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Overview of Artificial Intelligence

What is AI ?

 Artificial Intelligence (AI) is a branch of Science which deals with helping machines 

find solutions to complex problems in a more human-like fashion.  

 This generally involves borrowing characteristics from human intelligence, and 

applying them as algorithms in a computer friendly way.  

 A more or less flexible or efficient approach can be taken depending on the 

requirements established, which influences how artificial the intelligent behavior 

appears 

 Artificial intelligence can be viewed from a variety of perspectives. 

 From the perspective of intelligence  

artificial intelligence is making machines "intelligent" -- acting as we would 

expect people to act.  

o The inability to distinguish computer responses from human responses 

is called the Turing test.  

o Intelligence requires knowledge  

o Expert problem solving - restricting domain to allow including 

significant relevant knowledge  

 From a business perspective AI is a set of very powerful tools, and 

methodologies for using those tools to solve business problems.  

 From a programming perspective, AI includes the study of symbolic 

programming, problem solving, and search.  

o Typically AI programs focus on symbols rather than numeric 

processing.  

o Problem solving - achieve goals.  

o Search - seldom access a solution directly. Search may include a 

variety of techniques.  

o AI programming languages include:  

– LISP, developed in the 1950s, is the early programming language 

strongly associated with AI. LISP is a functional programming language with 

procedural extensions. LISP (LISt Processor) was specifically designed for 



processing heterogeneous lists -- typically a list of symbols. Features of LISP 

are run- time type checking, higher order functions (functions that have other 

functions as parameters), automatic memory management (garbage collection) 

and an interactive environment. 

– The second language strongly associated with AI is PROLOG. 

PROLOG was developed in the 1970s. PROLOG is based on first order logic. 

PROLOG is declarative in nature and has facilities for explicitly limiting the 

search space.  

– Object-oriented languages are a class of languages more recently used 

for AI programming. Important features of object-oriented languages include: 

concepts of objects and messages, objects bundle data and methods for 

manipulating the data, sender specifies what is to be done receiver decides 

how to do it, inheritance (object hierarchy where objects inherit the attributes 

of the more general class of objects). Examples of object-oriented languages 

are Smalltalk, Objective C, C++. Object oriented extensions to LISP (CLOS -

Common LISP Object System) and PROLOG (L&O - Logic & Objects) are 

also used.  

 Artificial Intelligence is a new electronic machine that stores large amount of 

information and process it at very high speed 

 The computer is interrogated by a human via a teletype It passes if the human cannot 

tell if there is a computer or human at the other end 

 The ability to solve problems 

 It is the science and engineering of making intelligent machines, especially intelligent 

computer programs. It is related to the similar task of using computers to understand 

human intelligence 

 Importance of AI

 Game Playing 

You can buy machines that can play master level chess for a few hundred dollars. 

There is some AI in them, but they play well against people mainly through brute 

force computation--looking at hundreds of thousands of positions. To beat a world 

champion by brute force and known reliable heuristics requires being able to look at 

200 million positions per second. 

 Speech Recognition  



In the 1990s, computer speech recognition reached a practical level for limited 

purposes. Thus United Airlines has replaced its keyboard tree for flight information 

by a system using speech recognition of flight numbers and city names. It is quite 

convenient. On the other hand, while it is possible to instruct some computers using 

speech, most users have gone back to the keyboard and the mouse as still more 

convenient. 

 Understanding Natural Language  

Just getting a sequence of words into a computer is not enough. Parsing sentences is 

not enough either. The computer has to be provided with an understanding of the 

domain the text is about, and this is presently possible only for very limited domains.  

 Computer Vision  

The world is composed of three-dimensional objects, but the inputs to the human eye 

and computers' TV cameras are two dimensional. Some useful programs can work 

solely in two dimensions, but full computer vision requires partial three-dimensional 

information that is not just a set of two-dimensional views. At present there are only 

limited ways of representing three-dimensional information directly, and they are not 

as good as what humans evidently use.  

