and v
and Pv (or u and Pu) on the other side. We just need to check that the multiplicator
factor is between 0 and 1.
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Figure 15.1 Vertex intersection with another 
vertex. For two circles to overlap, the distance 
d between their centers must be smaller than 
the sum of the circles’ radii. If d>rv+ru, as in 
(A), we are clear; when d rv+ru, as in (B), the 
two circles overlap.
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Figure 15.28 Vertex intersection with 
a segment. When considering the 
distance between a segment and a 
vertex, there are cases (v in the figure) 
where we need to use the line-point 
distance, and others where the distance 
to an extreme is what matters.
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Summary
 Graphs are abstract algebraic structures; to visualize them, it’s possible to

embed a graph to a geometrical space.
 An embedding is a mapping between vertices and points in a Euclidean space,

and between edges and (Jordan) curves in the same space.
 If an embedding maps a graph to the plane, and none of the edges intersect

another edge or a vertex (besides its endpoints), then the embedding is called a
planar embedding.

 While it’s possible to embed all graphs in the 3-D Euclidean space without edge
intersections, not all graphs are planar.

 If we restrict the shape of the edges to straight-line segments, instead of generic
Jordan curves, for some graphs it’s not possible to find a straight-line drawing
with the minimum possible number of intersections.

 Computing if and how edges cross is not easy. In straight-line drawings it’s less
expensive because checking two segments only requires a constant number of
operations on vectors. When moving to curves, recursive algorithms (or their
iterative counterparts) are needed.
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Gradient descent:
 Optimization problems

 (not just) on graphs

If I mention a technique called gradient descent, does it ring a bell? You might not
have heard of it, or maybe you recognize the name but can’t quite recall how it
works. If so, that’s fine. If, however, I ask you about machine learning, classification

This chapter covers
 Developing a randomized heuristic to find the 

minimum crossing number

 Introducing cost functions to show how the heuristic 
works

 Explaining gradient descent and implementing a 
generic version

 Discussing strengths and pitfalls of gradient descent

 Applying gradient descent to the graph embedding 
problem
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problems, or neural networks, chances are that you know exactly what I’m talking
about; and I bet these terms also sparked your interest much more.

 Well, gradient descent (or a variation on the theme) is the optimization technique
that is used behind the scenes by many machine-learning algorithms. But did you
know that long before being used as the backbone of supervised learning, this tech-
nique was designed to solve optimization problems, like some of the ones we have
seen on graphs?

 If you didn’t, or if you’d like to delve into this topic and learn more about how gra-
dient descent works, this should be the perfect chapter for you.

 Remember that in chapter 15 we discovered that while for planar graphs there are
efficient algorithms that find a planar embedding in linear time, not all graphs are
planar, and it’s not always possible to draw a graph’s edges in the plane without them
intersecting.

 What’s worse, each non-planar graph has a minimum number of intersections
when drawn in the plane, but there is not (and there cannot be1) any efficient algo-
rithm that can find this number (or an embedding with as few intersections as possi-
ble) for any generic graph.

 The minimum edge crossing problem is NP-hard, and as of today, verifying cross-
ing numbers is unfeasible for many categories of non-planar graphs with more than
~20 vertices. 

 Well, it seems there is not much we can do . . . or is there?
 In this chapter, we are going to introduce heuristics to embed graphs with as few

intersections as possible, approaching their crossing number. If you refer to figure
16.1, the goal of these heuristics, when applied, for instance, to graph K4, is to find the
embedding on the right or an equivalent one with no edges crossing. We’ll start with
naïve, brute-force-style algorithms, and then refine them to obtain better results
(fewer intersections) faster,2 and we’ll talk about optimization.

1 Unless somebody proves that P=NP, which is still unknown, but is considered unlikely.
2 This refinement process will also continue in the next few chapters, where we introduce new categories of opti-

mization algorithms.

Figure 16.1
Two embeddings for 
the complete graph 
K4. The one on the left 
is not optimal because 
there is a pair of edges 
crossing.
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Throughout the following sections, we’ll define the category of optimization prob-
lems, which has deep implications for our daily lives: network routing, delivery sched-
ules, circuit board printing, and component design. These problems can all be
expressed in terms of graphs, a cost function, and an optimization algorithm whose
goal is to find the minimum cost configuration. We’ll discuss three different optimiza-
tion techniques to find approximate solutions for them: random sampling, hill climbing,
and gradient descent.

16.1 Heuristics for the crossing number
In the introduction to the chapter, we were wondering if there was anything we could
do to get us out of this tight spot with crossing number analysis. The truth is that to the
best of current knowledge, we can’t do much, at least unless we relax the requirement
for a deterministic algorithm to guarantee the correct answer and return an embed-
ding with a graph’s minimum crossing number (or minimum rectilinear3 crossing number).

 A common strategy to deal with NP-hard problems, in fact, is to use heuristics.
These algorithms, often operating non-deterministically, are able to provide a sub-
optimal answer in a reasonable amount of time.

NOTE We have already met randomized algorithms throughout this book,
for instance, in chapters 3 and 4, but if you could use a refresher, feel free to
take a look at appendix F, which provides a brief summary of randomized
algorithms.

16.1.1 Did you just say heuristics?

I realize the concept of heuristics might be confusing: Why would we accept an algo-
rithm that doesn’t return the correct answer? Sometimes we can’t. There are prob-
lems for which we absolutely need to get the right answer, even if we need to wait
longer; for instance, if you are running a nuclear power plant or designing a new
drug, you don’t want to settle for a sub-optimal solution before trying all the possible
(and reasonable) configurations.

 At other times, getting to the right answer might not even be possible. An expo-
nential algorithm becomes unfeasible for inputs larger than a few dozen elements,
and we would not even be able to see the program output an answer for larger inputs. 

3 As we saw in chapter 15, if we only draw edges as straight-line segments, for some graphs we won’t be able to
obtain an embedding with as few intersections as possible. That’s why the rectilinear crossing number has been
introduced: the minimum number of edge intersections across all possible graph’s straight-line drawings. 

Can’t we just make computers faster?
Even a supercomputer that can perform ~1016 operations per second to run an expo-
nential algorithm that performs O(2n) steps, for an input size 100 will need O(1014)
seconds, which is, give or take, 3 million years!
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For easier problems, even if the time to wait would not be longer than human history,
it could still be too long. Think about live events or forecasting—there won’t be much
use for tomorrow’s weather forecast if it’s delivered in three days!

 So, in all these cases, we might be willing to accept a sub-optimal answer, provided
we can get it within a reasonable time—but that’s not the whole story.

 Another important consideration in favor of heuristics is that despite not being
able to guarantee the optimal solution on all inputs, some heuristics are able to return
the optimal result in a reasonable time for a subset of the whole problem space, and
in some cases they prove to work quite well in practice on real-world data.

 How is this possible? It’s because the theory of NP-hardness is about worst-case
performance, and for some problems there are a minority of edge cases that turn out to
be hard to solve; but for practical applications we are often interested in average-case
hardness, aka how difficult on average it is to solve a problem on the instances of the
problem that we see in real scenarios.

 There are many heuristics that have been developed for graph algorithms, for
example, to solve the traveling salesman problem4 or find a clique on a graph.5 Not all
the heuristics are the same, of course. Usually they are a compromise between perfor-
mance and accuracy, and for some of these algorithms it’s possible to prove bounds
on their precision, such as proving that the solution they output will be within a cer-
tain margin from the optimal solution.

 So, what kind of heuristic could we use to find a good (or at least decent) graph
embedding?

 Now, I’d like you to keep in mind what we said a few lines previously: there can be
many different approximate algorithms for each problem, and not all of them are
equally good.

 We’ll start easy, with a simple heuristic that’s far from ideal. It will serve a purpose,
let us understand the problem scenario, and then we can (and will) iterate over it to
improve its performance.

 Before we start with our first attempt, I encourage you to think about this before
moving on, and try to develop your idea. Who knows, you might have a breakthrough
and come up with a new solution!

4 Given a list of cities and the distances between each pair of cities, find the shortest possible route that visits
each city exactly once and returns to the origin city. This is, needless to say, an NP-complete problem.

5 Find the largest subset of vertices in a graph such that each vertex in the subset is adjacent to all the other ver-
tices in the same subset. In other words, find the largest complete subgraph of a given graph.

And if we were able to make our computers a million times faster (which, even when
Moore’s law was holding, would have taken 30 years), then we would only increase
our ability to solve the problem a tiny bit: our computation would still require 3 years
for 100 elements, 3 thousand years for 110, and again 3 million years for 120!
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 Whenever you are ready, let’s go. We will reuse an algorithm that we saw in previ-
ous chapters, specifically a helper method we used in clustering.

 Remember k-means?6 We had this problem of initializing the centroids: come up
with an initial choice for k points in a n-dimensional space. It looked easier than it
actually was, didn’t it? And yet we saw how important it is to make a good choice for
the initial points, so you can get a fast convergence and a good result.

 Take a look at section 12.2, and in particular at listings 12.1 and 12.2, to see how we
implemented the random initialization of points for the centroids.

 Here, with the graph embedding, we have a similar problem. We need to choose a
certain number of 2-D points, and the way we chose them will directly determine the
result (this time, there isn’t an optimization algorithm running after the choice).

 One important difference is that with k-means we had an underlying distribution
and choosing the points such that they were uniformly distributed with respect to this
distribution was harder and needed particular caution.

 For graph embedding, we can draw our points from a finite portion of the plane, typ-
ically a rectangle,7 and those points will determine the number of edge intersections.

 Let’s define the problem more formally now:
 Given a simple graph G=(V,E) with n=|V| vertices and m=|E| edges, we need to draw

n random points from a finite rectangle whose corners8 are (0,0) and (W,H), so that

 Each point (x,y) is such that 0 x<W, 0 y<H. 
 Edges will be drawn as straight-line segments.
 Vertices will be drawn as points (or circles) centered at those n points.
 No two vertices can be assigned to the same center, so given two points (x1,

y1) and (x2,y2), either x1 x2 or y1 y2.
 No vertex can lie on the path of an edge.
 We assume G has no loops.9 If it did, we could always draw loops without inter-

secting any other edge.

Figure 16.2 shows a few examples of valid and invalid choices of vertex centers, given our
constraints; in particular, we will have to check the conditions at points 4 and 5 once we
have chosen all the points, but we’ll defer the discussion about checking these issues.
For now, we can assume we have helper methods for these checks, and if we find that
any of these constraints are violated, then we have two strategies to make it right:

 Correct the vertices position, for example slightly perturbating, at random,
those points that coincide or intersect an edge.

 Discard the solution violating a constraint and start over.

6 Check out chapters 12 and 13.
7 It is useful to have some flexibility about the region from which points are drawn, because this way we can get

better results depending on the size of the graph, avoiding too dense and too sparse embeddings.
8 Top-left and bottom-right, following the way we index the screen’s rows and columns in most programming

languages.
9 If you remember chapter 14, a loop is an edge that starts and ends at the same vertex.
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Notice that if we draw vertices as circles (as in figure 16.2) and not just points, we will
have to make the requirement on vertices stronger, requiring that the two circles
don’t intersect.

 Now, as we saw for k-means, when we
count on random methods, we can be lucky,
but more often than not we won’t be. Figure
16.3 shows a particularly unlucky assignment
for the K6 graph. As we know from chapter 15,
it’s possible to draw this complete graph in
the plane with three intersections between its
edges.

 A way to raise our chances with k-means
was to use the random-restart technique,
basically running the algorithm (and in turn
the random initialization) several times, and
then saving the best solution found across all
those runs.

 This strategy looks interesting for our
problem as well:

1 Randomly generate the positions of the vertices.
2 Check that the assignment abides by the constraints for edges and vertices (and

discard the current assignments if it doesn’t).
3 Compute the number of edge intersections.
4 If it’s the best result so far, keep it; otherwise, discard it.
5 Restart from 1.

Figure 16.2 Three embeddings for the same graph. On the left, a valid embedding. The embedding in 
the middle is not valid because two vertices are assigned the same position, while the one on the right 
has a vertex intersecting an edge (one for which it’s not an endpoint).

Figure 16.3 A random embedding for the K6 
complete graph. Notice how particularly bad 
the choice of positions turned out to be.



564 CHAPTER 16 Gradient descent: Optimization problems (not just) on graphs

This workflow is shown in figure 16.4 and implemented in listing 16.1. This heuristic
is called random sampling. 

function randomEmbedding(graph, W, H, runs)
  kBest ← inf          
  for i in {1..runs} do   
    embedding ← []                        
    for j in {0..|graph.vertices|-1} do     
      x ← random(0, W)                     
      y ← random(0, H)                            
      embedding[j] ← (x,y)
    if not validateEmbedding(embedding, graph) then
      i--
    else
      k ← edgeIntersections(graph, embedding)
      if k < kBest then     
        kBest ← k
        embeddingBest ← embedding
  return embeddingBest        

Listing 16.1 Random sampling for minimum crossing number embedding

Figure 16.4 A flowchart for the algorithm generating random embeddings and selecting the one with 
the fewest edge intersections

Method randomEmbedding takes a graph, bounds for a 
rectangle hosting the embedding (as its width and height), 
and the number of runs, and returns an embedding encoded 
as an assignment of 2-D points for each vertex.

Initializes the best result found for the number of 
intersections to the maximum possible value.

Repeats the 
algorithm 
runs times

Initializes the array of points. In the 
end, it will contain one point per 
vertex, in the same order they are 
stored in the graph. Alternatively, this 
can be a dictionary, mapping vertices 
to points.

For each vertex in the graph . . .

Uniformly draws a 2-D point from 
the rectangular region of size 
W*H. Method random can return 
a floating point or just an integer; 
that’s up to your implementation 
and requirements.

Adds the new 
point to the 
embedding 
array

If the assignment of 
vertices coordinates can’t 
be validated (that is, if it 
doesn’t abide by the 
constraints, and at least 
one vertex intersects 
another vertex or an edge), 
then it discards this 
assignment (decrementing 
i, so that this iteration in 
the loop will be repeated).

Computes the number of edges intersections: the method
is generic, so it can support straight and curve edges,

although in this case we assume the former.

If this is the 
best result so 
far, stores it

Returns the assignment with 
the fewest edge intersections
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One last word of caution: we don’t need to assume the graph is connected, but break-
ing it down into connected components before applying the heuristic can improve
the final result.

 In listing 16.1 we abstract two important helper methods: validate and edge-
Intersections. Both can be implemented separately and adapted to the actual con-
text we decide to operate in.

 For both, however, it’s possible to give a generic definition that in turn abstracts
over more specific methods: listings 16.2 and 16.3 shows these definitions.

function validateEmbedding(graph, embedding)
  n ← |graph.vertices|
  for i in {0..n-2} do      
    for j in {i+1..n-1} do                            
      if vertexIntersectsVertex(embedding[i], embedding[j]) then
        return false
  for edge in graph.edges do    
    for vertex in graph.vertices do                               
        if vertex <> edge.source and vertex <> edge.destination and 
            edgeIntersectsVertex(
              embedding[indexOf(edge.source)],    
              embedding[indexOf(edge.destination)],
              embedding[indexOf(vertex)]) then   
          return false
  return true

The implementation of the helper methods used in listings 16.2 and 16.3 was dis-
cussed in the last chapter, in section 15.4.

 Notice that the helper methods checking if a vertex intersects another vertex or an
edge are context-dependent, based on how we draw vertices. If they are drawn with
circles, we need to make sure that the circles used to draw every pair of vertices have
no intersection, and that no edge is drawn over the vertex’s circle (otherwise, it might
seem like it’s two edges adjacent to this vertex).

function edgeIntersections(graph, embedding)
  m ← |graph.edges|  
  k ← 0

Listing 16.2 Method validateEmbedding

Listing 16.3 Method edgeIntersections

Method validateEmbedding takes a graph and an 
embedding to validate, and returns true if the embedding 
passed the check, or false if it needs to be rejected.

Cycles through all pair of vertices

Checks that the two vertices don’t intersect each other. This check is 
context-dependent; it can be just making sure the two points aren’t 
the same, or checking that the circles used to draw the vertices have 
no intersection. If the check fails, the embedding is to be rejected.

Cycles through all graph’s edges

For each edge, 
cycles through all 
vertices to make sure 
vertex is not drawn 
in such a way that it 
crosses the edge

If vertex is not one of the
edge’s endpoints, we need to

make sure that the edge is not
drawn over vertex (otherwise,

it might look like two edges
adjacent to this vertex). If this

happens for any vertex/edge, we
need to reject the embedding.

Method edgeIntersections takes 
a graph and an embedding to validate, 
and returns the number of intersections 
between the graph’s edges when drawn 
with current embedding.

Some basic 
initialization
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  for i in {0..m-2} do      
    edge1 ← graph.edges[i]
      for j in {i+1..m-1} do                              
        edge2 ← graph.edges[j]
        if edgeIntersection(edge1, edge2) then  
          k ← k + 1
  return k

Like the previous method, we abstracted away the actual algorithm checking the
edges. This way, depending on the context, you can use one assuming edges are
drawn using straight-line segments, or Bézier curves, and so on.

16.1.2 Extending to curve-line edges

In the previous section, we added as a constraint that edges were to be drawn as
straight-line segments. As a consequence, we were optimizing the embeddings to
reduce the intersections of a straight-line drawing, and the total number of intersec-
tions could only be as low as the rectilinear crossing number of a graph. As we saw in
chapter 15, there are many graphs for which the rectilinear crossing number is larger
than the crossing number (which, in turn, is the absolute minimum for the number of
intersections in any planar embedding of a graph).

 The restriction to straight-line drawings was not explicitly required in the code,
which was kept as abstract as possible. However, if we would like to use curves for the
edges, we need to apply at least one change to listing 16.1: we also have to decide how
each edge is modeled. This can be done in several ways, the simplest being randomly
choosing some parameters that determine how each edge is drawn—up to, possibly,
running some optimization on these parameters to minimize the intersections.

 First, however, we need to decide which parameters we are talking about. To keep
things simple, we restrict this to Bézier curves: quadratic Bézier curves can be
described with three parameters (the two endpoints, plus a control point), while the
cubic version, which (as shown in figure 16.5) is more flexible, needs two control
points, for a total of four 2-D points (which make eight scalar parameters).

Cycles through every pair of edges

If this pair of edges intersects 
when drawn, increases the 
intersections counter by 1

1
1

1

2
2

23 3
3

4

4

1

2

(A) (B) (C) (D)

Figure 16.5 Examples of Bézier curves. Segment (A) can be considered an edge case with 0 control 
points, while quadratic curves (B) have one control point, and cubic ones (C, D), the most flexible 
variant, have two control points (plus the two endpoints, of course).
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We have discussed the details of these representations in section 15.4.3. By setting in
stone the choice of a subcategory of these curves (the quadratic, symmetric Bézier
curves, as shown in figure 16.6), we can already describe how to extend the algorithm
in listing 16.1 to deal with the extra parameters.

 In particular, to stay true to the choice of a fully randomized algorithm, we could
just randomly choose each edge’s control point(s); however, so much freedom in the
choice could lead to weird shapes for the edges, making the convergence of the algo-
rithm to a good solution slower.

A more feasible alternative could be restricting even more the curves that can be used,
for example, using quadratic curves whose control point is at the same distance from
both edge’s endpoints. This choice, explained in figure 16.6, allows us to balance flex-
ibility and complexity so that we only need to add a single real number to the model of
each edge, the distance of the control point from the segment between the endpoints
(denoted with d in the figure). It’s also advisable (but not strictly necessary) to restrict
the possible values of d so that its absolute value will be in the order of magnitude of w,

C

w
w/2

d

u v

Figure 16.6 A quadratic Bézier curve used to draw an edge between vertices u and v. The point 
C is the curve’s control point. For this example, we restrict to a subset of all the possible quadratic 
Bézier curves between two points, and in particular to just those curves where the control point lies 
on the line perpendicular to the segment uv, and passing through the middle of the segment (in 
other words, the line made by points in the plane that are at the same distance to u and v).
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the distance between the endpoints; negative values of d will cause the convexity of the
edge to flip (in figure 16.6, with a negative value for d, the curve would be drawn below
the segment uv passing through the vertices).

16.2 How optimization works
So, random sampling seems to work. If you try the version implemented in the
JsGraphs library,10 you can see that (on average) the crossing number provided by the
random algorithm with restart is better than the one returned by the one-pass random
version. Intuitively, we can understand why: if we toss a coin 100 times, it’s easier to get
at least one head than if we toss the same coin just once.

 To see how this operates in a more formal framework, we could use a visualization
of how the optimization proceeds. This is not trivial, because what we are optimizing
here is a function of 2n parameters, when a graph has n vertices. For each vertex, we
can change its x and y coordinates.

 Now, humans are really good at visualizing functions of 1 parameter in a 2-D plot:
the x axis is usually the parameter, and the y axis shows the value of the function; with
2 parameters, we can still visualize things meaningfully. Until AR/VR goes main-
stream, we have to make do with a 2-D projection of a 3-D plot, which is not ideal, but
still feasible (as you’ll see in figure 16.8).

 The issue becomes harder when we get to 3 parameters. One workaround is to
introduce “time” as the fourth dimension, and as such, the plot can be shown as a 3-D
wave that changes depending on the third parameter.

 Besides being hard to make sense of, this solution doesn’t solve the problem when
we have 4 or more parameters. What we can usually do in these cases is lock k-2
parameters, out of k total variables, and see how the function behaves as the other 2
variables change.

 We’ll do something similar with our graph embedding problem to show you how
this works, and to better understand our problem.

 But first of all, what function are we talking about in this case?

16.2.1 Cost functions
We call the target of our optimization a cost function: it expresses well the idea that our
solution (each solution we try) has a cost, and that we are trying to minimize it.

 There is a vast category of problems called optimization problems for which finding a
solution is equivalent to exploring the problem space and eventually picking the solu-
tion with the lowest cost. For these problems, usually there are many possible defini-
tions of cost functions that can be used. Some are better than others (we’ll see why),
and when we do have a choice, it’s important to spend time and choose wisely, because
it can have a great impact on how fast we can find an optimal solution, or sometimes
even on whether we can find one at all. In general, however, most optimization prob-
lems are proven to be NP-hard, regardless of the specific choice of cost function.

10See http://mng.bz/w9na.

http://mng.bz/w9na
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The cost function we have chosen for our graph embedding problem is simply the
number of edge intersections for a given embedding. Spoiler alert: this choice is prob-
lematic with some optimization algorithms, as we’ll see later.

 So, in figure 16.7 we can see the complete graph K4, an embedding that has 8
degrees of freedom: let’s agree to lock 7 of them, and only allow the horizontal posi-
tion of vertex v4 to change.

The cost function looks like a step function, with its value going abruptly from 1 to 0
when the vertex enters the internal face of the sub-graph induced by the other three
vertices (the triangle marked by the unnamed vertices in figure 16.7).

 If we had allowed vertex v4 to move both vertically and horizontally, we would have
had, instead, a 3-D chart showing a surface.

 This is shown in figure 16.8 for the complete graph K5, or to be more precise, for
one of the possible embeddings for this graph.

 Notice that here we have surfaces of discontinuity, where the cost function changes
its value: when |x|==|y| (v lying on a line passing through the diagonals of the
square), and when x or y are equal to 0 or 100 (lines lying on the perimeter of the
square). For any point on these surfaces, the cost will be infinite, because as shown in
the third example in the figure, vertex v will lie on one of the edges between the other
vertices (and our constraints assign an infinite cost to these invalid configurations).

 Moreover, as you can see, no matter how hard we try, we can’t find a position for
vertex v that will guarantee us an embedding with the minimum possible crossing
number; this is because the position of the other 4 vertices is not optimal for a
straight-line drawing of K5.

 In turn, the underlying reason is that if we consider the larger problem of finding
the best embedding (with none of the vertices locked), we hit a local minimum of the cost
function: a point or region in the n-dimensional problem space where the cost function
has a lower value than in the surrounding area, but not the lowest possible overall.

v4

(0,100) (50,100)

(0,0)

(x, 50)
(25, 50)

v4

(0,100) (50,100)

(0,0)

v4.x
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ns

0

1

25

Figure 16.7 The cost function for “number of intersections” for a specific embedding of K4. The 
position of 3 out of 4 vertices is locked, and for the last one, v4 in the graphic, we can only change its 
horizontal position. Under these assumptions, the cost as a function of v4’s x position is a discontinuous 
function, equal to 0 when 0 < x < 25, and equal to 1 when x < 0 or x > 25. Notice how at x==0 
and x==25 we have two discontinuity points, and in particular, we assume the cost is infinite at those 
points, because the vertex is exactly lying on one of the edges between the other vertices.
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If we could take a 2-D projection of the cost function on a generic configuration of
the graph (not specifically the embedding in figure 16.8), it might hypothetically look
somewhat similar to figure 16.9.

v

(0,100) (100,100)

(0,0)

(x, y)

(100,0)

v

(0,100) (100,100)

(0,0)

(x, y)

(100,0)

v

(0,100) (100,100)

(0,0)

(x, y)

(100,0)

Figure 16.8 The cost function for “number of intersections” for a specific embedding of K45. The position 
of 4 vertices is locked, and only vertex v can be moved freely. If we move v inside the perimeter of the 
square created by the other vertices, the number of intersections is consistently 3; outside the square, it 
becomes 5. Notice that here we have surfaces of discontinuity!
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function
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16.2.2 Step functions and local minima
Local minima aren’t really good news. Ideally, we would like to have a single global
minimum and a cost function that smoothly converges toward it.

 A bowl-shaped function, for example, like the section of conic curve shown in fig-
ure 16.9, would suit us particularly well and work fine with most learning algorithms.

 Why is that? Well, you can imagine an optimization algorithm like a marble that is
left rolling on the surface of the cost function. There are, of course, marbles of differ-
ent weights and friction, and some marbles on some surfaces get stuck and need to be
pushed around; likewise, there are different learning algorithms.

 If you release a marble on a surface like the cost function in figure 16.9, there is a
good chance that it will just stay on the plateau where it lands. If you give it a little
push, it might end up in a pit corresponding to a local minimum, and be stuck there,
unless you pick it up and release it elsewhere.

 Conversely, if you release a marble on a smooth surface like figure 16.10, like when
you toss it into a bowl, then it will roll down to the bottom of the bowl, maybe oscillate
a little, and in the end settle down in the lowest point, where gravity can’t pull it down
any further.

16.2.3 Optimizing random sampling

Using this “marble” analogy, an optimization problem can be seen as two things:

 The cost function is analogous to the marble track: the smoother its path to the
optimal cost, the better algorithms can (in theory) work. Notice that we can build
several “tracks” between a starting point and a finish line—engineering the best
possible track is part of the solution.

 An optimization algorithm is like a marble rolling down the path. For the anal-
ogy to be more accurate, though, we need to say that both the marble and the
way that it’s tossed and interacts with the track are part of the analogy of the
optimization algorithm.

What about our random sampling algorithm? How can we express it in our analogy?
Regardless of the cost function, the algorithm does the same thing. Imagine the track
is made of sand or mud, so when a marble is tossed onto the track, it digs a small hole
in the sand or mud and stops where it lands. This mechanism is independent of the

C
os

t

0

Global minimum Figure 16.10 A convex 
function with a single and 
proper global minimum
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shape of the cost function, and it works the same even with a smooth, bowl-shaped
function like the one in figure 16.10.

 Figure 16.11 is an attempt at capturing how random sampling (which doesn’t per-
form any optimization after initialization) works.

A randomized heuristic is like tossing dozens, hundreds, or thousands of marbles at
our muddy track (without being able to see where the finish line is). They stay exactly
where they land, and in the end, we just choose the one that landed the closest to the
finish line. The key is doing many attempts, hoping that at least one will land close
enough to the optimal solution. Of course, the track could be so long that no matter
how many times we try, we won’t be able to get any closer to a good solution: that’s the
case with exponential problems, where the number of possible solutions is huge,
when the input is large enough.

 Moreover, we need to be careful when using a completely randomized algorithm.
We might toss several marbles in the same position, and we could generate the same
solution more than once.

 If there is a good thing about this approach (besides being extremely cheap), it’s
that the shape of the cost function doesn’t matter. We don’t need to engineer a good
“track,” because there isn’t going to be any “marble rolling” after initialization.

 At the same time, this is also the worst part—we can’t take advantage if we have a
good cost function that smoothly degrades towards a global minimum.
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 If we think about marbles races, we can perhaps find a workaround for that. If
you’ve ever played with marble on the beach, you probably know what to do when one
is stuck in a pit on the sand track—you give the marble a nudge to get it out of there
and start rolling again.

 The analogy with randomized algorithms is local optimization. We can have sub-heu-
ristics performing a local optimization; for example, trying to move vertices around
one by one within a short distance from the randomly assigned initial position and
checking to see if the crossing number improves.

 This algorithm is called hill climbing, or in our case, since we try to minimize a func-
tion instead of maximizing it, we can call it hill descent.

 Figure 16.12 visualizes the analogy. In our case, despite the nudge, the marble only trav-
els a short distance (well, it’s a muddy track, isn’t it?), but we might still get some improve-
ment. What we really do is explore the cost function in a small area around each solution,
and if we find a position for which the cost is lower, we move our “marble” there.

 If you look closely at figure 16.12, you can see that in this case, the shape of the
cost function does matter. While with a differentiable, bowl-shaped function we always
get an improvement, with a step function (like our example, “minimum number of
intersections”), sometimes the marbles are stuck in local minima and sometimes they
are on large plateaus, so moving them around won’t get us anywhere better.
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Another thing that we must note is that with this algorithm, we have to try moving in
both directions. By randomly exploring the area surrounding a solution, we are
blindly poking similar solutions, but without any rationale. For instance, in the bot-
tom example in figure 16.12, by looking at the marbles and the shape of the cost func-
tion, we would know that in order to get an improvement, we should increase the
value of the only parameter for solutions 1 and 3, and decrease it for solution 2. Using
hill descent, we would try to both increase and decrease it for all solutions, and just
see what happens. For functions of more than a single parameter, we would either
search the surrounding area around the current solution, or probe a random direc-
tion, and move if we can get a better value.

 Applying this to our graph problem, this means we would move a vertex in all
directions, and each time compute the edge intersections of the new embedding.

 And if this looks bad with a 2-D cost function, remember that as the dimensionality
of the search space grows, we face the curse of dimensionality (see chapters 9–11),
and we will have 2n parameters to tune for a graph with n vertices.

 So, we might want to try a more efficient approach.

16.3 Gradient descent
Why do we have to play “go fish” when we try local optimization? Remember that for a
graph with n vertices, it means we are in 2n-dimensional space, so trying to move in
every direction11 randomly . . . is a lot!

 Looking at our 2-D example, where the cost function depends on a single variable,
the direction we should explore seems pretty obvious!

 But in a multidimensional space, where we can’t visualize the shape of the surface,
how do we know which parameters should be tuned and in which direction? 

 The mathematical solution to this quest is called gradient descent. Gradient descent
is an optimization technique that, under certain conditions, can be applied to differ-
ent categories of optimization problems.

 The idea is simple: we can look at the slope of a function at a given point and move
toward the direction in which the function decreases the fastest. The name stems from
the fact that for a differentiable function, the direction of the steepest slope is given by
its gradient.

 This is illustrated in figure 16.13 for a single-variable, differentiable function.
 Before discussing it a bit more formally, let’s see how we could frame it in our mar-

bles example: it’s like we are allowed to push marbles with a nudge, and they can
travel a short distance before stopping again in the sand. Similar to what happens
when you play with marbles in the sand, you need several nudges to reach the goal,
and they only move a short distance. If you give them a nudge in the right direction,

11Here we are not talking about moving our imaginary marble on the surface of the cost function: this is a
generic description fitting this entire category of optimization problems. For the particular problem of the
minimum intersection embedding, the way we explore the surrounding area of the cost function is, indeed,
moving each vertex around.
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they move a little further toward the finish line (or your goal). But to make things
more interesting, in our game you can only see a short portion of the track next to
your current position, as if you were playing in the fog or with lens distortion.

 Gradient descent is formally described using calculus. Don’t worry if you haven’t
had an introduction to calculus, because you are not going to need it to apply gradi-
ent descent: there are many great libraries that already implement it for you. Actually,
thinking about writing your own version is a bad idea, because this algorithm needs to
be fine-tuned and highly optimized to exploit a GPU’s power.

16.3.1 The math of gradient descent

If you did take a calculus class, you probably remember the notion of a derivative:
given a single-variable, continuous function f(x), we define its derivative as the ratio
between how f changes in response to a small change in its argument x. Formally, we
write

This value can be finite, infinite, or even not defined for a given function and a spe-
cific value of x; if for a function f its first derivative is always defined, we call f a differ-
entiable function.

 For differentiable functions, there are formulas that allow us to find the exact
mathematical definition of their derivatives, which in turn are going to be a function
themselves. For instance, if f(x)=x, then f’(x)=1 (the constant function). The
derivative of the quadratic function f(x)=x2 is f’(x)=2x, and the derivative of the
exponential function f(x)=ex is f’(x)=ex (yes, it’s the exponential function itself!)

 There are many interesting results from the geometric interpretation of function
derivates,12 but we can’t go through them all here.

 The most important result, from our point of view, is that if we compute the value
of the first derivative of a function in a given point, it tells us if the function is growing
in that point, and how much. In other words, and as a simplification, it tells us if by
slightly increasing the value of x, f(x) also increases, or decreases, or stays the same.

12Note that there are higher-order derivates too, although here we’ll stop at the first-order derivative.
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 We can apply this to our optimization algorithm. For instance, in figure 16.13, if we
computed the first derivative of the cost function at point x0, we’d get a negative value
that would tell us that f grows when x becomes smaller. Since we want to move toward
smaller values of f, we know that we should update x by assigning it a larger value.

 We can repeat this step over and over, thus following a downhill path along the
cost function’s surface.

 If this looks easy to compute, however, in multidimensional spaces this gets far
more complicated: for a n-dimensional function g, the gradient of the function at a
given point is a vector whose components are the partial derivatives of the function,
computed in that point.

 For instance, with a 2-D domain (see figure 16.15 to visualize it), we define the par-
tial derivative of g(x,y) along x as

And we define the gradient of g in a point P0=(x0,y0) as a vector with one column and
two rows, whose components are the partial derivates of function g with respect to x
and y, computed at point P0

The geometrical interpretation of the gradient of a function is that it’s a vector point-
ing in the direction of fastest growth of the function. That’s why gradient descent
actually uses the negative gradient, -∇g, which is simply the opposite of the gradient.

16.3.2 Geometrical interpretation

Listing 16.4 gives a summarized description of the gradient descent algorithm.

function gradientDescent(f, P0, alpha, maxSteps) 
  for _ in {1..maxSteps} do                         
    for i in {1.. |P0|} do                 

Listing 16.4 Method gradientDescent

gx ′ x y,( ) ∂g
∂x
------ lim

h 0→
 
g x h y,+( ) g x y,( )–

h
-----------------------------------------------= =

g P0( )∇

∂g
∂x
----- P0( )
∂g
∂y
----- P0( )

=

Method gradientDescent takes a function f, a starting point P0, a 
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      P[i] ← P0[i] – alpha * derivative(f, P0, i)
    if P == P0 then                            
      break
    P0 ← P     
  return P0

It’s important to understand that we don’t have the full view of the cost function when
we run gradient descent, and we don’t “move” over the surface; rather, at each step we
only compute how much we should change the input variables, depending on the
slope of the surface at that point. See figure 16.14 to get an idea of the steps, and fig-
ure 16.15 to get an idea of how it looks like with a 2-D function’s domain.

 In our marble-race analogy, it’s as if the track is swathed in a dense fog, and we can
only see a few feet away: enough to see where to aim for a cautious next step, because
if we push the marble too hard, we risk sending it off of the track, or in the wrong
direction.

Creates a new point P, where each coordinate of P is assigned the 
corresponding coordinate of P0, with a small delta computed from 
f’s gradient: in particular we need to compute the partial derivative 
of f with respect to its i-th coordinate, and then the value this 
derivative has at point P0. The value of the gradient is multiplied by a 
learning rate alpha.

If all the derivatives were 0, we are 
either in a plateau region, or in a 
minimum point, and so gradient 
descent can’t improve any further. In 
reality, we should check that the 
norm of the difference is not smaller 
than some precision, both because 
computer arithmetic has finite 
precision, and because when the 
gradient is very small, the possible 
improvement can be negligible, and 
not worth the computational 
resources.At the end of each step, 
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The method itself is actually surprisingly short and simple, isn’t it? It’s an iterative opti-
mization algorithm, so we have a loop to perform, and we pass an argument with the
maximum number of steps allowed, just to be sure it won’t loop forever (we’ll see that
there are situations where this is possible).

 We repeat the same update step until we get to a minimum of the function, or at
most a certain number of times. The step itself is also basic: we compute the gradient
of the input function coordinate by coordinate, by computing the first-order partial
derivative of f along each of the directions of f’s domain (the problem space).

 As mentioned, we can stop when we reach a minimum. One of the most important
results in calculus is Fermat’s theorem13 that proves a point in the domain of a differ-
entiable function is a minimum or a maximum if and only if the derivative of that
function is zero at that point; therefore, we can just check that all the partial deriva-
tives are zero (or, more realistically, that their value is below some precision).

 By using the gradient of a function f to decide how much (and in what direction)
we should move, we naturally take big steps when f changes fast, and small steps when
f changes slowly. Transferred to our marble-race example, the marble would travel

13Not the most famous one! Although one might argue that this particular theorem is even more important.

Gradient path

Cost function

Figure 16.15 Gradient descent applied to a function of two variables. The cost function defines a 
surface.
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fast in a steep, straight section, while we would need to be careful when a turn is near
to avoid going off-track.

 As for the starting point P0, you might wonder how we choose it. There are differ-
ent ways, but unless you have domain knowledge telling you otherwise, it’s best to
choose it randomly and possibly run the optimization several times, starting each time
from a new, randomly chosen point and keeping track of the best overall result.

 Can you see it? We are back to random sampling, but applying a sophisticated local
optimization heuristic after each sample is taken.

16.3.3 When is gradient descent appliable?
To be able to apply gradient descent, we need the cost function to be differentiable, at
least in the neighborhood of the points where we compute the gradient.

 Moreover, it helps if we already know the exact formula for the function we would
like to optimize, so that we can also express the partial derivatives with mathematical
formulas and compute gradients exactly. If we don’t have the definition for the func-
tion to optimize, however, we can always resort to the formal definition of derivatives
as mathematical limits, and compute the gradient numerically by explicitly evaluating
the ratio between Δf and Δxi for increasingly small increments of each of the coordi-
nates of the problem space.

 One question you might want to ask this: If we do have the definition of f, and it is
differentiable, why do we have to run an iterative optimization? Can’t we just find its
exact minimum using calculus?

 Well, that’s of course possible, in theory; it is also doable, at least for low-dimensional
spaces and for some kinds of functions.

 However, finding exact solutions becomes hard to automate, and even to compute,
in high-dimensional spaces. The number of equations needed to analytically find the
global minimum grows exponentially with the problem’s size. Moreover, these func-
tions can have hundreds, thousands, or even an infinite number of local minima
(think, for example, about sin(x+y) or even x*sin(y)), and to automate the search
of a global optimum, we’d need to have all those points checked.

 In general, gradient descent works well when we have a chance to design a cost
function that has either a global minimum or, at most, a few local minima (better if
they are of approximately the same cost). As we’ll see in section 16.4, that’s why it
works perfectly with the kind of cost functions we design for supervised learning.

16.3.4 Problems with gradient descent
One important thing to note in listing 16.4 is that we provide a learning rate alpha.
This is a hyper-parameter of the algorithm, regulating how big the steps are that we
take. As in the marble analogy, when we don’t have a clear view of the track, taking
large steps can speed us up, but it can also send the marble off-course; similarly, in gra-
dient descent, large steps can miss minima (figure 16.16 (A)) or even worse, in some
situations they can cause loops or even get far away from the best solution, in situa-
tions like the one shown in figure 16.16 (B).



580 CHAPTER 16 Gradient descent: Optimization problems (not just) on graphs

Vice versa, when alpha is too small (figure 16.16 (C)), convergence can be far too slow
and the optimization algorithm will never get to a minimum within a reasonable time
(or within the maximum number of iterations allowed).

 Which values of alpha are too big or too small also depends on the context, and in
particular on the specific function we are trying to optimize.

 If we didn’t have the chance to pass this learning parameter, then for cost func-
tions such as the one in figure 16.16 (B), where the slope of the curve is steep, the
optimization would not converge to the minimum (but rather diverge), and at the
same time, for examples like 16.14 (C), convergence would be too slow, or the algo-
rithm could get stuck in local minima.

 By using a learning rate, we can tune14 this alpha hyper-parameter and adapt the
optimization algorithm to the function we need to optimize.