 Expert Systems  

      A ``knowledge engineer'' interviews experts in a certain domain and tries to embody 

their knowledge in a computer program for carrying out some task. How well this 

works depends on whether the intellectual mechanisms required for the task are 

within the present state of AI. When this turned out not to be so, there were many 

disappointing results. One of the first expert systems was MYCIN in 1974, which 

diagnosed bacterial infections of the blood and suggested treatments. It did better than 

medical students or practicing doctors, provided its limitations were observed. 

Namely, its ontology included bacteria, symptoms, and treatments and did not include 

patients, doctors, hospitals, death, recovery, and events occurring in time. Its 

interactions depended on a single patient being considered. Since the experts 

consulted by the knowledge engineers knew about patients, doctors, death, recovery, 

etc., it is clear that the knowledge engineers forced what the experts told them into a 

predetermined framework. The usefulness of current expert systems depends on their 

users having common sense.  



 Heuristic Classification  

One of the most feasible kinds of expert system given the present knowledge of AI is 

to put some information in one of a fixed set of categories using several sources of 

information. An example is advising whether to accept a proposed credit card 

purchase. Information is available about the owner of the credit card, his record of 

payment and also about the item he is buying and about the establishment from which 

he is buying it (e.g., about whether there have been previous credit card frauds at this 

establishment).  

 The applications of AI are shown in Fig 1.1: 

 Consumer Marketing 

o Have you ever used any kind of credit/ATM/store card while shopping?

o if so, you have very likely been “input” to an AI algorithm

o All of this information is recorded digitally 

o Companies like Nielsen gather this information weekly and search for 

patterns 

– general changes in consumer behavior 

– tracking responses to new products 

– identifying customer segments: targeted marketing, e.g., they find 

out that consumers with sports cars who buy textbooks respond 

well to offers of new credit cards. 

o Algorithms (“data mining”) search data for patterns based on mathematical 

theories of learning 

 Identification Technologies 

o ID cards e.g., ATM cards 

o can be a nuisance and security risk: cards can be lost, stolen, passwords 

forgotten, etc 

o Biometric Identification, walk up to a locked door 

– Camera  

– Fingerprint device  

– Microphone 

– Computer uses biometric signature for identification 

– Face, eyes, fingerprints, voice pattern 



– This works by comparing data from person at door with stored 

library

– Learning algorithms can learn the matching process by analyzing a 

large library database off-line, can improve its performance. 

 Intrusion Detection 

o Computer security -  we each have specific patterns of computer use times 

of day, lengths of sessions, command used, sequence of commands, etc

– would like to learn the “signature” of each authorized user

– can identify non-authorized users 

o How can the program automatically identify users? 

– record user’s commands and time intervals 

– characterize the patterns for each user 

– model the variability in these patterns 

– classify (online) any new user by similarity to stored patterns 

 Machine Translation 

o Language problems in international business 

– e.g., at a meeting of Japanese, Korean, Vietnamese and Swedish 

investors, no common language 

– If you are shipping your software manuals to 127 countries, the  

solution is ; hire translators to translate 

– would be much cheaper if a machine could do this! 

o How hard is automated translation 

– very difficult! 

– e.g., English to Russian 

– not only must the words be translated, but their meaning also! 



                    Fig : Application areas of AI 

Early work in AI 

 “Artificial Intelligence (AI) is the part of computer science concerned with designing 

intelligent computer systems, that is, systems that exhibit characteristics we associate 

with intelligence in human behaviour – understanding language, learning, reasoning, 

solving problems, and so on.”      

 Scientific Goal  To determine which ideas about knowledge representation, learning, 

rule systems, search, and so on, explain various sorts of real intelligence. 

 Engineering Goal  To solve real world problems using AI techniques such as 

knowledge representation, learning, rule systems, search, and so on. 