 An even better solution, however, is to use a variable alpha; for example, a value
that decreases as the steps progress. Initially, it’s large enough to let the optimization
quickly explore a wide area and possibly get out of local minima, and then it gets
smaller and smaller, so that in the end, fine-tuning can be done and oscillation
around stationary points (minima) is avoided.

 Another great option is to introduce the concept of momentum. Instead of basing
the next step on just the last gradient, gradient descent with momentum smooths the
update by computing the delta as a linear combination of the last few gradients (with
older gradients having a lower weight on the final result than newer ones).

 As the term suggests, having a momentum (the way it happens in kinematics)
means that if the algorithm speed was high, and so it was updating a coordinate with
large steps, then when the slope of the curve changes, the speed will smooth out, but
not abruptly.

14Tuning an algorithm’s hyper-parameters, as we’ll see, is one of the challenges of using heuristics. There is no
single value for these parameters that works with all problems and instances, and the tuning is usually hard to
automate. It’s an area where the experience of the algorithmist really makes the difference.
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Figure 16.16 Gradient descent: Δf is the change in the cost function caused by a variation Δx in its parameter.
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 The easiest formula to add momentum into our update rule for points can look
like this

Pt+1 ← β*Pt – α*(1-β)*∇g(Pt)
where Pt is a point in the problem space, specifically the point reached by the algo-
rithm at time t. The higher is beta, the smoother (and slower) the update will be:

P2 ← β*P1 – α*(1-β)*∇g(P1) = β2*P0 – α*β*(1-β)*∇g(P0) - α*(1-β)*∇g(β*P1 – 
➥ α*(1-β)*∇g(P1))
So, after 2 steps, if β=0.99, then 98% of the value of P2 is given by P0; conversely, ifβ=0.1, P0 directly influences P2 only for 1%.

16.4 Applications of gradient descent
As mentioned earlier, gradient descent is an optimization technique that, given a cost
function, helps find a solution (a point in the problem space) that has an optimal (or
nearly optimal) cost.

 As such, it is only a piece of the process of solving a problem, and at the same time,
it can be applied to several different problems and techniques.

 The overall algorithm depends first, as we have seen, on the cost function used,
but also on the goal of the optimization.

 We have already discussed optimizing a cost function to find the cheapest solution
to a well-defined problem, and this is a category of algorithms that greatly benefits
from the application of gradient descent, whenever we can describe a differentiable
cost function.

 Lately, though, a different category of algorithms using gradient descent has
gained popularity: learning algorithms.

NOTE I’ve always found the name machine learning a bit deceptive, because
it somehow suggests this branch involves machines that can learn in the same
way humans do, which unfortunately is not the case, although there are some
similarities.

When we apply gradient descent to solving a problem such as traveling salesman or
graph embedding, we have a static (usually huge) domain, and our goal is to find a
point in that domain. In machine learning, instead, we have a dataset, and we want to
make sense of it by “learning” a model that describes the dataset and (more impor-
tantly) generalizes to inputs that were not in the dataset.

 Take, for instance, supervised learning (whose most prominent examples are
shown in figure 16.17); this is a field where gradient descent is widely applied!

 The goal of supervised learning is to develop a mathematical model15 that can suc-
cinctly describe the dataset, and is able to predict the output for new, never-seen

15Nothing more than a function from a domain to a range, really. No matter how complex this function can be,
it’s still a deterministic mapping between an input (possibly multidimensional) and an output.
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inputs, be they a real value (linear regression), a category (logistic regression), or a
label (clustering).

 For all these types of learning, there is one extra step that we haven’t had in the
optimization problems we’ve seen so far in this chapter when we were simply explor-
ing a problem’s space. Now we also have to choose which model we want to use, which
is actually the first thing we need to do.

 To better explain this, we’ll go into some details of linear regression.
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16.4.1 An example: Linear regression
Speaking of deceptive names, we couldn’t avoid mentioning linear regression. The
story of the origin of the name of this learning technique is also fascinating, and it’s
worth Googling it. Hopefully, we stimulated your curiosity about it.

 But what is really important for us is that linear regression ultimately is about find-
ing a model that describes the relation between one or more inputs (aka independent
variables) and a real number outputted by the model (the dependent variable).

 We’ve mentioned this “model” a few times now, and you can also see it in figure
16.17, so you might be asking what it is.

 The model is a category of mathematical functions that we choose to approximate
the true relation between dependent and independent variables in our dataset.

 For instance, we might have a dataset associating some characteristics of cars (the
year they were built, their engine, how many miles they’ve traveled, and so on) to their
market price, and we would like to learn the relation between the former and the latter
so that we can input the description (in terms of the same independent variables we
had in the dataset) of a car we spotted at the dealer’s, and see if the price they are ask-
ing is fair (and hopefully avoid being tricked into paying too much for a wreck).

 We need to choose the model we think could best fit the data.16 To keep it simple,
let’s restrict to functions with a single parameter (it could be the engine power). As
shown in figure 16.18, we can choose a constant function (y = m, a line parallel to the
x axis), a generic line of the form y = mx + b, a quadratic curve (m1*x2 + m2 * x + b),
or even more complicated models.

 The simpler the model, in general, the fewest data points are needed to “learn it,”
because after we choose the complexity of the model, we have a category of functions,
and we still have to learn the parameters that tell us which specific function in that cat-
egory is the best for our dataset.

 For example, if we choose a generic line, then we still have to decide the values for
the parameters m and b: it could be y = x + 1 or y = -0.5*x +42.

 The way we choose those is through training, which is nothing other than applying
gradient descent.

 In linear regression, in fact, we define a cost function (usually referred to as a loss
function in machine learning) that measures the distance between the value predicted
by the model for the dependent variable associated to each point in the dataset,17 and
the actual value from the data.

 This function is generally the sum of least square errors, or some variant of it. As
shown in figure 16.17 and 16.19, we minimize the squared distance, along the y axis,
between each point and the model line, and this gives us a convex, bowl-shaped func-
tion with a global minimum—as we have seen, that’s pure gold for gradient descent!

16Usually we try different models and automate the choice based on how well they perform, but this is far beyond
the scope of this discussion.

17Actually, a subset of the dataset called a training set. This is not the place to go into the details of how and why
we choose it; just remember it’s quite important to leave some dataset points out for later testing to assess the
quality of the model.
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Figure 16.18 Linear regression on a dataset (points shown as dots) using increasingly complex models: a 
constant, a line, and a quadratic curve. You can see that a higher-order model doesn’t necessarily fit the data better.

Figure 16.19 The cost function of the example in figure 16.18 (B). Using the sum of squared 
errors, the cost is a function of m and b.
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One important fact to highlight in both figures 16.17 and 16.19 is that the loss func-
tion depends on parameters m and b,18 not on the points of the dataset; therefore,
when we compute its partial derivates, they are computed with respect to the model
parameters, which are then updated by gradient descent.

 There is so much more to say about linear regression and supervised learning that
it would take another full book!

 And, in fact, there are so many books you can check, if you’d like to delve into
machine learning. Here there are a few suggestions that I’ve personally found
extremely useful:

 Grokking Machine Learning, a nice starting point for beginners, written by Luis
Serrano (Manning Publications, 2019). You couldn’t ask for a better guide.

 Grokking Deep Learning, by DeepMind’s Andrew W. Trask (Manning Publications,
2019), an excellent introduction, ideal for approaching the world of deep learning.

 Deep Learning with Python, written by François Chollet, the author of the Keras
library (Manning Publications, 2017); you’ll learn how to use it to build image
and text classification models and generators.

 Deep Learning with JavaScript, by Shanquing Cai, et al. (Manning Publications,
2020), in case you’d like to build models for the web that run in the browser,
using Tensorflow.js and written by its main authors. 

There are, of course, many more great books out there. It’s impossible to list them all
here, but these are a good starting point.

16.5 Gradient descent for graph embedding
So, now that we have discussed at length how gradient descent works and its (many)
strengths and flaws, you should be able to figure out how to apply it to our case study,
a heuristic to find a straight-line drawing for graphs, with the minimum number of
intersections between edges.

 And your answer should be . . . that gradient descent can’t really help. If we look at
figures 16.7–16.12, it’s clear that the cost function for “minimum number of intersec-
tions” is step-shaped, with large plateau regions (where the gradient is null) and sud-
den drops.

 You might be wondering, then, why we’ve introduced gradient descent. Some read-
ers could guess the next step, but if you haven’t take a minute to mentally go over what
we’ve learned in the last couple of chapters, and then let’s delve into our next challenge.

 Before revealing it, let me also highlight that the discussion in sections 16.3 and
16.4 allowed us to develop a better intuition about cost functions and provided a semi-
formal characterization: even if the reward was just that, we wouldn’t have wasted our
time, because the framework we have established will help us describe and understand
the algorithms presented here and in the next two chapters.

18When we use a linear model: in general, we denote with W or Θ the vector of parameters for the model; remem-
ber, these parameters are actually the objective of the learning algorithm.
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 But there is more. If you went through chapter 15, in section 15.3 we reasoned
about what it means for an embedding to be good, or just better than another. Edge
intersections are a part of this, even an important one, but there are other consider-
ations, for instance, that adjacent vertices should be close to each other. When there is
no edge between a pair of vertices, they can and should be drawn far away from each
other.

 Drawing a graph in an aesthetically-pleasing way can be as or more important than
just reducing the number of edges crossing.

 It can make the graph look cleaner and more easily understandable, and it can
help you use available space better (especially on dynamic websites) or make more
meaningful charts.

 And last but not least, an aesthetically pleasing appearance can be expressed with a
better cost function, a smoother one for which we can use optimization algorithms
like gradient descent.

16.5.1 A different criterion

When using straight-line drawings, we can imagine vertices as ions, electrically
charged particles. When there is an edge between two vertices, the particles attract
each other (as if they had opposite charges), while a pair of vertices not connected by
edges repel each other.

 Then we can try to find an equilibrium point for the system, a disposition of the
particles such that all the forces balance each other and the system can maintain a
stable condition. Sometimes, instead of explicitly computing19 the point of equilib-
rium, we can try to approximate it by simulating the evolution of the system using a
heuristic.

 It turns out that there is a whole class of graph embedding algorithms that adopt
this principle: the so-called force-directed graph drawing algorithms.

 The goal of these algorithms is to lay down a graph’s vertices in the 2-D space so
that adjacent vertices are more or less at the same distance, and as such, all edges are
of the same length in the plane, and, of course, there are as few edge intersections as
possible. This is done by computing forces among the adjacent vertices (attractive
forces), and among all non-adjacent vertices (repulsive), based on their relative posi-
tions, and then updating the system (that is, those positions) based on the forces com-
puted and some parameters, trying to minimize the energy of the whole system.

 To further refine our initial analogy, we can use springs (or gravity) as the physics
counterpart of edges, and a fainter electrical repulsion20 among all pair of vertices.
Note that all these forces depend on the distance between the vertices—you can
replace them with different formulas, as long as you keep this characteristic. Figure
16.20 gives you an idea of how such systems can work.

19The mathematical solution involves finding the zeroes of the differential equations describing a system.
20In reality, electrical forces between particles are orders of magnitude stronger than gravity, of course. But the

purpose of the analogy is not to be exact, just to be lifelike and intuitive, and to reuse a well-studied framework.
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The next thing we need is to formalize these criteria into a formula for the cost func-
tion. That will describe the landscape of the problem, which we can then try to
explore by using gradient descent, or one of the other categories of algorithms we’ll
discuss later in the book: 

where the term inside the summations is the squared 2-norm, that when computed on
the (vector) difference of the two points, gives us the square of the distance between
the two points.

If you are wondering why we use the squared distance, it’s not just because it’s cheaper
to compute.21 The main reason is that the derivative of a square root is a pain. And, of
course, the shape of the function’s surface would also be different.

 Now, that’s a big improvement with respect to a step function. This function is at
least differentiable, and that’s pretty good. Partial derivatives with respect to x and y
coordinates of a generic vertex w can be precisely computed: 

Scalars β and δ are so-called hyper-parameters of the algorithm. They balance the
importance of the attractive and repulsive force, and we need to adjust their values to
get the result we want; this can be done manually or automatically.

21Square roots are notoriously expensive operations to perform.

Attractive force
–β*dist2

Repulsive force
δ*dist2

Figure 16.20 A force-directed 
drawing algorithm using a physics 
simulation, with attractive and 
repulsive forces acting on vertices to 
provide an aesthetically pleasing 
embedding. Notice how forces are 
larger (thicker lines) when vertices are 
closer. For the sake of clarity, we don’t 
show all the forces acting on all pairs 
of vertices, just a few examples.
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 This isn’t always easy, of course. For instance, a large value for the attractive force
parameter will work well for sparse graphs, keeping vertices from drifting apart, but
for a dense graph, if β>δ, then all the vertices will end up converging to the center of
the graph.

 A possible alternative is deciding, based on the vertices/edges in the graph and on
the size of the canvas where we embed the graph, the ideal length for an edge (or an
ideal range for such length). This way, optimization will move away from solutions
where all the vertices are clustered too closely:

Neither of these cost functions aims to directly reduce the number of intersections,
but as you can imagine, having shorter edges and keeping adjacent vertices close to
each other indirectly help drive that number down. And neither function is ideal,
because they are not bowl-shaped, so they will have several local minima. While we
can’t easily correct this shortcoming, we still have a workaround. We can use a ran-
dom-restart algorithm, randomly selecting an initial position for the vertices, and surf
the cost function downhill with gradient descent.

16.5.2 Implementation

Perseverance is the key, so if we repeat a gradient descent step a few times (or maybe a
lot of times—it really depends on the context!), starting from different positions and
perhaps even with different learning rates, the final result might not be that bad.

 In the next chapter, we’ll see a more sophisticated technique to make our optimi-
zation more flexible and raise our chances of landing a good result.

 For now, let’s implement the single-iteration gradient descent solution, starting
with listing 16.5.

function forceDirectedEmbedding(graph, alpha, maxSteps) 
  for v in graph.vertices do                      
    (x[v], y[v]) ← randomVertexPosition()
  for _ in {1..maxSteps} do                     
    for v in graph.vertices do                                           
      x1[v] ← x[v] – alpha * derivative(graph, v, x) 
      y1[v] ← y[v] – alpha * derivative(graph, v, y)

Listing 16.5 Method forceDirectedEmbedding
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Method forceDirectedEmbedding takes a graph, a 
learning rate alpha, and the maximum number of steps to 
perform, maxSteps. It returns a point in the domain: an 
assignment for the coordinates of each vertex.

Cycles through each 
vertex, assigning its 
position randomly

Starts the iteration, 
running the main 
cycle at most 
maxSteps times

Cycles, again, through 
all vertices in the graph

For each vertex, updates its x and y coordinates by using gradient 
descent rules. We must use a new variable to hold these new values, 
because for gradient descent to work, we need to compute all the 
gradients using the coordinates at current iteration before the update.
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    if x == x1 and y == y1 then 
      break
    (x,y) ← (x1, y1)  
  return (x,y)

The code in listing 16.5 is a duplicate of the body of the general-purpose gradient
descent method we previously saw in listing 16.4. While it’s still possible to use that
method, in this case we have a more specific domain that can allow us some
optimization, and overall, I believe, to express more clearly how this algorithm works
internally.

 For instance, you can see that we never use the cost function, but we only need to
be able to compute its partial derivatives. (Now it should make more sense why, as we
had mentioned, we prefer to use the squared distance in the cost function to avoid
square roots.)

 Speaking of the gradient, the partial derivates can easily be computed using the
formula we have provided (or a similar one, if you use a different cost function). It
only requires running two for loops over the vertices, so explicit code is not shown
here.

 It’s easy to use this method for a random-restart algorithm: just decide how many
attempts you’d like to perform, and run a loop calling method forceDirectedEmbedding.

 The caveat is that in this case, we do need an explicit definition of the cost func-
tion, because (as shown in listing 16.6) after each call to forceDirectedEmbedding,
we will have to check the cost of the solution returned and compare it to the best
result so far.

function forceDirectedEmbeddingWithRestart(graph, alpha, runs, maxSteps)   
  bestCost ← inf
  for _ in {1..runs} do                                                   
    (x,y) ← forceDirectedEmbedding(graph, alpha, maxSteps)                
    if cost(graph, x, y) < bestCost then                                  
      (bestX, bestY, bestCost) ← (x, y, cost(graph, x, y))
  return (bestX,bestY)

This concludes our discussion of gradient descent. In the next chapters, we will
explore alternative algorithms for optimization of cost-based solutions.

Listing 16.6 Method forceDirectedEmbeddingWithRestart

This way we can check if we’ve reached a minimum 
point, where the gradient is zero and no update is 
performed (likely, here we want to pass some 
tolerance epsilon, and stop when the sum of the 
differences between the old and new positions is 
smaller than epsilon).At the end of each iteration,

updates the current coordinates
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Summary
 Many problems, including many in machine learning, are based on defining a

proper cost function that measures how good a solution is, and then running
an optimization algorithm to try to find the solution with minimal cost.

 Gradient descent is based on the geometric interpretation of cost functions. For
differentiable functions, we assume that each solution to the problem can be
interpreted as a point in an n-dimensional space, and a single step of gradient
descent is performed by computing the gradient of the cost function at the cur-
rent point.

 These points, where the cost function takes a locally-optimal value, are the nem-
esis of optimization algorithms in general, and gradient descent in particular.
The algorithm would get stuck in local minima and we would never find the
globally-optimal solution.

 The crossing number doesn’t play well as a cost function, because it makes a
step function with plenty of local minima plateaus. 

 As an alternative, we can map our problem into a so-called force-directed graph
drawing simulation, which focuses on drawing a graph nicely, and optimizes the
crossing number only indirectly.
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Simulated annealing:
Optimization beyond

 local minima

If you have read chapters 15 and 16, you should by now be familiar with graph
embeddings and optimization problems. In the previous chapter, in particular, we
explained how to reformulate graph embedding as an optimization problem, and

This chapter covers
 Introducing simulated annealing

 Using simulated annealing to improve delivery 
schedules

 Presenting a primer on the traveling salesman 
problem

 Using simulated annealing for minimum crossing 
embeddings

 Using an algorithm based on simulated annealing 
to draw graphs nicely
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we introduced gradient descent, an optimization technique that can be used to find
(near-)optimal solutions to this category of problems. In particular, we discussed two
solutions to the problem, seen as crossing-number optimization and as a force-directed
graph drawing; gradient descent is particularly suitable for the latter, while particularly
bad for the former.

 One issue we have seen with gradient descent is that it tends to get stuck in local
minima, which is pretty much the last thing we would want, considering that we often
have to deal with cost functions having lots of local peaks.

 We have already discussed one workaround for this issue, running gradient
descent several times using random-restart to choose a different starting point each
time.

 Still, even with this technique, each iteration of gradient descent is pretty much
doomed (in the best-case scenario) to end in the closest local minimum along the
steepest path from the starting point. It would be great, instead, if even a single run
could have some non-null1 probability to move over a local minimum and find a bet-
ter solution.

 In this chapter, we’ll discuss an algorithm that does exactly that, and more. It also
overcomes some of the constraints that limit the applicability of gradient descent.
After reading this chapter, you will have learned about simulated annealing, a powerful
optimization technique, how to apply it to some of the hardest problems on graphs,
and how to weigh pros and cons of choosing it over other optimization techniques. 

 Simulated annealing is quite powerful as is: among the algorithms we have
described, it’s the only one that’s able to balance narrow and broad search, exploring
a large portion of the problem space and managing to make local progresses.

 Moreover, it’s been around since the 1970s, and that explains why it’s one of the
favorite heuristics used in optimization. During the last 20–30 years, new optimization
techniques have been developed, such as genetic algorithms (which we’ll discuss in the
next chapter), and artificial immune systems (AIS), which use different biology-inspired
approaches to speed up convergence, but the adoption ratio for simulated annealing
remains high, and recently it has also been revived with quantum annealing.

 Last but not least, you’ll improve your ability to plan deliveries over several destina-
tions by learning about the traveling salesman problem (TSP for short) and how to find
near-optimal solutions in a reasonable time. Continuing our discussion on optimizing
logistics for our imaginary e-commerce company, we will move from planning a single
trip for each delivery to optimizing the route of a delivery truck across several cities, so
that it can be loaded once at the company’s warehouse and make several deliveries
without going back.

1 Technically, even gradient descent can move past a local minimum, depending on the shape of the function
around it and on the learning rate; see figure 16.16.
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17.1 Simulated annealing
In chapter 16 we introduced local optimization techniques as a way to improve over
mere random sampling algorithms. We discussed gradient descent at length and
alluded to a randomized optimization technique. If you remember our analogy to
marble races, gradient descent would always move a marble (our solution) along the
steepest path on the track (the landscape produced by the cost function), but stop in
valleys. Figure 17.1 contrasts the gradient descent approach with the random search
local optimization called hill descent.2 In this case, the algorithm picks a direction ran-
domly and checks if by making a short (possibly random) step in that direction we get
to an improvement. If so, it moves to the new solution; otherwise, no change is made,
and another attempt is performed at the next iteration. As we also saw in chapter 16,
for gradient descent it is, in theory, possible to step over local minima, if the learning
rate is large enough; however, this is also unlikely to happen.

Be warned, though, that in figure 17.1 we are not showing all the failed attempts
where local random optimization tried the wrong direction: overall, getting to the
same point will need more steps than gradient descent, because instead of going in
the direction of maximum change, we are wandering around randomly. This is more
apparent looking at a 2-D domain/3-D surface, like the one shown in figure 17.2.

 As it is, this approach shares some of the same issues we discussed in chapter 16
about gradient descent. It is likely to get stuck in local minima and plateaus. And,
even worse, it’s taking a slower way to get there.

 On the plus side, it also has some advantages. First and foremost, we can release
the constraint about the cost function being differentiable, and can actually even
ignore the definition of the function, as long as we have a way to compute it.3 This is

2 The original name would be hill climbing, when the goal of the optimization is maximization; since we aim to
reduce cost, though, that would be confusing.

3 Not having a static formula can be helpful with dynamic cost functions like externally computed metrics or
simulations (for instance, in reinforcement learning, the cost is determined by running a simulation).
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Figure 17.1 Gradient descent versus local 
random optimization. While for gradient descent, 
steps are proportional to the curve’s steepness, 
the random steps are . . . just random (within a 
reasonable radius). That’s why it’s easier for the 
random algorithm to step over a local minimum, 
or even get out of it (technically, both are 
possible for gradient descent as well, as we saw 
in chapter 16, depending on the learning rate and 
shape of the cost function).
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especially useful with functions such as the edge crossing of an embedding, a step
function which is not differentiable in the points where its value abruptly changes and
has a derivative identically equal to zero elsewhere.

 The obvious downside, as shown in figure 17.2, is that the random optimization is
going to require many more steps than gradient descent, because it will take long
detours. Even worse, since it will not take the direction where the function decreases
faster, it will likely end up in a different spot than gradient descent. It’s impossible to
predict where, and whether it will find a better or worse final value. To cope with this,
the only strategy is perseverance: increasing the number of runs and storing the best
result across them is likely to bring to a satisfying result (the more runs, the better the
expected solution).

 Finally, there are issues faced in gradient descent that not even the randomized
method can shake off.

 For instance, while it’s possible that the random optimization algorithm gets out of
a local minimum, it’s not guaranteed. Since both algorithms are greedy,4 they only
move from the current position when they find a domain point to which a lower cost

4 Greedy algorithms make locally-optimal choices (for instance, they only go to positions with a lower cost).
Unfortunately, this doesn’t always translate into getting to optimal results.

Gradient descent path
Cost function

Random path

Figure 17.2 Gradient descent versus local random optimization on a cost function of two parameters. 
Can you guess which one is going to take more steps?
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corresponds; it’s possible that the range of the random steps is not wide enough to get
it out of a pit. You can see this in figure 17.1, where the “leap” the algorithm has to
make to get itself out of a local minimum is pretty large compared to the other
updates. If such a large delta is even allowed (depending on how the algorithm is con-
figured through its hyper-parameters), it will likely take a lot of random attempts
before it generates a step that is both in the right direction and sufficiently far away.

17.1.1 Sometimes you need to climb up to get to the bottom

An example of an even more troubling configuration for the local optimization algo-
rithm is shown in figure 17.3. The gap between the current minimum where the ran-
domized algorithm is stuck and the next point in the cost function’s landscape with a
lower value (the closest improvement) is way too far away to get there in a single step.
What we would need is for the algorithm to be able to say, fine, it doesn’t matter if I’m
in a minimum; I’ll climb over this hill and see if the next valley (or the one after the
next) is deeper.

Of course, there are many ways to do that. For instance, we could store somewhere the
best solution we have found and keep exploring, moving past a local minimum.
Another option could be deciding that sometimes a step uphill is fine. We can plan it
systematically, every few steps, or probabilistically, accepting a step uphill with a cer-
tain probability.

 Simulated annealing uses the latter approach; while in its original formulation it
doesn’t keep track of the best solutions found, this can be easily added.

 This heuristic5 takes its name from a technique used in metallurgy, annealing, that
consists of repeated cycles where a material is heated up and then controllably cooled
to improve its strength: something like a blacksmith forging an iron sword by quench-
ing it in cold water, but in a more controlled way (and without water!).

 Simulated annealing does something quite similar. In its simplest version it consists
of a single cooling phase, but variants exist that alternate phases where the tempera-
ture has risen, with others when the system has cooled.

 The system’s temperature, in turn, is directly connected to the energy of the simu-
lated system and the probability that it is allowed to transition to a higher-energy state
(in other words, to a solution for which the cost function takes higher values).

5 We can consider simulated annealing a category of heuristics, aka meta-heuristic: each algorithm using simu-
lated annealing to solve a specific problem is going to be a heuristic.
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Figure 17.3 A limitation that the random local 
optimization algorithm shares with gradient 
descent is that it only moves downhill. If the next 
position with a better value for the cost function 
is too far, the algorithm won’t be able to reach it 
in a single step, and so it will be stuck.
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 Figure 17.4 shows a possible path on a 3-D surface that resembles the progress of
simulated annealing optimization. This time, the algorithm is capable of getting itself
out of a local minimum, even by taking a counter intuitive step uphill: that’s the differ-
ence compared to greedy algorithms (including the ones summarized in section 17.1)
and the true advantage of this technique.

The path shown in figure 17.4, however, though possible,6 is not typical of simulated
annealing. A more common path would be much more chaotic, and would have made
the figure a bit too messy.

 The algorithm, in real applications, is more likely to initially jump back and forth,
exploring several areas of the landscape, and often moving uphill. Then, as cooling
progresses, it will be less likely to transition to higher positions, and at the same time
we can directly or indirectly reduce the length of the random steps. Overall, after the
initial exploration phase, it should enter a fine-tuning phase. 

 An example of the whole process is shown in figure 17.5. As you can see, I was not
exaggerating about how chaotic it looks!

6 With the right configuration, and, as we’ll see, with a small-range transition function.

Cost function

Random path

Figure 17.4 The ups and downs of a possible path followed by simulated annealing optimization. Be 
warned, this is an artificial example. It’s likely that in real runs, in the initial phases, the algorithm 
would move all over the place, while later, when the temperature drops, it will converge toward one 
of the minima.
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17.1.2 Implementation

So, enough talking about how cool this algorithm is; let’s look at some pseudo-code.
Listing 17.1 presents the algorithm, and a JavaScript implementation, provided as part
of the JsGraphs library, is linked on the book’s repo on GitHub.7

function simulatedAnnealing(C, P0, T0, acceptance, maxSteps)
  for k in {1..maxSteps} do                             
    T ← temperature(T0, k, maxSteps)                   
    P ← randomStep(P0.clone(), T)               
    if acceptance(C(P), C(P0), T) > randomFloat(0,1) then 
      P0 ← P    
  return P0

The algorithm looks beautifully simple, doesn’t it? And quite concise, although, as
always, we try to present generic methods as templates, and when possible, we abstract
as many sub-routines as possible into helper methods that can later be implemented
according to the context.

 In this case, there are three of them; in the next section we’ll discuss both the
function computing how the temperature evolves and the one giving the probability of
acceptance of a transition. Now, let’s discuss function randomStep, which allows us to
build the next tentative solution to which the algorithm could transition.

 This function needs, obviously, to be domain-dependent: the size of the problem
space and the type of solutions will determine how we can change the current solution
(a point in the problem space). For the graph-embedding problem, for instance, we
can randomly move each vertex along both axes, within the maximum area in which
the graph must be embedded.

Listing 17.1 A generic implementation of simulated annealing

7 https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#simulated-annealing.
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Figure 17.5 A more realistic example of a 
possible simulated annealing path to the minimum 
for a function of a single parameter. Initially steps 
are larger and the probability of accepting a worse 
result is higher. As the cooling progresses, fine-
tuning kicks-in, with smaller steps only (or mostly) 
towards better results.

Method simulatedAnnealing takes a cost function C, a 
starting point P0, a starting temperature T0, a probability function 
acceptance, and the maximum number of iterations to perform, 
maxSteps. It returns a point in the domain: ideally the point 
where C has the smallest value (either locally or globally).

Starts the iteration, 
running the main 
cycle at most 
maxSteps times

Sets the 
temperature of 
the system, based 
on the initial 
temperature and 
current iteration

Creates a new point P in 
the domain, to which the 
system should transition

If the probability of transitioning from P0 to P is 
higher than a random floating-point number, drawn 
between 0 and 1, then updates current state to P

https://github.com/mlarocca/AlgorithmsAndDataStructuresInAction#simulated-annealing
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 But as you can see at line #4, we added a dependency on the temperature for this
function!

 We mentioned in the previous section that you can adjust the length of the ran-
dom step directly or indirectly. The short answer is that you want to be careful if you
do it directly, but it’s an option. To see why, we first have to better explain in detail the
other two functions and understand why simulated annealing works.

17.1.3 Why simulated annealing works

If you feel that the way simulated annealing works is slightly counterintuitive, well, you
are not alone. After all, if the algorithm can make large steps, and it can also move to
worse positions without making any use of any knowledge of the cost function (either
previous or acquired while running), how do we know it will end up in the area of the
global minimum and not get stuck in some sort of funnel to a local minimum when
we start reducing temperature? Well, we don’t. But with most landscapes, if we run the
algorithm long enough and find the right configuration, in practice it will get pretty
close to the global optimum and outmatch gradient descent.

 There are lots of “ifs” in that proposition. The truth is that, like most heuristic algo-
rithms, it works well in practice when it’s in the hands of someone who knows how to
tune it properly and has enough computing time to make it run for lots of iterations.

 Still, if that’s the case, then simulated annealing is a great alternative for scenarios
where gradient descent would suffer. It’s not that one is better than the other; like all
tools, there are problems for which gradient descent works better, and others where it
would be hard or impossible to apply it. But let’s see in detail why it does work.

 The key to the algorithm is the probabilistic mechanism that allows the algorithm
to move uphill (lines #2–5), toward worse values for the cost function, and in particu-
lar the function that spits out the probability of accepting a positive delta, depending
on temperature and on the magnitude of this delta.

 Assuming that at a given iteration, when temperature has the value T, the algo-
rithm attempts to transition from current point P0 to a point P, then we can express
this probability function A(P0, P, T) as

where C(P) is the cost of solution P (similarly for P0), and k is a constant that must be
calibrated on the initial temperature and max delta in the cost function, so that in the
initial phase of the algorithm (when the system’s temperature is close to the initial
temperature), the probability of acceptance of a positive delta is close to 1 for any two
states.

 Typically, the probability of transitioning to a lower-energy state is set to 1, so that
such a transition is always allowed in any phase of the simulation.
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 But of course, this is not the only way to define this function. It is, however, a typi-
cal definition for the acceptance probability, because it stems directly from the metal-
lurgic analogy: this formula is directly inspired by the Boltzmann distribution that
measures the probability that a system is in a state with a certain energy and tempera-
ture.8 But instead of an absolute value for the energy, for simulated annealing we con-
sider a variation from a lower to a higher energy state.

 Now, what’s the effect of this probability distribution on the single step of the algo-
rithm? Let’s consider the case where the amplitude of the update step in the problem
space is not constrained (so we could even move between opposite corners of the
domain) and take a look at figure 17.6.

 Initially, when the temperature of the system is high (figure 17.6 (A)), and by con-
struction the probability distribution should allow almost any update (no matter how
bad it seems), the algorithm can move all over the landscape and even get out of local
minima, even if this means that it might abandon an optimal position for one of the
worst negative peaks. Actually, at this stage, it is even easy for the algorithm to walk
away from good solutions.

 This mimics high-energy systems, where particles (or molecules) move chaotically
in all directions.

8 Accordingly, the constant k is called Boltzmann’s constant.
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Figure 17.6 The effect of temperature on the 
probability of transitioning to a higher-energy 
state, and in turn on the annealing algorithm. 
(A) Initially, the temperature is high enough 
that any transition is allowed. At this stage, the 
algorithm behaves like random sampling 
(without storing the best result) and explores a 
large section of the domain. (B) When the 
system cools down, transitions to higher states 
become unlikely, and above some threshold 
they become so unlikely as to be considered 
forbidden. Transitions to lower states are 
always allowed. (C) When we are close to the 
end of the annealing simulation, the probability 
of moving to higher-energy states is so slim as 
to be negligible; the system can only move to 
better solutions.
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As the system cools down, the distribution changes (figure 17.7 (B)). Going uphill
becomes less likely, and some positions above a certain delta (with respect to their
cost) become completely unreachable.

 Finally, when temperature gets close to the TLOW, the halting temperature (or equiv-
alently, as we’ll see, when we are close to the maximum number of iterations), going
uphill becomes so unlikely as to be basically forbidden, and the algorithm can only
transition to lower-energy states. It behaves like hill descent.9 Looking at figure 17.6 (C),
however, you can see that there is a difference, and transitions to points far away in the
domain are allowed if they correspond to a lower cost. This means the algorithm can
still get out of local minima (and it’s hopefully even probable that it will!) and converge
to a local optimum.

 Notice that the acceptance or rejection of a transition to a new state is not related
to the distance of the new state from the current one in the problem space. It’s only
based on the energy levels of the two states, which in turn are given by (or at least pro-
portional to) the value of the cost function in those states.

 Even more importantly, after the very initial stages where basically all transitions
are allowed, then the further uphill a new state is, the less likely it becomes for the
transition to be accepted. This is why the algorithm works well, because it progres-
sively encourages transitions toward areas where cost is lower (see figure 17.6 (B–C)),
while not limiting the search to the neighborhood of the current position in the prob-
lem space.

 Why do transitions uphill work? Because when going uphill, it might be able to go
over a cliff and reach a deeper valley. While it might seem counterintuitive on a 2-D
chart, this becomes even more relevant in high-dimensional space.

 Similar to the metallurgic process, however, cooling down the system with the right
pace is instrumental to the quality of the final result.

 And, of course, being a merely stochastic process, it also needs some “luck”; espe-
cially toward the end, many random steps will produce transitions uphill, and as such
will be rejected. But if we try hard enough, for many iterations, chances are that a pos-
itive change will be randomly found.

 And that’s the strength of the algorithm, and, at the same time, its weakness. We
can reach an improvement, but since we discard progressively more and more
attempted updates, we’ll need several iterations (technically: a lot of them!) and, of
course, a good function for the random steps to probe the problem space.

 This makes the algorithm particularly slow and resource-consuming, especially if
iterations (generating a random point and evaluating the cost function) are expensive
to compute.

9 We described hill descent in chapter 16.
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17.1.4 Short-range vs long-range transitions

Now, again, the question arises: Do we want to progressively limit the range of transi-
tions, and in turn how far the algorithm can move at each step in the domain space?

 We could make the length of the maximum update step dependent on the tem-
perature parameter T, and as such, it would shrink in time.

 But the interesting part is that even if we keep the same maximum step length for
the whole process, there is some kind of indirect reduction while the temperature
cools. As shown in figure 17.6, the filtering actually happens on the co-domain of the
cost function, but the indirect effect is limiting the domain to a subset of the original
problem space; and, in turn, the effect is the same as water running down funnels—it
gets channeled and velocity slows down (as pressure builds up).

 If we further restrict the acceptable transitions based on proximity along the prob-
lem space, on one hand we get a greater number of attempted updates in the area sur-
rounding the current point, which could be good if we are close to the global
minimum, because it would speed up convergence.

 On the other hand, we would likely lose the ability to get out of local minima,
which is the best reason to use simulated annealing in the first place.

 Therefore, one “safe” solution is to implement the randomStep method as pure,
random sampling; however, this means that we will need a lot of iterations to find a
transition downhill, and the algorithm will keep bouncing between valleys without
focusing on fine-tuning. An interesting compromise could be increasing the probabil-
ity of small steps, but still allowing far-reaching updates, and even trying them every
few iterations. This can be done in combination with shrinking the range of the local-
search (the small steps) as the temperature cools down.

 The last thing we need to discuss is how to update the temperature. Similar to the
acceptance probability, there are several possible viable options for this function—
there are no restrictions on it.

 Typically, however, geometric (aka exponential) decay is used, with the tempera-
ture value updated not every iteration, but after some interval (for instance, every
1000 iterations or so).

 The mathematical formula for this function is

The temperature at iteration i is a fraction of the temperature at iteration i-1; α,
which must be between 0 and 1, controls how much cooler the temperature gets
between two iterations.

 Now, you might have to fiddle a bit with the value of α and the interval between tem-
perature updates to tune them and get the best results. In general, exponential decay
slows down quickly at the beginning and slowly from halfway to the end. Figure 17.7
shows a few examples of how the ease of the slowdown depend on the choice of α.

Ti αTi 1– 0 α 1< <,=
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In practice, α 0.98 is usually a safe bet for an initial choice (then, you can take it from
there and tune it).

17.1.5 Variants

As we have seen, simulated annealing—despite being an indisputably powerful tool—
also has some flaws, the most concerning of which is its slow speed in converging due
to its stochastic nature.

 And so, like for all algorithms, over time many variants have been studied to rem-
edy its shortcomings and make it even better.

 We already alluded to a trivial modification that we could add: storing the best
solution found across all iterations. It might happen, in fact, especially on large, multi-
dimensional problem spaces, that during the initial high-energy phase we serendipi-
tously land in proximity to a global minimum, then move uphill afterward, and never
manage to get back to such a good result again. How likely this is to happen depends
on many factors, such as the shape of the landscape (the cost function) and whether
the right configuration for the parameters was found. In any case, remembering the
best result ever can be an easy win.

 Pushing this consideration a little further, simulated annealing with restart stores one
or a few of the best results found across iterations, and when it gets stuck, it moves to
one of these previous (and advantageous) positions, resetting the descent or just mov-
ing to a different area of the problem space.

 We have mentioned, if you remember, that despite being lower with respect to
greedy algorithms, the probability of getting stuck in local minima is still not null.

Figure 17.7 To understand how the parameter α controls cooling in simulated annealing, let’s look at 
the exponential decay function: f(i)=Ti= α*f(i-1),∀ i>0. In this chart, we set f(0)=T0=100 and 
show how the function’s shape changes with the rate α, which controls how fast the function goes to 
zero. Why is it called exponential decay, you ask? Because T1= αT0, T2= αT1= α2T0, and in general Tn= αnT0. If α is between 0 and 1, αn and in turn Tn get progressively (exponentially) smaller.
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 In particular, this event can be concurrently caused by a few factors:

 Non-optimal choice of the algorithm’s parameters. Cooling becomes, for
instance, too fast, and the algorithm gets stuck away from global minimum.

 Bad luck. As we said, it’s a stochastic algorithm, after all, and it might reach the
optimum too soon and never be able to go back once the system cools down.

 The update step (more likely so). While we saw that random sampling causes the
fewest constraints toward other areas in the problem space with lower energy, it
will slow down local convergence (possibly too much to be acceptable).

 Sometimes it’s possible to have update rules that allow long steps, while other
times (as we’ll see), it might be easier to implement only small steps, which
means that those long leaps to different areas that could bring the algorithm
outside of local minima are more rare.

When some or all of these happen, using random restart could save the day.
 Another issue with simulated annealing is that tuning its parameters can be tricky

and annoying. In adaptive simulated annealing the algorithm parameters, k and α, are
automatically adjusted as the algorithm progresses, or depending on the trend in the
energy level. The latter uses mechanisms borrowed from thermodynamics, allowing
even increases in temperature (simulating cycles of cooling down and warming up).

17.1.6 Simulated annealing vs gradient descent: Which one should I use?

We have seen that simulated annealing is slower than gradient descent to get to min-
ima: the latter takes the fastest route, so it’s hard to beat on a clear course.

 The caveat is that gradient descent requires a differentiable cost function and gets
easily stuck in local minima.