 Traditionally, computer scientists and engineers have been more interested in the 

engineering goal, while psychologists, philosophers and cognitive scientists have been 

more interested in the scientific goal.   

 The Roots - Artificial Intelligence has identifiable roots in a number of older 

disciplines, particularly: 

 Philosophy 

 Logic/Mathematics 

 Computation 



 Psychology/Cognitive Science 

 Biology/Neuroscience

 Evolution 

 There is inevitably much overlap, e.g. between philosophy and logic, or between 

mathematics and computation. By looking at each of these in turn, we can gain a 

better understanding of their role in AI, and how these underlying disciplines have 

developed to play that role.

 Philosophy 

 ~400 BC   Socrates asks for an algorithm to distinguish piety from non-piety. 

 ~350 BC   Aristotle formulated different styles of deductive reasoning, which 

could mechanically generate conclusions from initial premises, e.g. Modus Ponens             

If   A ? B     and     A      then       B 

     If    A implies B     and     A is true      then       B is true when it’s raining you       

     get wet  and  it’s raining  then  you get wet 

 1596 – 1650   Rene Descartes idea of mind-body dualism – part of the mind is 

exempt from physical laws. 

 1646 – 1716   Wilhelm Leibnitz was one of the first to take the materialist position 

which holds that the mind operates by ordinary physical processes – this has the 

implication that mental processes can potentially be carried out by machines. 

 Logic/Mathematics 

 Earl  Stanhope’s Logic Demonstrator was a machine that was able to solve 

syllogisms, numerical problems in a logical form, and elementary questions of 

probability. 

 1815 – 1864   George  Boole introduced his formal language for making logical 

inference in 1847 – Boolean algebra. 

 1848 – 1925   Gottlob Frege produced a logic that is essentially the first-order

logic that today forms the most basic knowledge representation system. 

 1906 – 1978 Kurt Gödel showed in 1931 that there are limits to what logic can 

do. His Incompleteness Theorem showed that in any formal logic powerful 

enough to describe the properties of natural numbers, there are true statements 

whose truth cannot be established by any algorithm. 



 1995 Roger Penrose tries to prove the human mind has non-computable 

capabilities. 

 Computation 

 1869   William Jevon’s Logic Machine could handle Boolean Algebra and Venn 

Diagrams, and was able to solve logical problems faster than human beings. 

 1912 – 1954   Alan Turing tried to characterise exactly which functions are 

capable of being computed.  Unfortunately it is difficult to give the notion of 

computation a formal definition.  However, the Church-Turing thesis, which states 

that a Turing machine is capable of computing any computable function, is 

generally accepted as providing a sufficient definition.  Turing also showed that 

there were some functions which no Turing machine can compute (e.g. Halting 

Problem). 

 1903 – 1957   John von Neumann proposed the von Neuman architecture which 

allows a description of computation that is independent of the particular 

realisation of the computer. 

 1960s   Two important concepts emerged: Intractability (when solution time 

grows atleast exponentially) and Reduction (to ‘easier’ problems). 

 Psychology / Cognitive Science 

 Modern Psychology / Cognitive Psychology / Cognitive Science is the science 

which studies how the mind operates, how we behave, and how our brains process 

information. 

 Language is an important part of human intelligence.  Much of the early work on 

knowledge representation was tied to language and informed by research into 

linguistics.  

 It is natural for us to try to use our understanding of how human (and other 

animal) brains lead to intelligent behavior in our quest to build artificial intelligent 

systems. Conversely, it makes sense to explore the properties of artificial systems 

(computer models/simulations) to test our hypotheses concerning human systems. 

 Many sub-fields of AI are simultaneously building models of how the human 

system operates, and artificial systems for solving real world problems, and are 

allowing useful ideas to transfer between them. 

 Biology / Neuroscience 



 Our brains (which give rise to our intelligence) are made up of tens of billions of 

neurons, each connected to hundreds or thousands of other neurons.  