 Whenever the cost function is not differentiable or step-shaped, as with the
minimum-crossing-embedding problem, or the problem space is discrete (for prob-
lems like the TSP, which we’ll describe later in this chapter), then simulated anneal-
ing is preferred over gradient descent.

 Likewise, for problems where we have flexible requirements about running time
and the quality of the solution, simulated annealing might still be preferable to gradi-
ent descent. Keep in mind that simulated annealing is a Monte Carlo algorithm, and so
(as we discuss in appendix F) it returns a sub-optimal solution, whose quality increases
with the quantity of time we allot for the algorithm to run.

 When, instead, we have guarantees about the differentiability and shape of the
function (for instance, if we are sure we have a bowl-shaped function, as with linear/
logistic regression, and so on), then we want to take advantage of the superpowers of
gradient descent.

 Are there cases where simulation annealing is best avoided?
 Obviously, as we have discussed, if a problem doesn’t admit near-optimal solutions,

but rather demands the best possible one, then simulated annealing is not the best
tool in our belt.
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 The shape of the cost function matters as well. When the cost function has narrow
valleys, the algorithm will have a low probability of finding them, and if they hold the
global minima, it’s unlikely simulated annealing will converge to a near-optimal
solution.

 Finally, as we will see in our examples, an important requirement is that the cost
function should be easily calculated for a new candidate solution (possibly allowing us
to directly compute the delta based only on the difference with the current solution).
Since this cost is computed at each iteration, a computationally intensive cost function
will slow down the optimization, forcing us to run the algorithm for fewer iterations.

17.2 Simulated annealing + traveling salesman
I hope you have found the discussion about simulated annealing interesting so far. We
learned about a tremendously useful tool, and now it’s time to put it into practice;
luckily, we have just the perfect application for it!

 Do you remember our e-commerce company? We left it in chapter 14 dealing with
deliveries, optimizing routes for single-destination deliveries inside town.

 As we mentioned, planning individual deliveries from a warehouse to customers
for each order is uneconomic and unrealistic.

 This doesn’t mean that what we learned in chapter 14 about optimizing routes
with Dijkstra’s and A* algorithms was useless. It’s quite the opposite: that’s some fine-
grained optimization that we can always perform for a single delivery, going from the
generic i-th destination to the next one. Since we will have to compute these routes
on the fly, it’s even more important to use an efficient algorithm.

 And yet, since to amortize delivery costs and stay on the market we need to load
each truck with several shipments (and possibly load each truck to maximum capac-
ity) and have it go out on daily tours with several deliveries, finding the optimum path
from a source to a destination is not enough anymore.

 In this section, we’ll focus on optimizing the route of a delivery truck, assuming its
load (and in turn its destinations) are already fixed. Once we have improved this phase,
we still have another, higher-level optimization in front of us: assigning the deliveries to
the trucks to minimize the distance (or travel time, or, more likely, cost) across all
trucks and all deliveries. But we need to take one step at a time, so in this chapter we’ll
focus on the following problem: given a list of cities, each connected to each other by
roads, find the optimal tour, aka a sequence of the cities such that we move from each
city to the next one, at some cost (for instance, the distance between the two cities) and
eventually return to the first city while keeping the total cost minimal.

 Figure 17.8 illustrates this situation: you can see 10 real and DC Universe cities, the
connections between each pair of cities, and—highlighted—the shortest tour touch-
ing each city exactly once.

 Now, we are considering a single delivery per city just to make the example clearer,
with all steps being at the same scale. Nothing changes, however, if instead we have
multiple deliveries in each city. Because the intra-city distances will be smaller than the
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ones between different cities, deliveries in the same city will be naturally clustered
together. It is also likely possible for the problem to be optimized at different levels in
two steps: first, find the best order in which cities should be visited, and then, within
each city, compute the best route, using the same algorithm.10 But these are just low-
level details.

The abstract formulation of this riddle is a well-known computer science problem
known as the traveling salesman problem (TSP). As you might have guessed, it’s a difficult
puzzle to solve, in particular a NP-complete problem; this implies it’s both NP-Hard and
in NP—the former meaning that there is no known deterministic algorithm that can
solve it in polynomial time, while the latter means that if we have a candidate solution,
we can check it in polynomial time.

 Informally, we can say that we expect any deterministic algorithm that solves the
TSP will need exponential time (although we can’t be sure, because we don’t have an
answer to the P vs NP problem).

 The first consequence for us of the TSP being NP-Hard is that we can’t assume
we’ll be able to solve an instance of this problem on the fly, on a driver’s mobile
phone, or even a laptop computer (unless the number of cities to deliver to is small;
but for the 10 cities in figure 17.8, there are already 10! ~ 3.6 million possible
sequences). We need computer power, and planning ahead, and possibly even com-
puting ahead, to reuse the results as much as possible.

 Even with a supercomputer at our service, in fact, the running time of an exact
algorithm just grows too fast. With 15 cities, there are ~1.3 trillion possible solutions,
which becomes 2.4e18 (2 billion of billions) with 20 cities. Even assuming that we can
find an algorithm running in exponential time (which is asymptotically better than
factorial), we couldn’t handle more than ~40 different deliveries (probably far fewer).

10We would have to constrain the first and last delivery in each city to be the closest to the connections to the
previous and the next city in the tour. Even so, it’s possible that the solution found in two steps is not the best
possible. If the connections to other cities starts in different areas of town, this could influence the choice of
the best sequence for the cities; the influence, however, could be small enough to be considered acceptable.

156

221

203

198

191

294

62

88

87394

152

267

Gotham City

Metropolis

Civic City

Opal City

Happy Harbor

New Carthage
Buffalo

Pittsburgh

Syracuse

Harrisburg
Figure 17.8 An example map, mixing 
the DC Universe’s cities and other real 
ones, with some distances: because 
this is a complete graph with close to 
fifty edges, we are only showing a few 
numbers, almost only for the edges in 
the best tour (the thicker edges).



606 CHAPTER 17 Simulated annealing: Optimization beyond local minima

17.2.1 Exact vs approximated solutions

The last consideration we make is that we can afford to compromise on the optimal
solution. We can be fine using a near-optimal solution; we don’t need the best possi-
ble. For instance, if we add a few miles over a total of 1,000 miles per trip, it feels
acceptable, while doubling the total distance of the tour would be quite expensive,
and making it 10 times costlier would be a disaster.

 This is not true for every context, and there are situations where we need the abso-
lute best because even a small difference is translated into a large cost, or maybe it
could help save lives. In surgery simulations, for instance, a small error can have dire
consequences, as you can imagine.

 But since we are okay with sub-optimal solutions, this means we can use a heuristic
to get an acceptable solution within a reasonable time.

 Several heuristics have been developed specifically for TSP. For instance, for
graphs whose distances obey the triangle inequality (like ours), a class of algorithms
using the minimum spanning tree of a graph (see section 2.8.2) and running in linearith-
mic time, O(n*log(n)), can guarantee a solution whose cost is at most twice the mini-
mum cost, and on average11 between just 15 and 20% higher than the shortest tour.

 We want to try a different way, though. This is clearly an optimization problem, so
why not try to tackle it with our new shining tool, simulated annealing?

Simulated annealing can potentially bring us a better solution than the average pro-
vided by the MST heuristic; it can even lead us to global optimum. Moreover, let’s
assume we don’t have expertise on the specific problem inside the company: overall, it
might be worth trying simulated annealing, which is high-level and potentially could
be reused for other optimization problems in the future.

 When it comes to the cost function, we are in luck. It naturally stems from the
problem’s very definition: it’s the sum of the edges between adjacent vertices in the
sequence (including between its last and first entries, of course).

11As we discussed in chapter 16, NP-hardness is based on the worst-case scenarios; many problems, however, are
difficult only for a minority of edge cases, while many real-world scenarios can be tackled more efficiently.

Is using simulated annealing the right choice for my project?
A word of caution is necessary here. We have mentioned Maslow’s hammer law a few
times throughout this book, and this configures like a case where we need to think
carefully before choosing which tool to employ. The risk, as you know by now, is being
tempted to use a hammer (simulated annealing) when a screwdriver could work better.

So, before deciding if simulated annealing is worth implementing, we need to ask our-
selves a few questions, such as these: Do we have the skills inside our team/com-
pany to develop and tune this algorithm? Would we have better skills for another
solution? What’s the difference in effort needed between these solutions? What’s
the benefit of one versus the other?
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17.2.2 Visualizing cost

One nice thing about the solutions to the TSP is that the problem space is the set of
all the possible permutations of a graph’s vertices, and since each sequence can be
mapped to an integer, we have a way to show a nice 2-D chart for the cost function,
and even see how the algorithm progresses. The problem space, of course, is huge
when the number of vertices grows, as it appears clearly in figure 17.9, where we have
to zoom in on a small portion of the domain to be able to distinguish the landscape of
the cost function.

To provide a clearer view and description of the process, we need to keep the set of cit-
ies small: for instance, we can restrict to the six DC Universe cities in figure 17.8,
obtaining the graph shown in figure 17.10, for which there are just 720 possible per-
mutations of the vertices. This produces the landscape shown in figure 17.11, which is
far less clogged than what we saw in figure 17.9.

Now, since we have the full landscape, you might point out that we could just brute-
force search it and find the best solution, and you’d be right; we have evaluated the

Figure 17.9 The cost landscape for the TSP applied to the graph in figure 17.8 (A). The cost function is 
displayed for the whole domain; it’s hard to make sense of it! 17.8 (B) Zooming in on the first few hundreds 
of permutations, we can see that there are several local minima.
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cost of each single permutation to draw the chart in figure 17.11, so we can just
extract its minimum. As shown in the figure, the best solution is the sequence:

[New Carthage, Happy Harbor, Gotham City, Metropolis, Opal City, Civic City]

The point is that we wouldn’t be able to do that for larger instances. With the full
graph in figure 17.8, for example, it already takes several minutes to generate all 3.6
million possible permutations!

17.2.3 Pruning the domain

The reason we wanted to show you the cost function on the full domain of the sub-
problem with six vertices is because this chart can teach us a lot. For instance, we can
see there are many local minima that appear to have the same cost. Can you guess why
that is?

 As always, take a couple of minutes (if you’d like) to think about the answer, before
moving on to the solution.

 To answer the question, consider these permutations of the cities in the graph:

[Opal City, Civic City, New Carthage, Happy Harbor, Gotham City, Metropolis]
[New Carthage, Happy Harbor, Gotham City, Metropolis, Opal City, Civic City]

What’s the difference between these two permutations, in terms of solutions? Since we
are considering closed tours (from the first city, through all other cities, and then
back to the start), they are completely identical, except the second one is shifted left
by two cities. In fact, the cost of the two tours is the same (because they involve the
same edges).

 There are six equivalent sequences that can be derived from the one we gave as a
solution, one for each city used as a starting point.

 We can therefore fix in advance the city from which the tour starts, knowing that
this won’t affect the result, but it will cut the number of permutations we need to
examine. From 720 we go down to only 120—not bad, and it will be an even better
gain for larger graphs.

Figure 17.11 The cost landscape for TSP applied to the complete graph K6 as shown in figure 17.10. Besides 
the actual values, notice some patterns repeating.
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 Moreover, consider that this will work well with the specific instance of the prob-
lem we need to solve for our e-commerce company. We always need to start (and end)
our tours at the warehouse, where the goods to deliver are loaded on the trucks.

 If we set, for instance, New Carthage as the starting point, there might still be sev-
eral equally good solutions (if multiple sub-paths have the same total cost), but if the
graph is undirected there will only be, at most, two equivalent solutions:

[New Carthage, Happy Harbor, Gotham City, Metropolis, Opal City, Civic City]
[New Carthage, Civic City, Opal City, Metropolis, Gotham City, Happy Harbor]

That’s because if edges have the same cost in both directions, we can travel through a sim-
ple cycle (a tour) in either direction (in figure 17.10, clockwise or counter-clockwise).

 But we don’t mind having two possible global solutions, so there is no further
action we should take here.

17.2.4 State transitions

Now it’s time to translate this constraint into code. Luckily for us, that’s not too diffi-
cult, given how we designed the simulated annealing algorithm in listing 17.1. We
need to pass the definition of the function that computes the transition to the next
state, and right there, we can always set the first vertex of the sequence to the same
value. We also have the cost function figured out, so we are ready to implement all the
missing pieces.

 Listing 17.2 starts by exploring the cost function, which, as we have discussed, is
the sum of the weights of the edges between two adjacent vertices in the permutation.
Still, while computing this value we need to be careful about a couple of details. First
and foremost, we assume that the input graph has an edge between every pair of verti-
ces. If this isn’t true, we need to check for it and return a special value (for instance,
infinity, or any large-enough weight) to basically guarantee any solution including
missing edges will be naturally discarded. Another alternative could be checking the
solutions when transitions are computed and making sure that those with missing
edges between adjacent vertices will be discarded early.

function tspTourCost(graph, P) 
  cost ← 0
  for k in {0..|P|} do                     
    cost ← cost + graph.edgeBetween(P[k], P[(k+1)%|P|]).weight 
  return cost

Listing 17.2 Cost function for TSP

Method tspTourCost takes a graph and a candidate solution P (a point in the problem space, that is, 
a permutation of the list of vertices in the graph) and computes the cost of the solution as the sum of 
the weight of all edges in the candidate tour. It’s assumed the graph has an edge between every pair of 
vertices (or, alternatively, that the methods return a special value, like inf, if there isn’t one).

Cycles through the sequence

Checks the edge between k-th vertex in the sequence and its successor, the one at 
position (k+1) modulo the length of the sequence (so that when it gets to the last 
element of the list, it will circle back and its successor will be the first vertex)
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The other detail we would like to highlight is that we need to wrap around the array,
because we have to add the cost of the edge between the last and first vertices in the
sequence (the edge that closes the tour). This can be handled in many ways, using
modulo being the most succinct, while the most efficient would be treating this last
edge as a separate case outside the for loop.

 When it comes to the transitions to a new solution, we have a few options:

 Swapping adjacent vertices—After selecting a random position in the sequence, we
would swap the vertex at the given index with its successor. For instance, the solu-
tion [1,2,3,4] could change into [2,1,3,4] or [1,3,2,4], and so on. This tran-
sition corresponds to a local search, where only the immediate neighborhood of
the current solution is explored; this raises the probability that fine tuning leads
to improvement, but makes leaps and getting out of local minima harder.

 Swapping any pair of vertices—Both positions for the vertices to swap are chosen
at random, and they are simply swapped: [1,2,3,4] can also become
[3,2,1,4], which was not allowed by the previous operator. These kinds of
transitions allow medium-range search, although the two solutions are still
quite close to each other.

 Generating a new sequence at random—This allows us to leap across the whole
domain at any stage of the algorithm, making it less likely to lead to fine-grain
improvements toward a local minimum in the final stage of the simulation,
because relatively few attempts will be made in the neighborhood of current
solutions. At the same time, it will also leave the door open for distant leaps to
any area of the domain, whenever a better solution is (randomly) found.

And, of course, many more intermediate options are available, such as doing a fixed
or random number of swaps per transition or moving a whole segment of the solution
elsewhere.

 Which one of these works best? That’s a good question, which is hard to answer
from a theoretical point. Let’s try them out on our K10 graph, as shown in figure 17.8,
and see which one gives the best average result. We will perform 1,000 simulations,
each running for the same number of steps and with the same values for k and α, and
compare the average cost for the solutions. We’ll also assume that each sequence
starts with “New Carthage”, so that we cut duplicate solutions by a factor 10. Results
are summed up in table 17.1.

 Of course, the domain this time is still huge, ~3.6 million permutations, but not so
large that we can’t afford brute-force (armed with some patience; it takes a while);
therefore, we know that the best possible solution has cost 1625 (as shown in fig-
ure 17.8):

[“New Carthage”, “Syracuse”, “Buffalo”, “Pittsburgh”, “Harrisburg”, 

➥ “Opal City”, “Metropolis”, “Gotham City”, “Civic City”]
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It’s interesting that the best result is obtained with the medium-range search, while
the worst one is given by the local search. This means that with the configuration
used, the local search gets stuck in local optima, while the random permutation is too
erratic and fails to obtain local convergence in the final stage of the algorithm, when
the temperature gets low.

 We must stress that with different parameters, this could change completely. Take,
for instance, α, the decaying factor: with a difference choice, the cooling process
would be slower, so we wonder, could this allow the local search to work better? Let’s
try it out; the results are in table 17.2.

Increasing the temperature decay rate from 0.97 to 0.99 means that the cooling is per-
formed more slowly and uniformly (you can refer to figure 17.7 to visualize the decay
curves). In turn, this seems to help when we use only local search around the current
solution, while making thing worse when used for full-domain searches. The medium-
range search performed through random vertex swaps gets even closer to the best
cost, on average.

 These results show a couple more things that are worth highlighting:

 Even on a small case (10 vertices) and running thousands of iterations, we get
arbitrarily close to the best solution, but we don’t always get the best result.
That’s a calculated risk with heuristics.

 Finding the best configuration for an optimization algorithm requires time,
experience, and sometimes a bit of luck.

We also tried larger values for alpha, such as α=0.995, which are not shown in the
table, partly because they lead to poor results. Probably the cooling becomes too slow
and the algorithm gets closer to random sampling (this suspicion is corroborated by

Table 17.1 Average cost for the best solution found by simulated annealing with 
different algorithms for transitions

Operation Mean cost (α=0.98, T0=200 and k=1000)

Adjacent Swaps 1937.291

Random Swaps 1683.563

Random Permutation 1831.886

Table 17.2 Average cost, with different temperature decay rate

Operation Mean cost (α=0.97) Mean cost (α=0.98) Mean cost (α=0.99)

Adjacent Swaps 1972.502 1937.291 1868.701

Random Swaps 1692.044 1683.563 1668.248

Random Permutation 1816.658 1831.886 1913.416
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the fact that with a smaller value for k, the normalizing Boltzmann constant, the dete-
rioration in the results smoothens).

 To conclude this section on TSP, listing 17.3 shows a method that implements a
random transition from current state to the next one, by combining all three methods
discussed so far. An implementation of these methods for library JsGraphs can be
found on GitHub.

function randomStep(P) 
  which ← randomFloat(0,1)  
  if which < 0.1 then    
    i ← randomInt(0, |P|)   
    swap(i, (i+1) % |P|)
  elsif which < 0.8 then
    i ← randomInt(0, |P|)   
    j ← randomInt(0, |P|)
    swap(i, j)
  else
    P ← randomPermutation(P) 
  return P    

How does this method comparatively perform? Table 17.3 compares it to the three
“pure” solutions: it manages to get the best of all the possible strategies and drives the
average cost down with all choices for α.

This seems to suggest that an ensemble method, with the right ratio between the long
and distant local searches, can leverage the strengths of both types of transition
heuristics.

 The best result, with the ensemble method, is obtained with a larger decay rate, so
with a more uniform cooling process.

 Figure 17.12 shows the algorithm in action: how cost evolves while cooling the
system. While initially the cost is fluctuating, the oscillation becomes progressively

Listing 17.3 Random transition function for TSP

Table 17.3 Comparing average solution cost found using an ensemble of original methods

Operation Mean cost (α=0.97) Mean cost (α=0.98) Mean cost (α=0.99)

Adjacent Swaps 1972.502 1937.291 1868.701

Random Swaps 1692.044 1683.563 1668.248

Random Permutation 1816.658 1831.886 1913.416

Ensemble Step 1683.966 1672.494 1660.904

Method randomStep takes a candidate solution P (a 
point in the problem space, that is, a permutation of the 
list of vertices in the graph) and computes a transition 
to a new neighboring state.

Chooses a random value 
between 0 and 1 (excluded)

Based on the number chosen and 
some static probabilities, decides 
which transition to apply

Swaps
two

adjacent
vertices

Swaps two arbitrary vertices. Notice that the two 
indices might in theory be equal. Rather than 
overcomplicating the code, we can risk a collision, 
which just means no swap is performed. Especially 
for large lists, chances are low enough anyway.

Replaces current state with a random 
new state (a random permutation)
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narrower and, once the temperature is low enough, search is channeled toward the
global minimum.

 We haven’t explored all the possible values for α, k, T0, and even the relative proba-
bilities of applying each of the three transition operators within the ensemble method
could be further tuned. To be more systematic, we should build a few more examples
with different graphs, and then write a small piece of code that changes one parame-
ter at a time and records the mean or median cost found. Try it out using the code
included in JsGraph library as a starting point; it could be a nice exercise.

17.2.5 Adjacent vs random swaps

The last point I’d like to briefly discuss is why it seems that swapping random vertices
works better than swapping adjacent pairs.

 One factor that contributes to this can be seen with the following example, illus-
trated in figure 17.13: it shows a case where the local-search transition heuristic, swap-
ping only adjacent pairs, might struggle. First, we have an example of a swap between
two random vertices (17.13 (A)) that grants a good improvement in the cost function.
This transition will be always accepted, regardless of the temperature of the system.

 When only swaps between adjacent pairs are allowed (17.13 (B)), in this example
several pejorative moves (two, in this case, but it can be made an arbitrarily long
sequence) must be accepted before getting to the same final configuration shown in

Figure 17.12 A run of simulated annealing for K10 TSP. It takes a while, but finally finds the path to 
global minimum.
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figure 17.13 (A). Accepting a sequence of transitions uphill might happen in the early
stages of the cooling process, but as we get to the end of the cooling cycle, it becomes
progressively less likely for a sequence of bad moves to be accepted. Hence, by using
only narrow search, the algorithm might find it impossible to improve an intermediate
result.

 The consideration that the acceptance rate for sequences of moves exponentially
decays with the temperature can also suggests a different approach for our randomStep
method—passing the temperature along, and making narrow search more likely to
happen in the early stages (when the temperature is higher), while applying an inverse
dependence for long search probability, which could then be more likely in late stages.

 I encourage you to try it out by changing the code12 cloned from JsGraphs’s
GitHub repo. Getting your hands dirty is a great way to become familiar with simu-
lated annealing.

17.2.6 Applications of TSP

Besides our issue with delivery routes, efficient TSP approximation algorithms can
benefit a lot of real-world scenarios.

 The story goes that one of the pioneers of research about the TSP was motivated,
in the 1940s, by the need to optimize bus routes to pick children up for school.

12See http://mng.bz/PPWv.

Cost: 1231

A B C D E
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Cost: 967

A D C B E
0 1 2 3 4

Swap(1,3)

Cost: 1231
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Cost: 1347
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0 1 2 3 4

Cost: 1288

A C B D E
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Figure 17.13 An example of why the local search transition heuristic, swapping only adjacent 
pairs, might struggle. In the top half, a swap between two random vertices (A) is performed. 
There is a good improvement in the cost function, so this transition will be always accepted. 
When only swaps between adjacent pairs are allowed (B), several pejorative moves (two, in 
this case, but it can be made an arbitrarily long sequence) must be accepted before getting 
to the same configuration as (A). This might happen in the early stages of the cooling process, 
but as we get to the end of the cooling cycle it becomes unlikely.

http://mng.bz/PPWv
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 Later, this problem was applied pervasively to the logistic of most services that
involve planning tours, from mail delivery to farming.

 In time, cable companies started to use it to improve scheduling of service calls,
and more recently (and more relevantly to our field), it has become a must to make
the automated process of drilling holes in and soldering printed circuit boards (PCB)
more efficient, and even to aid some processes in genome sequencing.

17.3 Simulated annealing and graph embedding
To solve the TSP, we were dealing with a graph while ignoring its embedding,13 the
only thing that mattered was the distance between pair of vertices.

 In the last couple of chapters, we focused on abstract graphs and finding meaning-
ful ways to embed them in the plane.

 If you recall, when we presented simulated annealing, we said it could work well
with discrete cost functions, and even step-shaped cost functions. Those, as we have
seen, are some of the situations where it’s advisable to prefer simulated annealing over
gradient descent.

 Therefore, how could we close this chapter without trying to use simulated anneal-
ing to crack the minimum edge crossing problem?

17.3.1 Minimum edge crossing

As always, to apply our template for simulated annealing (shown in listing 17.1) to a
concrete problem, we need to specify two functions: the cost function and the update
step.

 The former is often implied by the problem, and so it is here, for the basic version
of the problem: we just count how many edges intersect.

 The latter, the update step, leaves more leeway to the algorithm designer. Should
we just move a single vertex randomly? By how much? Should we swap the positions of
two vertices? Should edges be taken into consideration during the update?

 The one advice I can give in these situations is to start small, get something simple
working, and then try to add new ideas and validate them by measuring whether or
not they help convergence. This is what we have done with the TSP by first developing
the methods performing a single action, measuring their effectiveness, and then com-
bining them in a random ensemble.

 To make things more concrete, we’ll focus on finding an embedding close to the
rectilinear crossing number (rcn) for complete graph K8. If you remember Guy’s con-
jecture, which we provided in chapter 15, it gives us an exact formula for this graph’s
crossing number, which is 18. In that same chapter, however, we also learned that the
rectilinear crossing number for complete graphs can be and usually is larger than its
crossing number;14 in this case, rcn(K8) is 19.

13Or, equivalently, we could say that we were dealing with precisely one embedding on the graph.
14Because we are restricted to using straight-line segments, that are a sub-set of all possible curves for edges.
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 So, let’s start with a simple step that takes a vertex and slightly moves it within a cer-
tain range. After fiddling with the range of updates for vertices, we chose to update
both x and y separately, by choosing two random deltas within 10% of the drawing
area’s width and height respectively. Smaller ranges made the algorithm too slow,
while with larger values the algorithm behaved erratically. Then, running simulated
annealing with k=0.1, α=0.97, T0=200 and maxSteps=500, the average rcn over 100
runs was 21.904. Not bad, but not particularly good.

 Two considerations must be made. First, we kept the number of steps low (if you
recall, we used up to 10,000 for TSP in the last section). The second consideration is
that for the same reasons (which we’ll discuss in a second), we had to go down from
1,000 runs to just 100.

 Both changes are due to the fact that computing the cost function and the transi-
tions (by cloning a graph embedding) were particularly computationally heavy. Of
course, this is partly due to using a general-purpose version of simulated annealing; it
could be optimized by writing an ad hoc version that doesn’t need to clone the whole
embedding, but just remember what was changed, and what the cost of the current
solution was (and maybe also computing the delta based on the changes, not the
whole solutions: for instance, just compute the number of intersections for the vertex
moved before and after the change).

 I would like to avoid focusing on these optimizations here. Don’t get me wrong;
optimization is crucial, especially for production-ready code, but early optimization
can also get in the way of improving your algorithm or learning process. Premature
optimization is still the source of all evil (well, maybe not all of it, but a good chunk!).

 In this case, I preferred providing simple, clean, non-optimized code rather than
more obscure (though better-performing) routines.

 The next step was adding a larger-range search: swapping two vertices’ positions
in 10% of the iterations, so that 90% of the time we apply the short-range transition.
How do you think it went? Well, just poorly; the average number of intersections
grew to 22.89. This, however, wasn’t unexpected. If you think about it, a complete
graph is completely symmetrical, so that swapping two vertices is totally useless! Even
worse, it was detrimental because we were wasting 10% of the iterations, hence the
poorer result.

 Nevertheless, this transition can be useful for other types of graphs that aren’t sym-
metrical, so we’ll leave it in. (While we are using complete graphs for our examples,
the algorithm can and will be applied to any graph. We’ll see in the next section some
examples where swapping vertices becomes crucial to getting a good result.)

 Yet, we still need to do something different to improve our algorithm. What about
choosing a single vertex and moving it randomly anywhere in the drawing area?

 We applied this transition 10% of the time, and the average crossing number went
down to 19.17, meaning that the algorithm was almost always finding the best solu-
tion. Speaking of which, figure 17.14 compares two solutions for the embedding of K8.
The one on the left was found by the random sampling algorithm provided in chapter
16, and the other one is the result of the simulated annealing-based method.
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It goes without saying that there could be a lot more work to do to improve the algo-
rithm by fine-tuning the parameters and perhaps coming up with better operators to
tweak the solutions.

 Last but not least, the algorithm should be tried and optimized on a diverse set of
graphs to be sure to avoid overfitting it to complete graphs. (Alternatively, when faced
with a specific problem, you can tune parameters on small instances of the graphs you
expect to see, and once ready, apply the tuned version to your real instances.)

 From what we could see, scaling up to K10 (figure 17.15), for instance, the configu-
ration we used seems to work well with larger complete graphs.

Figure 17.14 Two embeddings of complete graph K8. On the left, one was computed by the random 
sampling algorithm; on the right is the result of simulated annealing. Both algorithms were run for 500 
iterations: random sampling could only get as low as 27 intersections, but simulated annealing produced 
an optimal embedding with 19 crossing points.

Figure 17.15 Two embeddings of complete graph K10. Simulated annealing (right) produced an optimal 
embedding with 62 intersections, while the one output by random sampling has 81 intersections.
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17.3.2 Force-directed drawing

In section 16.5 we described a class of graph drawing algorithms called force-directed
drawing that use a physics-based approach to compute aesthetically-pleasing embed-
dings of graphs. Figure 17.16 reminds us why a nice embedding is important when
graphs need to be visualized.

The spring embedder model for drawing undirected graphs was first introduced15 by
Peter Eades in the late 1980s, then refined16 by Kamada and Kawai, who introduced
the idea of optimal edge length and sequential vertex update (by moving only one
vertex at each step).

 The algorithm is evolved into a state of minimum energy by using gradient-
descent. Often, though, by using a deterministic learning technique like gradient
descent, we are bound to remain stuck in local minima, reaching an equilibrium for
the system, but not the state with the minimum possible energy.

 It’s no surprise that simulated annealing can help in this case as well. Davidson and
Harel first used this technique17 to converge to optimal embeddings while staying out
of local pitfalls.

 The problem with using standard simulated annealing is that random search makes
convergence too slow. To work around this limitation, several authors suggested using

15P. Eades. “A Heuristic for Graph Drawing.” Congressus Numerantium, 42:149-160, 1984.
16T. Kamada and S. Kawai. “An algorithm for drawing general undirected graphs.” Information Processing Letters,

31, 1989.
17Ron Davidson and David Harel. “Drawing graphs nicely using simulated annealing.” ACM Transactions on

Graphics, 15(4):301–331, 1996.

Figure 17.16 A nice embedding can make the difference in understanding a graph: complete bipartite 
graphs K10,10 is drawn randomly (left) and symmetrically (right). Which one better shows the structure 
of this graph?
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hybrid solutions that leverage the strengths of both approaches. GEM18 algorithm
stands out among them for its innovative approach and impressive results.

 GEM doesn’t use simulated annealing, but it borrows the concept of temperature
from it. There is no cooling cycle; rather the temperature (which is still expressing the
degree of “chaos” in the system) is used to control the range of movement for vertices
on update, is computed for each vertex after an update, and is scaled down to smooth
vertices’ oscillation.

 Since GEM algorithm is not directly appliable as an instance of simulated anneal-
ing, we’ll stick with the algorithm developed by Davidson and Harel, which produces
results of comparable quality.

 As we mentioned in the previous chapters, the first step with graph drawing algo-
rithms is stating the criteria that will be used to judge the quality of an embedding; the
crossing number is not the only key to drawing graphs nicely. Davidson and Harel’s
approach uses five criteria:

 Distributing nodes evenly to spread the vertices uniformly in the canvas
 Keeping vertices away from borders
 Making edge-lengths uniform
 Minimizing edge-crossings
 Avoiding vertex-edges overlap by keeping vertices from coming too close to

edges

We must also clarify that the algorithm assumes the edges will be drawn as straight-line
segments. Now, let’s see how these five criteria translate to formulas by writing five
components of the cost function.

 For the first component, the algorithm uses a formula derived from electric poten-
tial energy; given two vertices vi and vj, we compute

where dij is the distance between the two vertices, and λ1 is a parameter we pass to the
algorithm to control the weight of this component, a normalizing factor that defines
the relative importance of this criterion compared to the others. This term behaves
like a repulsive force, so higher values push the algorithm to prefer embeddings with
larger distances between the vertices.

 To keep vertices away from borders, we add another component. For each vertex
vi we compute

18Frick, Arne, Andreas Ludwig, and Heiko Mehldau. “A fast adaptive layout algorithm for undirected graphs
(extended abstract and system demonstration).” International Symposium on Graph Drawing. Springer, Ber-
lin, Heidelberg, 1994.
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Here the values ri, li, ti, and bi, are the distances between vi and the margins of the
rectangular canvas where the graph is embedded; λ2 is another normalization factor,
to weight this term. Higher values of λ2 will cause embeddings with vertices close to
the borders to be penalized more.

 Now let’s talk about edges. For each edge ek = u → v, we compute 

where dk = distance(u,v) is the length of the edge and λ3 is the usual normalization
parameter. This behaves like an attractive force, so larger values for λ3 favor smaller
distances between adjacent vertices.

 For edge intersections, we can just count them and multiply the numbers of inter-
sections by a normalization factor λ4.

 Finally, to keep vertices away from edges (if you remember, this was one of the key
criteria we gave in chapter 16 to validate embeddings) we can add this term for each
vertex-edge pair:

where gkl = distance(ek,vl) and λ5 is another normalization factor.
 This term (another repulsive force) is quite expensive to compute (the edge-vertex

distance is computationally heavy, as we saw in chapter 15), and even in the original
paper is not used in the default settings of the algorithm. We’ll leave it out for now,
while encouraging the reader to implement it as an exercise and then experiment
with it on the examples we will show.

 Listing 17.4 shows an implementation of the full cost function (with all five compo-
nents), although the examples shown were run without the edge-vertex distance term.

 As the next step, we would need the methods to compute transitions to new solu-
tions; luckily, though, we can reuse the same methods we defined in the last section.
After all, the problem space is the same; the only thing that we need to change is the
cost function because we are changing our criteria to decide what a good embedding is.

function cost(P, w, h, lambda1, lambda2, lambda3, lambda4, lambda5) 
  total ← 0
  for v in P.vertices do   
    total ← total + lambda2 * ((1/x2) + (1/y2) + (1/(w-x)2) + (1/(h-y)2))
    for u in P.vertices-{v} do   

Listing 17.4 Cost function for Davidson and Harel’s algorithm

λ3d
2

k

λ5

gkl
2

-------

Method cost takes the current solution, P (a graph embedding, 
and also a point in the problem space), width (w) and height (h) 
of the canvas, and the normalizing factors for the components.

Cycles through the vertices in the graph.

Adds the second component of the
objective function, corresponding

to the repulsive force between
vertices and the canvas’ borders

Cycles through all vertices except v
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      total ← total + lambda1 / distance(u, v)2    
  for e=(u,v) in P.edges do                    
    total ← total + lambda3 * distance(u, v)2 
    for z in P.vertices-{u,v} do            
      total ← total + lambda5 / distance(e, z)2      
  total ← total + lambda4 * P.intersections()     
  return total                  

The algorithm in the paper was only using the vertex local update heuristic, but not
with a constant range, rather making the neighborhood in which a vertex can be
moved smaller with the progressing of the algorithm.

 You can also find the working code implemented for the JsGraphs library on
GitHub.19

 Speaking of good embeddings, in this case it makes little sense to check the quality
of the results by looking at the average numbers over many repetitions: we want
graphs to be drawn nicely, and there is no magic formula to measure “niceness.” The
only way to judge the results is by presenting them to the human eye.

 Figure 17.17 is, I think, the perfect summary to explain what we have been building
in these last couple of sections. We are trying to come up with a nice embedding for the
square grid graph with side 4, a graph with 16 vertices arranged like a square mesh.

Random sampling struggles to even find an embedding without intersections, a goal
that is reached by the algorithm presented in section 17.3.1, which, however, doesn’t
do a particularly good job of making the structure of the graph clear to us.

 The drawing on the right, instead, looks almost perfectly symmetrical. Would you
have been able to understand the shape of this graph from the other two embeddings?

19See http://mng.bz/JD1a.

Adds the first component of the cost function, 
the repulsive force between vertices

Cycles through edges, for each edge e 
between vertices u and v …

Adds the third component, the 
attractive force between adjacent 
vertices

Cycles
through

all vertices
except the

edge’s
endpoints

Adds the fifth component, the repulsive force between edges 
and vertices (except for each edge’s endpoints, of course)

At last, adds the fourth component, 
proportional to the number of edge 
intersections in the embedding

Figure 17.17 The square mesh graph with 16 vertices embedded by random sampling (left), minimum 
crossing simulated annealing (center), and Davidson and Harel’s algorithm (right)

http://mng.bz/JD1a
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 For the record, this embedding was obtained by using the values summarized in
table 17.4.

Figure 17.18 shows a couple more examples, with a larger grid and a different kind of
graph, the triangular grid. They both look pretty nicely drawn, after some parameter
tuning.

 Before getting too excited and assuming this is the perfect algorithm for all
graphs, we obviously need to try it on other kinds of graphs.

Figure 17.19 shows the results for K5 and K7. For both graphs, the embedding found
has the minimum possible number of intersections, and vertices look well-spread but,

Table 17.4 Parameter values for Davidson and Harel’s drawing algorithm, used to draw the square grid
in figure 17.17

Parameter Meaning Value

T0 Initial temperature 1000

k (pseudo) Boltzmann constant 1e+8α Temperature decay 0.95

Max Steps 10000λ1 Distance to border 10λ2 Distance between vertices 0.01λ3 Edge length 2e-8λ4 Edge intersections 100

Figure 17.18 The triangular graph with 4 vertices per side and the square mesh graph with 36 
vertices embedded by Davidson and Harel’s algorithm.
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as you can see, these embeddings are not perfect, because some vertices are too close
to non-adjacent edges, and thus some edges overlap.

These situations can be corrected by adding the fifth component of the cost function,
the one discouraging short distances between vertices and edges.

 So, to close this chapter, here is a bit of homework for you: extend the cost func-
tion and find better embeddings for these graphs.

Summary
 Simulated annealing is a stochastic alternative to gradient descent that uses

concepts from physics to provide a dynamic technique, focusing on large-range
search in the initial phases, and fine-tuning towards the end.

 Pros: it should be preferred when the domain of the cost function is discrete,
the cost function is not differentiable or step-shaped, and there are many local
minima.

 Cons: it should be avoided when local minima are in narrow “valleys,” because
it becomes unlikely that the algorithm will find them.

 Compared to gradient descent, which takes the steepest path to minima, simu-
lated annealing will need many more iterations to get to the same point.

 Simulated annealing can’t be guaranteed to return the optimal solution. If sub-
optimal solutions are not admissible, then a different algorithm should be used.

 Finding the right configuration requires time and needs to be done for each
problem.

 The traveling salesman problem is a difficult problem to solve, but it is ubiqui-
tous in logistics, planning, and electronics (for circuit boards).

Figure 17.19 Complete graphs K5 and K7 embedded by Davidson and Harel’s algorithm. Here 
we could use that fifth component of the cost function keeping vertices away from edges.
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Genetic algorithms:
 Biologically inspired, fast-

converging optimization

While gradient descent and simulated annealing are great optimization techniques,
they both have shortcomings: the former is fast but has a tendency to get stuck in
local minima and needs the cost function to be differentiable, while the latter can
be quite slow in converging.

This chapter covers
 Introducing the genetic algorithm

 Exploring whether genetic algorithms are better 
than simulated annealing

 Solving the “Packing to Mars” problem with 
genetic algorithms

 Solving TSP and assigning deliveries to trucks 
with genetic algorithms

 Creating a genetic algorithm to solve minimum 
vertex cover

 Discussing applications of genetic algorithms
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 In this chapter we are going to learn about the genetic algorithm, yet another optimi-
zation technique that uses an approach inspired by nature to overcome both issues,
providing more resilience to local minima by evolving a pool of solutions and at the
same time speeding up convergence.

 We will apply this technique to a few hard problems that can’t be solved efficiently
with deterministic algorithms. We’ll start by using 0–1 knapsack, which we discovered
in chapter 1, to explain the theory behind genetic algorithms. Then we’ll briefly dis-
cuss a genetic algorithm for TSP,1 and show how (and why) it converges faster than
simulated annealing; finally, we will also introduce two new problems:

 Vertex cover, which is useful in many areas, from network security to bioinformatics
 Maximum flow, fundamental to network connectivity, compiler optimization,

and much more

18.1 Genetic algorithms
When it comes to optimization algorithms, the gist is that we are trying to replace a
brute-force search over the whole problem space with a local search that filters out as
many points in the problem space as possible: finding the same result by searching a
much smaller domain.

 Optimization algorithms explore the neighborhood of current solutions, which
are points in the search space, and do this either deterministically or randomly, trying
to spot areas of interest, promising regions where we expect to find better solutions
than what the search has previously found.

 The way we perform this filtering, the range of the search and how “local” it actu-
ally is, if we move randomly or in a deterministic way: these are the key factors that
characterize the different techniques we have described in chapters 16 and 17.