 Each neuron is a simple processing device (e.g. just firing or not firing depending 

on the total amount of activity feeding into it).  However, large networks of 

neurons are extremely powerful computational devices that can learn how best to 

operate. 

 The field of Connectionism or Neural Networks attempts to build artificial 

systems based on simplified networks of simplified artificial neurons.  

 The aim is to build powerful AI systems, as well as models of various human 

abilities. 

 Neural networks work at a sub-symbolic level, whereas much of conscious human 

reasoning appears to operate at a symbolic level. 

 Artificial neural networks perform well at many simple tasks, and provide good 

models of many human abilities.  However, there are many tasks that they are not 

so good at, and other approaches seem more promising in those areas. 

 Evolution 

 One advantage humans have over current machines/computers is that they have a 

long evolutionary history. 

 Charles Darwin (1809 – 1882) is famous for his work on evolution by  natural 

selection.  The idea is that fitter individuals will naturally tend to live longer and 

produce more children, and hence after many generations a population will 

automatically emerge with good innate properties. 

 This has resulted in brains that have much structure, or even knowledge, built in at 

birth.  

 This gives them at the advantage over simple artificial neural network systems 

that have to learn everything.   

 Computers are finally becoming powerful enough that we can simulate evolution 

and evolve good AI systems.   

 We can now even evolve systems (e.g. neural networks) so that they are good at 

learning.  

 A related field called  genetic programming has had some success in evolving 

programs, rather than programming them by hand. 

 Sub-fields of Artificial Intelligence 



 Neural Networks – e.g. brain modelling, time series prediction, classification  

 Evolutionary Computation – e.g. genetic algorithms, genetic programming 

 Vision – e.g. object recognition, image understanding 

 Robotics – e.g. intelligent control, autonomous exploration 

 Expert Systems – e.g. decision support systems, teaching systems 

 Speech Processing– e.g. speech recognition and production 

 Natural Language Processing – e.g. machine translation 

 Planning – e.g. scheduling, game playing 

 Machine Learning – e.g. decision tree learning, version space learning 

 Speech Processing 

 As well as trying to understand human systems, there are also numerous real 

world applications: speech recognition for dictation systems and voice activated 

control; speech production for automated announcements and computer interfaces. 

 How do we get from sound waves to text streams and vice-versa? 

 

 Natural Language Processing 

 For example, machine understanding and translation of simple sentences: 

 Planning

 Planning refers to the process of choosing/computing the correct sequence of steps 

to solve a given problem.

 To do this we need some convenient representation of the problem domain.  We 

can define states in some formal language, such as a subset of predicate logic, or a 

series of rules.  

 A plan can then be seen as a sequence of operations that transform the initial state 

into the goal state, i.e. the problem solution.  Typically we will use some kind of 

search algorithm to find a good plan.

 Common Techniques 

 Even apparently radically different AI systems (such as rule based expert systems 

and neural networks) have many common techniques.   

 Four important ones are: 



o Knowledge Representation:   Knowledge needs to be represented 

somehow – perhaps as a series of if-then rules, as a frame based system, as 

a semantic network, or in the connection weights of an artificial neural 

network. 

o Learning:    Automatically building up knowledge from the environment –

such as acquiring the rules for a rule based expert system, or determining 

the appropriate connection weights in an artificial neural network. 

o Rule Systems:   These could be explicitly built into an expert system by a 

knowledge engineer, or implicit in the connection weights learnt by a 

neural network. 

o Search:   This can take many forms – perhaps searching for a sequence of 

states that leads quickly to a problem solution, or searching for a good set 

of connection weights for a neural network by minimizing a fitness 

function. 

AI and related fields

 Logical AI  

What a program knows about the world in general the facts of the specific situation in 

which it must act, and its goals are all represented by sentences of some mathematical 

logical language. The program decides what to do by inferring that certain actions are 

appropriate for achieving its goals.  

 Search  

AI programs often examine large numbers of possibilities, e.g. moves in a chess game 

or inferences by a theorem proving program. Discoveries are continually made about 

how to do this more efficiently in various domains.  

 Pattern Recognition  

When a program makes observations of some kind, it is often programmed to 

compare what it sees with a pattern. For example, a vision program may try to match 

a pattern of eyes and a nose in a scene in order to find a face. More complex patterns, 

e.g. in a natural language text, in a chess position, or in the history of some event are 

also studied.  



 Representation  

Facts about the world have to be represented in some way. Usually languages of 

mathematical logic are used. 

 Inference  

From some facts, others can be inferred. Mathematical logical deduction is adequate 

for some purposes, but new methods of non-monotonic inference have been added to 

logic since the 1970s. The simplest kind of non-monotonic reasoning is default 

reasoning in which a conclusion is to be inferred by default, but the conclusion can be 

withdrawn if there is evidence to the contrary. For example, when we hear of a bird, 

we man infer that it can fly, but this conclusion can be reversed when we hear that it 

is a penguin. It is the possibility that a conclusion may have to be withdrawn that 

constitutes the non-monotonic character of the reasoning. Ordinary logical reasoning 

is monotonic in that the set of conclusions that can the drawn from a set of premises is 

a monotonic increasing function of the premises.   

 Common sense knowledge and reasoning  

This is the area in which AI is farthest from human-level, in spite of the fact that it has 

been an active research area since the 1950s. While there has been considerable 

progress, e.g. in developing systems of non-monotonic reasoning and theories of 

action, yet more new ideas are needed.   

 Learning from experience 

Programs do that. The approaches to AI based on connectionism and neural nets

specialize in that. There is also learning of laws expressed in logic. Programs can only 

learn what facts or behaviors their formalisms can represent, and unfortunately 

learning systems are almost all based on very limited abilities to represent 

information.  

 Planning 

Planning programs start with general facts about the world (especially facts about the 

effects of actions), facts about the particular situation and a statement of a goal. From 

these, they generate a strategy for achieving the goal. In the most common cases, the 

strategy is just a sequence of actions. 

 Epistemology  



This is a study of the kinds of knowledge that are required for solving problems in the 

world. 

 Ontology 

Ontology is the study of the kinds of things that exist. In AI, the programs and 

sentences deal with various kinds of objects, and we study what these kinds are and 

what their basic properties are. Emphasis on ontology begins in the 1990s.  

 Heuristics  

A heuristic is a way of trying to discover something or an idea imbedded in a 

program. The term is used variously in AI. Heuristic functions are used in some 

approaches to search to measure how far a node in a search tree seems to be from a 

goal. Heuristic predicates that compare two nodes in a search tree to see if one is 

better than the other, i.e. constitutes an advance toward the goal, may be more useful.   

 Genetic Programming  

Genetic programming is a technique for getting programs to solve a task by mating 

random Lisp programs and selecting fittest in millions of generations.  

Search and Control Strategies: 

Problem solving is an important aspect of Artificial Intelligence. A problem can be 

considered to consist of a goal and a set of actions that can be taken to lead to the goal. At 

any given time, we consider the state of the search space to represent where we have reached 

as a result of the actions we have applied so far. For example, consider the problem of 

looking for a contact lens on a football field. The initial state is how we start out, which is to 

say we know that the lens is somewhere on the field, but we don’t know where. If we use the 

representation where we examine the field in units of one square foot, then our first action 

might be to examine the square in the top-left corner of the field. If we do not find the lens 

there, we could consider the state now to be that we have examined the top-left square and 

have not found the lens. After a number of actions, the state might be that we have examined 

500 squares, and we have now just found the lens in the last square we examined. This is a 

goal state because it satisfies the goal that we had of finding a contact lens.