 In the previous chapter we discovered simulated annealing and discussed how it
converges to near-optimal solutions by allowing transitions uphill, while gradient
descent only moves downhill, toward better solutions, and as such it gets easily stuck in
local minima. Simulated annealing can therefore work better than gradient descent
when the cost function has many local (sub-)minima.

 While powerful, simulated annealing can’t be perfect, and indeed we have also
seen that there are two main drawbacks to consider:

 The algorithm is slow to converge. While gradient descent, which is determinis-
tic, takes the fastest route downhill,2 simulated annealing (which instead is sto-
chastic) randomly wanders across the cost function’s landscape, and as such it
might require many attempts before finding the right direction.

1 We discussed the travelling salesman problem at length in section 17.2.
2 Technically, it follows the path of steepest descent, with a locally-optimal, greedy choice at each step. These

choices usually aren’t globally optimal, and hence gradient descent is not guaranteed to reach global optimum,
unless the cost function has a particular, convex shape with a single minimum point.
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 With certain shapes for the cost functions, where local/global minima are in
narrow valleys, the probability that simulated annealing randomly “walks” into
those valleys can be low, so low that it can fail to reach a near-optimal solution
altogether.

In section 17.1 we analyzed in some depth why simulated annealing works well, and
how it creates this sort of dynamic filtering, indirectly restricting (based on their cost)
the domain points that can be reached at a given stage. If you remember, initially the
algorithm jumps from point to point, as likely to go uphill as downhill, exploring the
landscape at large.

 We have also seen how it can happen that the optimization finds a near-optimal
solution in the early stages, and then moves away from it, because in the initial phase
it’s likely to accept transitions uphill. The problem is that simulated annealing has no
memory, it doesn’t keep track of the past solutions, and—especially if we allow long-
range transitions—there is a concrete risk that the algorithm will never get back to a
solution that was as good.

 An even more probable risk is that the algorithm does find the valley containing
global minimum at some early-ish stage, not necessarily getting any closer to the end
of the valley (perhaps landing just somewhere close to the entrance of the valley), and
then moves away and never manages to enter it again.

 Figure 18.1 illustrates these situations. In section 17.1 we also discussed how simu-
lated annealing with restart can keep track of past solutions and—when stuck—ran-
domly restart from one of these past positions, to check if a solution better than the
current best is found.

This workaround can help somewhat with the former situation, where we get to a
great solution early, but it’s unlikely to improve the latter (just finding a promising
position at the entrance of a valley), because we only save at most a small number of
the best previously found solutions. As such, even if the optimization had managed to

Pi
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x
)

0 xQi

T0
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Ti

Possible transitionsThe whole domain
is allowed.

High temperatures

Figure 18.1 An example of a scenario where simulated annealing would find a promising (Pi), or even 
good (Qi) solution in an early stage (as suggested by the temperature of the system, Ti, still close to 
T0): since all transitions, even uphill, are likely accepted when the temperature is high, the algorithm 
might move away from the sweet spot in the cost function landscape, and possibly never find its way 
back.
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find the beginning of a path to global minimum, we would forget about it, unless we
were lucky enough to land close to the bottom of the valley.

18.1.1 Inspired by nature

Simulated annealing was inspired by metallurgy, mimicking its cooling process to
drive a system from chaotic to ordered behavior. Nature, as a matter of fact, has often
been a great source of inspiration for mathematics and computer science. Just think
about neural networks, probably the most pervasive of these examples, at the time of
writing.

 For biological processes, such as neural networks, it’s not hard to imagine why.
They have been adapted and perfected over millions of years, and since their effi-
ciency is tightly connected to organisms’ survival, we can find clever and efficient solu-
tions everywhere in nature.

 Genetic algorithms are yet another example of biologically inspired algorithms
and, even more, they are based on this very principle of evolution in response to stim-
uli from the environment.

 As shown in figure 18.2, a genetic algorithm is an optimization algorithm that
maintains a pool of solutions at each iteration. Compared to simulated annealing, this
allows maintaining a larger degree of diversity, probing different areas of the cost
function’s landscape at the same time.

One thing that can’t be shown in this “cost function” kind of graphic is that genetic
algorithms also evolve the solutions by recombining them: this allows us to take the
strengths of different solutions and merge them into a better one. Take, for instance,
the TSP problem, which we described in section 17.2 (we’ll also talk about it again in
the next section). Imagine that we have two poor solutions, each having the best possi-
ble sequence for a different half of the vertices, but each with terrible solutions for the
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Figure 18.2 An example of how genetic algorithms would tackle the scenario in figure 
18.1. At a generic iteration (in the figure, we assume we are at the i-th iteration), which 
could indifferently be toward the beginning or the end of the simulation, the algorithm 
maintains a pool of possible solutions. At the next iteration, the pool (as a whole) will 
transition to a new set of candidate solutions (based on the current ones—we’ll see how 
later in this section). Usually the new solutions can be anywhere in the domain.
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remaining half. By combining these two solutions in the right3 way, we can take the
good halves from each and get a great candidate solution, possibly (if you are lucky!)
even the best possible.

 This idea of combining solutions is something that we don’t find either in gradient
descent (obviously!) or in simulated annealing, where a single solution is kept and
“studied” at any time.

 We’ll see that this new idea is embodied in a new operator, the crossover operator,
that derives from the biological analogy used for this technique. But to avoid getting
ahead of ourselves, we still need to reveal what inspired genetic algorithms; in doing
so, we will also make clear where the name comes from.

 A genetic algorithm is an optimization meta-heuristic based on the principles of
genetics and natural selection. We mentioned that this optimization technique main-
tains a pool of solutions; what we hadn’t said is that these solutions will mimic a popu-
lation that has evolved through several generations—each organism in the population
is defined by a chromosome (or, sometimes, a pair of chromosomes), that encodes a
single solution to the problem that’s optimized. 4 5

So, in a nutshell, chromosomes encode information determining an organism’s
behavior (genetics), and in turn how well an organism can adapt to its environment,
survive, and generate offspring (natural selection).

 Computer scientist John Holland, inspired by this mechanism, in the early 1970s
devised6 a way to use these two principles to evolve artificial systems. One of his
students, David Goldberg (considered for a long time the expert of reference on this
topic), popularized this approach through his research and his book at the end of
the 1980s.7

 

3 We’ll talk about this in detail in section 18.2.
4 With the notable exception of viruses, which are just DNA or RNA encapsulated in a protein coat.
5 Approximately the same, as there can be small local variations, for various reasons including copy errors.
6 Holland’s book was originally published in 1975. You can currently find the 1992 MIT press edition: Adaptation

in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,
MIT Press, 1992.

7 Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Professional, 1988.

Biologically inspired algorithms
Most living organisms on this planet are made up of cells,4 each of which carries the
same5 genetic material in a set of chromosomes (usually more than one, for advanced
organisms such as animals or plants). Each chromosome is a DNA (deoxyribonucleic
acid) molecule that can be broken down into a sequence of nucleotides, each of which
is, in turn, a sequence of nitrogen-containing nucleobases encoding information. The
information contained in each cell’s DNA is used by cells to drive their behavior and
synthesize proteins. Figure 18.3 succinctly illustrate these concepts.
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The core idea, shown in figure 18.4 in the next section, is to encode a solution as a
chromosome and assign each chromosome to an organism. Then, naturally, it follows
that based on how good a solution is, we derive how fit the corresponding organism is
for its environment. Fitness, in turn, is a proxy for the chances of an organism to
reproduce and pass its genetic material to the next generation through its offspring.
As in nature, the alpha-individuals of a population, the stronger (or faster, or smarter)
ones, tend to have a higher chance of surviving longer and finding a mate.

 But perhaps the best way to understand genetic algorithms is by seeing them in
action. To that extent, and to keep things concrete, while we describe all the building
blocks of this meta-algorithm, we’ll develop an example along the way to help readers
visualize how each component works. Do you remember the 0–1 knapsack problem?
We are going all the way back to chapter 1, when we introduced this problem to
model our “packing to Mars” situation. Back then, we mentioned there is a pseudo-
polynomial dynamic algorithm that can provide the absolute best solution, but it can
be too slow when the capacity of the knapsack is large. Branch-and-bound
approximated algorithms exist that can compute near-optimal solutions (with some

Figure 18.3 From cells to DNA: A cell’s genome is contained in its nucleus, inside structures 
called chromosomes, whose telomeres, when unraveled, reveal double helixes of DNA, a 
sequence made of just four nucleobases (hence we can consider DNA a base-4 encoding). 
Source: https://commons.wikimedia.org/w/index.php?curid=10856406, author: KES47.

https://commons.wikimedia.org/w/index.php?curid=10856406
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guarantees on the upper bound and in reasonable time), although the efficient ones
are usually quite complex.8

 To get a fast, clear, simple optimization algorithm, we will implement a genetic
algorithm that can find approximated, near-optimal solutions to the knapsack
problem.

 Before we delve into the details of genetic algorithms, I suppose you could use a
refresher. Let’s quickly review the problem definition, and the instance we were using.

NOTE In the generic 0–1 knapsack problem, we have a container with a lim-
ited capacity M, and a set of goods, each characterized by a weight (or any
other measure of capacity) w, and a value v. If we add an item to our knapsack
(or any generic container we decide to use!) it must be all of it; we can’t add
fractions of items. The sum of the weights of all available items exceeds the
capacity of the knapsack, so we need to choose a subset of items, and the goal,
therefore, is to choose the particular subset that maximizes the value of the
goods carried.

In section 1.4.1, we tackle a more concrete problem: given the list of goods shown (for
your convenience) in table 18.1, we’d like to fill a crate that can carry at most 1 ton,
not with as much food as possible, but with the largest total calorie count possible.

 As such, we could easily check that wheat flour, rice, and tomatoes could sum up to
the maximum carriable weight, but they wouldn’t give the maximum number of
calories.

 In chapter 1, we briefly described the key consideration that is used by the branch-
and-bound heuristics to approximate this problem. It computes the value by weight
(in this case, calories by weight) for each of the goods, and prefers food with higher
ratios; although that’s used as a starting point by the Martello-Toth algorithm, just
choosing products in descending order of per-kilo values won’t give us the best possi-
ble solution.

 And, in fact, the dynamic programming algorithm that exactly solves the 0–1 knap-
sack problem won’t even compute this ratio; we will not use it here either, so it’s not
even shown in table 18.1.

8 For example, the Martello-Toth algorithm which is one of the state-of-the-art solutions: Martello, Silvano, and
Paolo Toth. “A bound and bound algorithm for the zero-one multiple knapsack problem.” Discrete Applied
Mathematics 3.4 (1981): 275-288.

Table 18.1 A recap of the available goods for the mission to Mars, with their weight 
and calories

Food Weight (kgs) Total calories

Potatoes 800 1,502,000

Wheat Flour 400 1,444,000

Rice 300 1,122,000
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If you’d like to have a closer look at the problem, please feel free to skim through section
1.4; let’s now move on to discussing the main components of genetic algorithms (GA).

 To completely define an optimization algorithm, we need to specify the following
components:

 How to encode a solution—Chromosomes, for GA
 Transitional operators—Crossover and mutations
 A way to measure cost—Fitness function
 How system evolves—Generations and natural selection

18.1.2 Chromosomes

As we mentioned, chromosomes encode a solution to the problem we need to solve.
In the original work by Holland, chromosomes were only supposed to be strings of
bits, sequences of zeros and ones. Not all problems can be encoded with a binary
string (we’ll see an example in section 18.2 with TSP), and so a more generic version
was derived later, allowing genes (each of the values in a chromosome) to be continu-
ous, real values.

 Conceptually, those versions can be considered equivalent, but whenever we don’t
use binary strings for the chromosomes, we will likely require restrictions on the possi-
ble values they can store: the operators acting on organisms will have to be adjusted in
order to check and maintain these constraints.

 Luckily for us, the 0–1 knapsack is the perfect example to discuss the original
genetic algorithm, because a solution to this problem can be encoded exactly as a
binary string. For each item, a zero means we leave it on Earth, while a 1 means we
add it to the crate going to Mars.

 Figure 18.4 shows a bit-string representation for a chromosome that can be used in
our example. Two different solutions (or phenotypes, in biological terms) can be repre-
sented by two chromosomes (or genotypes): their difference boils down to the differ-
ence between the two bit-strings.

 It’s worth noting that for this example we have a 1:1 mapping between genotype
and phenotype: a solution (the phenotype) is uniquely identified by its representation
(the genotype) and so two organisms with the same genotype will translate to the
same solution and in turn to the same fitness value (as we’ll discuss in a few sections).

Beans (can) 300 690,000

Tomatoes (can) 300 237,000

Strawberry jam 50 130,000

Peanut butter 20 117,800

Table 18.1 A recap of the available goods for the mission to Mars, with their weight 
and calories

Food Weight (kgs) Total calories
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In the context of our 0–1 knapsack example, if two organisms have the same geno-
type, both solutions will add the same set of goods to the crate to Mars.

 The equivalence between genotype and phenotype is, however, not observed in
nature, where the difference between them is clear, because the genome only encodes
developmental rules, not precise outcomes, and an organism is also determined by its
interaction with the environment.9

 Likewise, in some simulated problems fitness is not always fully determined by gen-
otype. One of the first examples of an application of genetic algorithms I studied was
the work10 of Floreano and Mondada at EPFL, where they evolved the neural networks
of small two-wheel robots, simulating the evolution of gatherers, and later of predator
and prey populations (in a sort of hide and seek game).

 In this experiment, the genotype was the set of weights for a robot’s neural net-
work, which, incidentally, also completely identify the phenotype. Each organism’s fit-
ness, though, was later determined by its interaction with the environment and with
other robots.

 If we were to extend their original work by allowing online learning for the robots
(today, it wouldn’t be hard to imagine applying stochastic or mini-batch backpropaga-
tion to evolve the NN’s weights based on the input from the environment), then nei-
ther would the phenotype be completely determined by the genotype, at least not
after the first update, because after that, the way weights change is heavily influenced
by the interaction of the robot with the environment.

 With respect to figure 18.4, we also need to make one more thing clear: the actual
representation of chromosomes depends on the actual, specific problem we are

9 Consider, for example, a couple of twins, who share their DNA, but each of them is a different and unique
being.

10For example, check out “Evolutionary neurocontrollers for autonomous mobile robots,” Neural Networks Vol-
ume 11, Issues 7–8, October–November 1998, pages 1461-1478

0 1 0 0 1 0 0

0 1 1 1 0 0 0

Figure 18.4 Examples of encoding 
chromosomes for the knapsack problem 
(the specific instance described in 
section 1.4). Two figures are shown: the 
differences in the genotypes (the two 
strings) are reflected in the phenotypes 
(the goods taken to Mars: wheat flour and 
tomatoes versus wheat flour, rice, and 
beans). The latter chromosome encodes 
the best solution for the instance of the 
problem summed up in table 18.1.
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solving. In this case, it depends on the specific instance of the 0–1 knapsack (although
a generic representation for all 0–1 knapsacks can and should be designed).

 If we want to design code for the genetic algorithm main method, instead, we
should be concerned with designing organisms, for example, modeling them with a
class that will be provided the actual chromosome (and as we’ll see, the methods doing
modifications on them) whether at runtime through composition, as arguments
(using the strategy design pattern), or at compile time through inheritance (the
template design pattern).

NOTE The genetic algorithm is a meta-algorithm, a template that is com-
pleted by the code specific to each problem tackled. As such, there is part of
the code that is generic—the structural code defining the optimization tech-
nique—and another part that is specific to the problem. At this point, while
describing the components of genetic algorithms, we’ll provide the pseudo-
code for the template, and since we are using the knapsack problem as an
example, we’ll also provide some pseudocode to implement examples of the
specific methods for the 0–1 knapsack, with these snippets clearly marked.

Listing 18.1 shows a possible implementation of the Individual class, modeling each
individual organism in the population evolved.

class Individual  
  #type array
  chromosome         

  function Individual(chromosome)   

  function fitness() 

18.1.3 Population

The most apparent difference between simulated annealing and genetic algorithms is
that instead of tuning a single solution, genetic algorithms will evolve a population of
individuals.

 Listing 18.2 shows a possible implementation for a method that initializes the pop-
ulation that will be used for the genetic algorithm. This is also a templated method,
since it will have to be provided with the actual code for initializing the single chromo-
somes (which, again, will depend on the actual problem tackled).

 
 
 

Listing 18.1 Class Individual

Class Individual models each 
organism in the population to evolve.

Each individual has a genome made of a 
chromosome (multi-chromosome organisms are, 
in theory, also possible, though not as common).

We assume the chromosomes are provided as 
arguments to the constructor (implementation, 
which is trivial, isn’t shown). Alternatively, there 
can be a static generator method on this class.

Each individual can be queried for its fitness (possibly 
this needs to take arguments if the fitness depends on 
the environment).
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function initPopulation(size, chromosomeInitializer)         
  population ← []       
  for i in {1,…,size} do
    population.add(new Individual(chromosomeInitializer()) 
  return population  

There are a few different strategies that can be used for initialization. You can rely on
random initialization to provide diversity in your initial population. This is the origi-
nal and still most common approach, but in certain situations you might also add con-
straints on the chromosomes (to avoid invalid solutions) or even decide to provide an
initial population (that can, for instance, be the output of a different algorithm or of a
previous iteration).

 For a generic instance of the 0–1 knapsack problem, since chromosomes are just
bit strings, we are good with a random generator, as shown in listing 18.3.

function knapsackChromosomeInitializer(genesNumber) 
  chromosome ← []      
  for i in {0,…,genesNumber-1} do
    chromosome[i] ← randomBool().toInt()   
  return chromosome    

There is a caveat: not all randomly generated strings are acceptable solutions for a
given instance of the knapsack problem. For example, a string with all values set to 1
would certainly mean (for a non-trivial instance) that the weight constraint has been
violated. As we’ll see next, we can assign a low fitness to solutions that violate this con-
straint; alternatively, when we generate chromosomes, we can add a check to avoid vio-
lating it in the first place.

18.1.4 Fitness
Connected to the definitions of chromosome and organism, there is the notion of fitness
of an individual. As you can see in listing 18.1, the Individual class has a fitness method
returning a value that measures how well an organism adapts to its environment.

 The term fitness naturally implies a maximization problem, because higher fitness
is usually associated with better performance in an environment. Conversely, for many
problems we usually want to express our problems’ goals as cost functions to be mini-
mized, so we have two choices: either implement the genetic algorithm template in
such a way that a lower value for fitness means better performance, or reformulate our

Listing 18.2 Method initPopulation

Listing 18.3 0–1 knapsack: chromosome generation

Method initPopulation takes the size of the population to create 
(assumed, or checked, to be positive) and a function to initialize 
individual chromosomes. It returns the newly created population.

Init population as an empty list

Adds as many 
new individuals 
as necessary, 
each with a newly 
created genome

Method knapsackChromosomeInitializer takes the size of 
the chromosome to create (assumed, or checked, to be positive) 
and returns a random bit string (or, in this case, a bit array for the 
sake of simplicity).

Init 
chromosome 
as an empty 
list

Generates as many random 
bits as necessary. Here we 
used a Java-like pattern, but 
it’s also possible to directly 
use a method that returns 
random integers between 0 
and 1.
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cost functions according to the choice we made. For instance, if we need to find the
point of highest elevation on a map, we can either implement a maximization algo-
rithm or set the fitness function to f(P)=-elevation(P), for any given point on the
map, and stick with our usual minimization strategy (as we saw in chapters 16 and 17
for gradient descent and simulated annealing).

 Consider our example with the 0-1 knapsack problem: the goal is naturally
expressed by a value function that we want to maximize, the sum of the nutritional val-
ues of the goods added to the crate.

 The first chromosome in figure 18.4, for example, is 0100100, which means we
sum the calories of rice and tomatoes, for a total of 1,359,000 calories. What happens
when we exceed the weight that the crate can carry, for instance, with the chromo-
some 1111111? To spot these edge cases, we need to check the total weight while com-
puting the fitness and assign a special value (for instance, in this case, 0) to those
solutions that violate the constraint on the weight.

 An alternative can be making sure that this situation never occurs by carefully check-
ing it in the operators that create and modify individuals (initialization, crossover, and
mutations, as we’ll see). This solution, however, may have consequences on the optimi-
zation process, artificially reducing the plurality of features in the population.

 At this point, if the template method that we have implemented for our genetic algo-
rithms tries to maximize the fitness of individuals, we are golden. What if, instead, our
implementation strives for lower fitness? For this particular case, we might have an easy
solution: we sum the values of the goods discarded, corresponding to zeroes in a chro-
mosome. For any given solution, the lower this sum is, the higher will be the sum of the
calories of the goods in the crate. Of course, if we go this way, we have to assign a very
high value (even infinity) to the solutions where the weight threshold is exceeded.

18.1.5 Natural selection

We now have the tools to create a single organism, generate a whole population, and
check individual fitness. In turn, this allows us to mimic a basic natural process that
guides the evolution of populations in the wild: natural selection.

 In nature, we see it everywhere: the strongest, fastest individuals, the ones that are best
at hunting or at hiding, tend to survive longer, and in turn (or in addition to that) they
have greater chances of mating and transmitting their genes to the next generation.

 The goal of genetic algorithms is to use a similar mechanism to have the popula-
tion converge toward good solutions. In this analogy, the genes of individuals with
high fitness11 encode features that give them an advantage over the competitors.

 In our knapsack example, a good feature could be including food with high calories-
per-weight ratio. Solutions including potatoes will be individuals with low fitness, and
that therefore will struggle to survive to the next generations. As an example, in the

11In the rest of the chapter, we’ll talk about “high fitness” as a generic term, decoupling it from the actual imple-
mentation. It will mean large values for those problems maximizing a function and small values when the goal
of the optimization is to minimize a cost.
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predator-prey simulation mentioned in section 18.1.2, the prey that developed a strategy
to hide behind objects were more efficient in escaping predators.

 Listing 18.4 shows, through some pseudocode, how natural selection (in genetic
algorithms) works. This method regulates how a population transitions between the
current generation and the next one, taking the old population as input, and return-
ing a new population, randomly created from the original organisms through a set of
operators.

function naturalSelection(

➥ population, elitism, selectForMating, crossover, mutations)
  newPopulation ← elitism(population)      
  while |newPopulation| < |population| do            
    p1 ← selectForMating(population)              
    p2 ← selectForMating(population)
    newIndividual ← crossover.apply(p1, p2) 
    for mutation in mutations do
      mutation.apply(newIndividual) 
    newPopulation.add(newIndividual) 
  return newPopulation  

This natural selection process is applied at each iteration of the algorithm. When the
algorithm starts, it’s always with a fully formed population outputted by the initializa-
tion method (its size is determined at runtime through a method argument, as we
have seen). Individuals in the input population are evaluated for their fitness and
then go through a process of selection that determines which ones are going to either
pass to the next generation unaltered or propagate their genes through mating.

 In the genetic algorithm’s simplest form, the new population is just initialized as
an empty list (line #2), a list which is then populated (pun intended) with the new indi-
viduals resulting from selection and mating (#3–#6).

 For mating, there are, obviously, differences with respect to the biological analogy.
First and foremost, in genetic algorithms sexual reproduction between two asexual

Listing 18.4 Natural selection

Method naturalSelection takes the current population and 
returns a new population evolved from the input one. The function also 
needs to be provided the operators that will change the population, 
either in the arguments list or, for instance, through inheritance.

The first thing to do is to initialize the new population. This can be done 
by simply creating a new, empty list. A more generic alternative, 
however, is to allow passing a method for this initialization, which 
could, for instance, be used to include elitism.

Add new individuals, one
by one, until the new

population matches the
old one in size.

Select two individuals from the
old population. The selection

method is passed as an
argument (equivalently, as for
the others, it can be provided

through inheritance).

Combines the two organisms using 
crossover; details of this and the 
other operators are, as discussed, for 
the most part specific to the problem, 
and will be discussed later in this 
section. In order for this template to 
work, however, we require that 
crossovers and mutations abide by a 
common interface, and that they are 
implemented as objects providing an 
apply method (we’ll also discuss 
wrappers, to make this easy).

For each possible mutation, apply it to the result of crossover 
(as we’ll see, each mutation is characterized by a probability of 
happening, so it will be randomly decided if any mutation is 
applied to organisms).

Adds the newly generated individual 
to the output list
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organisms is generally12 used: moreover, the recombination of genetic material between
the two parents doesn’t follow any biologically meaningful rules and the actual details
of how crossover is performed are for the most part left to the specific problem that
is solved.

 Finally, we add mutations to the genetic material after crossover, modeling cross-
over and mutations as separate phases.

 Figure 18.5 illustrates the general mechanism with an analogy to the biological
process.

 We start with an initial population where individuals have a common basis, but also
some peculiar characteristics. The diversity and variance in the population largely
depends on which stage of the simulated evolution we are in. As we’ll see, our aim is
having greater diversity at the beginning of the simulation and then have the popula-
tion converge toward a few homogenous, high-fitness groups.

 In our example, our population of ducks shows a few unique features, from the
shapes of their beak, to their colors/patterns, to the shape of wings and tails. If you
look closely, you should be able to spot them and to figure out how these changes are
encoded in their chromosomes.

 This is because, as we have discussed, each feature in an individuals’ phenotype is
determined by a difference in their genotype, a 1 that becomes a 0, or vice versa (or
maybe a few bits that need to flip together, or even, if we move past binary strings, a
gene assigned with a different real number).

 In order to perform selection, we need to evaluate each duck’s fitness. This can be
as easy as feeding each chromosome to a function or as complicated as running a sim-
ulation for hours (as in the predator-prey setting we described) and seeing which indi-
viduals survive longer or perform a real-world task better.

 We’ll only talk about selection for mating in the next subsection, but one thing is
generally true regardless of the details of the selection mechanism chosen: organisms
with higher fitness will have greater chances of being chosen to pass their genes to the
next generation. This is crucial, maybe the only really crucial part, because without
this “meritocracy,” no optimization would be performed.

 Once we have selected two individuals, we need to recombine their genetic mate-
rial. We’ll also tackle crossover and mutations in their own section, but one thing that
we have already mentioned is that these operators, acting on chromosomes, are
largely determined by the specific problem that is being solved.

 In our example in figure 18.5, our little duckling takes its feathering pattern and
color from one parent and its tail shape from the other. Then a further mutation kicks
in changing the feathering again from a checkerboard pattern to a polka dot pattern.

12It is possible, and it has been attempted, to include the notions of sex-specific chromosomes and sexual sub-
groups, but, to the best of my knowledge, the possible improvements in the efficiency or effectiveness of the
algorithm are in the order of magnitude of optimization. As an example, the dedicated reader can check
Zhang, Ming-ming, Shu-guang Zhao, and Xu Wang. “Sexual Reproduction Adaptive Genetic Algorithm Based
on Baldwin Effect and Simulation Study [J].” Journal of System Simulation 10 (2010).
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The new population, formed by repeating this process many times, should show a
larger presence of those genes/features associated with high-fitness individuals in the
initial population.

0 1 0 0 1 0 0

0 1 0 0 1 0 1

1 0 1 0 1 0 0

Current population

0 1 0 1 0 0 0

Ducks’ fitness
is evaluated

0 1 0 0 1 0 0
Fitness: 6

0 1 0 0 1 0 1
Fitness: 8

1 0 1 0 1 0 0
Fitness: 4

0 1 0 1 0 0 0
Fitness: 7

Offspring results
from crossover
(and mutations)

A new population
is created.

0 1 0 1 0 0 00 1 0 0 1 0 1

0 1 0 1 1 0 1

Crossover

1 1 0 1 1 0 1
Mutation

Ducks selected
for mating

based on fitness

Figure 18.5 Natural selection in genetic algorithms, in an analogy with the biological process.
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 Now that we have seen how the broad natural selection process works, it’s time to
dive into the specifics of its steps. 

18.1.6 Selecting individuals for mating

Let’s start with selection: we’ll go back to our knapsack problem example to better
explain it.

 There are several techniques that can possibly be used for selecting, at each itera-
tion, the individuals that will mate or progress; some of the most successful alterna-
tives are

 Elitism
 Thresholding
 Tournament selection
 Roulette wheel selection

But there are also many other possible techniques used. Considering our restricted
list, the first two techniques are filters on the old population, while the remaining two
are methods to select organisms for mating. 

 Elitism and thresholding, illustrated in figure 18.6, are used to decide what organ-
isms can or can’t transmit their genomes to the next generation.

Figure 18.6 Elitism and thresholding illustrated with an example (0-1 knapsack problem). Elitism takes 
the best individual(s) (one or a few of the highest-fitness entries) and directly brings them to the next 
generation without mating or mutations. Thresholding takes care of the opposite problem: it’s a hard 
barrier that stops low-fitness individuals from passing their genes to the next generation. It’s possible to 
discard a certain fixed number of individuals, or all individuals below some threshold. For instance, in this 
example (where we maximize fitness value), all individuals below 80% of the fitness value of the best 
individual will be discarded and never selected for mating.

0 1 0 0 1 0 0

1 0 0 0 0 0 1

0 1 0 1 0 0 0

0 0 1 1 0 1 0

0 0 0 1 0 1 1

Fitness

1,681,000

2,134,000

937,800

1,619,800

1,942,000

0 1 0 0 1 1 1 1,928,800

0 1 0 0 1 1 0 1,811,000

Elitism: best fitness

Thresholding: 80% best

To next generation

Discarded



640 CHAPTER 18 Genetic algorithms: Biologically inspired, fast-converging optimization

Elitism allows the best individuals to pass completely unaltered to the next generation.
Whether or not to apply this principle is up to the algorithm designer; as always, it
might work better with some problems and worse with others.

 Without elitism, all organisms in the current iteration would be replaced in the
next one, so that all organisms would “live” exactly one generation; with this work-
around, we can instead simulate a longer lifespan for particularly well-fitting individu-
als—the better their fitness in comparison to the average population’s, the longer
they will be kept.

 In turn, this will also ensure that the genes of the alpha organisms will be present,
untouched, in the next generation too (although it’s not certain they will still be the
top-fitness individuals in the next generation). 

 One notable effect of using elitism is that the fitness of the best element in the
population is monotonically improving over generations (that, however, might not be
true for the average fitness).

 Thresholding has the opposite goal: it will prevent the lowest-fitness organisms from
transmitting their genes to the next generations, which in turn reduces the probabil-
ity that the algorithm explores less-promising areas of the fitness function’s landscape.

 The way it works is simple. We set a threshold for the fitness of the individuals that
are allowed to be selected for mating and ignore the ones outside the requirements.
We can discard a fixed number of organisms, such as the five individuals with the
worst fitness value, or discard a variable number of individuals based on their fitness
value.

 In the latter scenario, the threshold on the fitness value is usually set dynamically
(changing each generation) and based on the fitness value of the best individual for
that generation. With a static, absolute value (which would require domain knowledge
to be set), the risk is that it would be ineffective (resulting in the whole population
being filtered in) or even worse, fatal for the simulation when it’s too stringent, result-
ing in all, or almost all, individuals being filtered out in the early stages.

 In the example in figure 18.6 we suggested setting the threshold to 80% of the best
individual’s fitness value.13 Whether or not thresholding should be applied and what
the threshold ratio should be completely depend on the actual problem to be solved.

 After filtering the initial population, and possibly escorting the best individuals to
the next generation, we are still tasked with recreating the remaining individuals in
the new population. To do so, we implement crossover, which will be discussed in the
next sub-section, as a way to generate a new organism from two parents, and mutations,
to provide genetic diversity to the new generations. The necessary step before being
able to apply crossover is, therefore, selecting those two parents. As you can see in list-
ing 18.4, we are going to perform this selection several times at each iteration.

 There are many possible ways to select individuals for mating—we are going to dis-
cuss two of the most common here.

13Because we are trying to maximize the fitness function for the 0-1 knapsack; otherwise, with a function to be
minimized, we could have set it to 120%, or 105%, and so on.
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 Tournament selection is one of the simplest (and easiest-to-implement) selection
techniques used in genetic algorithms; it’s illustrated through an example in figure
18.7. Conceptually, we randomly select a handful of organisms and then have them
“compete” in a tournament where only the winner gets the right to mate. This is simi-
lar to what we see everywhere in wildlife, where (usually) male adults fight for the
right to mate with females (ever watched a documentary on deer crossing horns
during mating season?).

Now, in reality we don’t actually code a tournament, unless we are running a tournament
simulation!14 As shown in listing 18.5, we just randomly select k individuals and take the
one with the best fitness. The exact number, k, can vary depending on the problem and
on the size of the population, but usually somewhere around 3 to 5 elements could be
a good choice. Consider that the larger the pool of individuals participating in the tour-
naments, the lower the chance for low-fitness individuals to be chosen.

function tournamentSelection(population, k) 
  bestFitness ← lowestPossibleFitness()   
  for i in {1,..,k} do             
    j ← randomInt(|population|)     
    if isHigher(population[j].fitness, bestFitness) then    
      bestElement ← population[j]
      bestFitness ← bestElement.fitness     
  return bestElement  

14For the predator-prey robots example, for instance, or for any setup where we evolve systems that run tasks in
the physical world, we might actually do that and score individuals based on how they perform on a real task.

Listing 18.5 Tournament selection

1 0 0 0 0 0 1

0 1 0 1 0 0 0

Fitness

2,134,000

1,619,800

0 1 0 0 1 1 11,928,800

0 1 0 0 1 1 01,811,000

0 1 0 1 0 0 0

0 1 0 0 1 1 1

2,134,000

1,928,800
0 1 0 1 0 0 0

2,134,000

Figure 18.7 Tournament selection applied to our instance of the 0-1 knapsack problem

Method tournamentSelection takes current population and 
the number of elements that should participate in each tourney, 
and returns an individual, the best among the ones selected for 
the “tournament.”

Init the temporary variable storing the best 
fitness found. Since this is a generic method 
and we don’t know if, in concrete problems, 
the best fitness will mean highest or lowest 
values, we use a helper function returning the 
“lowest” possible fitness, 0 for functions that 
will be maximized, infinity for the ones to be 
minimized.

Repeat
k times

Randomly selects an index between 0 and the population’s size. 
Indirectly, this selects an individual. In this implementation there 
are no measures to avoid duplicated selections, which can be fine 
when the population size is large (and consequently probability of 
duplicates is low), but still, you need to be aware of this.

Checks if this element is 
better than the current 
best; again, we use a 
helper function to 
abstract on the meaning 
of good/high fitness

If we found a new best, just 
updates the temporary variables
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For instance, for the third-highest individual to be chosen, neither the best nor the
second-best fitness organisms can be chosen (and, of course, the third-best must be),
so the probability this happens with a pool of k individuals is15

1/n * [(n-2)/n]k-1

assuming n is the size of the population.
 For the lowest fitness individual (after, possibly, applying thresholding), it becomes

1/n * [1/n]k-1 = 1/nk

The generic formula for the m-th best fitness becomes

1/n * [(n-m+1)/n]k-1

As you can see, beyond the details and the actual exact probability, the chances of any
individual (except the first) are decreasing exponentially with k (while polynomially
with m).

 It goes without saying that we need to apply tournament selection twice to get the
pair of parents we need to generate a single element in the new population.

 Roulette wheel selection is definitely more complicated to implement than tourna-
ment selection, but the high-level idea is the same: higher-fitness individuals must
have more chances to be selected.

 As we have seen, in tournament selection the probability that an element with low
fitness is chosen decreases polynomially with the rank of the element (its position in
the list of organisms sorted by fitness); in particular, since the probability will be
O([(n-m)/n]k), the decrease will be super-linear, because k is certainly greater than 1.

 If, instead, we would like for lower-fitness elements to get a real chance of being
selected, we could resort to a fairer selection method. One option is assigning the
same probability to all organisms, but then we wouldn’t really reward high-fitness indi-
viduals anymore.16 A good balance would be, for example, making sure that the prob-
ability of selecting each individual is proportional to its fitness.

 If we decide on the latter, we can use the roulette wheel selection. Each organism
is assigned a section on a “roulette wheel” whose angle (and in turn the length of the
arc subtended) is proportional to the fitness of the organism.

 One way to obtain this is to compute the sum of the fitness of all individuals and then,
for each one, see the percentage of the cumulative fitness for the whole population it
accounts for.17 For instance, figure 18.8 shows how to apply this to our example

15Approximately, with a few simplifications: the actual value depends on coding details like if the same individual
can be chosen multiple times. This is fine, though, because we are not really interested in the exact values for
these probabilities, but in understanding its order of magnitude and getting an idea of how it changes with k.

16For some problems, however, using elitism aggressively can compensate pure randomness in selection.
17This works when higher fitness means larger values, of course. It can be adapted to the other case by using the

inverse of the fitness values, for example.
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population for the knapsack problem. The angles of each organism’s sector are
computed with the formula θ=2ϖ*f, where f is the normalized fitness of the given
individual, aka the fraction of the individual’s fitness over the total sum for the whole
population.

Then each time we need to select a new parent for mating, we spin the wheel and see
where it stops: higher fitness will have a larger probability of being picked, but lower
ones still have a shot.

NOTE Notice that if we choose to use rank instead of fitness, we’ll need to
sort the population first (time required: O(n*log(n))). Sticking to fitness, we
only need a linear number of operations to compute the total and the per-
centages, and since this is computed at each iteration, for large populations
we can have a relevant savings. Likewise, tournament selection also doesn’t
require prior sorting of the population.

When it comes to implementing this technique, however, we are clearly not going to
bother with building an actual wheel (or even a simulated one)!

 The easiest way we can achieve the same result is by building an array like the one
shown in figure 18.9, where the i-th element contains the sum of the normalized18 fit-
ness of the first i individuals in the current population (taken in the order they are
stored in the population array).

18For each individual, we normalize its fitness by dividing its value by the total sum of the population’s fitness.
This way, each normalized fitness is between 0 and 1, and their sum across the whole population is 1.

0 1 0 0 1 0 0 1,681,000 14%P7

1,942,000 16%P4 0 0 1 1 0 1 0

0 1 0 0 1 1 0P2

1 0 0 0 0 0 1

0 1 0 1 0 0 0

0 0 0 1 0 1 1

Fitness

2,134,000

937,800

1,619,800

0 1 0 0 1 1 1

1,928,800

1,811,000

Percent

18%

16%

15%

7%

14%

P3

P1

P6

P5

P7

P4

P2

P3

P1

P6

P5

Each sector is
proportional to
the relative fitness
of the individual.

4 = 0.16*360° = 57.6°

Figure 18.8 Roulette wheel selection once again applied to the example of 0-1 knapsack problem 
we are discussing in this section
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For example, if we refer to the population shown in figure 18.8, the first element of the
wheel-array holds the population[0].normalizedFitness = 0.16, the second element
holds population[0].normalizedFitness + population[1].normalizedFitness =
0.16 + 0.15, and so on, as summarized in figure 18.9. Notice that the last element sums
up exactly to 1. Ideally, we can imagine a hidden first element, not shown in the figure,
whose value is 0 (we’ll see that this helps with writing cleaner, succinct code).

 To select an element, we draw a random number r from a regular distribution of
real numbers between 0 and 1 (not included). Equivalently, in the wheel analogy, we
would draw a random angle θ between 0° and 360° (not included) to find how much
we should spin the wheel. The relation between the two numbers would be θ=r*360.

 Listing 18.6 shows the method to generate a wheel-array like the one in figure 18.9.
 To find where our wheel’s pin is pointing, we need to run a search on the array. We

look for the smallest element that’s larger than r, the random number drawn by the
selection routine. We can modify the binary search algorithm to perform this task and
limit the runtime to O(log(n)) for each element selected; therefore, for each iteration,
we will have to perform O(n*log(n)) operations to select parents and apply crossover.

 Alternatively, a linear search is also possible. It’s a lot easier to write and less likely
to be buggy, but that makes the running times grow to O(n) and O(n2) respectively.

function createWheel(population)   
  totalFitness ← sum({population[i].fitness, i=0,…,|population|-1}) 
  wheel ← [0]                                              

Listing 18.6 Creating a selection roulette wheel

0.16
P1

0.31
P2

0.49
P3

0.65
P4

0.72
P5

0.86
P6

1.0
P7

r = 0.385

P7

P4

P2

P3

P1

P6

P5

r

After choosing a random number r, find 
out to which array element it corresponds:
it's the one with the smaller value larger than r.

Figure 18.9 Roulette wheel selection in practice. We use an array with cumulative percentages; the 
difference between A[i] and A[i-1] is exactly the ratio between the i-th element’s fitness and the 
sum of all elements’ fitness.

Method createWheel takes current population and returns 
an array whose generic i-th elements is the cumulative fitness 
of all population’s individuals, from the first to the i-th

Computes the total sum of all individuals’ fitness values (here we 
use the simplified notation discussed in appendix A)

Initializes the array for the
“roulette wheel.” We set the

first element to 0 for
convenience, so that we don’t
have to handle a special case

for the first individual
outside the next for loop.
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for i in {1,..,|population|} do                               
  wheel[i] ← wheel[i-1] + population[i-1].fitness / totalFitness 
pop(wheel, 0)                                                          
return wheel  

Choose wisely depending on the time constraints you have, as well as your domain
knowledge. We leave the implementation of your preferred method of search as an
exercise, and I strongly suggest you start with the simplest method, test it thoroughly,
and then, if you really need the speedup, attempt to write the binary search method
and compare their results.

18.1.7 Crossover

Once we have selected a pair of parents, we are ready for the next step: as we outlined
in listing 18.4, it’s time for crossover.

 We mentioned this already, but just to give you a quick recap: crossover simulates
mating and sexual reproduction of animal19 populations in nature, stimulating diver-
sity in the offspring by allowing the recombination of subsets of features from both
parents in each child.

 In the analogous algorithmic process, crossover corresponds to wide-range search
of the fitness function landscape, since we generally recombine large sections of the
genome (and hence of the solutions) carried by each of the parents. This is equivalent
to a long leap in the problem space (and cost function landscape).

 For instance, take our example problem: the 0-1 knapsack and packing goods for a
journey in space. Figure 18.10 shows a possible definition for the crossover method
for this problem: we choose a single crossover point, an index at which we cut both
chromosomes; then one part of each chromosome (at the opposite sides of the cross-
over point) will be used for recombination. In this case, we just glue the two parts
together.

 Randomness is and should be a huge part of crossover. In our example, we can see
it in the choice of the crossover point. Some choices (as in figure 18.10 (A)) will lead to
improvements in the child’s fitness, while other crossover points (as in figure 18.10 (B))
will lead to poorer or sometimes even disastrous results.

 This single-crossover-point technique, if you noticed, actually produces two pairs of
opposite sub-sequences (left-right and right-left of the crossover point). While in our
example we only used one of the pairs and discarded the other, some implementations

19Some flowering plants also adopt sexual reproduction through pollination.

Cycles through all 
individuals in the 
population

Each element in the roulette wheel’s array is the sum of the normalized fitness 
of all individuals before it (already stored in wheel[i-1]) plus the ratio 
between the current individual’s fitness and the sum of all organisms’ fitness.

Optionally, we can now drop the first element of the array, containing a 0. In many languages, this 
operation requires O(n) assignments, so we might want to avoid it. If we keep the first value, the 
search method can easily take that into account, for instance, by starting search from the 
element at index 1 and subtracting one from the index found before returning.
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of the genetic algorithm use both pairs to produce two children with all the possible
combinations20 (either keeping them both or just keeping the one with better fitness).

 But nobody says we need to stick with the single-point crossover; that’s just one of
many alternatives. For instance, we could have a two-point crossover, selecting a seg-
ment of the first chromosome (and, implicitly, one or two remaining segments of the
other), or we could even randomly select each value from one of the parents’ chromo-
somes. Both examples are shown in figure 18.11.

 And many more alternatives are possible: as we said before, crossover can only be
defined on the actual chromosomes, and depending on their structure and con-
straints (it ultimately depends on the structure of the candidate solution), different
ways of recombining chromosomes are possible. We’ll see plenty of examples later in
this chapter.

 One last thing: it is customary to associate a crossover chance, aka crossover ratio, to
our crossover operators. This represents the probability that crossover/mating actu-
ally happens between the selected individuals. For instance, with a crossover ratio of
0.7, there is a 70% chance that crossover does happen for any pair of organisms
selected for mating. 

 As shown in listing 18.7, every time we apply crossover, we randomly decide what to
do, based on the crossover chance. If the choice is not to apply crossover, then there

20The process is conceptually similar to early phases of meiosis, the mechanism used by cells for sexual
reproduction.

0 1 0 1 0 0 0

0 0 0 1 0 1 1

2,134,000

937,800

Fitness

P1

P2

0 0 0 1 0 1 1

0 1 0 1 0 0 0
0 0 0 1 0 0 0 690,000

Fitness
(B)

0 1 0 1 0 0 0

0 0 0 1 0 1 1

1. Select a crossover point

0 1 0 1 0 1 1

2. Recombine

2,381,800
Fitness

(A)

Figure 18.10 Examples of crossover for the knapsack problem. Once the two parents are selected, we 
need to choose a crossover point, and then recombine the two genomes. Depending on this choice, we can 
have an improvement (A) or a worsening (B) in fitness for the children.
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are a few alternatives; most commonly, we randomly select one of the parents that
move to the next step. Notice that this is different from elitism because the organism
outputted by crossover will still undergo mutations, while any individual selected by
elitism will be copied completely unaltered to the new population.

class CrossoverOperator  
  #type function
  method                                    
  #type float
  chance                 

  function CrossoverOperator(crossoverMethod, crossoverChance)   

  function apply(p1, p2)           
    if random() < this.chance then
      return new Individual(method(p1.chromosome, p2.chromosome))    
    else
      return choose(p1, p2)  

Remember that listing 18.7 shows a wrapper for the actual crossover operator, compat-
ible with the template we provided in listing 18.4 for natural selection’s generic tem-
plate. The actual method will be crafted and passed every time a specific problem
instance is addressed.

Listing 18.7 A wrapper class for crossover operator

0 1 0 1 0 0 0

0 0 0 1 0 1 1

Parents

0 0 0 1 0 1 1

Child

(A)

0 0 0 1 0 1 1

0 1 0 1 0 0 0
0 1 0 1 0 1 0(B)

Figure 18.11 More examples of crossover for the knapsack problem. (A) Two-point recombination: select 
a segment from the first chromosome, and the rest from the other. (B) For each gene (aka value), randomly 
decide from which parent it will be copied.

Class CrossoverOperator models a wrapper for the actual crossover 
method specific to individual problems. While the crossover method 
changes with the problem definition, it’s good to have a uniform, stable 
API that can be used in the main method for the genetic algorithm.

We need to store a reference/pointer 
to the actual method to run.

We also need to store the probability that 
this method is applied to the parents.

The constructor
(body omitted)

takes two
arguments to

initialize the two
class’ attributes.

This method will take two organisms, the 
two parents, and output the organism that 
will be passed to the next generation.

With probability proportional to crossoverChance,
it will apply the crossover method passed at

construction, and then return a new individual
created recombining (in some problem-dependent

way) its parents’ chromosomes.

If the crossover is not to be applied, then we have a 
choice of what to return: in this case, we just return 
one of the two parents, randomly choosing it. 
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Listing 18.8 shows the single-point crossover operator that we discussed for the 0-1
knapsack problem.

function knapsackCossover(chromosome1, chromosome2)  
  i ← randomInt(1, |chromosome1|-1)                 
     return chromosome1[0:i] + chromosome2[i:|chromosome2|]

18.1.8 Mutations

After a new organism is created through crossover, the genetic algorithm applies
mutations to its newly recombined genome. In nature, as we have seen, the recombi-
nation of parents’ genomes and mutations happens simultaneously21 during sexual
reproduction. Conceptually, this works analogously in genetic algorithms, although
the two operators are implemented separately. If crossover is regarded as wide-range
search, mutations are often used for small-range, local search.

 We have seen that crossover promotes diversity in the new population, so why do
we need mutations?

 The answer is simple and best provided with an example (shown in figure 18.12).
The population considered in this example shares the same values for three of the
genes. This means that no matter how you recombine the organisms’ genes during
crossover, the resulting children will all have beans and strawberries included in the
solution and potatoes excluded from it. This is a real risk for problems where chromo-
somes are large (carrying a lot of information), especially if the length of the chromo-
some is larger or comparable to the size of the population. The danger is that no
matter how long we run our simulation, or how many iterations and crossovers we per-
form, we won’t be able to flip the values for some genes, which in turn means that the
areas of the problem spaces that we can explore are limited by the choice of the initial
population. And this, of course, would be a terrible limitation.

 To prevent this issue and increase the diversity in the genomic pool of our popula-
tion, we add a mechanism that can change each gene independently and for any
organism.

 In Holland’s original work, as we had mentioned, chromosomes were bit strings,
and the mutation was also conceived as domain-agnostic. The mutation operator
would be applied to each organism’s chromosome, and for each gene (that is, each

Listing 18.8 0-1 Knapsack: crossover

21Mutations also happen spontaneously, with on-null probability, during mitosis, the mechanism used for asexual
reproduction of all cells (gametes and somatic cells). These mutations can be key to the evolution of the organ-
isms and species, when they happen in gametes, the cells involved in sexual reproduction. 

Method knapsackCossover takes two chromosomes (as bit 
strings) and returns a new chromosome obtained by recombining 
the head of the first one, with the tail of the second one.

Chooses a cut point, making sure at least 
one gene is taken from each parent

Returns the combination of
the head of chromosome1

(up to index i, excluded) and
the tail of chromosome2

(from the index i to the end)
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bit) it would toss a coin22 and decide if the bit should be flipped. This is shown in fig-
ure 18.13.

In modern genetic algorithms, however, chromosomes can take different shapes and
have constraints, so mutations can become much more complex or be applied to the
chromosome as a whole, rather than to single genes. As we’ll see for TSP, for instance,
a mutation operator can be applied (with a certain probability) just once to the whole
chromosome (instead of to each of its genes) and swap two vertices in the tour.

 The wrapper class for the mutation operator is identical to the one for crossover
shown in listing 18.7, apart from minor differences in handling arguments, especially
the ones to the wrapped methods: we only have one organism to pass, but it’s a good

22An unfair coin, where the probability of applying a mutation would be far smaller than ½.

P4 0 0 1 1 0 1 0

0 1 0 1 1 1 0P2

0 1 0 1 0 1 0

0 0 0 1 0 1 1

0 1 0 1 1 1 1P3

P1

P5

Figure 18.12 An example of a 
population where, without mutations, 
there wouldn’t be enough genetic 
diversity. All individuals have the 
same value for three of their genes.

1 1 0 0 1 1 0Mutated

0 1 0 1 0 1 0Original

Figure 18.13 An example of mutation for the 0-1 knapsack problem. The mutation 
rate here is overly boosted (for the sake of presentation). In a real scenario it would 
likely be set somewhere between 1% and 0.1% (also depending on the size of the 
chromosomes). A too-large mutation ratio can hinder the stability of the algorithm’s 
convergence toward the minimum, voiding the benefits of crossover and selection.
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idea to also forward the mutation chance to the wrapped method. This is necessary
for bit-wise mutations, such as the one we discussed for the knapsack problem, imple-
mented in listing 18.9.

function knapsackMutation(chromosome, mutationChance)
  for i in {0,..,|chromosome|} do                 
    if random() < mutationChance then
      chromosome[i] ← 1 – chromosome[i]   
  return chromosome

18.1.9 The genetic algorithm template

Listing 18.10 provides an implementation of the main method for the genetic algo-
rithm template, and also concludes our discussion of the 0-1 knapsack problem. We
have all we need now to actually run the algorithm on our instance and find out that
the best possible solution is bringing wheat flour, rice, and beans. To see a solution in
action, and possibly apply it to larger problem instances with hundreds of possible
items to pack, you can use the implementation of the genetic algorithm provided by
JsGraphs on GitHub23 and implement the methods for crossover, mutations, and ran-
dom initialization that we discussed in this section. It will be a great exercise to test
your understanding of this technique and delve deeper into its details.

function geneticAlgorithm(

➥ populationSize, chromosomeInitilizer, elitism, selectForMating,

➥ crossover, mutations, maxSteps)    
  population ← initPopulation(populationSize, chromosomeInitilizer)  
  for k in {1..maxSteps} do                                         
    population ← naturalSelection(
    ➥ population, elitism, selectForMating, crossover, mutations)     
  return findBest(population).chromosome   

Listing 18.9 0-1 knapsack: Bit-wise mutation

23See http://mng.bz/nMMd.

Listing 18.10 A generic implementation of the genetic algorithm

Method knapsackMutation takes a chromosome (as a bit string) and a probability of 
mutation (as a real number between 0 and 1) and applies mutations to the chromosome. 
The method, in this implementation, alters the argument, but it’s possible and often 
cleaner to clone the input and return a new object as output, unless this cloning becomes 
a bottleneck. Weigh the pros and cons and run some profiling before making a choice.

Cycles through each gene (that 
is, bit) in the chromosome

With probability mutationChance(*100), 
flip current bit

Method geneticAlgorithm is a template method that 
implements the backbone of a genetic algorithm and can 
be adapted to run on several problems by passing the 
specialized methods for the concrete problems’ instances.

Initializes the 
population

Repeats maxSteps times.
Each iteration is a new

generation in the simulation.

Let natural 
selection 
take its 
course . . .

Finally, finds the best individual in the population and returns 
its chromosome (which is the best solution found). Method 
findBest can also be supplied as a parameter, if needed.

http://mng.bz/nMMd
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18.1.10When does the genetic algorithm work best?

To recap what we have discussed so far, in chapters 16 and 17, we have presented a few
techniques that can be used in optimization problems to find near-optimal solutions
without exploring the whole problem space. Each of them comes with some strengths
and some pain points:

 Gradient descent (chapter 16) converges fast but tends to get stuck in local min-
ima. It also requires the cost function to be differentiable (as such, it couldn’t
be used in experimental settings or game theory, for instance in the predator-
prey robotic evolution experiment described earlier in this section).

 Random sampling (chapter 16) overcomes the need for differentiability and the
issue with local minima, but it’s (unbearably) slow in converging (when it man-
ages to converge).

 Simulated annealing (chapter 17) has the same advantages of random sampling,
but evolves in a more controlled and steady way toward minima. Nevertheless,
convergence can still be slow, and it has a hard time finding minima when they
lie in narrow valleys.

At the beginning of the chapter, we discussed how the genetic algorithm can over-
come many of the issues of these heuristics; for instance, it can speed up convergence,
compared to simulated annealing, by keeping a pool of solutions and evolving them
together.

 To conclude this section, I’d like to provide yet another criterion that can help you
choose which optimization technique you should use. It involves another term, epista-
sis, that is borrowed from biology: its mean is gene interaction, and in our algorithmic
analogy, it expresses the presence of dependent variables—in other words, variables
whose values depend on other variables.

 Let’s first go through an example to better explain this.
 Each gene on a chromosome can be considered a separate variable that can

assume values within a certain domain. For the 0-1 knapsack problem, each gene is an
independent variable, because the value it assumes won’t directly influence other vari-
ables. (If we enforce the constraint on the weight of each solution, however, flipping a
gene to 1 might force us to flip one or more other genes to 0. That’s a loose indirect
dependency, anyway.)

 For the TSP, as we’ll see, we assign a vertex to each gene with the constraint that
there can’t be any duplicate. As such, assigning a variable will impose constraints on
all other variables (that won’t be able to be assigned the same value), so we have a
more direct, although still loose, dependency.

 If our problem was optimizing the energy efficiency of a house that was being
designed, and some variables were its area, the number of rooms, and the amount of
wood needed for the floors, the latter would be dependent on the other two, because
the area to cover with wood flooring would depend on the square feet and rooms of
the house. Changing the size of the house would immediately force us to change the
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amount of wood used if the floor’s thickness remains fixed (the possibility of changing
its thickness makes it meaningful having a separate variable for this).

 For 0-1 knapsack, we say that the problem has low variable interaction, and so low
epistasis; the house optimization has high epistasis, while for the TSP, its epistasis is
somewhere in the middle.

 Now, the interesting thing is that the degree of variable interaction contributes to
the shape of the landscape of the objective function that we want to optimize: the
higher the epistasis, the wavier the landscape will likely look.

 But above all, when the degree of interaction is high, varying one variable also
changes the value of other variables, and this means making a bigger leap in the cost
function’s landscape and problem domain, making it harder to explore the surround-
ings of solutions and fine-tune the algorithm’s results.

 Knowing the epistasis of a problem can guide our choice of the best algorithm to
apply:

 With low epistasis, minimum-seeking algorithms like gradient-descent work
best.

 With high epistasis, it’s best to prefer random search, so simulated annealing,
or for very high variables interaction, random sampling.

 What about genetic algorithms? It turns out that they work best in a wide range
of medium to high epistasis.

Therefore, when we design the cost/fitness function for a problem (which, let me
state this clearly once again, is one of the most crucial steps to a good solution), we
need to be careful about the degree of interaction in order to choose the best tech-
nique that we can apply.

 During the design phase, we can also try to reduce the dependent variables, when-
ever possible. This will allow us to use more powerful techniques and ultimately get
better solutions.

 Now that we have concluded our discussion of the components and theory of
genetic algorithms, we are ready to delve into a couple of practical applications to see
how powerful this technique is.

18.2 TSP
We described the travelling salesman problem (or TSP for short) in chapter 17, where
we also provided a solution based on simulated annealing.

 Figure 18.14 shows the same example we produced in the previous chapter, an
instance of the problem with 10 cities for which the best solution has cost 1625
(miles), the total length of the following path:

[“New Carthage”, “Syracuse”, “Buffalo”, “Pittsburgh”, “Harrisburg”, 

➥ “Opal City”, “Metropolis”, “Gotham City”, “Civic City” ]
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Now we would like to tackle the same problem with a genetic algorithm and see if we
can speed up convergence to a good solution (and possibly improve the average solu-
tion: remember that these optimization algorithms output near-optimal solutions, and
so they provide no guarantee of always finding the best possible one).

18.2.1 Fitness, chromosomes, and initialization

A good starting point, in general, for all problems, is the design of how solutions are
encoded and of the cost function. While with the 0-1 knapsack we wanted to maximize
a quantity—the total value of the entries added to the knapsack—TSP is a minimiza-
tion problem, so we’ll assume the use of a minimization algorithm (as mentioned,
otherwise we can just maximize the opposite or inverse of the cost).

 Therefore, we can use the same definition for the fitness function of the genetic algo-
rithm as the cost function we saw in section 17.2, and in particular in listing 17.2: that
is, just the sum of the distances between adjacent vertices, as shown in figure 18.14.

 We can even reuse the same encoding for solutions: they are permutations of the
graph’s vertices. This can easily be translated into chromosomes that won’t be bit
strings anymore in this case; we need each gene to be an integer value (the index of
one of the vertices), with the implicit constraint that there can’t be two genes holding
the same value.

 We can initialize any solution as a random permutation of the indices between 0
and n-1, where n is the number of vertices in the graph, just like we did for simulated
annealing. We can even pass the same method as the chromosomeInitializer argu-
ment to method initPopulation in listing 18.2.

18.2.2 Mutations

Even for mutations, our job can be (at least for an initial assessment) pretty much lim-
ited to reusing methods developed in chapter 17 for local search, and if we’d like to
compare to the performance of simulated annealing, we also shouldn’t add new kinds
of mutations.
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Happy Harbor

New Carthage
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Syracuse
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Figure 18.14 An instance of the 
traveling salesman problem: the best 
solution, outlined in this figure, has 
cost 1625.
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 There are, however, a few differences. First, while in listing 17.3 we implement an
ensemble method, where with some probability one of the transitions will be applied,
in genetic algorithms, this ensemble mechanism is already implicit for mutations, and
thus we have to provide each mutation (aka local search) method separately.

 Another difference is that for the genetic algorithm it doesn’t really make sense to
have a mutation that randomly recreates an individual from scratch. This goes against
the principles of natural selection, and we have seen that genome diversity in the pop-
ulation is already supported by crossover and local mutations.

 Therefore, we can extract two methods from listing 17.3, one for swapping adja-
cent vertices, and one for swapping random vertices, and in turn create two mutation
operators from them. (Both are shown in listing 18.11. Warning: These methods, for
the sake of simplicity, alter their inputs—while this is usually fine for GA mutations,
you should be aware of that and state it clearly in the method’s documentation.) To
see these methods in action, see figure 17.13 in the previous chapter.

function swapAdjacent(P)
  i ← randomInt(0, |P|)
  swap(i, (i+1) % |P|)
  return P  

function swapAny(P)                                                    
  i ← randomInt(0, |P|)
  j ← randomInt(0, |P|)
  swap(i, j)
  return P  

A final, though important, consideration: the mutation chance in GAs will typically be
much smaller than the ratios we used for the same methods in simulated annealing
(because, obviously, for simulated annealing these “mutations” were the only way to
explore the problem domain at any iteration).

 As a first attempt, however, we tried to use the same probabilities to try and make a
fairer comparison. A couple of sections later, we’ll discuss how it went.

18.2.3 Crossover

In crossover lies the real novelty we are adding, with respect to simulated annealing:
the latter had no way to combine two good solutions. Truth be told, there wasn’t even
a way to keep multiple solutions in the first place!

 There are many ways in which we can combine two permutations of the same
sequence. OK, perhaps not that many, but there is definitely more than one. Since we
don’t need to make things even more complicated, let’s go for the simplest way—or at
least the simplest I can think of.

Listing 18.11 TSP mutations 

Method swapAdjacent takes a chromosome, aka 
candidate solution P (a point in the problem space, 
that is, a permutation of the list of vertices in the 
graph), and returns the same chromosome after 
swapping an adjacent pair of vertices.

Randomly chooses an index in the array 
and swaps two adjacent vertices

Method swapAny also takes a chromosome 
and returns the same chromosome, after 
swapping a random pair of vertices.

Selects the vertices to swap. Notice that 
the two indices might in theory be equal.
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 We are still going to choose a single cutoff
point, like for 0-1 knapsack, but then things get
interesting. Let’s see an example to help us
understand. Figure 18.15 shows this crossover
method in action for the example we have used
since chapter 17, a graph with 10 vertices.

 After randomly choosing a cut point, we
copy all the genes in the first parent’s chromo-
some to the child’s genome, from the gene at
index 0 to the one at the point of cut.

 Now we need to fill the rest of the child’s
chromosome, but we can’t just copy the
sequence after the cut point (like we did for
the knapsack’s bit strings), because the last four genes in the second organism’s chro-
mosome contain vertices 0, 2, and 9, which have already been assigned as values to
genes in the first half of the new chromosome.

 What we can do, instead, is go through the whole second chromosome from start
to finish, and each time we find one of the vertices that was not copied from chromo-
some 1 to the child (vertices 1, 4, 8, and 5), we add this vertex to the new chromo-
some. This way, the net result is that the first part of the new chromosome, from its
beginning to the cut point, is identical to its first parent’s, while the vertices in the sec-
ond part, after the cut point, appear in the same order as they do in the second parent
(where, however, they might not have been adjacent to each other).

 Listing 18.12 provides a possible implementation for this method.

function tspCossover(chromosome1, chromosome2) 
  i ← randomInt(1, |chromosome1|-1)    
  newChromosome ← chromosome1[0:i]      
  genesFromChromosome1 ← new Set(newChromosome)   
  for j in {0,..,|chromosome2|-1} do             
    if not chromosome2[j] in genesFromChromosome1 then                   
      newChromosome.add(chromosome2[j])
  return newChromosome  

Listing 18.12 TSP: crossover

Method tspCossover takes two chromosomes (as arrays) and 
returns a new chromosome obtained by recombining the inputs.

Chooses a cut point, making sure that at 
least one gene is taken from each parent

Initializes the new chromosome with 
the head of chromosome1 (all genes 
from its start up to index i, excluded)

Stores the genes taken from 
chromosome1 in a set: this will help 
with optimizing performance later.

To fill the remaining genes 
of newChromosome, we 
need to cycle over the whole 
chromosome2, examining 
all its genes.

If the j-th gene’s value is a vertex that wasn’t yet added to the new chromosome, then append it 
to the end of it. For greater efficiency, we use a set to perform search in amortized constant time. 
Also, notice that we don’t need to update the set, because there are no duplicates.

4 7 3 5 1 6 8 0 2 9

3 6 0 2 9 7 4 5 1 8 Child

Parent 2

3 6 0 2 9 7 1 4 8 5Parent 1

4 5 1 8
Diff with selection

from parent 1

Cut point

Figure 18.15 Crossover method for 
TSP. While the first half of the new 
chromosome can be directly copied from 
the first parent, deriving the second half 
from the second parent requires a lot more 
effort.
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18.2.4 Results and parameters tuning

Now that we have all the pieces of the genetic algorithm defined and implemented,
there are a couple of questions that we would like to answer:

 Do we get any improvement over simulated annealing?
 How much do crossover and mutations influence the performance of the

algorithm?

You might have guessed it: now it’s profiling time!
 The former question is easier to answer. Simulated annealing, in our tests in section

17.2.4, based on JsGraphs’ implementation, required approximately 600 iterations to
converge to the best solution, and we were able to obtain an average cost equal to
1668.248 (remember, Monte Carlo algorithms, like simulated annealing and the
genetic algorithm, don’t always return the best result—there is no guarantee of that).

 You can also take a look on JsGraphs’ GitHub at the implementation24 of a genetic
algorithm to solve TSP. Running this algorithm with a population of 10 individuals,
with the same mutations rates we used for simulated annealing, and a crossover
chance of 0.7, the algorithm takes on average 10 generations to converge to the opti-
mal solution (cost: 1625). For a fair comparison we need to compare the iterations of
simulated annealing (where a single solution is kept) to the product of the number of
iterations of GA by the population size. Still, we go down from 600 to 100, a nice
improvement.

 But where we really understand the advantage we get is by computing the average
cost on the same number of “total” iterations, for instance 1,000 iterations of simu-
lated annealing versus a population of 25 individuals evolved for 40 iterations (or any
combination whose product is 1,000). Without too much effort spent tuning the
parameters, we were able to obtain an average cost equal to 1652.84, using high
chances for both crossover and random vertex swap mutation. With a population of
100 elements, the average goes down to 1636.8.

 Another interesting factor we would like to understand is this: How do crossover
and mutations chances influence the evolution of the population?

 To answer that, let’s try to run the algorithm with only one of these operators
enabled and draw a curve of the best organism’s fitness. In order to get a better under-
standing and clearer charts, we’ll use a more complicated instance of the problem: a
complete graph with 50 vertices (and random weights for the edges).

 Figure 18.16 shows a chart with the plots of the optimization trend for three runs
of the algorithm on a population with 100 organisms for 100 generations. The first
thing you are likely to notice is that the crossover operator plateaus at some (early)
point, but this shouldn’t be a surprise, right? We have already discussed the role of
crossover and its limitations. In particular, it can recombine the genomes of the initial

24See https://github.com/mlarocca/jsgraphs/blob/master/src/graph/algo/genetic/tsp.mjs.

https://github.com/mlarocca/jsgraphs/blob/master/src/graph/algo/genetic/tsp.mjs
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population, but if none of the organisms shows a certain feature,25 then crossover can
only improve fitness so much.

We can also see that mutation 2 is more effective than mutation 1, which also plateaus
at some point: here as well, it shouldn’t be surprising. If you read chapter 17 about
simulated annealing, where we introduced both these mutations, you saw that swap-
ping only adjacent vertices is a small-range local search, which makes it more difficult
to get out of local minima.

 So far, so good, but what would happen if we were to increase the population size?
This would increase the genome diversity in the initial population, so it’s legitimate to
expect crossover will be more effective, drawing from a larger pool.

 Figure 18.17 confirms this idea. Crossover makes the algorithm evolve faster in the
initial phases and manages to get as good a solution as the one obtained using only
the most effective mutation.

 This was a particularly happy case, though. Running the crossover-only version a
few more times, as in figure 18.18, shows that the quality of the best solution found
depends on the diversity and quality of the initial population. If we are lucky during
initialization, the algorithm will get to an optimal solution; otherwise—as expected—
using only the crossover, the algorithm will plateau to a sub-optimal solution. When

25For bit string representations, as we have discussed, this means that none of chromosomes has a certain value
for a specific gene; for TSP, which has a different representation, it means that there is no chromosome with
a certain subsequence of vertices. For instance, if no chromosomes have vertex 1 before vertex 0, crossover
won’t be able to add this feature. Considering there is a quadratic number of pairs of vertices, it’s unlikely that
both possible orderings for all of the pairs appear in the initial population.

Figure 18.16 How TSP population evolves when only mutations versus only crossover are enabled. 
Crossover-only evolution plateaus soon enough, while the mutation operator swapping random pairs is 
the most successful. On the x axis, there is the number of generations, while on the y axis is the cost 
of the tour.



658 CHAPTER 18 Genetic algorithms: Biologically inspired, fast-converging optimization

enabling only the mutations, the final result (not shown on the chart) has less vari-
ance across different runs, and the evolution plots of various attempts look similar.

 Yet another consideration to make is that both charts in figures 18.16 and 18.17
also confirm that the “adjacent pairs swap” mutation is less relevant to the algorithm
and can be put aside in favor of the “all pairs swap” one.

 So, do we get any advantage in using crossover and mutations at the same time? To
understand that, we need to abandon our charts (which provide an idea for the trend

Figure 18.17 Same analysis as figure 18.16, but with a 10-fold population. With a larger population, 
crossover produces better results in earlier generations, and even gets to a result comparable to the 
mutations.

Figure 18.18 Using the same setup as for figure 18.17, we ran a few experiments using crossover-only 
(all with the same crossover chance, 0.7). This chart shows how there is a huge variance in the final 
results that depends entirely on the initial choice of the population (because there is no mutation).
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of the simulation, but are not statistically relevant, because they are based on just a few
runs), and run a more thorough analysis, summarized in table 18.2.

As you can see, the best results have been found using a mix of crossover and mutations.
Using random swaps mutation is more important than using crossover, while the adja-
cent swaps mutation is not only less important, but can even become detrimental when
its chance is too high—the same way it happens for crossover. This might feel puzzling—
after all, the worst you’d have expected was, maybe, that a mutation proved useless. How
can we explain the fact that a higher chance for crossover and mutation 1 translates into
worse solutions, on average? Well, the point is that even if we use elitism, when the other
organisms in the new generations are affected by many changes, there is a higher
chance that their fitness will get worse, and this effect becomes stronger with each gen-
eration, as the average fitness becomes better. If a solution is close to the optimal one,
it’s much easier for a random change’s result to be pejorative than ameliorative.

 That’s because, unlike simulated annealing, where we reject pejorative changes in
the final stages of the simulation, GAs accept them without questioning. Besides the
small fraction of high-fitness elements potentially guaranteed by elitism, the rest of
the population can drive the average fitness down when too many random changes
happen at the same time.

Table 18.2 Average best solution for the TSP genetic algorithm, varying the operators’ chance. The
results are sorted by tour cost, and we highlighted the most significant rows.

Crossover Adjacent swap Random swap Average tour cost

0.2 0 0.5 6326.447

0.3 0.002 0.5 6379.628

0.2 0.02 0.5 6409.664

0.1 0.002 0.5 6428.103

0.2 0 0.2 6555.593

0.2 0.2 0.5 6753.441

0.2 0.2 0.2 6823.971

0.2 0 0.7 7016.033

0 0 0.2 7110.798

0 0 0.7 7143.873

0.7 0 0.7 7818.061

0 0.7 0 10428.917

0.7 0 0 11655.949

0.2 0 0 15210.800
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 One final word of caution: these results are still to be taken with a grain of salt,
because the average is computed on “only” a thousand runs, and because we haven’t
explored extensively the domain of parameter values. 

NOTE To do parameter fine-tuning in a systematic way, there is an effective
protocol often used in machine learning. We start with a set of coarse-
grained, heterogeneously spaced values to find the order of magnitude for
the best solution (for instance, for the mutation chance, we could choose
[0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 1]), and then refine our search by repeating
(one or more times) the process around the most promising values. (For
instance, assuming the best results were obtained with 0.2 and 0.5, then we
test [0.15, 0.2, 0.25, 0.3, …, 0.45, 0.5, 0.55, 0.6].) Since we have multiple
parameters, and we need to measure the results for all the combinations for
the three of them (as shown in table 18.2), we really want to keep these lists as
short as possible and refine them in several steps.

18.2.5 Beyond TSP: Optimizing the routes of the whole fleet

As we mentioned in chapter 17, solving TSP is nice, but only allows us to optimize the
route of a single truck. With the business thriving, it’s natural to have several trucks
taking care of shipments from each warehouse (or possibly from more than one ware-
house at the same time).

 Each truck has a limited capacity, so we need to take parcel size into account (rings
a bell?) and, moreover, each parcel’s destination can significantly change the route
needed to deliver all packages assigned to a truck.

 This is an extremely complicated problem to optimize, because for each assign-
ment of parcels to the available trucks, we need to optimize the trucks’ routes one
by one.

 To simplify the problem, what’s often done is splitting the area covered by a ware-
house into zones and finding an a priori optimal assignment of these zones to trucks.
This, however, forces us to settle for sub-optimal solutions and to include some redun-
dancy in the trucks’ capacity to cope with the fluctuations in demand.

 An alternative is running a TSP optimization for each truck after assigning the
deliveries to all vehicles, as part of the fitness function computation, and then sum
whatever metric is used (miles run, or time spent, or gasoline consumed) across all of
them.

 As you can imagine, optimizing the larger problem is not easy, because for any
change in the assignments of parcels to vehicles, we need to rerun at least two TSP
optimizations.

 In terms of epistasis (as defined in section 18.1.9), the fitness function has a high
degree of dependence between its variables, so a genetic algorithm could be effective,
but a random search could also be a viable alternative.
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18.3 Minimum vertex cover
Now we can be quite satisfied with our genetic algorithm for TSP, and we can move on
to new, interesting, and of course NP-Hard problems on graphs.

 There is a rich body of literature on this kind of problem; some writings are mile-
stones and benchmarks in computer science and some appear in many practical appli-
cations throughout engineering.

 Minimum vertex cover is important both theoretically and practically, so we couldn’t
close this book without discussing it!

 Given a graph G=(V,E), a vertex cover for G is any set of its vertices that covers all of
its edges; an edge e=(u,v) ϵ E is covered by a subset of vertices S ⊆ V if at least one of
the edge’s endpoints, either u or v, belongs to S.

 Every graph has a trivial vertex cover: the set V of all vertices. What we are really
interested in, though, is finding a minimum vertex cover, the smallest possible subset
of vertices that covers all edges. Figure 18.19 shows a few examples of simple graphs
and their vertex covers.

Notice that some graphs have a single solution (like the first one on the left), while
others have multiple minima vertex covers. Can you find the alternative solution for
the graph on the right?

 Figure 18.20, instead, shows examples of what is not a minimum vertex cover.
 The decision problem for the minimum vertex cover (“Given a subset of vertices, is

it a minimum vertex cover for G?”) has been proved to be NP-Hard.
 Since there are 2|V| possible subsets of V, a brute-force search seems out of the

question.
 There are polynomial-time approximation algorithms for minimum vertex cover,

but they can only guarantee a result that is within an approximation factor in the
order of magnitude of 2 (slightly lower than 2) from the best solution.26 This problem,
in fact, belongs to a computational subclass of NP called APX-complete problems, the set

26If an algorithm has an approximation factor a, it means that on a problem with a solution whose value is v, the
approximation algorithm will return a solution that is at most a*v.

Figure 18.19 Three examples of minimum vertex covers on graphs. The thicker circles (red vertices) are 
the only ones needed to cover all edges for these graphs.
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of NP optimization problems for which there exists a polynomial-time constant-factor
approximation algorithm.

 For some categories of graphs, like bipartite graphs and trees, there exist worst-
case polynomial-time algorithms to solve minimum vertex cover exactly, but besides
these happy cases, we either accept an approximated (non-optimal) solution, or we
need an exponential-time algorithm.

 It goes without saying that we are going for the former by using a genetic algo-
rithm. But first, let’s talk about applications of this problem.

18.3.1 Applications of vertex cover

Back to our e-commerce company: as the business grows, so do warehouses. To pro-
tect the company from thefts and to guarantee the employees’ safety, we need to
install cameras that cover all the alleys. Suppose that our warehouses are shaped like
the graphs in figure 18.20, where edges are alleys, and vertices are placed at cross
points and dead ends; also suppose that cameras have special wide lenses (or motors,
or both) and can cover up to 180° or even 360°. Then, the minimum number of cam-
eras we need is given by the minimum vertex cover for those graphs.

 Although oversimplified, this is a real, recurring application of the problem, the
easiest to adapt to our example scenario, but definitely not the only one.

 Another field where efficient vertex cover algorithms make a difference is bio-
informatics, in particular computational biochemistry. It often happens that DNA
sequences in samples present conflicts (the exact definition of conflict depends on
the context) that we need to resolve: graphs come to our aid. We can define a conflict
graph where vertices are sequences and edges are added when there is a conflict
between any pair of sequences. Notice that this graph is potentially disconnected.

Vertex cover,
but not minimalNot a vertex cover

Figure 18.20 Examples of subsets that are not a minimum vertex cover on these graphs. On the left, 
not all edges are covered by the vertex in the center of the graph, so that vertex by itself is not a vertex 
cover. On the right, an example of a vertex cover that, however, is not minimal (see figure 18.19).
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Since the goal is to resolve all conflicts by removing as few sequences as possible, what
we are looking for is the minimum vertex cover of the conflict graph.

 Going back to computer science applications, vertex cover can be used to aid net-
work security. It has been employed27 to design optimal strategies, in terms of combi-
natorial topology of routers, against the diffusion of stealth worms in large computer
networks.

 Finally, among the many other fields where we can find this problem, we’d like to
mention one that we have already discussed in this book: minimum vertex cover has
been used28 to develop an efficient nearest neighbor classifier for general metric
spaces (not limited to Euclidean spaces or to Hilbert spaces).

18.3.2 Implementing a genetic algorithm

Now it’s time to roll up our sleeves and write a decent optimizer for this problem; the
good news is that we can reuse most of the work we had done for the 0-1 knapsack!

 The solutions to the minimum vertex cover problem, in fact, are subsets of the ver-
tices, just like for the knapsack they were subsets of the items available. We can there-
fore implement chromosomes as bit strings and reuse the same crossover and
mutation operators!

 The only thing that changes, obviously, is the definition of the fitness function.
Here the quality of the solution is given by the number of vertices in the chosen subset
(the smaller, the better) under the constraint that all edges are covered. We could
implement the constraint separately and discard all subsets that are not vertex covers
or assign a huge value to their fitness. This way, however, a minimal solution that cov-
ers all edges but one would be penalized even with respect to the trivial solution con-
taining all vertices (which is a valid vertex cover). It is important, instead, to keep the
former solution in the population, as it could be turned into a valid vertex cover by
adding a single vertex.

 To work around this issue, I suggest we integrate the number of uncovered edges
into the fitness function, with a certain multiplicator (by default, we can use 2).

 Considering the first example in figure 18.20, let’s compare two possible solutions
in figure 18.21. The graph on the left has one uncovered edge, so its fitness is 5, the
same as the trivial solution (on the right) which is a vertex cover. This example also
shows how important it is that the multiplicator for the uncovered edges is greater
than 1. If we just added the number of uncovered edges to the number of vertices, the
solution on the left would have fitness equal to 4, but any subset with 4 vertices would
be a better, and valid, solution.

 At the same time, using this fitness function, we don’t discard a promising solution that
is only two mutations away from the minimum vertex cover (which uses only 3 vertices).

27Filiol, Eric, et al. “Combinatorial optimization of worm propagation on an unknown network.” International
Journal of Computer Science 2.2 (2007): 124-130.

28Gottlieb, Lee-Ad, Aryeh Kontorovich, and Robert Krauthgamer. “Efficient classification for metric data.” IEEE
Transactions on Information Theory 60.9 (2014): 5750-5759.
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Listing 18.13 shows an implementation of the fitness function for this method. The
caveat, with respect to the knapsack problem, is that we also need to pass an instance
of the graph to this method, because it’s needed in order to check which edges are
covered by the solution. In many languages, this can be obtained without changing
the template for the genetic algorithm (shown in listings 18.10 and 18.4) by currying
the fitness function and bounding it to an instance of the graph before passing it to
the genetic algorithm main method.

 JavaScript, for instance, is one of the languages that allows this: check out the
implementation provided with JsGraphs on GitHub.29

function vertexCoverFitness(graph, chromosome) 
  fitness ← 0      
  for gene in chromosome do   
    if gene == 1 then                                
      fitness ← fitness + 1                            
  for edge in graph.edges do 
    if chromosome[edge.source] == 0 
      and chromosome[edge.destination] == 0 then 
        fitness ← fitness + 2
  return fitness  

Listing 18.13 Vertex cover: fitness function

29See https://github.com/mlarocca/jsgraphs/blob/master/src/graph/algo/genetic/vertex_cover.mjs.

fitness: 3  + 2*1 = 5 fitness: 5  + 2*0 = 5

Figure 18.21 Evaluating fitness of possible solutions. We combine the number of 
vertices with the number of edges not covered, to avoid discarding promising solutions 
which are not valid vertex covers, like the one on the left.

Method vertexCoverFitness takes a chromosome (a 
bit string) and returns the fitness value associated with 
the solution it’s encoding.

Initializes 
the fitness 
value to 0

Cycles through all genes (all 
bits) in the chromosome

If a gene is set to 1, it 
means we are using that 
vertex in the solution, so we 
have to account for it in the 
cost. Remember, the goal is 
minimizing the number of 
vertices used, while providing 
a valid vertex cover.

Cycles 
through all 
edges in the 
graph If neither of the edge’s endpoints are included in the solution, this

edge is not covered (the solution in not a valid vertex cover). Rather
than discarding it, we can add a penalty term to the fitness value.

In this case, we add 2, but we could also pass the desired penalty as
an argument instead and make this method more flexible.

https://github.com/mlarocca/jsgraphs/blob/master/src/graph/algo/genetic/vertex_cover.mjs
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And that was almost all the new code we need to write a solver for vertex cover. There
is only a final word of caution.

 To be certain to return a valid vertex cover, we will need to sort the final popula-
tion by fitness and, starting from the one with the smallest fitness value, validate solu-
tions: we can return the first one in the sorted list that is also covering all edges.

18.4 Other applications of the genetic algorithm
There are countless problems, both on graphs and on generic data structures, that
can be formulated as optimization problems, for which a genetic algorithm could be
an effective way to get to a near-optimal solution in a reasonable time.

 We’ll briefly discuss two of them that are particularly relevant for their applica-
tions: finding the maximum flow of a graph, and protein folding.

18.4.1 Maximum flow

The maximum flow problem is defined on a specific type of directed graphs called
networks (see figure 18.22). A network N=(V,E) is a directed, weighted graph where
there are two special nodes s,t ϵ V: s is called the source, and t is called the sink of
the network. The peculiarity of these vertices is that the source only has outgoing
edges, while the sink only has ingoing edges.

 In networks, edges’ weights are called capacity. The exact characterization of edges’
capacity depends on the context. For instance, for a hydraulic network, edges model
pipes, and their weight is the maximum volume of liquid that can go through the pipe
at any time.

 A network is used to model the flow through its vertices, starting from a source and
arriving at a sink, where an edge’s flow is the actual amount (for instance, of water)
that goes through the edge. Each vertex v of the network has an inbound flow (for
instance, the total amount of water through its ingoing edges) that can be redistrib-
uted to its outgoing edges, with the caveat that the total outbound flow must be equal
to the inbound one. Referring to figure 18.22, showing an example of a network,
node D can have a maximum inbound flow (the sum of its ingoing edges’ capacity) of
5 units, and a maximum theoretical outbound flow of 6. Therefore, the real flow
through D can never be larger than 5, and that only happens when its inbound flow is
at max: if D at some point had an inbound flow of 4, because some of the flow from A
was diverted to E instead of D, its outbound flow would then be limited to 4. When the
maximum possible outbound flow is larger than the inbound flow, as in this case, it
means that we need to make a choice about how to route the outgoing flow, because
we can’t use the capacity of outgoing edges to the fullest. For instance, considering
that the max flow from F to the sink is 1, it makes more sense to route flow from D
toward vertex G, so that we maximize the total inbound flow of the sink t: this is also
the goal of the maximum flow problem.

 



666 CHAPTER 18 Genetic algorithms: Biologically inspired, fast-converging optimization

More formally, a flow for a network is defined as a mapping between edges and real
numbers, an assignment to each edge, such that:

 The flow of an edge is smaller or equal to the edge’s capacity.
 The total flow entering a vertex must be equal to the total flow exiting a vertex

(except for s and t, which by definition have respectively null inbound and null
outbound flows).

The value of the flow is defined as the sum of the flow exiting the source vertex s or,
equivalently, the sum of the flow entering the sink vertex t.

 A maximum flow for a network graph G is a valid flow whose value is the maximum
possible for G.

 Notice that a maximum flow problem is not NP-Hard, because there are several
polynomial-time algorithms that can solve it exactly. These algorithms, however, are
still at least O(|V|3), which makes them impractical for very large graphs; moreover,
there are some variants of this problem that are NP-complete.

 Now that the problem is clearly stated, how do we design a genetic algorithm for it?
 First and foremost, as always, we need to decide about the fitness function and

chromosome encoding. The latter is easy—we need one gene per edge, and each of
them can be assigned any value between 0 and the edge’s capacity.

 This encoding (shown in figure 18.23) automatically validates the first constraint
in the formal definition of flow, but it can’t do anything for the second one. We still
need to check each solution, because it will only be valid if the second constraint is
abided by.

We can do this in two ways: either we discard invalid flows (probably not a good
choice, for the same reasons as it wasn’t for vertex cover), or we add a term to the fit-
ness function accounting for this.
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1 2 Figure 18.22 An example of a 
network, whose maximum flow is 6.
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Figure 18.23 A solution (aka a chromosome) for the maximum flow of the network in figure 18.22. 
Is this a valid flow? Is it maximal?
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 For instance, we can compute the absolute value of the flow difference for all verti-
ces (except s and t), and divide the solution’s flow by the cumulative difference, if
that’s not zero.

 Crossover and mutations are easier. We can use single point recombination and a
punctiform mutation that randomly increases or decreases an edge’s flow by 1 (within
the edge’s capacity).

 If you’ve read through the chapter so far, you should have all the tools to not only
implement this algorithm, but also to design more sophisticated, and possibly better,
operators and try different definitions for the fitness function.

 Instead of delving into the implementation, therefore, I’d like to spend a few
words on why this is an important problem.

 There are several practical applications of maximum flow in the physical world; for
example, the scheduling of an airline’s flight crew, or even more interesting to us, the
circulation-demand problem. If you remember, our example e-commerce company was
looking for ways to maximize the trucks’ load and minimize the excess of capacity that
is needed to face peaks in demand; it turns out that we could write that problem as a
maximum flow problem!

 In the circulation-demand problem, in fact, we have a source of goods, for
instance, our warehouse, and a set of destinations where we need to deliver these
goods. There are, however, also constraints. One is that the maximum capacity of each
truck is an insurmountable limit, because we can’t overload them. And if we have sev-
eral warehouses/factories, the problem becomes even more challenging.

 But, besides these practical issues, maximum flow is a classic problem in computer
science and software engineering!

 A few examples of problems that can be modeled as maximum flow optimization are
image segmentation, scheduling, network connectivity, and compilers optimization.

18.4.2 Protein folding

In the last few chapters we have mostly discussed graph problems that can be solved
through optimization (meta)heuristics. Before wrapping up our review of GAs’ appli-
cations, I’d like to mention a different kind of problem, which is terribly important, as
we’ve learned in these difficult times.

 Proteins are large molecules, sequences of amino acids that are encoded in organ-
isms’ DNA and (once DNA is decoded by cells) produced by their cells to perform
many different functions within each organism: regulating the response to stimuli,
transporting simpler molecules within and across cells, catalyzing metabolic reactions,
even DNA replication itself, and many more—they are instrumental to the function-
ing of any organism.

 Among other things, the 3-D structure of surface proteins determines the ability of
viruses to tie to receptors and infect certain types of cells—something that recently
moved protein folding to the top of the list of the most pressing problems to solve.
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 Two proteins differ by their sequence of amino acids, which determines the 3-D
structure of the protein, which in turn determines the protein’s activity.

 Protein folding is the physical process by which a linear protein chain (aka polypep-
tide) acquires its native 3-D conformation.

 Now, the sequence of amino acids of a protein is determined by the DNA that
encodes it, and is relatively easier to find out experimentally. It is the protein’s 3-D
structure, however, that determines its functionality, and that’s much harder to deter-
mine in a lab (although new microimaging techniques are being developed).

 One of the earliest and most successful applications of genetic algorithms was
determining the most likely 3-D structure of proteins30 whose sequence of amino acids
was known. The idea is similar to what we discussed in chapters 16 and 17 for force-
directed graph drawing (another reason why that was an important topic!). We can
design a fitness function taking into account the attraction and repulsion forces
between peptides (sequences of amino acids), amino acids, and even down to their
atoms, and search for the 3-D configuration of minimal energy for the system.

 Genetic algorithms and artificial immune systems have been the heuristics of
choice for the protein folding problem. It’s worth noting that at the time of writing,
the current state of the art in this field is obtained by another biologically inspired
algorithm, neural networks.31

18.4.3 Beyond genetic algorithms

Genetic algorithms are just a branch of the larger field of evolutionary algorithms (EA), a
category including all generic population-based meta-heuristic optimization
algorithms.

 I couldn’t have chosen a better way to close this chapter, and the book, than with a
summary of the most interesting EAs in computer science’s literature. Consider it a
starting point to deepening your understanding of optimization algorithms.

 Memetic algorithm32 is a class of optimization meta-heuristics directly derived from
GA. Its peculiarity is that one or more of the mutation operators actually perform a
local-search heuristics, something like random sampling over the current solution’s
neighborhood, driving each individual toward a local optimum at each iteration (for
instance, trying to flip each bit in a chromosome individually, and retaining the best
result), and making this algorithm a hybrid between GA and random sampling, or
potentially even gradient descent. The key in either situation is leveraging additional
domain knowledge for the problem to perform the local optimization.

30Schulze-Kremer, Steffen. “Genetic algorithms and protein folding.” Protein Structure Prediction. Humana Press,
2000. 175-222.

31The AlphaFold project, developed by DeepMind: http://mng.bz/Qmm4.
32Moscato, Pablo. “On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic

algorithms.” Caltech concurrent computation program, C3P Report 826 (1989): 1989.

http://mng.bz/Qmm4
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 Artificial immune system33 (AIS) is a class of biologically inspired algorithms modeled
after the immune system and its ability to learn and retain memory, that extends the
work on genetic algorithms with operators like clonal selection, affinity maturation, and
negative selection.

 Particle swarm optimization,34 which is instead better used on numerical optimiza-
tion, uses flock dynamics to explore the cost function landscape. The mechanism is
similar to genetic algorithms, with a population (swarm) of solutions that is main-
tained and moved around, only not through genetic operators, but simpler rules
inspired by a mix of kinematics and biology.

 Ant colony optimization35 is a probabilistic technique inspired by the way ant colonies
use pheromone-based communication to form paths to food sources. It’s particularly
well suited for problems on graphs and specifically for those that can be reduced to
finding paths in a graph.

 And these examples are just the tip of the iceberg; there are plenty of evolutionary
algorithms inspired by different biological principles, so many that they deserve a
book of their own.

18.4.4 Algorithms, beyond this book

We are at the end of this book, but this is not the end of your algorithmic journey!
 First of all, if you enjoyed the topics in this book, here is a list of suggested readings

that can help you delve further into some of them:
 Grokking Machine Learning, by Andrew Trask, talks extensively about machine

learning and some of the training algorithms we have briefly described in chap-
ters 12, 13, and 16. If you’d like to learn how gradient descent is used in linear
regression and logistic regression, this book is a good starting point.

 Grokking Artificial Intelligence Algorithms, by Rishal Hurbans, delves into some of
the topics we summarized in this book, such as search and optimization and
evolutionary algorithms, and presents advanced concepts we have just men-
tioned, such as swarm intelligence.

 Graph-Powered Machine Learning, by Allesandro Nego, is a good choice if you’d
like to put what you’ve learned about graphs to good use and tackle machine
learning from a different angle.

 Graph Databases in Action, by Dave Bechberger and Josh Perryman, explores
another recent application of graphs. With this book, you’ll learn how graphs
allow a better modeling of relations in data and why graph databases are the
choice of election for highly-intercorrelated data.

33Kephart, Jeffrey O. “A biologically inspired immune system for computers.” In Proc. Of The Fourth International
Workshop On Synthesis And Simulation Of Living Systems, Artificial Life IV. 1994.

34Eberhart, Russell C., Yuhui Shi, and James Kennedy. Swarm Intelligence. Elsevier, 2001.
35Dorigo, Marco, and Luca Maria Gambardella. “Ant colony system: a cooperative learning approach to the trav-

eling salesman problem.” IEEE Transactions on evolutionary computation 1.1 (1997): 53-66.
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 Algorithms and Data Structures for Massive Datasets, by Dzejla Medjedovic et al.,
expands on the topics in this book, focusing on techniques to adapt data structures
and algorithms to massive datasets and handle modern big data applications.

And then, if you’d like to test your understanding of the data structures we have dis-
cussed, here is my challenge for you: implement these algorithms in your favorite lan-
guage, and add them to this repository36 I created on GitHub! You’ll find detailed
instructions on the repo’s README.37

 Good luck for the next steps in your learning path, and I hope you will enjoy the
coding challenge!

Summary
 As in populations dynamics, in a genetic algorithm the fitness of organisms is

measured, and the ones that best adapt to their environment have a greater
chance of surviving and passing their genome to the new generations.

 Crossover is a new concept, with respect to other optimization algorithms such as
simulated annealing that allow the algorithm to randomly recombine features
of several organisms.

 Mutation is the biological analogy to local-search optimization, just like the tran-
sition operators for simulated annealing.

 If in the cost function definition many variables are highly coupled, and chang-
ing one forces us to change one or more of the others, then the problem (as we
modeled it) has high epistasis.

 When there is a high interdependence between variables, simulated annealing
can perform better than genetic algorithms. It’s worth trying both on smaller
instances and deciding based on the actual data.

 Vertex cover is a problem with low epistasis where genetic algorithms shine. 

36See https://github.com/mlarocca/AlgorithmsAndDataStructuresReadersContributions.
37See http://mng.bz/1rjn.

http://mng.bz/1rjn
https://github.com/mlarocca/AlgorithmsAndDataStructuresReadersContributions
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appendix A
A quick guide

 to pseudo-code

For this book we decided to use pseudo-code to describe how algorithms work. This
decision was mainly motivated by two considerations:

 We wanted to make the book accessible to readers with all kind of backgrounds,
without being tied to a particular programming language or paradigm.

 By providing a generic description of the steps performed by the algorithm
and abstracting away low-level details, we can focus on the essence of the
algorithms without worrying about programming language quirks.

The whole point of pseudo-code should be to provide a generic, complete, and
easy-to-understand description of algorithms; hence, if it is done properly, there
should be no need to further explain it.

 At the same time, even pseudo-code uses arbitrary conventions and needs to be
consistent and well defined. Moreover, readers who are not familiar either with this
approach or with the notations or conventions chosen might initially need some
time to adjust and get up to speed.

 For this reason, we decided to add a short guide explaining the notation we are
going to use throughout the book. If you already feel comfortable with reading
pseudo-code, you can safely skip this appendix, or just refer to it when you feel you
need clarifications on notation.

A.1 Variables and basics
Like for every other programming language, the first fundamental step is being
able to save values and recover them: as you all know, while low-level languages like
Assembly uses registers as locations where you can park a value, higher-level lan-
guages introduced the concept of variables. 



672 APPENDIX A A quick guide to pseudo-code

 Variables are just named placeholders that can be created and to which values can
be assigned and later read.

 Some languages, the strongly typed ones, require each variable to accept only a
certain type of value (for example, integers or strings) for the whole life of a variable.
Other languages (loosely typed) will allow variables to hold any value without restrict-
ing them to a single type. The loosely typed approach also removes the need to
declare variables before assigning them: a variable will be automatically created when
it is first assigned (but note that using its value before assigning it will result in an
error, in all loosely typed languages).

 For pseudo-code, using a loosely typed approach is pretty natural; as mentioned,
we would like to abstract as much as possible from implementation details.

 Another open point for variables (and functions, and so on) is the naming conven-
tion used. This is not something that a programming language will force (usually),
but rather a convention that stems from the community and from guidelines.

 We will use camelCase for names, not for any technical reason or preference toward
one programming language, but just because it uses fewer characters than snake_case,
and that makes it easier to fit code on a book page.

 So, for instance, we will use doAction rather than do_action for a function name, and
something like RedBox for a class or object.

 There are a few basic operations on variables that are needed to interact with
them:

 Assigning to a variable—We use a left-pointing arrow; for instance, index ← 1

assigns the value 1 to a variable named “index.”
 Reading a variable value—We just use the variable name, and that becomes a

placeholder for the value held by the variable when that line of code is exe-
cuted: index ← size reads the value of the variable size and assigns it to index.

 Comparing values :
– We use two equal characters to compare two variables or values1 for equality:

index == size or index == 1 are two examples, the former comparing two
variables, and the latter comparing a variable and a value.

– To compare for inequality, we use either <> or !=: index <> size.

We adopt the standard operators for less than, greater than, and so on: index <=
size, for instance, evaluates to true if index is less than or equal than size. 

A.2 Arrays
Arrays can somewhat be considered a special case of variables, because you can
assign/read the whole array or just its single elements. If you are not familiar with
arrays and containers, check out appendix C.

1 In the general case, we can compare two expressions composing both variables and values.
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 In our pseudo-code we will abstract over the details of the implementation of the
arrays typical of individual programming languages. In particular, we will treat arrays
as dynamic, without the need to explicitly allocate room for the elements before
accessing them.

 Some programming languages provide natively this concept of dynamic arrays;
others provide something similar in their standard libraries, often with a data struc-
ture called vector.

 Arrays can also either have a homogenous type, meaning that all their elements
must have the same type, decided when the array is created, or can hold any value
independently on the type. This is usually connected to a programming language
being strongly or loosely typed.

 As mentioned in the previous section, we will abstract over variable types in this
book’s pseudocode, so the latter approach will be naturally assumed. However, for
most of our data structures we will only need arrays and containers that hold elements
of the same type, and unless it’s stated differently, you can safely assume this will be
the case: just be aware that handling arrays with heterogeneous types is possible, but
requires extra effort and care.

 As for the nomenclature, to access an array element we use square brackets, like
most programming languages do: A[i] denotes the value of the i-th element of array
A, and similarly, to assign a value to that element, we use the regular syntax we have
shown for variables, something like A[j] ← b (that assigns the value of the variable b
to the j-th element of array A).

 Whenever it’s not stated otherwise, we will assume arrays use 0-based indexing, so
the first element in array A will be A[0], the second one A[1], and so on.

 We will also, occasionally, have to perform certain operations on arrays (and con-
tainers in general). For example, we might need to find the maximum value in an
array of numbers, or the longest word in an array of strings, or the sum of values in a
numeric array.

 For these array-wide operations, we will use something closer to mathematical
notation, for the sake of synthesis. For instance, given an array A

 max{A} stands for the maximum value of A.
 sum{A} is the sum of all element of A.
 sum{x ∈ A | x > 0} is the sum of positive elements of A.
 A[i] ← i3 (∀ i ϵ {0..|A|-1} | i % 3 ==0) sets all elements of A whose indi-

ces are multiples of 3 to the cube of the index.

It goes without saying that depending on the programming language you choose,
there might not be a direct translation into a single instruction, and you will need to
use or write a helper method to perform the same operations.
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A.3 Conditional instructions
The next fundamental concepts we need in order to write a meaningful program are
conditional statements. Most programming languages implement conditionals with
an if-then-else construction, and we will use a similar syntax.

 For instance, to express a simple algorithm to compute the absolute value of a
number x and store it in another variable y, we will use the following syntax:

if x < 0 then
  y ← -x
else
  y ← x

Conditions are not surrounded by parentheses, and we don’t use curly braces for
blocks (see section A.4). Also, notice that keywords will be in a bold font.

 Sometimes, you won’t need an else clause, specifically whenever you need to take
action only if a condition is met and do nothing otherwise. For instance, figure A.1
shows an alternative version of the absolute value algorithm, assigning the absolute
value of x to x itself; this allows us to simplify the initial code as

if x < 0 then
  x ← -x

Figure A.1 Possible flowchart for an 
algorithm computing absolute value
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A.3.1 Else-if
At other times we need to decide between more than two branches. In that case, while
it is possible to implement the same logic using multiple nested if-then-else state-
ments, it would make the code cumbersome and mangled (because of the indentation).

 A more succinct approach uses the else-if variant, common in script languages
such as Python and Ruby.

 Here we decided to use the elsif keyword:

if x < 0 then
  y ← -1/x
elsif x > 0 then
  y ← 1/x
else
  y ← NaN

Incidentally, this code snippet computes the absolute value of the reciprocal of a num-
ber x, and NaN stands for “not a number,” that’s the best choice to express the fact that
1/0 is not defined.2

A.3.2 Switch
Many programming languages also offer a specialized instruction to be used when the
condition we check can assume several discrete values. Usually this instruction is
called switch and allows us to enumerate possible values that an expression can
assume and perform a different case branch for each one of them (plus a default
branch if the value doesn’t match any of the other cases):

switch x2 + y2

  case 0
    label ← “origin”
  case 1
    label ← “unit circle”
  default
    label ← “circle”

The code snippet evaluates the expression x2 + y2: each case statement corresponds
to a different branch executed when the expression evaluates to whatever follows the
keyword, so if x2 + y2 evaluates to 0, then the code after the first case is executed, and
the variable label is set to “origin”; similarly, if the value is 1, label is set to “unit
circle”. For any other value, the branch after the keyword default is executed and
the label is set to “circle”.

 We will use an extended version of this instruction, also allowing ranges to be spec-
ified in case statements:

2 Another less mathematically precise alternative could have been assigning inf (which stands for infinity) to
y, but since the sign of the limit depends on the direction we approach 0, neither +inf nor -inf would be
correct.



676 APPENDIX A A quick guide to pseudo-code

switch x2 + y2

  case 0
    label ← “origin”
  case [0,1]
    label ← “inside unit circle”
  case {1..10}
    label ← “multiple of unit circle”
  default
    label ← “outside unit circle”

In this code snippet, we use four different rule types for matching: 

 The first one matches exactly one value (0).
 The second one matches all numbers between 0 and 1 included.
 The third rule matches all integers between 1 and 10 included.
 The last one matches all values (by default).

Notice that rules are evaluated from top to bottom, and the first clause matching will
be selected, so, for instance, while the value 0 for x2 + y2 would match both the first
and second (and fourth!) clause, only the top-most one will match.

 Finally, we have shown examples evaluating numeric expressions, but we will allow
all kind of values (for instance, strings) to be switched on.

A.4 Loops
The other fundamental constructs that are needed to control the workflow are loops.

 Traditionally, programming languages provide at least two kinds of loops:

 for loops, where we iterate explicitly over some indices or the elements in a
container

 while loops, which are somewhat more generic, where a predicate is given and
the statements in the loop are executed until the predicate evaluates to true

There are several variations on both (for instance do-while, for-each, and repeat-
until), but all loops can always be implemented in terms of the basic while loop.

 We will use the for-each loop, and the basic while statement.
 For both, we can further control the execution using keywords continue (that will

force execution to skip to the next iteration in the loop) and break (that will force
execution to immediately exit the loop without checking its predicate).

 Providing a few examples should help to clarify this.

A.4.1 For loop
To exemplify the use of for loops, let’s see how to sum all elements in an array A.
There are at least three ways to do so.

 The first one iterates over the length of the array:

n ← length(A)
total ← 0
for i in {0..n-1} do
  total ← total + A[i]
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After the for keyword, we will specify the name of the variable (i) that will hold the
values on which we iterate; then we need the in keyword, and after that the (ordered)
list of values that i will assume (in this case, all integers from 0 to n-1 included).

 Since we only need the index i to access the current element in the array, we can
obtain the same result in a more succinct way by iterating over A’s elements directly:

total ← 0
for a in A do
  total ← total + a

Finally, as we have shown in a previous section, whenever possible we will also use a
mathematical notation instead of a for loop to be even more succinct, without hurt-
ing clarity:

total ← sum{A}

The last two options are, obviously, not always viable. For instance, if we need to write
complex expressions using more than one element of an array at a time, then we
might need to explicitly iterate over indices:

n ← length(A)
total ← A[0]
for i in {1..n-1} do
  total ← total + A[i] + A[i-1]2

A.4.2 While loop
As mentioned, while loops are intended to be more generic. As such, they can be
used to implement the same logic of for loops, included in the examples in the previ-
ous section. This is an equivalent for loop to compute the sum of the elements in an
array:

n ← length(A)
i ← 0
total ← 0
while i < n do
  total ← total + A[i]
  i ← i + 1

Clearly the for-each syntax is a way to express the same logic with less code (and also,
as importantly, it encapsulates the logic of iterating through indices, making it less error-
prone than the while loop, where we have to initialize and increment i explicitly).

 With while loops, however, we can also write conditions that would be hard or
impossible to express using for statements:

while not eof(file) do
  x ← read(file)
  total ← total + x
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The code snippet abstracts the process of reading integers from a file and summing
them, until we reach the end of the file (eof).

 For a more concrete example, consider the algorithm to compute the greatest com-
mon divisor (GCD) of two integers, a and b:

while a <> b do
  if a > b then
    a ← a – b
  else 
    b ← b - a

At the end of the loop, variable a will hold the GCD of a and b.
 As you can see, both examples need to evaluate a predicate that is clearly harder to

express with a for-each loop.

A.4.3 Break and continue
Sometimes you need to check multiple conditions or react to conditions that can only
be evaluated inside the body of the loops. To cope with that, we can use break and
continue. For instance, to refine the example summing numbers in a file, we might
decide that we skip odd numbers and use 0 as a marker, which means that we stop
summing numbers as soon as we read a 0:

while not eof(file) do
  x ← read(file)
  if x % 2 == 1 then
    continue
  elsif x == 0 then
    break
  total ← total + x

Whenever the next number read from the file is odd, then we skip to the next itera-
tion of the loop (meaning we will again check the predicate, and find out if we are at
the end of the file).

 If, instead, the number is 0, we will exit the loop before incrementing our total.
 Both keywords can also be used inside for loops.

A.5 Blocks and indent
So far, in most of our examples, loops and each branch of our conditionals consisted
of exactly one instruction, and this made syntax particularly simple. However, that’s
not the case in general, and each branch of the if-then-else statement can execute
an arbitrary number of instructions. To avoid ambiguity, we need to be able to group
instructions into blocks. 

 In its simplest definition, a block of instructions is a sequence of instructions that is
executed sequentially from top to bottom.

 As always, different programming languages have different ways to specify blocks:
some of them use curly braces to mark the beginning and ending of a block (for
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instance, C, Java, and so on), some use explicitly the begin and end keywords (for
instance, Pascal), and others use indentation (Python).

 Moreover, blocks can carry extra meaning in some programming languages, spe-
cifically if block-scope is used; then local variables defined inside a block can only be
accessed inside that same block of code (including any nested block).

 To simplify things, as mentioned, we won’t bother with declaring variables, and we
will instead assume function-scope, so variables can be accessed everywhere inside a
function (see the following code snippet). We will also assume lexical scope (aka static
scope), so the life of variables ends when a function execution is completed, and there
will be no support for closures.

 Finally, blocks will be defined by indentation only. You can see the previous exam-
ples are already indented, but the following example should clarify this even further:

for i in {0..n-1} do
  k ← i * 2
  j ← i * 2 + 1
  if i % 2 == 0 then 
    A[k] ← 1
    A[j] ← 0
  else
    A[k] ← 0
    A[j] ← 1
A[2*n-1] ← 0

The for loop executes n times the eight lines below it (all but the very last line in the
snippet) and each branch of the if statement has two instructions (that can be recog-
nized because they are further indented).

 The line containing A[2*n-1] ← 0 does not have any indentation (it’s at the same
level of indentation of the first line) and that shows it is the next instruction to be exe-
cuted after the for loop ends

A.6 Functions
To group and reuse code, we will use functions. A function defines a block of code
where local variables are in scope. It also has a signature declaring its name and the
arguments it expects: the variables that are the input to the function. Finally, a func-
tion also returns a value that is effectively the function’s output.

 Breaking code into functions allows writing reusable code that can be more easily
understood and unit-tested, because (ideally) every function can (and should) only
implement a single responsibility (or a single action/algorithm, if you prefer).

 Take, for instance, the code in section A.4.2 that computes the GCD of two num-
bers. We can easily refactor it into a function:

function gcd(a, b)
  while a <> b do
    if a > b then
      a ← a – b
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    else 
      b ← b – a
  return a

Notice, among other things, how it is now immediately clear where the final result is
stored—the best part is, the caller doesn’t even have to worry about it, because the
function takes care of returning the right value. Moreover, variables a and b only exist
inside function gcd, and therefore anything happening inside the body of this func-
tion won’t influence the rest of the code.

A.6.1 Overloading and default arguments
A function’s arguments can have default values: 

function f(a, b=2)
  return a * b2

For instance, a binary function f that has a default value for the second argument
could be called with either two arguments, something like f(5,3), or just one. In that
case, for example, f(5) is the same as calling f(5,2).

 Default arguments allow a compact syntax for overloading functions and methods.
 Because we are using a loosely-typed approach, this is the only kind of overloading

we need or can even perform (while in strongly-typed languages like C++ or Java, we
would need to overload functions for which an argument can be an integer or a string
or . . . ).

A.6.2 Tuples
Sometimes we need functions to return more than one value. To make things easy for
us, we assume that functions can return tuples.

 A tuple is similar to an array, although slightly different:

 It’s a list of values with a fixed length (while arrays can grow or shrink).
 Its elements can have any type, and tuples can hold different types at the same

time.

Tuples are denoted using parentheses: (1,2) is a tuple of length two (aka a pair)
whose elements are numbers with values 1 and 2.

 We can assign tuples of values to tuples of variables:

(x, y, z) ← (0, -1, 0.5)

is equivalent to

x ← 0
y ← -1
z ← 0.5

Likewise, we can write (name, age) ← (“Marc”, 20).
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 This syntax can be extremely useful to implement functions returning multiple val-
ues. Suppose we have written a function min_max returning both the max and min values
in an array; then we can assume it returns a pair of values and call it like this:

(a_min, a_max) ← min_max(A)

A.6.3 Tuples and destructuring objects
It is a good practice to avoid unnamed tuples, because the meaning of a field is not
immediately apparent and is only determined by the position inside the tuple; there-
fore, objects are to be preferred (for instance, an object with a min and max field
would be clearer in the example in the previous sub-section).

 Tuples, however, provide a viable and synthetic alternative whenever the meaning
of the fields is clear enough. To exploit this even further, we use a particular notation
to assign all or part of the fields of an object to a tuple. Assume we have an object
Employee with fields name, surname, age, address, and so on.

 If empl is an instance of employee, we use the following syntax to extract any subset
of fields from empl into aliases:3

(name, surname, age) ← empl

Of course, in this example, we extract only three fields.
 This syntax is particularly convenient in combination with for-each loops,

because we can iterate through a collection of employees and directly access aliases to
the fields we need, without having to redundantly write something like empl.name
each time we access a field of the empl object. Here is a comparative example to make
the difference clear:

for empl in employees do
  user ← empl.surname + empl.age

 
for (surname, age) in employees do
  user ← surname + age

3 An alias is just another name for a variable: it can be implemented by creating a new variable or just a reference
to the original one.
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appendix B
Big-O notation

In this appendix, we provide a refresher about the RAM model and the renowned
big-O mathematical notation, showing you it’s not as bad as you might have heard.
Don’t worry; to go through the book you’ll only need a high-level understanding,
just the bare minimum to apply it in the algorithm analysis.

B.1 Algorithms and performance
Describing the performance of an algorithm is not a trivial exercise. You might be
used to describing the performance of your code in term of benchmarks, and that
might seem straightforward, but if you start thinking about how to describe it effec-
tively, so that your findings can be shared and be meaningful to others, then it
raises more issues than you initially thought of.

 For example, what does performance even mean? It usually implies some kind
of measure, so what will it be?

 Your first answer might be that you measure the time interval needed to run the
algorithm on a certain input. A step further might even be realizing that you might
need to average over several inputs, and several runs on the same input, to account
for external factors. This would still be a noisy measurement, especially with mod-
ern multicore architectures. It’s going to be hard to sandbox your experiments,
and both the operating system and background processes will influence the result.

 But this is not even the worst part. This result will be largely influenced by the
hardware you are running your experiments on, so it won’t have any meaning as an
absolute number. You might try to run a benchmark test and compare your algo-
rithm performance to some other known algorithm. Sometimes this technique
produces meaningful results, but it doesn’t seem like the way to go, because there
would still be too many variables to take into consideration, from the hardware and
operating system it’s running on to the type and size of input used in your tests.
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 Continuing in your reasoning, you can think about counting the instructions that
are run. This is probably a good indicator of how much time will be needed to run the
whole algorithm, and sufficiently generalizable, right?

 Well . . . not quite.

1 Will you count machine instructions? If so, it will not be platform-agnostic.
2 If, instead, you count high-level instructions only, it will heavily depend on the

programming language you choose. Scala or Nim can be much more succinct
than Java, Pascal, or COBOL.

3 What can be considered an improvement? Is it relevant if your algorithm runs
99 instructions instead of 101?

We could keep going, but you should get the gist by now. The issue here is that we
were focusing too much on details that have little importance. The key to get out of
this impasse is to abstract out these details: this was obtained by defining a simplified
computational model, the RAM model. The latter is a set of basic operations working
on an internal random access memory.

B.2 The RAM model
Under the RAM model, a few assumptions hold:

 Each basic operation (arithmetic operations, if, or function call) takes exactly
a single one-time step (henceforth just referred to as step).

 Loops and subroutines are not considered simple operations. Instead, they are
the composition of many one-time-step operations and consume resources pro-
portional to the number of times they run.

 Each memory access takes exactly one step.
 Memory is considered infinite.

The last point might seem a bit unrealistic, but notice that in this model we make no
distinction between accesses to actual cache, RAM, hard drive, or data-center storage.
In other words

 For most real-world applications, we can imagine providing the memory
needed.

 With this assumption, we can abstract away the details of the memory imple-
mentation and focus on the logic.

Under the RAM model, the performance of an algorithm is measured as the number
of steps it takes on a given input.

 These simplifications allow us to abstract out the details of the platform. For some
problems or some variants, we might be interested in bringing some details back. For
instance, we can distinguish cache accesses from disk accesses. But in general, this
generalization serves us well.

 Now that we’ve established the model we’ll use, let’s discuss what we’ll consider to
be relevant improvement of an algorithm.
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B.3 Order of magnitude
The other aspect we still need to simplify is the way we count instructions. We might
decide to count only some kinds of operations like memory accesses. Or, when analyz-
ing sorting algorithms, we can only take into account the number of element swaps.

 Also, as suggested, small variations in the number of steps executed are hardly
relevant. Rather, we could reason on order of magnitude changes: 2x, 10x, 100x, and
so on.

 But to really understand when an algorithm performs better than another one on
a given problem instance, we need another epiphany: we need to express the number
of steps performed as a function of the problem size.

 Suppose we are comparing two sorting algorithms, and we state that “on a given
test set, the first algorithm takes 100 steps to get to the solution while the second one
takes 10.” Does that really help us predict the performance of either algorithm on
another problem instance?

 Conversely, if we can prove that on an array with n elements, algorithm A needs
n * n element swaps, while algorithm B only takes n, then we have a very good way to
predict how each of them will perform on input of any size.

 This is where big-O notation kicks in. But first, take a look at figure B.1 to get an
idea of how the running times for these two algorithms would compare. This chart
should make you realize why we would like to stick with algorithm B. 1

1 In this context, and for the rest of the book, ~= means “approximately equal to.”

Figure B.1 Visual comparison of the running time of a quadratic algorithm (A) and a linear algorithm 
(B). The former grows so much faster that, although the y axes shows up to 10 times the max value 
reached by algorithm B, it only manages to show the plot for algorithm A (the curvy line) up to1 n~=30.
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B.4 Notation
Big-O notation is a mathematical symbolization used to describe how certain quanti-
ties grow with the size of an input. Usually it takes the form of a capital o, enclosing an
expression within parentheses: something like O(f(n)), hence the name big-O. f(n)
here can be any function with input n; we only consider functions on integers,
because n usually describes the size of some input.

 We are not going to describe big-O notation in detail here; it’s way out of our
scope. But there are many textbooks available with in-depth dissertations on the topic.

 The main concept you need to remember is that the notation O(f(n)) expresses a
bound.

 Mathematically, saying g(n) = O(f(n)) means that for any large enough input,
there is a real value constant c (whose value does not depend on n), such that g(n) 
c * f(n) for every possible value of n (possibly larger than a certain value n0).

 For instance, if f(n) = n and g(n) = 40 + 3*n, we can choose c = 4 and n0 = 40. 
 Figure B.2 shows how these three functions grow with respect to each other. While

f(n) is always smaller than g(n), c*f(n) becomes larger than g(n) at some point. To
better understand the turning point, we can evaluate the two formulas by substituting
actual values for their parameter n. We use the following notation f(1) -> 1 to assert
that f(1) evaluates to 1 (in other words, the result of calling f(1) is equal to 1).

 For n lower than 40, g(n) will be larger. For n = 30, f(30) -> 120 and g(n) ->
130. Instead, we know that f(40) -> 160 and g(40) -> 160, f(41) -> 164 while
g(41) -> 163. For any value greater than 41, 40 + 3 *n <= 4 * n.

Figure B.2 Visual comparison of functions: f(n)=n, g(n) = 40 + 3*n, 4*f(n). While f(n) is 
always smaller than g(n), 4*f(n) becomes larger than g(n) for sufficiently large values of n.
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But don’t forget that the condition g(n)  c * f(n) must hold true for every
n  n0. We can’t rigorously prove that by plotting a chart or plugging in (a finite num-
ber of) values for n in the formula (see figure B.3 for a counter-example), but we
would need to resort to some algebra; nevertheless, plotting the functions can help
you get an idea of how they grow and whether you are going in the right direction.

Moving back to our example, if we say that algorithm A is O(n2), it means that T(n) =
O(n2), where T(n) is the running time of the algorithm. Or, in other words, algorithm
A will never require more than a quadratic number of steps.

 The definition for O(n) has some consequences:

 “For any large enough input.” This is a crucial piece. We are interested in how
our functions behave when n gets (very) large and we don’t care if for small val-
ues of n the inequalities don’t hold. Think, for example, of the functions f(x)
= ex and g(x) = e * x. f(x) < g(x) when x is smaller than 1, but for larger
values, f(x) grows much faster.

 Constant factors don’t matter: O(n) = O(3 * n) = O(100 * n). You can prove
this by choosing the right values for the constant in the previous inequality.

 Some problems require constant time: think about summing the first n inte-
gers. With the naïve algorithm, you would need n-1 sums, but with Gauss’
method, you only need one sum, one multiplication and one division, indepen-
dent of the output.

To sum this up using a formula, we can write O(c) = O(1) for any positive
constant c. 

Figure B.3 An example showing why we need to be careful when drawing conclusions. While g(n) is 
larger than f(n) at n0~=112, this doesn’t hold true for any value of n >n0. In fact, at n1~=887, we 
have another intersection between the two functions, and after that point f(n) again becomes larger 
than g(n).
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O(1) denotes a constant running time: in other words, one that does not
depend on the input size. 

 When summing big-O expressions, the biggest wins: O(f(n) + g(n)) = O(f(n))
if g(n) = O(f(n)). So, if two algorithms are run in sequence, the total running
time is dominated by the slowest.

 O(f(n) * g(n)) can’t be simplified unless either function is constant.

NOTE Often when we give an algorithm running time using big-O notation,
we imply that the bound is both lower and upper—unless we explicitly say
otherwise. Nevertheless, Θ(f(n)) would be the correct notation for the class
of functions whose upper and lower bound is f(n).

Now we have all the tools we need to unequivocally describe algorithms’ performance.
You will see this notation in action a lot in the remaining sections of this appendix.

B.5 Examples
If it’s the first time you have seen big-O notation, it’s perfectly normal to feel slightly
confused. It takes some time and lots of practice to get used to it.

 Let’s see a few examples and try to apply what we described in the previous section
in mathematical terms.

 Suppose you have 4 numbers you’d like to sum: {1, 3, -1.4, 7}. How many addi-
tions will you need? Let’s see:

1 + 3 + (-1.4) + 7

It looks like you can do with three additions. What about if we have to sum 10 num-
bers? You can easily verify that we need nine. Can we generalize this number of opera-
tions for any size of the input? Yes, we can, as it’s easy to prove that we always need n-1
additions to sum up n numbers.

 So, we can say that summing up the elements of a list of n numbers (asymptoti-
cally) requires O(n) operations. If we denote with T(n) the number of operations
needed, we can say that T(n) = O(n).

 Let’s consider two slight variations:

 We sum the first five elements of a list twice, and the other elements once.
 We sum the squares of the elements.

In the first case, if our list is {1, 3, -1.4, 7, 4, 1, 2}, we have

1 + 3 + (-1.4) + 7 + 4 + 1 + 2 + 1 + 3 + (-1.4) + 7 + 4

You can see the repeated elements underlined in this formula. So, for n=7, we need 11
operations.

 In general, we will need n+4 operations, and T1(n) = n+4.
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 Is it true that T1(n) = O(n)? Let’s go back to our definition. We need to find two
constants, an integer n0 and a real number c, such that

T1(n)  c * n for each n > n0 ⇔
n + 4  c * n for each n > n0 ⇔
c  1 + 4/n for each n > n0 

Since 4/n decreases when n grows, we can choose c=2 and n0=4, or, say, c=100 and
n0=1, and the inequality will be satisfied.

 The same is true if we consider summing squares: for n numbers, we will need n
multiplications (or squarings) and n-1 sums, so T2(n) = 2n-1.

 We can prove that T2(n) = O(n) by choosing c=2.5 and n0=1.
 Now, we could also say that T1(n) = O(n2). We leave it as an exercise for you to find

appropriate values for c and n0. However, this bound would not be strict: in other
words, there exist other functions of n such that T1(n)  f(n) < O(n2) for n large
enough.

 Likewise, we could also say that T1(n) = O(n1000). That would certainly be true, but
how helpful would it be knowing that our algorithm takes less than the age of the uni-
verse on a small input?2

 As you might suspect, we are usually interested in strict bounds. While this is true
and expected, and for our summation examples it seems trivial to prove that the O(n)
bound is strict, you might be surprised to learn that there are some algorithms for
which we don’t know what the stricter bound is, or at least we can’t prove it.

 As a final example, let’s consider the task of enumerating all the couples of num-
bers in a list, regardless of their order. For instance, given the list {1, 2, 3}, we have
the pairs (1,2), (1,3), (3,2).

 It turns out that the number of unordered pairs for n elements is T3(n) = n * (n-1) / 2:

T3(n) = n * (n-1) / 2  1*n2 for n > 1

Thus we can say T3(n) = O(n2). This time, the quadratic bound is also a strict bound,
as shown in figure B.4.

2 This might be useful if we need to prove that an algorithm will actually run in finite time. But with real-world
applications, it’s usually of little practical use.
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Figure B.4 Visual comparison of functions: f(n)=n*(n-1), g(n) = n2. The latter is always larger 
for any positive value of n.
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appendix C
Core data structures

You can’t build a house from the roof down. Likewise, you can’t build knowledge of
advanced data structures if you don’t master the basics first.

 In this appendix, we provide an overview of core data structures and present
some of the most widely used algorithms. 

 It starts with a refresher of the most basic data structures: arrays, linked lists, trees,
and hash tables. We do expect readers to already be familiar with them; after all,
these structures are the building blocks of the most advanced ones. But we’ll pro-
vide a quick overview, just for your convenience.

 In the last section, we briefly compare these data structures. For each of them,
we will look at key features (like if they support ordering, and if they are static or
dynamic) and sum them up in a table. This will help us decide, for each problem we
might run into, which one of them would be more appropriate to support us in
solving the problem.

C.1 Core data structures
Data structures (DSs) are one of the foundations of programming and have been
progressively introduced since the very dawn of computer science.

 In this section, we are going to explore the most basic ways to organize data
items in memory so that those items can later be retrieved according to specific cri-
teria. The nature of those criteria, together with the way storage is used and the
performance of the basic operations (adding, removing, and searching elements)
are what determine the characteristics of a data structure.

 These core DSs are the building blocks for the implementations of countless
advanced DSs.
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C.2 Array
This is one of the simplest and yet most used data structures. It’s provided natively by
most programming languages: an array is a collection of homogeneous data. At a low
level it is, roughly, a chunk of memory where elements are stored contiguously. Many
programming languages only provide static arrays. Their sizes can’t change and the
number of elements they store needs to be decided when they are created (or at least
at initialization). Dynamic arrays, however, can grow when new elements are added and
shrink when elements are removed. Figure C.1 provides an example of how this
works. It’s not too hard to find dynamic arrays in mainstream languages: JavaScript
arrays are intrinsically dynamic.

NOTE It can be proven that it’s possible to implement dynamic arrays in such
a way that, on aggregate,1 insertion and removal are as fast as for static arrays.

Elements in arrays must all have the same type and require the same space to be stored.2

When this specification is met, it makes it easier to move from one element to the next
one by just adding to the former’s memory address the size of array’s elements. 

NOTE Because they are allocated in a single block of memory, arrays are
more likely to show the so-called locality of reference. When traversing an
array, for example, data in the same page of memory is likely to be accessed in
a short window of time. This can lead to several optimizations (see the origi-
nal article3 about the principle of locality).

1 In big-O analysis, aggregate running time refers to the expected performance over a big enough number of
operations. For instance, if we toss a (fair) coin once, we don’t know if it’s going to be heads or tails. If we toss
it twice, it’s possible that we get tails once and heads once, but it’s far from being certain. If we repeat the exper-
iment a million times, and the coin is fair and we don’t do any tricks with it, then we will get heads and tails
(very) close to 50% of the times. Likewise, for some algorithms, a single operation can take longer than
expected, but if we run it on a high volume of data, the average running time will be predictable.

2 At least in theory, low-level implementation may vary between different programming languages. 
3 Peter J. Denning, Stuart C. Schwartz, “Properties of the Working-Set Model,” Communications of the ACM,

Volume 15, Issue 3 (March 1972), pages 191-198.
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A0 A1 A0 A1 A0 A1 A2 A3

1 7

1 7 51 1 7

insert(7) insert(5)

insert(7) insert(5)

Static Array

Dynamic Array

Full array gets resized
on insertion

Figure C.1 An example of insertion 
into static (top) and dynamic arrays 
(bottom). Notice how the size of the 
static array in the upper half is constant 
(it always has three elements), while 
the dynamic array in the other half 
starts with size 2, its size is only 
increased (doubled, actually) when an 
element is added to a full array. In this 
example, the static array could not 
have any other element inserted unless 
we override another one.
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The key advantage of arrays is that they have con-
stant time access for all elements. It would be more
accurate to say that every position in an array can be
accessed in constant time. It’s possible to retrieve or
store the first element, or the last, or any intermedi-
ate element as long as its position is known. See fig-
ure C.2 as a reference.

 While random access is one of the strengths of
arrays, other operations are slower for them. As
mentioned, you can’t resize an array by just adding
or removing an element at its tail. Every time such
an operation is needed, you have to reallocate the
array, unless you are using a dynamic array. In that
case, you have to initially allocate a larger chunk of
memory, keep track of the number of elements, and
amortize the overhead for resizing on a larger num-
ber of operations.

 As we’ll see in the next section, lists can be optimal for insertions and deletions
while they are slower for random access.

C.3 Linked List
A linked list stores a sequence of items by wrapping
each item in an object, called a node. 

 As shown in figure C.3, each node holds a value
and either one or two links (references) to other
nodes.

 A value can be a simple type, like a number, or a
complex type, such as a string or an object. The
order of the elements is determined exclusively by
the list’s links. Nodes don’t need to be allocated con-
tiguously and therefore lists are dynamic by nature.
So, they can grow or shrink as needed.

 More formally, a list can be defined recursively
(see figure C.4). It can be either

 An empty list
 A node containing a value and a reference to

a linked list

 
 
 
 

1
A0

7
A1

5
A2 A3

A[2]

0

Figure C.2 Retrieving the third 
element of an array. If the array is 
stored in a variable named A, then 
A[2] refers to the third element 
of the array. This is because on 
computers, both memory addresses 
and the indices of array elements 
start from 0.

1 57
Pointers to next element

Pointer to the list
null pointer

Figure C.3 The graphic represen-
tation of a linked list. Here each 
element holds a pointer (aka 
reference or link) to the next node 
in the list. The reference to the first 
node is held by a special pointer, 
the head of the list. To go through 
the whole list, we need to follow 
the head pointer, and then traverse 
the list node by node.
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Figure C.5 exemplifies another key feature of lists that can be either

 Singly linked—Every node has only a link (aka pointer or reference) to the next
element.

 Doubly linked—Two links per node are stored: a link to the next element and
one to the previous element.

As mentioned before, the choice between singly and doubly linked is a trade-off. The
former requires less space per node, and the latter allows for faster algorithms to
delete an element, but needs a small overhead to keep the pointers updated.

 In order to keep track of a linked list, the head of the list must be stored in a vari-
able. When adding or removing elements from the list, we need to take extra care to
update that reference to the head of the list as well: if we don’t perform the update, it
might end up pointing to an internal node, or even worse, to an invalid location.

 Insertion in lists can happen

 At the beginning—That’s the easiest place to add a node in constant time. Figure
C.6 shows, in fact, that we only need to update the head reference with a new
node and update the links for this new node and the old head (unless the list
was empty).

 
 

Figure C.4 Inductive definition of a list. The middle column uses a formal notation for the list, while the 
right column shows the graphical representation of the same list. In the formal representation, the recursive 
nature is more explicit, because it is indeed a recursive notation. The empty list is assumed as a primitive, 
a building block, and each non-empty list is recursively defined as its first element followed by its tail, a 
shorter, possibly empty list of the remaining elements.

Singleton a::[] a

Empty List []

2 elements a::(b::[]) ba
n elements a::(b::(c::...(x::[]))) ba

Pointers to next element Pointers to previous element

Pointers to next element
Singly linked list Doubly linked list

1 571 57
Figure C.5 Singly linked (left) 
versus doubly linked lists (right).
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 At the end—This is not a very practical solution, because we would need to tra-
verse the whole list to find the last node; check figure C.7 to see why. We could
think about keeping an extra pointer for the tail of the list, but this would cause
an overhead because every method that changes the list would need to check if
that reference needs to be updated.

 In any other position—This is useful when keeping the list ordered. However, it’s
also expensive, requiring linear time in the worst case, as shown in figure C.8.

Similarly, we can double down on the same reasoning for node removal:

 From the beginning—It can be done in constant time by updating the head refer-
ence to the old head’s successor (after checking that the list isn’t empty). And
we should make sure that the removed node is deallocated or made available
for garbage collection.

 From the end—We need to find the second-to-last node and update its pointer to
the next node. For a doubly linked list, we just get to the end of the list and
then take its predecessor. For singly linked lists, we need to keep a reference

1 57

1 57
3

1 57
3

1 573

(A) (C)

(B)
(D)

X
Figure C.6 Insertion at the 
beginning of a linked list. (A) The 
original list. (B) Create a new node, 
whose next pointer is set to the 
previous head. (C) Correct the head 
pointer. (D) Final result.

P

P

P

1 57

1 57

1 57
3

7 351

(A) (C)

(B)
(D)

X
Figure C.7 Insertion at the end of a 
linked list. (A) The original list. (B) 
Walk the linked list until the last 
element: let’s call it P. (C) Create a 
new node and update the next 
pointer for P. (D) Final result.
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Figure C.8 Insertion in a linked list in any position. In this example, we show insertion on 
a sorted linked list (but sorting is not a requirement). (A) The original list. (B) Walk the 
linked list until we find the predecessor of the position where we want to insert the new 
element (being a singly linked list, we need to maintain a pointer to the predecessor 
during this search). Let’s denote this predecessor with P. (C) Create a new node N, and 
update the next pointer for P. At the same time, set N.next to P.next. (D) Final result.
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both to the current node and to its predecessor while we traverse the list. This is
a linear-time operation.

 From any other position—Same considerations as for insertions, plus the concern
about keeping a reference to the second-to-last element in the list.

Linked lists are recursive data structures. This stems out of their recursive definition,
and it means that problems on lists can be reasoned about by induction. You can try to
provide a solution for the base case (the empty list) as well as a way to combine some
actions on the head of the list with solutions for its tail (which is a smaller list). For
instance, if you have to develop an algorithm to search the max of a list of numbers,
you can do the following:

 If the list is empty, return null.
 If the list has at least one element, take the list’s head (call it x) and apply the

algorithm to the list with the remaining N - 1 elements obtaining a value y.
Then the result is
– x if y is null or x >= y
– y otherwise.

C.4 Tree
Trees are another widely used abstract data type that provides a hierarchical structure, like
lists, but in a branched shape. They can indeed be seen as a generalization of linked lists:
each node has still a single predecessor, called its parent, but can have more than a single
successor, here denoted as its children. Each tree node’s child is itself a subtree (either
empty or including a root and its subtrees).

 A generic tree is illustrated in figure C.9, but
a tree can also be formally defined as either

 An empty tree.
 A node with one or more references to its

children, and (optionally) a reference to
its parent

Each tree node, like list’s nodes, contains a value.
Moreover, a node holds a list of references to
other nodes, its children. There is a constraint:
in a tree, each node is the child of just a single
other node, except for the root, which has no
parent (so no node in a tree points to its root).
Therefore, we’ll need to keep a reference (using
a variable) to the root of the tree. This is the
same as a singly linked list where the head of the
list is not linked by other nodes. Moreover, trees
define a “vertical” hierarchy, a parent-children

Root

Parent/child pair

Leaves

52 4

7 3 8

9

1
Links to children

Siblings
0

Figure C.9 An example of a tree. The 
top-to-bottom arrows represent the links 
between a node and its children; these 
arrows are always directed from parent 
to children. Every node has one and only 
one parent. Nodes that share the same 
parent are called siblings. There is no 
explicit link between siblings, but a 
node’s siblings can only be reached 
through their common parent. Nodes 
with no children are called leaves.
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relation, while there can be no relation between sibling nodes or between nodes in
different subtrees.

 Before moving on, let’s review the terminology used when dealing with trees:

 If a node x has two children y and z, x is the parent of these nodes. So, the fol-
lowing is true: parent(y) == parent(z) == x. In figure C.9, the node labeled
1 is the parent of the nodes labeled 4, 5, and 2.

 Being x, y, and z as defined here, y and z are called siblings.
 The root of a tree is the one and only node in a tree that has no parent.
 An ancestor of a node x is any node in the path from the tree’s root to x. In other

words, either parent(x), parent(parent(x)), and so on. In figure C.9, 2 is an
ancestor of 7, 3, 0, and 9.

 A leaf is any node that has no children. Another way to express this is that for a
leaf, all the node’s children are empty subtrees.

 A fundamental characteristic of a tree is its height, defined as the length of the
longest path from the root to a leaf. The height of the tree in figure C.9 is 3
because the longest path is 1->2->3->0 (or equivalently 1->2->3->9), and it tra-
verses three parent-child links.

In the next section, we will focus on introducing binary search trees.

C.4.1 Binary search trees
A binary tree is a tree where the number of children for any node is at most 2, meaning
that each node can have either 0, 1, or 2 children.

 A binary search tree (BST) is a binary tree where each node has a key associated with
it, and satisfies two conditions: if key(x) is the key associated with a node x, then

 key(x) > key(y) for every node y in the left subtree of x. 
 key(x) < key(z) for every node z in the right subtree of x.

A node’s key can also be its value, but in general, BST’s nodes can store a key and a
value, or any additional data, independently.

 Let’s continue with a few more definitions:

 A balanced tree is a tree where for each node, the height of its left and right sub-
trees differs at most by 1, and both its left and right subtrees are balanced.

 A tree is a complete tree if it has height H and every leaf node is either at level H or
H-1.

 A perfectly balanced tree is a balanced tree in which, for each internal node, the
heights of its left and right subtrees are the same.

 A perfectly balanced tree is also complete.

DEFINITIONS There are two definitions for tree balancedness: height-balancedness,
which is the one used in the definitions provided, and weight-balancedness. They
are independent characteristics of a tree, as neither of them implies the other.
Both could lead to similar results, but the former is normally used, and we’ll just
refer to it in the rest of this book when we talk about balanced trees.
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Binary search trees are recursive structures. Each BST, in fact, can be either

 An empty tree
 A node with a key and a left and right subtree

This recursive nature allows for intuitive recursive algorithms for all the basic opera-
tions on BSTs.

 Binary search trees offer a compromise between the flexibility and performance of
insertions in a linked list and the efficiency of search in an ordered array. All the basic oper-
ations (insert, delete, search, minimum and maximum, successor and predecessor)
require examining a number of nodes proportional to the height of the tree.

 Therefore, the shorter we manage to keep the height of a tree, the better perfor-
mance on those operations will be.

BSTs are not balanced by nature: on the contrary, for the same set of elements, their
shape and height can vary greatly depending on the sequence of insertions for those
elements (see figure C.10).

What’s the smallest possible height of a tree?
For a binary tree with n nodes, log(n) is the shortest possible height.

Let’s consider a binary tree. There can be only one root, obviously. It can have at
most 2 children, so there can be at most 2 nodes with height 1. Each of them can
have 2 children, so there can be at most 4=22 nodes with height 2. How many nodes
with height 3 can a BST have? As you probably guessed, it’s 23=8. Going down the
tree, at each level, we increase the height by one and double the number of nodes
that the current level can hold.

So, at height h, we have 2h nodes. But we also know that the total number of nodes
for a complete tree with height h is 20 + 21+ 22 + 23 +… + 2h = 2h+1 – 1.

To keep the height as small as possible, it is easy to see that we need to fill all the
levels (except, possibly, the last one), because otherwise we could just move the
nodes in the last level up the tree until we have no vacancies in the upper levels.

Therefore, if we have n nodes, 2h+1 – 1  n, and taking the log of both sides, h 
log(n+1) – 1.
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Figure C.10 All possible layouts for BSTs of size 3. The layout depends on the 
order in which elements are inserted. Notice how two sequences produce 
identical layouts for the insertion sequences [2, 1, 3] and [2, 3, 1].
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On average, after a high number of insertions, the probability of having a skewed tree
is pretty low. It is worth mentioning, however, that the simplest algorithm for deleting
a node tends to produce skewed trees. Many workarounds have been proposed for
this problem but, as of today, there is no proof that they always produce a better result
than the naïve version.

 The silver lining is that there are several solutions that allows us to keep BSTs bal-
anced without degrading performance for insert or delete. For instance

 2-3 search trees
 red-black trees
 B-trees
 AVL trees

C.5 Hash table
Hashing is probably the most common way to represent symbol tables. If we need to
associate each one of a set of keys to a value, then we are going to face a few problems.

C.5.1 Storing key-value pairs 
We assume keys and values can be picked from different domains. Then, we need to
decide if duplicate keys are allowed. For the sake of simplicity, we will consider only
sets of unique keys: it is always possible to make a static group of keys unique.

 The easiest case is when keys are non-negative integers. In theory, you can use an array
to store the value associated with key k in the k-th element of the array. This, however, is
only possible when the possible keys are limited in range. If, for example, any 32-bit pos-
itive integer was allowed, we would need an array with more than 3 billion elements—pos-
sibly larger than even the most modern machine’s RAM. It gets even worse if for the
possible values we consider “longs,” aka 8-byte integers. We’d be talking about 18 billion
of billions of elements. No, it’s not a typo: we are talking about billions of billions.

 The worst part is that by using arrays, even if we know that we’ll store only a few
thousands integer keys at a time, we’ll still need an array with 232 elements if any inte-
ger value is allowed for a key.

 While there is little we can do to improve when we do have to store many elements,
when we know that we might store only a handful of elements (say, a few hundreds or
thousands), it’s a whole different story. Even if we can still choose these elements from
a large set (for example all the integers that can be represented with 32 bits, for a total
of around 4 billion elements), but we’ll only store a handful of them at the same time,
then we can do better.

 And that’s precisely where hashing comes to the rescue.

C.5.2 Hashing
Hashing provides a compromise between key-indexed arrays and unsorted arrays in
conjunction with sequential search. The former solution offers constant time search,
but needs space proportional to the set of possible keys. The latter requires linear
time for search, but space proportional to the number of actual keys.
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 Using hash tables, we fix the size of the array to, say, M elements. As we’ll see, we
might store more than M elements, though, depending on how we solve collisions.
Then, we transform each key into an index between 0 and M - 1, using a hash function.

 It’s worth noting that introducing such a transformation relaxes the constraint
about having only non-negative integers as keys. We can “serialize” any object into a
string and transform any string into an integer modulo M as part of hashing. In the rest
of the discussion, we’ll assume keys are integers for the sake of brevity.

 The exact hash function we need to use depends on the type of the keys, and it’s
correlated to the size of the array. The most notable examples include

 The division method—Given an integer key k, we define its hash h(k) as

where % represents the modulo operator.
 For this method, M, the size of the table, should be a prime number that is not too

close to a power of 2.
 For instance, if M=13, we would have h(0)=0, h(1)=1, h(2)=2,… h(13)=0,

h(14)=1 and so on.

 The multiplication method: 

where 0 < A < 1 is a real constant, and (k*A % 1) is the fractional part of k*A. In this
case, M is usually chosen as a power of 2, but A has to be chosen carefully, depending on M.

 For instance, say M=16 and A=0.25; then

k = 0 => h(k) = 0
k = 1 => k * A = 0.25, k*A%1 = 0.25, h(k) = 4
k = 2 => k * A = 0.5, k*A%1 = 0.5, h(k) = 8
k = 3 => k * A = 0.75, k*A%1 = 0.75, h(k) = 12
k = 4 => k * A = 1, k*A%1 = 0, h(k) = 0
k = 5 => k * A = 1.25, k*A%1 = 0.25, h(k) = 4
… 

and so on.
 As you can see, 0.25 was not a great choice for A, because h(k) will only assume five

different values. To this extent, however, it was a great choice to illustrate both the
method itself and why you need to be careful choosing its parameters.

 There are also more advanced methods to improve the quality of the hash func-
tion so that it gets closer and closer to uniform distribution.

C.5.3 Conflicts resolution in hashing
No matter how good or how uniform a hash function we can create, the number of
keys, m, can grow until it becomes larger than the size of the table, n. At that point, the
pigeonhole principle kicks in to rain on our parade. 

h k( ) k %M=

h k( ) M k A%1⋅( )⋅=
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DEFINITION The pigeonhole principle states that if the number of possible key
values to store is larger than the available slots, at some point, we are bound to
have two different keys mapped to the same slot. What happens if we try to add
both keys to the table? In that case, we have a conflict. We therefore need a way
to be able to resolve the conflict and make sure that it is possible to distinguish
between the two different keys and find both of them in a search.

There are two main ways to solve conflicts due to different keys mapping to the same
slot:

 Chaining—Each element in the array stores a link to another data structure, hold-
ing all the keys mapped to that element (see figure C.11). The secondary data
structure can be a linked list (usually), a tree, or even another hash table (as in
perfect hashing, a technique that allows the best possible hashing performance on
a static set of keys, known in advance). In this case, there is no limit to the number
of elements that can be stored in the hash table, but performance degrades as we
add more and more elements, because at least some lists get longer and longer
and require more steps to be traversed in order to find an element.

 Open addressing—We store elements directly in the array, and on conflicts we gen-
erate (deterministically) another hash value for the next position to try. Figure C.12
shows an example of a hash table using open addressing for conflict resolution.

 Hash functions for open addressing look like

where i counts the number of positions already examined, and f is a function of the
number of attempts, and possibly of the key as well. Open addressing allows us to save

1 50
1
2
3
4

3
9 2

Figure C.11 Example of a hash 
table using chaining and a linked 
list for conflict resolution

h k i,( ) h′ k( ) f i k,( )+( )%M=
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memory, because there are no secondary data structures, but has some problems that
make it rarely the best choice. First and foremost, deleting elements becomes too
complicated, and because the size of the hash table is limited and decided on cre-
ation, this means that these tables will fill up quickly and need to be reallocated. Even
worse, elements tend to group in clusters and, when the table gets populated, many
attempts are needed to find a free slot—basically there is a high probability that a lin-
ear number of attempts will already be needed when the table is nearly half-full.  

1
A0 A1

3
A2

9
A3

4
A4

2
A5 A6 A7 A8

1
A0 A1

3
A2

9
A3

4
A4

2
A5 A6 A7 A8

7

(A)

(B)

Figure C.12 A hash table using open addressing for conflict resolution. The assignment of 
the elements depends on the order of insertion. Assume that f(i) = i and that we have the 
same collisions as in figure C.11. (A) We can infer that 9 must have been inserted before 2 
(otherwise, since we assume 9 and 2 would be mapped in the same spot, as in figure C.11, 2 
would be stored in A3). Also, 4 must have been added before 2, because when the algorithm 
finds out that A3 is not empty, A4 would be tried next (because f(i) = i, we do a linear scan 
of the positions following a collision). (B) We try to add 7, assuming h(7) = 3. Because of 
open addressing and the definition of function f, we try the elements in positions 3, 4, and 5, 
which are all already used. Then we finally try A6, which is free, and we add the new key there.

Issues with scaling hash tables
Even with chaining hashing, the number of slots in the table is usually static, as
changing the size of the table would change the hash function and therefore the tar-
get slot for potentially all elements already stored. This, in turn, would force us to
delete every single element from the old table and then insert it into the new one. It’s
worth noting that this kind of situation often arises with distributed caches (such as
Cassandra or Memcached) when a new node needs to be added, and—unless proper
workarounds have been put in place in a website’s architecture—this can cause bot-
tlenecks or even crash a whole site.

In chapter 7, we describe consistent hashing, a way to mitigate this problem.



702 APPENDIX C Core data structures

C.5.4 Performance
As mentioned, chaining is usually the method of choice to resolve collisions, because
it gives several advantages in terms of running time and memory allocation. For a
hash table using chaining and linked lists, where the table has size m and contains n
elements, all operations require on average O(n/m) time.

NOTE While most of the time it is fine to consider hash table operations to be
O(1), you should keep in mind that the worst-case time is O(n). This happens
if all elements are mapped to the same bucket (that is, the same chain) within
the table. In such cases, the time needed to delete or search an element is
O(n). This is, however, a very unlikely event, at least when the hash functions
used are properly designed.

The good news is that if the set of possible keys is static and known in advance, then it
is possible to use perfect hashing and have a worst case O(1) time for all operations.

C.6 Comparative analysis of core data structures
Now that we have described all the core data structures, we’ll try to sum up their char-
acteristics by listing their properties and performance in table 2.1.

 The properties we will include are

 Order—Whether a deterministic order for the elements can be maintained. It
could be a natural order for the elements, or the insertion order. 

 Unique—If duplicate elements/keys are forbidden.
 Associative—If elements can be indexed by a key.
 Dynamic—Whether the container can resize on insertion/removal, or its max

size needs to be decided in advance.
 Locality—Locality of reference. If elements are all stored in a single, uninter-

rupted block of memory.

Table C.1 Comparative analysis of core data structures

Structure Order Unique Associative Dynamic Locality

Array yes no no no a

a. Arrays are natively static in most languages, but dynamic arrays can be built from static ones with
little performance overhead.

yes

Singly-linked list yes no no yes no

Doubly-linked list yes no no yes no

Balanced tree (for example, BST) yes no no yes no

Heap (see chapter 2) no b

b.Heaps only define a partial order between their keys. They allow sorting keys based on their priority,
but they don’t keep any info on the order of insertion.

yes key-priority no yes

Hash table no yes key-value yes c

c. Hash tables are dynamic in size when conflict resolution is resolved with chaining.

no
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As part of the comparison, we also have to take into account their relative perfor-
mance. But what does performance really mean for a whole data structure, if we have
only discussed the running time for their individual methods? 

 Usually the performance for a data structure, and even more for its implementation,
is a trade-off between the individual performances of its methods. This is valid for all
data structures: there is no ideal data structure that has optimal performance for all the
operations it provides. For instance, arrays are faster for random, position-based access.
But they are slow when their shape needs to be changed and very slow4 when you need
to look up an element by value. Lists allow for fast insertion of new elements, but lookup
and access by position are slow. Hash tables have fast key-based lookup, but finding the
successor of an element, or maximum and minimum, are very slow. 

 In practice, choosing the best data structure should be based on a careful analysis
of your problem and the performance of the data structure, but it’s more important
to avoid using a bad data structure (which could cause a bottleneck) than to find the
single best option available, just to gain a small savings on the average (and easier to
implement) choice.

4 Unsorted arrays are terribly slow for search and direct access. Sorted arrays can implement both in
O(log(n)).
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appendix D
Containers

 as priority queues

One of the largest subsets of data structures, probably the largest (by far), is the set
of containers. A container is a collection of objects, with operations for adding,
removing, and retrieving them. The difference between each kind of container
revolves around

1 The order in which the elements are extracted from the container
2 Whether the elements need to be unique, or multiple instances are allowed
3 Whether the container is associative, that is, if it stores plain elements or

associates keys with values
4 How elements can be searched, and what operations can be performed on

the stored data
5 Performance

Points 1-4 define an abstraction of a container, in other words, its behavior: in tech-
nical jargon, its API. Once the API is fixed, implementations can still differ, though. 

 But for now, let’s focus on the abstract data structures: the caveat here is in the
definition of priority. At a very high level, we have a black box, a container, that will
hold our values, and remove and return a specific element every time we ask for one.

 This description is generic enough that it can describe basically every type of
container in data structures: it all boils down to consistently defining the priority of
the elements. In mathematical terms, the priority is an univocal mapping between
elements and a number, usually with the convention that lower values mean higher
priority.

 Some of these definitions for priority are so common that we categorize them as
separate data structures. Let’s look at a few of them.
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D.1 Bag
A bag, shown in figure D.1, is a collection that only supports the add and iterate
operations. It’s not possible to remove items from a bag. After checking if the con-
tainer is actually empty, clients can iterate through its elements; the actual order, how-
ever, is unspecified by definition, and clients must not rely on it.

 Bags are useful when you need to collect objects and process them as a whole set
rather than individually. For instance, you could collect samples and then, at a later
point, compute statistics on them, such as average or standard deviation—the order is
irrelevant in that case.

So, a bag can be described in terms of priority queues (PQs): one for which element
removal (method top) is disabled, it’s possible to peek one element at a time, and the
priority of each element is given by a random number from a uniform distribution.
Priorities also change at every iteration.

D.2 Stack
A stack is a collection that returns its elements according to the LIFO (Last In First Out)
policy. This means that the elements in the stack will be returned in the reverse order
with respect to the order they were added to the stack. This makes stacks pretty useful
when you need to reverse a sequence or access recently added elements first. 

 We can see a stack, like the one shown in figure D.2, as a specialized PQ where ele-
ments’ priorities are given by the time at which they are inserted (most recently
inserted elements have highest priority).

 When comparing a stack to a bag, in fact, the first difference is that for stacks,
order matters.

 The second one is that while it is possible to iterate through the whole stack at
once, it’s also possible to remove elements from a stack. In particular, a stack is a lim-
ited access data structure, because it’s only possible to add or remove elements to/
from the top of the stack.
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Figure D.1 Operations on a bag. Insertion adds elements to the container but sets no index for them. The only 
other available operation is iterating through the bag’s elements; that does not change the container, but the 
order in which elements are returned is not guaranteed, since it could be insertion order, but it could also be 
completely random each time the bag is iterated upon.
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 Typical real-world examples used to explain stacks usually include a pile of dirty
dishes (you pick from the top of the pile, so you first wash the ones that have been
added to the pile more recently). It is in computer science, however, that stacks find
their largest and more crucial uses: 

 Memory management allowing your programs to run (the call stack).
 Implementation of the memento pattern in turn allows you to undo actions in your

editor or browse back and forth in your browser’s history.
 Enabling recursion and being used as support for several algorithms.
 In the JavaScript world, you might have heard of time-travel in React.

And this list is by no means exhaustive.         

D.3 Queue
A queue is a collection that is based on the FIFO (First In First Out) policy. Therefore,
elements of a queue will be returned in the same order as they were added to it. While
queues are also limited access data structures, elements are added to the front of the
queue and removed from its back (which also means their implementation is slightly
more complicated than stacks’).

 Figure D.3 shows an example of a queue.

4 2

2 1

11 0

Top

Element Index

Top

Top

Top

push(2) push(7)

2 3

4 2

2 1

11 0

7 4

2 3

4 2

2 1

11 0

pop()

2 3

4 2

2 1

11 0
7output

Figure D.2 Operations on a stack. Insertion (push) adds elements to the top of the stack. Delete 
(pop) removes the top element and returns it. For stacks (as well as for queues), a peek operation 
is also usually available, returning the top element without removing it from the container.
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Figure D.3 Operations on a queue. Insertion (enqueue) adds elements to the front of the 
queue. Delete (dequeue) removes the element at the back of the queue and returns it.
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A queue, as you can imagine at this point, is a particular case of priority queue where
the priority of an element is its age: older elements have the highest priority.

 The name, in this case, is quite revealing, and indeed in the real world this is the
DS we (subconsciously) use every time we are waiting in a fair line: whoever has been
waiting the longest is served first. Like stacks, queues are fundamental to computer
science, and are used in many algorithms.

D.4 A comparative analysis of containers
In summary, we can partition the abstract structures discussed according to a few core
characteristics: if keys are maintained in a certain order, if they need to be unique, and
if the container is associative. In the analysis provided in table D.1, we include all con-
tainers shown in the previous sections, plus dictionaries (discussed in appendix C).

Table D.1 Comparison of Containers

Structure Order Unique Associativity

Bag No No None

Stack Yes No None

Queue Yes No None

Priority Queue Yes No a

a. As we mentioned in section 2.6.6, relaxing the uniqueness constraint for keys will require extra
efforts on priority update.

None

Dictionary No Yes key-value
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appendix E
Recursion

If you are reading this book, you are probably already familiar with loops. As dis-
cussed in appendix A, for, while, and do-while loops (and some more, depending
on the language) all are examples of iteration.

 Iterative loops are one straightforward way to repeatedly perform similar
actions on a series of elements. Usually loops go hand in hand with certain data
structures, for example, containers like lists and arrays.

 Loops tend to work well when the data structure has a linear shape; sometimes,
though, things are more complicated and a simple loop might not be enough to
immediately solve the issue. We will see, for example, how trees and graphs are
more challenging than lists. There are workarounds to use loops with these struc-
tures as well, but often a different approach works better.

 In the rest of this book, we used pseudo-code to describe algorithms in a language-
agnostic way. To better illustrate how recursion works, however, a real programming
language works better than pseudo-code. So, for this appendix only, we will use Java-
Script in code listings. The choice of JavaScript, out of many possible candidates, is
motivated by two characteristics of this language:

 Full read/write closures
 Functions treated as first class citizens

These aspects allow us to illustrate an interesting technique called memoization,
which can be used in specific contexts to improve the performance of recursive
algorithms.

 The same results could be obtained analogously in most functional program-
ming languages. There are workarounds in OO languages too; for instance, in Java,
memoization can be obtained through static class fields.
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E.1 Simple recursion
The simplest case of recursion is when a function calls itself at a given point of its flow.
The most used (and abused) examples of recursion are computing the factorial of a
number and Fibonacci’s numbers.

 Listing E.1 shows a possible JavaScript implementation of a function computing
Fibonacci’s numbers.

function fibonacci(n) {
    if (n < 0) {
      throw new Error(‘n can not be negative’);
    } else if (n === 0 || n === 1) {
      return 1; // Base case
    } else {
      return fibonacci(n-1) + fibonacci(n-2);
    }
}

E.1.1 Pitfalls
Recursion is not free of risks. First, we need to make sure to define a base case that is
always possible to reach. In the example in listing E.1, if we forgot to check that the argu-
ment n is non-negative, fibonacci(-1) would go through every single negative integer
number that can be stored in JavaScript before hitting the base case for n === 0. But
more likely, it would throw an Error: Maximum call stack size exceeded long before
getting anywhere near the base case.

 Of course, even using a loop, you’d need to get stopping conditions right; other-
wise, you might end up with an infinite loop.

 Even with that extra check, we are not safe yet. In weakly typed languages such as
JavaScript, type-coercion will try to convert arguments passed to our function to
numbers. 

 Try to call fibonacci(‘a’) or fibonacci(true) instead. The method described
previously doesn’t check that n has the proper type; ‘a’ - 1 returns NaN,1 as well as
NaN - 1. Since NaN is not lower than 0, not equal to 0 or 1, the result is a (theoreti-
cally) infinite recursion call stack, that ends up once again in an Error.

 Another possible downside is a waste of resources. If you look closely at listing E.1,
you can understand why this is not the best use case for recursion. For instance, try to
track down the recursive calls we make when we call fibonacci(4):

Listing E.1 Fibonacci numbers, JavaScript

1 NaN is a special value in JavaScript, standing for not a number, and returned when there are issues parsing num-
bers or operating on numbers.
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 fibonacci(4)

   fibonacci(3)

     fibonacci(2)

       fibonacci(1)

       fibonacci(0)

     fibonacci(1)

   fibonacci(2)

     fibonacci(1)

     fibonacci(0)

Indentation here is purely stylistic and meant to help you keep track of the hierarchy
of the calls.

 If you try with fibonacci(5), it will be even more apparent that we compute the
same value multiple times (at the cost of several function calls).

 Computing sub-problems twice (or multiple times) is usually a smell, suggesting a
different solution could be more efficient; and, in fact, in these cases usually dynamic
programming could provide a better alternative.

 In JavaScript, a similar approach to keep track of the result of recursive calls on
sub-problems is memoization. With memoization, before making a recursive call, we
check if we have cached the value, as shown in the implementation in listing E.2.

const fibonacci = (() => {  
  let cache = [1, 1];   
  const get = (n) => {             
    if (n >= cache.length) {
      cache[n] = fibonacci(n);    
    }
    return cache[n];
  };
  return (n) => {           
    if (n < 0) {
      throw new Error(‘n can not be negative’);
    } else if (n > 1) {
      return get(n - 1) + get(n - 2);      
    }
    return 1;     
  };
})();    

Both using naïve recursion and memoization can lead to space issues and out-of-memory
exceptions (more on this in a few sections).

Listing E.2 Fibonacci using memoization

We use IIFE to create a 
closure for memoization.

This is our “history.” Initialized 
with return values for 1 and 0.

This function (defined using lambda 
notation) takes care of memoization.

Updates 
history 
with 
a true 
recursive 
call

We return a function (which will be assigned 
to const fibonacci), effectively computing 
the n-th Fibonacci number, for input n.

Computes f(n) by retrieving 
values for n-1 and n-2

Covers the case n === 1 || n === 0

Executes the IIFE so the result 
of the function call is assigned 
to the constant on the first line
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E.1.2 Good recursion
The previous example shows that just using recursion didn’t really improve the situa-
tion compared to an iterative algorithm. As a matter of fact, there are cases where
recursion is the right choice, usually because either the very nature of the problem or
its definition is recursive. Usually it’s more a matter of clarity, of writing clean code,
than it is of performance. In a couple of sections, however, we’ll see how tail recursion
combines both (at least in modern programming languages).

 But for now, let’s take a look at an elegant solution for the preorder traversal of a
binary tree, shown in listing E.3.

function preorder(node) {                                  
  if (node === undefined || node === null) {               
    console.log("leaf");
  } else {
    console.log(node.value);
    preorder(node.left);    
    preorder(node.right);               
  }
}                              

Of course, you can perform any action on the nodes, in addition to printing them.
And yes, you can do the same with loops, as shown in listing E.4.

function preorderIterative(node) {                                  
  if (node === undefined || node === null) {
    return;
  }
  let nodeStack = [node];        
  while (nodeStack.length > 0) {
    node = nodeStack.pop();
    if (node === undefined) {
      console.log("leaf");
    } else {

Listing E.3 Binary tree preorder traversal

Listing E.4 Binary tree preorder traversal, iterative version

Recursive traversal of the left child

Recursive traversal of the right child

Tree traversal
Preorder traversal is a way of enumerating the keys stored in a tree. It creates a list
starting with the key stored in the root, and then it recursively traverses its children’s
subtrees. When it gets to any node, it first adds the node’s key to the list, and then
goes to the children (in case of a binary tree, it starts from the left child, and then,
only when that subtree is entirely traversed, goes to the right one).

Other common traversals are inorder (the order is left subtree->node’s key->right sub-
tree) and postorder (left subtree -> right subtree -> node’s key).

We have to use an explicit stack to 
simulate the behavior of recursive 
calls (see the next section).
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      console.log(node.value);
      nodeStack.push(node.right);         
      nodeStack.push(node.left);
    }
  }
}

The two methods are equivalent, but look at how elegant the first one is. Try to write
both versions for post-order binary tree traversal, and you’ll also realize that the itera-
tive one is harder to get right.

E.2 Tail recursion
Every time we make a function call, we create a new entry in the program stack, a
so-called stack frame. The stack frame consists of a few fields that are needed by our
program or virtual machine to execute the called function, and then, when it’s done,
resume the execution of the caller function.

 A (non-exhaustive) list of these fields includes

 The program counter (a pointer to the next instruction in the caller function to
run after the new function finishes)

 All the arguments passed to the called function
 All the local variables
 A placeholder for the return value of the called function

Recursive calls are no exception, with the caveat that the first call to a recursive func-
tion might not return before the base case is hit. This means the call chain can get
extremely long.

 Take, for example, the factorial function, shown in listing E.5.

function factorial(n) {
  if (n < 0) {
    throw new Error(‘n can not be negative’);
  } else if (n === 0) {
    return 1;                         
  }
  let f = factorial(n - 1);  
  return n * f;
}

A call to factorial with a positive integer n will require the creation of n stack frames. In
figure E.1 we sketched the stack frame for a call to factorial(3), where you can see
three new stack frames are created. Since the stack area in memory is fixed and limited
(and small compared to the heap), this is a recipe for disaster. Try to call this method
with a sufficiently large value, and you are going to cause a segmentation fault.

Listing E.5 Factorial function, JavaScript

Pushing a node on the stack is 
equivalent to a recursive call 
in iterative terms.

Base case

Recursive call to factorial. We are using an 
explicit variable to make a point (see below).
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A segmentation fault, aka access violation, is a failure condition, raised by hardware with
memory protection, notifying an operating system that some software has attempted
to access a restricted area of memory that had not been assigned to the software.

 Luckily for us, modern compilers have a way to optimize certain kinds of recursive
calls. A tail call is a function call that is performed as the last operation of a function. A
function is tail-recursive if its recursive call(s) are in tail position. For more details about
tail calls and recursion, see this excellent post on the 2ality blog.2

 Most compilers optimize tail calls, by shortcutting the stack frame creation. With
tail recursion, compilers can go even further, by rewriting the chain calls as a loop.

 As for our example, in the case of JavaScript, support for tail call optimization was
introduced with ES2015.

2 See http://mng.bz/2ejm.

n (3)
Return address

Return value
res

Stack frame for
factorial(3)

Local variables

Arguments

n (2)
Return address

Return value
res

Stack frame for
factorial(2)

n (1)
Return address

Return value
res

Stack frame for
factorial(1)

Frame pointer

Stack pointer

Top of the stack

Global
stack frame

...

Bottom of the stack

Figure E.1 Example of a stack frame for a call to factorial(3). Take the 
first definition of factorial as a reference.

http://mng.bz/2ejm
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 To make sure the compiler can optimize the machine code generated for our fac-
torial function, however, we need to slightly change it to make sure the recursive call is
the last operation before returning.

 For some functions, however, this is particularly tricky. For instance, consider the
factorial function: listing E.6 refactors it in such a way that it looks tail-recursive, but
it’s actually not! The last operation performed, in fact, is multiplying n by the result of
the recursive call. No tail-call optimization can be applied in this case.

function factorial(n) {
  if (n < 0) {
    throw new Error(‘n can not be negative’);
  } else if (n === 0) {
    return 1;                                                        
  }
  
  return n * factorial(n-1);        
}

It seems like a dead end, but we shouldn’t despair yet; everything is not lost. Listing
E.7 shows how we can rewrite even a factorial as a tail-recursive method by adding an
extra argument, an accumulator that keeps track of the multiplications already per-
formed, allowing us to perform those operations before the final recursive call.

function factorial(n, acc=1) {                      
  if (n < 0) {
    throw new Error(‘n can not be negative’);
  } else if (n === 0) {
    return acc;     
  }
  
  return factorial(n - 1, n * acc);       
}

What the compiler will do to optimize the tail call is simply translate it into a loop. In
fact, tail recursion can always be easily written as a simple loop. For example, see list-
ing E.8, where we use a while loop to compute factorial.

function factorial(n) {
  let acc = 1;                      
  if (n < 0) {

Listing E.6 Factorial function, refactored

Listing E.7 Factorial function, tail-recursive

Listing E.8 Factorial function, iterative version

Base case

The recursive call is not the last instruction 
in this function; the multiplication is.

The method now takes two arguments, the 
usual n, and an accumulator whose default 
value is 1 (so that calling factorial(n) 
is equivalent to factorial(n,1)).

Base case: we return the accumulator with 
the total product from previous calls.

Now, finally, the recursive call is the last 
instruction in this function, as the multiplication 
is performed when the arguments are evaluated, 
before the recursive call.

Initializes the accumulator (base case)
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    throw new Error(‘n can not be negative’);
  }

  while (n > 1) {                                                  
    acc *= n--;
  }
  return acc;
}

E.3 Mutual recursion
A function can call itself directly, but also through another function. If two or more
functions call themselves in a cycle, then they are mutual recursive.

 Mutual tail recursion can also be optimized in the same way as tail-call optimiza-
tion does, but most compilers will only optimize simple tail recursion.

 Listing E.9 gives an idea of how mutual recursion works.

function f(n) {
  return n + g(n-1);                                         
}

function g(n) {
  if (n < 0) {
    return 1;
  } else if (n === 0) {
    return 2;
  } else {
    return n * f(n/3);                                                
  }
}

We define a couple of methods, f and g, where function f never calls itself directly,
and likewise in g there is no direct recursive call to itself.

 However, check out the call stack for f(7):

 f(7)

 g(6)

 f(2)

 g(1)

 f(0.3333)

 g(-0.6666)

A single call to f generates a chain of calls where the two functions alternate. Needless
to say, mutual recursion is even trickier to track and optimize

Listing E.9 An example of mutual recursive functions

Simulates tail recursion with a loop

Function f calls g.

And function g calls f back.
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appendix F
 Classification problems

 and randomnized
 algorithm metrics

To understand the performance analysis of data structures such as Treaps (chapter
3) and Bloom filters (chapter 4), we need to take a step back and first introduce a
class of algorithms with which not every developer is familiar.

 Most people, when prompted about algorithms, immediately think about deter-
ministic algorithms. It’s easy to mistake this subclass of algorithms for the whole
group: our common sense makes us expect an algorithm to be a sequence of
instructions that, when provided a specific input, applies the same steps to return a
well-defined output.

 That’s indeed the common scenario. It is possible, however, to describe an algo-
rithm as a sequence of well-defined steps that will produce a deterministic result
but take an unpredictable (though finite) amount of time. Algorithms that behave
this way are called Las Vegas algorithms.

 Even less intuitively, it is possible to describe algorithms that might produce a
different, unpredictable result for the same input in every execution, or might also
not terminate in a finite amount of time. There is a name for this class of algo-
rithms as well: they are called Monte Carlo algorithms.

 There is some debate about whether the latter should be considered as algo-
rithms or heuristics, but I lean toward including them, because the sequence of
steps in Monte Carlo algorithms is deterministic and well-defined. In this book we
do present a few Monte Carlo algorithms, so you will have a chance to form an edu-
cated opinion.
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 But before delving into these classes, we should define a particularly useful class of
problems, decision problems.

F.1 Decision problems
When talking about algorithms that return either true or false, we fall into the class
of problems called binary decision problems.

 Binary classification algorithms assign one of two labels to the data. The two labels
can actually be anything, but conceptually, this is equivalent to assigning a Boolean
label to each point, so we’ll use this notation in the rest of the book.

 Considering only binary classification is not restrictive, since multiclass classifiers
can be obtained by combining several binary classifiers.

 One fundamental result in computer science, and in particular in the field of com-
putability and complexity, is that any optimization problem can be expressed as a deci-
sion problem and vice versa.

 For instance, if we are looking for the shortest path in a graph, we can define an
equivalent decision problem by setting a threshold T and checking if there exists a
path with length at most T. By solving this problem for different values of T, and by
choosing these values using binary search, we can find a solution to the optimization
problem by using an algorithm for the decision problem.1

F.2 Las Vegas algorithms 
The class of so-called Las Vegas algorithms includes all randomized algorithms that

1 Always give as output the correct solution to the problem (or return a failure).
2 Can be run using a finite, but unpredictable (random) amount of resources.

The key point is that how much resources are needed can’t be predicted based
on input.

The most notable example of a Las Vegas algorithm is probably randomized quick-
sort:2 it always produces the correct solution, but the pivot is chosen randomly at every
recursive step, and execution time swirls between O(n*log n) and O(n2), depending
on the choices made.

F.3 Monte Carlo algorithms
We classify algorithms as Monte Carlo methods when the output of the algorithm can
sometimes be incorrect. The probability of an incorrect answer is usually a trade-off
with the resources employed, and practical algorithms manage to keep this probabil-
ity small while using a reasonable amount of computing power and memory.

1 If the threshold is guaranteed to be an integer or rational number, we can also guarantee that the solution will
be in the same computational class as the solution to the decision problem, so if, for example, we have a poly-
nomial solution to the decision problem, solving the optimization problem will also require polynomial time.

2 See Grokking Algorithms, by Aditya Bhargava (Manning Publications, 2016), chapter 4, page 51.
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 For decision problems, when the answer to a Monte Carlo algorithm is just true/
false, we have three possible situations:

 The algorithm is always correct when it returns false (so-called false-biased
algorithm).

 The algorithm is always correct when it returns true (so-called true-biased
algorithm).

 The algorithm might return the wrong answer indifferently for the two cases.

Monte Carlo algorithms are deterministic in the amount of resources needed, and
they are used often as the dual of a Las Vegas algorithm.

 Suppose we have an algorithm A that always return the correct solution, but whose
resource consumption is not deterministic. If we have a limited amount of resources,
we can run A until it outputs a solution or exhausts the allotted resources. For
instance, we could stop randomized quicksort after n*log n swaps.

 This way, we are trading accuracy (the guarantee of a correct result) for the cer-
tainty to have a (sub-optimal) answer within a certain time (or using at most a certain
amount of space).

 It’s also worth noting that as we mentioned, for some randomized algorithms, we
don’t even know if they will eventually stop and find a solution (although this is usu-
ally not the case). Take, for example, the randomized version of Bogosort.

F.4 Classification metrics
When we analyze data structures such as Bloom filters or Treaps, examining the time
and memory requirements of their methods is paramount, but not enough. Besides
how fast they run, and how much memory they use, for Monte Carlo algorithms like
these we also need to ask one more question: “How well does it work?”

 To answer this question, we need to introduce metrics, functions that measure the
distance between an approximated solution and the optimal one.

 For classification algorithms, the quality of an algorithm is a measure of how well
each input is assigned to its right class. For binary (that is, true/false) classification,
therefore, it’s about how accurately the algorithm outputs true for the input points.

F.4.1 Accuracy
One way of measuring the quality of a classification algorithm is to assess the rate of
correct predictions. Suppose that over NP points actually belonging to the true class:

 PP are predicted as true.
 TP, the so-called true positives, are both predicted as true and actually belong to

the true class.

Likewise, let NN be the number of points belonging to the false class:

 PN is the total number of points for which our algorithm predicts the class
false.
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 TN, the so-called true negatives, is the number of times both the predicted and the
actual class of a point are false.

Then we can define accuracy:

When the accuracy is 1, we have an algorithm that is always correct.
 Unfortunately, except for that ideal case, accuracy is not always a good measure of

the quality of our algorithms. Consider an edge case where 99% of the points in a data-
base actually belongs to the true class. Then look at the following three classifiers:

 A classifier correctly labeling 100% of the false points and 98.98% of the true ones
 A classifier correctly labeling 0.5% of the false points and 99.49% of the true ones
 A classifier that always returns true as label

Astonishingly, the latter has better accuracy than the other two, even if it misses every
single point in the false category. 

TIP If you’d like to double check this, plug in these numbers into the for-
mula for accuracy.

In machine learning, if you were to use this metric on a training set skewed in a simi-
lar way,3 you’d get a terrible model, or more precisely, a model that is likely to general-
ize poorly.

F.4.2 Precision and recall
To improve over bare accuracy, we need to keep track of the info about each category
separately. To this end, we can define two new metrics:

 Precision (also called positive predictive value) defined as the ratio of correctly pre-
dicted true points (the true positives) over the total number of points for which
true was predicted by the algorithm: 

 Recall (also known as sensitivity) defined as the fraction of true positives over the
total number of actual positives:

3 For instance, a dataset where one of the classes is rare or difficult to get data for: this is often the case in med-
icine with rare diseases.

accuracy
TP TN+

NP NN+
---------------------

TP TN+

N
--------------------= =

precision
TP
PP
------=

recall
TP
NP
-------=
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It is possible to give an alternate definition of precision and recall by introducing the
number of false positives Fp, that is, points belonging to the false class for which true
was incorrectly predicted, and the number of false negatives Fn: 

Intuitively, while accuracy only measures how well we do on predictions, precision/
recall metrics weigh our successes with our errors for the dual category. As a matter of
fact, precision and recall are not independent, and one can be defined in terms of the
other, so it’s not possible to improve both indefinitely. In general, if you improve
recall, you’ll often get a slightly worse precision and vice versa.

 For machine learning classifiers, every model can be associated with a precision/
recall curve (see figure F.1), and the model’s parameters can be tuned during training
so that we can trade off the two characteristics.

precision
TP

TP FP+
------------------=

recall
TP

TP FN+
-------------------=

Figure F.1 Examples of precision-recall curve. The one on the left is a generic curve for a hypothetical 
algorithm. This is plotted by tuning the algorithm’s parameters and recording the precision and recall obtained. 
After recording many attempts, we can get a drawing similar to this graphic. In general, when a given choice 
of the model’s parameters improves precision, there will be a slight worsening of recall, and vice versa. On the 
right, a degenerate P-R curve for a false-biased algorithm, such as Bloom filters; its recall is always equal to 
1, for any precision. True-biased algorithms have a symmetrical P-R curve.
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So, for binary categorization, a perfect (100%) precision means that every point for
which we output true actually belonged to the true category. Similarly, for recall,
when it’s 100%, we never have a false negative.

 As an exercise, try to compute precision and recall for the examples in the previ-
ous sections and see how they give us more information about the quality of a model
with respect to just its accuracy.

 If we take Bloom filters (chapter 4) as an example, we explain in section 4.8 that
when the output is false, we can be sure it’s right, so Bloom filters have a 100% recall.

 Their precision, unfortunately, is not as perfect. In section 4.10 we delve into the
details of how to compute it. In this case, however, like for all false-biased algorithms,
there is no trade-off with recall, and improving precision can only be done by increas-
ing the resources used.

F.4.3 Other metrics and recap
There are, of course, other metrics that can be useful for classifiers. One of the most
useful is the F-measure,4 combining precision and recall into one formula. These
alternative metrics, however, go beyond our scope.

 If we continue with our parallel with Bloom filters, we can recap the meaning of
the metrics we examined in that context:

 Accuracy answers the question, “What percentage of calls to contains are
correct?”

 Precision answers the question, “What percentage of calls to contains returning
true were correct?”

 Recall answers the question, “Among all calls to contains on elements actually
contained in the filter, what percent of them returned true?” (This one, as we
know, will always be 100% for Bloom filters).

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 See https://en.wikipedia.org/wiki/F1_score.

https://en.wikipedia.org/wiki/F1_score
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dimensionality 412–413
issues with 410–412
performance analysis 413–414

NN search 398–399
OPTICS 426–442

algorithm 428–432
clustering 433–436
definitions 427–428
hierarchical clustering 436–440
performance analysis 441–442

parallel 482
MapReduce 455–463
parallelization 449–455

types of 403–405
types of learning 402

clustersSet method 480
cmpShops method 383
collisions 699
color reduction 391–393
complete balanced trees 58, 696

complete graphs 526–528, 616
complete trees 696
completely symmetrical graphs 616
compressed Bloom filters 145–146
ComputeFrequencies method 50–51
concrete data structures 22–28, 115–120

binary search trees 118–119
Bloom filters 119–120
choosing the right data structure 23–24
comparing performance 23
d-ary heaps 27–28
hash tables 117–118
heaps 24–25
min-heaps and max-heaps 26–27
sorted arrays and binary search 116–117
unsorted arrays 115

concurrency 248–249, 253–254
ConcurrentHashMap class 249
ConcurrentHeap class 249
conditional instructions 674–676

else-if variant 675
switch instruction 675–676

connected components 169
connected graphs 492–493, 531
consistent hashing 255, 701
const fibonacci function 710
constructKdTree method 292
containers 704–707

bags 705
comparative analysis for 707
queues 706–707
stacks 705–706

contains method 41, 45–46, 82, 129, 131, 135, 138, 
144–145, 175, 721

Contains operation 45, 91
contains(x) method 131
continue keyword 678
convex hull 552
coordinateIndex 296, 349
core data structures 690–703

arrays 691–692
comparative analysis of 702–703
hash tables 698–702

conflicts resolution in hashing 699–701
hashing 698–699
performance 702
storing key-value pairs 698

linked lists 692–695
trees 695–698

core points 419, 423
cost functions 634
cost method 620
cProfile package 60
crawlers 134
create_encoding method 67
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create_frequency_table method 67
createWheel method 644
Creating the structure operation 116–117
crossing number 541

finding 541–542
heuristics for 560–568
rectilinear 543–545

crossing-number optimization 592
crossover 640, 670
crossover chance 646
crossoverChance method 647
CrossoverOperator class 647
curse of dimensionality 320, 367
cycles, in graphs 494

D

d-ary heaps 27–28, 55–56
d-way heaps 36
DAGs (directed acyclic graphs) 494
data compression 50–55
data model 20
data structures 5–12

algorithms vs. 5–6
concrete 22–28, 115–120

binary search trees 118–119
Bloom filters 119–120
choosing the right data structure 23–24
comparing performance 23
d-ary heaps 27–28
hash tables 117–118
heaps 24–25
min-heaps and max-heaps 26–27
sorted arrays and binary search 116–117
unsorted arrays 115

core 690–703
arrays 691–692
comparative analysis of 702–703
hash tables 698–702
linked lists 692–695
trees 695–698

defining 2–4
describing 5
Mars colony food supply example 7

abstraction 7–8
algorithms 9–10

writing your own implementations of 6
DataFrame 61
DBSCAN (density-based spatial clustering of 

applications with noise) 418–426
algorithm 420–422
directly vs. density-reachable 419
implementation 422–424
MapReduce 475–481
pros and cons with 424–426

dbscan method 422, 479
deadlock 250
decision problems 717
default arguments 680
delete method 92, 125, 198, 352–353, 355–356, 

358, 488, 697
Delete-Minimum operation 23
DeLiClu algorithm 6
dense graphs 521
dest node 208
destination vertex 486
DFS (Depth First Search) 169, 495–506, 521

best route to deliver parcel 506
optimizing delivery routes 495–497
queues vs. stacks 505–506

dfs method 502, 504–505
DHeap class 28
dictionary 111, 114, 117, 175, 707
Dijkstra algorithm 49, 507–513, 521, 523

analysis 510–511
BFS vs. 508–509
implementation 509
shortest route for deliveries 511–513

dijkstra method 509
directed graphs 492
directionOfMaxVariance method 346
directly reachable points 419
disjoint sets 172, 479

applications for 168–171
clustering 170–171
connected components 169
Kruskal’s algorithm 169–170
unification 171

data structure API 153–154
distinct subsets problem 148–151
heuristics to improve running time 162–168

implementing balancing and path 
compression 166–168

path compression 164–166
naïve solution 154–158
reasoning on solutions 151–152
tree-like structure 159–162

disjointSet method 155, 169
distance function 337, 513, 515
distributed computing 450
distributed databases and file systems 135
division method 699
DL (deep learning) 401
doAction function 672
DoS (Denial of Service) 133
double hashing function 126
doubly-linked lists 693, 702
drag-and-drop 178–179
DS (data structures) 2–3, 6, 19, 690
dynamic arrays 690–691
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dynamic programming 10, 537, 710
dynamic properties 702

E

EA (evolutionary algorithms) 668
edge intersections 545–556

Bézier curves 550–552
intersections between quadratic Bézier 

curves 552–555
polylines 549–550
straight-line segments 545–549
vertex-vertex and edge-vertex intersections

555–556
edgeIntersections method 565
edges 486
edgesIntersection method 549
elbow method 447
elem1 operation 158
elem2 operation 157–158
elements.add method 246
else-if variant 675
embeddings 523–528

complete and bipartite graphs 526–528
definitions 525–526
gradient descent for 585–589

different criterion 586–588
implementation 588–589

simulated annealing 615–623
force-directed drawing 618–623
minimum edge crossing 615–617

enabling recursion 706
epistasis 651
eventual consistency 220
evictOneEntry method 252
exact element search 333
Extensible Indexing 395

F

f function 680, 685, 687, 700–701, 710, 715
factorial function 712
false Boolean value 82, 118, 123, 137, 145, 

156–158, 161, 168, 174, 180, 184–186, 
190, 203, 717–718, 720–721

false-biased algorithm 138, 718, 720–721
Fibonacci heap 243
FIFO (First In, First Out) 241, 706
find method 41, 165
Find-Minimum operation 23
findBest method 650
findBitCoordinates method 124
findClosestChild method 339, 345
findClosestEntryInNodesList function 356

finding outliers 403
findMin method 295–298, 300–301, 316
findPartition method 153, 157–162, 164–165, 

167–168
findSiblingToMergeTo function 356
findSplitIndex method 349
firstLeafIndex function 33–35
fitness method 634
flat clustering 404
fNN method 382, 384
FNs (false negatives) 720
fnv1 (Fowler-Noll-Vo hashing) 122, 126
for loops 676–677
forbidden graphs 526
force-directed graph drawing 586, 590, 592, 618
forceDirectedEmbedding method 588–589
FPs (false positives) 144, 720
_frequency_table_to_heap method 61–62, 64, 67
functions 679–681

overloading and default arguments 680
tuples 680–681

G

g function 685, 715
GA (genetic algorithms) 631
GCD (greatest common divisor) 524, 678
gcd function 680
genetic algorithms 592, 625–670

chromosomes 631–633
crossover 645–648
fitness 634–635
inspired by nature 627–631
maximum flow 665–667
minimum vertex cover 661–665

applications of 662–663
implementing algorithm 663–665

mutations 648–650
natural selection 635–639
population 633–634
protein folding 667–668
selecting individuals for mating 639–645
template 650
traveling salesman problem 652–660

chromosomes 653
crossover 654–655
fitness 653
initialization 653
mutations 653–654
optimizing routes of whole fleet 660
results and parameters tuning 656–660

when they work best 651–652
geneticAlgorithm method 650
get method 238, 251–253
getEntriesCentroids method 350
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getPassThroughEdge function 208
getSize() method 238
globally optimal choices 625
gradient descent 470, 558, 560, 574, 592, 624, 

651, 669
applications of 581–585
embeddings 585–589

different criterion 586–588
implementation 588–589

geometrical interpretation 576–579
heuristics for crossing number 560–568
math of 575–579
optimization 568–574

cost functions 568–570
optimizing random sampling 571–574
step functions and local minima 571

problems with 579–581
simulated annealing vs. 603–604
when applicable 579

gradientDescent method 576
Graph class 490
graph.simpleEdges 534
graphs 521–557

A* algorithm 513–521
heuristics to balance real-time data 520–521
usefulness of 517–520

as algebraic types 489–490
BFS and DFS 495–506

best route to deliver parcel 506
BFS 497–500
DFS 502–505
optimizing delivery routes 495–497
queues vs. stacks 505–506
reconstructing path to target 500–501

connected components 169
defining 486–491
Dijkstra algorithm 49, 507–513

analysis 510–511
BFS vs. 508–509
implementation 509
shortest route for deliveries 511–513

edge intersections 545–556
Bézier curves 550–552
intersections between quadratic Bézier 

curves 552–555
polylines 549–550
straight-line segments 545–549
vertex-vertex and edge-vertex 

intersections 555–556
embeddings 523–528

complete and bipartite graphs 526–528
definitions 525–526

gradient descent 590
applications of 581–585
for embeddings 585–589

geometrical interpretation 576–579
heuristics for crossing number 560–568
math of 575–579
optimization 568–574
problems with 579–581
when appliable 579

implementing 487–489
Kruskal’s algorithm 169–170
non-planar graphs 539–545

finding crossing number 541–542
rectilinear crossing number 543–545

planar graphs 528–539
efficient algorithms 538–539
improving performance 536–537
Kuratowski’s theorem 529–530
planarity testing 530–535

Prim’s algorithm 49–50
properties of 491–495

acyclic 494–495
connected 492–493
undirected 492

pseudo-code 490–491
greedy algorithm 8
gridShard method 479

H

H function 121
Hamming distance 213
hard clustering 404
hash function 699
hash set 120, 138
hash tables 117–118, 120, 690, 698–702

conflicts resolution in hashing 699–701
hashing 698–699
performance 702
storing key-value pairs 698

hashFunctions array 126
hashing 698
HashMap 45, 166, 249
HashSets 144
HashTables 144
hasItem method 382
hasItemX() method 382
_heap_to_tree method 61–62, 67
_heapify method 63–64, 66–67
heapify method 42, 45, 47, 59, 61, 64, 66
heaps 20, 25, 702, 712

d-ary heaps 27–28
implementing 28–46

bubbleUp method 29–32
contains method 44–45
dealing with duplicates 41–42
full code 46
heapify method 42–44
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heaps (continued)
insert method 35–37
performance 45–46
pushDown method 33–35
top method 37–40
update method 40

max-heaps 26–27
min-heaps 26–27

height-balancedness 696
height, of trees 696
heuristic function 513
heuristics

for crossing number 560–568
to balance real-time data 520–521
to improve running time 162–168

implementing balancing and path 
compression 166–168

path compression 164–166
HFile 135
hierarchical clustering 404
_highest_priority_child method 64–65
highestPriorityChild method 64
hill climbing 560, 573, 593
hill descent 573, 593, 600
hit ratio 133
Huffman codes 50–55
huffman method 53
huffman.create_encoding method 61, 67

I

if-then-else statement 674–675, 678
in keyword 677
incrementClusterIndex 436
indentation 678–679
Individual class 633–634
induced subgraphs 537, 539
Info class 166–167
initBloomFilter method 122
initialization 451, 463
initialSet 155
initPopulation method 634, 653
insert method 20, 23, 35, 45–46, 58–59, 61–64, 72, 

84–85, 91, 96, 115, 117, 120, 131, 138–139, 
144–145, 175, 187–189, 192, 196, 204–206, 
282, 287, 290, 293, 298, 316, 318, 333, 339, 
341, 343–345, 350, 352–353, 356, 369, 378, 
488, 697

k-d trees 287–288
radix tries 204–206
SS-trees 337–344

split nodes 348–352
variance, means, and projections 345–348

tries 187–189
insertion sort 32

integers 127
intermediate node 180, 186
intersectsPoint method 337
invariants 20
inverse Ackermann function 166, 172
IO fetchers 134
isBipartite method 535
isGoal function 497–498, 509, 513
isK3_3 method 534
isK5 method 534
isPassThrough function 208
isRoot method 76
iterate operations 705
Iterative MapReduce 465

J

Jordan curve 526–527
JsGraphs library 568, 613, 621, 656

K

k_means method 417
k-d trees 318

boosting k-means with 414–416
cycling through dimensions 275–282

balance 282
binary search trees 276–281
invariants 281

limits and possible improvements 316–318
methods 282–316

balanced tree 289–292
insert method 287–288
NN search 301–310
region search 310–316
remove method 293–301
search method 284–286

overcoming flaws of 322
k-dimensional spaces 268–271

modeling 2-D partitions with data 
structure 270–271

multidimensional binary search 269–270
unidimensional binary search 268

k-means 404, 418
boosting with k-d trees 414–416
dimensionality 412–413
issues with 410–412
MapReduce 463–475

centroid initialization with canopy 
clustering 469–471

MapReduce canopy clustering 471–475
parallelizing canopy clustering 467–469

parallelizing 451–452
performance analysis 413–414
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KdNode class 284–285, 288
KdTree class 267, 284–285, 344, 415
KdTree::search(target) method 285
key nodes 180, 187, 191, 193, 209
key2Positions method 126
keysStartingWith method 194, 210

radix tries 209–211
tries 193–195

keysWithPrefix method 195–197
kmeans method 407
kmeansElbow method 445
knapsackChromosomeInitializer method 634
knapsackCossover method 648
knapsackMutation method 650
Kruskal’s algorithm 169–170
Kubernetes 449
Kuratowski’s theorem 529–530

L

lambda notation 710
Las Vegas algorithms 137, 146, 716–717
LBFs (layered Bloom filters) 144–145
leaves 695–696
leftRotate method 78
Levenshtein distance 211, 213
LFU (least frequently used) 133, 238–244

choosing 240
LRU vs. 240–242
performance 243
problems with 243–244

LFUCache::set method 246
LIFO (Last In, First Out) 705
linear regression 583–585, 669
linearithmic time 292, 606
linked lists 4, 690, 692–695
list’s nodes 695
local minimum 569
local optimization 573
locality of reference 214
locality properties 702
locally-optimal choice 625
locks 249–250

acquiring 250–252
read locks 252–253
reentrant locks 252

logistic regression 669
longestPrefix method 192–193, 196–197, 209

radix tries 209
tries 192–193

loops 676–678
break and continue keywords 678
for loops 676–677
while loops 677–678

loss function 583

LRU (least recently used) cache 256
applications for 254–255
computing things twice 219–222
LFU vs. 240–242
performance 238
policies 244–245
remembering values 222–228

asynchronous call handling 226–227
description and API 224
fresh data 224–226
marking cache values as 227–228

synchronization 245–254
concurrency 248–249, 253–254
locks 249–250, 253

temporal ordering 232–238
LRUCache class 233–234

M

Manhattan Distance 506
Map class 53, 167
map method 41, 129
MapReduce model 455–463

DBSCAN 475–481
k-means 463–475

centroid initialization with canopy 
clustering 469–471

MapReduce canopy clustering 471–475
parallelizing canopy clustering 467–469

mapping, then reducing 459–462
problem 455–459

marginPoints method 480
market segmentation 403
Mars colony food supply example 7

abstraction 7–8
algorithms 9–10

matchEdge method 203
Matplotlib 60
max method 26, 72, 90–91, 681, 697
max-heaps 26–27
maximum flow 625, 665, 667
maxIter 407, 445, 464
maxSize element 128
maxSteps 576, 588, 597, 650
maxTolerance method 127–128
MDRQ (multidimensional range queries) 395
Membership category 405
memetic algorithm 668
memoization 537, 708, 710
memory locality 25
memory management 706
merge method 154, 158–162, 168, 172, 358
mergeChildren method 358
mergeClusters method 478–480
meta-heuristic 595
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metrics functions 718
MFU (Most Frequently Used) 239
min method 26, 72, 90–91, 296, 681, 697
min_max method 681
min-heaps 26–27, 48
Min/Max operation 91, 119
minDistance 409
mini-batch backpropagation 632
minimum bounding circle 555
minimum crossing number 560
minimum edge crossing 615
minimum rectilinear crossing number 560
minimum vertex cover 661–665

applications of 662–663
implementing genetic algorithm 663–665

minVarianceSplit method 352
ML (machine learning) 401, 720
Monte Carlo algorithms 137, 146, 603, 656, 

716–718
MRcanopyCentroids method 469, 473
MRdbscan method 477
MRkmeans method 464
MRU (Most Recently Used) 133
MSD (Most Significant Digit) 214
MST (minimum spanning tree) 49, 169, 606
multi-indexing 70–71
multidimensional data indexing 318

cycling through dimensions 275–282
balance 282
binary search trees 276–281
invariants 281

limits and possible improvements 316–318
methods 282–316

balanced tree 289–292
insert method 287–288
NN search 301–310
region search 310–316
remove method 293–301
search method 284–286

multidimensional DB queries optimization
395–397

multigraphs 487
multiplication method 699
Murmur hashing 122, 126
mutations 640, 648–650, 653–654, 670
mutual recursion 715

N

natural selection 628, 635–639
naturalSelection method 636
nearestNeighbor method 316, 360, 362, 369
negative gradient 576
newNode 84
NN (nearest neighbors) search 272, 399

centralized application 380–385
complex decisions 383–385
filtering points 381–382

closest hub problem 376–380
issues with 379–380
sketching solution 377–379

clustering 398–399
color reduction 391–393
description and API 266–267
distributed application 386–391

issues handling HTTP communication
387–389

keeping inventory in sync 389–390
lessons learned 390–391

k-d trees 301–310
k-dimensional spaces 268–271

higher dimensions 269–270
modeling 2-D partitions with data 

structure 270–271
unidimensional binary search 268

multidimensional DB queries 
optimization 395–397

particle interaction 393–394
search problem 260–261
similarity search trees 374
solutions 261–266

caching 262
data structure choice 264–266
precomputing 261–262
simplifying problem 262–263

nNearestNeighbor method 306
node class 75, 87, 89, 181, 184–185, 188, 191, 

193–194, 203, 205, 208–209, 211, 285, 288, 
302, 335, 339, 344, 355–356, 358, 362–363, 
378, 381, 383

node.left 91
node.right 91
nodeDistance function 362
nodeToFix 356
non-planar graphs 539–545

finding crossing number 541–542
rectilinear crossing number 543–545

NP class 403, 661
NP-complete problem 541, 605
NP-hard problem 560
null inbound flow 666
null outbound flow 666
numCentroids 408, 445
numClusters 464
numShards 464, 469, 473, 477

O

open addressing 117, 700
operating system 133
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OPTICS (ordering points to identify the clustering 
structure) 426–442

algorithm 428–432
clustering 433–436
definitions 427–428
hierarchical clustering 436–440
performance analysis 441–442

optics method 430
opticsCluster method 435–436
optimization 568–574

cost functions 568–570
genetic algorithms 670

chromosomes 631–633
crossover 645–648
fitness 634–635
inspired by nature 627–631
maximum flow 665–667
minimum vertex cover 661–665
mutations 648–650
natural selection 635–639
population 633–634
protein folding 667–668
selecting individuals for mating 639–645
template 650
traveling salesman problem 652–660
when it works best 651–652

gradient descent 590
applications of 581–585
for embeddings 585–589
geometrical interpretation 576–579
heuristics for crossing number 560–568
math of 575–579
problems with 579–581
when applicable 579

random sampling 571–574
simulated annealing 623

embeddings 615–623
function of 598–600
gradient descent vs. 603–604
implementation 597–598
short-range vs. long-range transitions

601–602
traveling salesman problem 604–615
variants 602–603

step functions and local minima 571
optimization problems 568
Optional class 107–108
Optional::map 108
order function 379
order properties 702
outliers 418
overloading 680

P

pairs array 28, 39
Pandas library 60–61
parallel clustering 482

MapReduce 455–463
DBSCAN 475–481
k-means 463–475
mapping, then reducing 459–462
problem 455–459

parallelization 449–455
canopy clustering 452–455
parallel vs. distributed computing 450–451
parallelizing k-means 451–452

parallel computing 450
parallelization 449–455

canopy clustering 452–455
parallel vs. distributed computing 450–451
parallelizing k-means 451–452

parent node 695
parentIndex 30
parentsMap 160
particle interaction 393–394
particle swarm optimization 669
partition method 291–292
partitioning clustering 404
partitionsMap 160
pass-through nodes 198
path compression 164, 166
Patricia trees 198
PCB (printed circuit boards) 523, 615
peek method 20, 40, 45, 89, 91, 94
perfect hashing 700, 702
perfectly balanced tree 696
phenotypes 631
pigeonhole principle 699–700
planar embedding 525
planar graphs 525, 528–539

efficient algorithms 538–539
improving performance 536–537
Kuratowski’s theorem 529–530
planarity testing 530–535

planarity testing 530–535
planarityTesting method 532
points array 291, 332, 378
pointsInRectangle method 396, 398
pointsInRegion operation 316, 369
pointsWithinRegion function 363
polylines 549–550
positive predictive value 719
PQ (priority queue) 19–20, 705
precision 719, 721
predecessor method 697
prefix 193–194, 209
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Prev/Next operation 119
Prim’s algorithm 49–50
priority queues 68, 707

branching factor analysis 55–57
branching factor vs. memory 57
finding optimal branching factor 56–57
need for d-ary heaps 55–56
running time 56

concrete data structures 22–28
choosing the right data structure 23–24
comparing performance 23
d-ary heaps 27–28
heaps 24–25
min-heaps and max-heaps 26–27

containers as 704–707
bags 705
comparative analysis for 707
queues 706–707
stacks 705–706

Dijkstra algorithm 49
finding k largest elements 47–48

choosing the right data structure 47
coding 48
min-heaps 48

function of 21–22
generalizing FIFO 22
Huffman codes 50–55
implementing heaps 28–46

bubbleUp method 29–32
contains method 44–45
dealing with duplicates 41–42
full code 46
heapify method 42–44
insert method 35–37
performance 45–46
pushDown method 33–35
top method 37–40
update method 40

performance analysis 58–68
choosing best branching factor 67–68
heapify method running time growth 66–67
interpreting results 61–65
profiling 59–61

Prim’s algorithm 49–50
priority handling 17–18
sorted lists 19

PriorityQueue class 40, 72, 242, 249
profiling 59
program counters 712
protected method 153
protein folding 668
pseudo-code 671–681

arrays 672–673
blocks and indentation 678–679

conditional instructions 674–676
else-if 675
switch 675–676

functions 679–681
overloading and default arguments 680
tuples 680–681

loops 676–678
break and continue keywords 678
for loops 676–677
while loops 677–678

variables and basics 671–672
pStats.Stats function 61
_push_down method 62–66
pushDown method 33–35, 39–40, 42–44, 64

Q

quantum annealing 592
query method 416
queues 706–707

priority 68
branching factor analysis 55–57
concrete data structures 22–28
containers as 704–707
Dijkstra algorithm 49
finding k largest elements 47–48
function of 21–22
generalizing FIFO 22
Huffman codes 50–55
implementing heaps 28–46
performance analysis 58–68
Prim’s algorithm 49–50
priority handling 17–18
sorted lists 19

stacks vs. 505–506

R

R-tree 267
radix tries (compact prefix trees) 197–211

insert method 204–206
keysStartingWith method 209–211
longestPrefix method 209
nodes and edges 199–202
remove method 207
search method 202–204

RadixSort 174
RadixTrie class 201, 203
RAM model 683
random method 564
random permutation 611–612
random sampling algorithm 560, 564, 571, 651
random swaps 611–612
Random Swaps operation 611–612
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randomCentroidInit method 408
randomEmbedding method 564
randomized treaps 91–97

applications of 96–97
balanced trees 92–94
performance analysis and profiling 97–108

expected height 97–100
profiling height 100–103
profiling memory usage 106–108
profiling running time 104–106

randomization 94–96
RandomizedTreap class 104, 106
randomStep method 597, 601, 612, 614
rcn (rectilinear crossing number) 543, 615
re-centering 405, 451, 463
reachability plot 432
Read-Through policy 245
readBit method 124–125, 130
recall 719, 721
reconstructPath method 501
recursion 708–715

mutual recursion 715
simple 709–712
tail recursion 712–714

red-black trees 698
RedBox class 672
reduce function 131
ReentrantReadWriteLock class 249
reflexive property 118
Refresh-Ahead policy 245
region search

k-d trees 310–316
SS-trees 363

registers 671
regression algorithms 402
Remove an entry operation 116–117, 119
remove method 45–46, 72, 87, 89, 91, 101, 

104–105, 115, 175, 186, 208, 282, 316, 
318, 369

k-d trees 293–301
radix tries 207
tries 189–192

rightRotate method 76, 79, 84
root 84, 167, 695–696
rotations 75–80
Roulette wheel selection 642
routers 133
RT (Randomized Treaps) 95
RTNode class 201, 203
runsPerK 445

S

samePartition method 158
scalable Bloom filters 146

scaling up 112
SCC (strongly connect component) 493
scipy.spatial module 416
search method 72, 87, 187–188, 190, 192, 196, 205, 

209, 287–288, 290, 293, 298, 316, 333, 335, 
353, 369, 697

k-d trees 284–286
radix tries 202–204
tries 183–187

searchClosestLeaf method 353
searchNode method 186, 190, 193–194, 204
searchNodeWithPrefix method 210
searchParentLeaf method 340–341
segmentation faults 712–713
Selection Sort algorithm 47
sensitivity 719
sentiment analysis 220
set method 117, 127, 151, 157, 234, 250–252
setLeft method 77–78
setRight method 75, 77–78
sharding 220
Shop class 378, 385
shop.order method 380
siblings 357, 695–696
side effects 2
sign function 284
simple graph 487, 492
simulated annealing 592, 623–624, 651

embeddings 615–623
force-directed drawing 618–623
minimum edge crossing 615–617

function of 598–600
gradient descent vs. 603–604
implementation 597–598
short-range vs. long-range transitions 601–602
traveling salesman problem 604–615

adjacent vs. random swaps 613–614
applications of 614–615
exact vs. approximated solutions 606
pruning domain 608–609
state transitions 609–613
visualizing cost 607–608

variants 602–603
simulatedAnnealing method 597
single-link chain effect 419
singly-linked lists 693, 702
SLA (service-level agreement) 221
SLC (single-linkage clustering) 419
snake_case 672
soft clustering 404
sorted arrays 116–117
Sorted List operation 119
sorted lists 19, 119
SortedPriorityQueue class 72
source vertex 486
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Space needed operation 489
spell checkers 174–177, 211–213

Bloom filters 134
compression 176
description and API 177

split coordinate 281
split method 348, 351
splitIndex method 349
splitPoints function 350
SQL 398
SS (similarity search) trees 374

approximated similarity search 364–367
complex example 321–322
delete method 352–359
insert method 337–344

split nodes 348–352
variance, means, and projections 345–348

NN search 359–363
overcoming k-d trees flaws 322
R-trees 322–329

B-trees 323–324
inserting points in 326–328
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