Search is a method that can be used by computers to examine a problem space like 

this in order to find a goal. Often, we want to find the goal as quickly as possible or without 

using too many resources. A problem space can also be considered to be a search space 



because in order to solve the problem, we will search the space for a goal state.We will 

continue to use the term search space to describe this concept. In this chapter, we will look at 

a number of methods for examining a search space. These methods are called search 

methods.

 The Importance of Search in AI 

 It has already become clear that many of the tasks underlying AI can be 

phrased in terms of a search for the solution to the problem at hand. 

 Many goal based agents are essentially problem solving agents which must 

decide what to do by searching for a sequence of actions that lead to their 

solutions. 

 For production systems, we have seen the need to search for a sequence of rule 

applications that lead to the required fact or action.  

 For neural network systems, we need to search for the set of connection 

weights that will result in the required input to output mapping. 

 Which search algorithm one should use will generally depend on the problem 

domain? There are four important factors to consider: 

 Completeness – Is a solution guaranteed to be found if at least one solution 

exists? 

 Optimality – Is the solution found guaranteed to be the best (or lowest cost) 

solution if there exists more than one solution? 

 Time Complexity – The upper bound on the time required to find a solution, 

as a function of the complexity of the problem. 

 Space Complexity – The upper bound on the storage space (memory) required 

at any point during the search, as a function of the complexity of the problem. 

Preliminary concepts 

 Two varieties of space-for-time algorithms:  

 Input enhancement  — preprocess the input (or its part) to store some info to 

be used later in solving the problem  

o Counting for sorting 

o String searching algorithms 

 Prestructuring — preprocess the input to make accessing its elements easier 

o Hashing 



o Indexing schemes (e.g., B-trees) 

 State Space Representations: The state space is simply the space of all possible 

states, or configurations, that our system may be in. Generally, of course, we prefer to 

work with some convenient representation of that search space. 

 There are two components to the representation of state spaces: 

 Static States 

 Transitions between States

 

 State Space Graphs: If the number of possible states of the system is small enough, 

we can represent all of them, along with the transitions between them, in a state space 

graph, e.g. 

 

 Routes through State Space: Our general aim is to search for a route, or sequence of 

transitions, through the state space graph from our initial state to a goal state.

 Sometimes there will be more than one possible goal state. We define a goal test to 

determine if a goal state has been achieved.  

 The solution can be represented as a sequence of link labels (or transitions) on the 

state space graph. Note that the labels depend on the direction moved along the link.

 Sometimes there may be more than one path to a goal state, and we may want to find 

the optimal (best possible) path. We can define link costs and path costs for 

measuring the cost of going along a particular path, e.g. the path cost may just equal 

the number of links, or could be the sum of individual link costs.



 For most realistic problems, the state space graph will be too large for us to hold all of 

it explicitly in memory at any one time. 

 Search Trees: It is helpful to think of the search process as building up a search tree 

of routes through the state space graph. The root of the search tree is the search node 

corresponding to the initial state.  

 The leaf nodes correspond either to states that have not yet been expanded, or to states 

that generated no further nodes when expanded. 

 

 At each step, the search algorithm chooses a new unexpanded leaf node to expand. 

The different search strategies essentially correspond to the different algorithms one 

can use to select which is the next mode to be expanded at each stage.

 

Examples of search problems

 Traveling Salesman Problem: GGiivveenn nn  cciittiieess  wwiitthh  kknnoowwnn  ddiissttaanncceess  bbeettwweeeenn  eeaacchh  

ppaaiirr,,  ffiinndd  tthhee  sshhoorrtteesstt  ttoouurr  tthhaatt  ppaasssseess  tthhrroouugghh  aallll  tthhee  cciittiieess  eexxaaccttllyy  oonnccee  bbeeffoorree  

rreettuurrnniinngg  ttoo  tthhee  ssttaarrttiinngg  cciittyy.. 

 AA  lloowweerr  bboouunndd  oonn  tthhee  lleennggtthh  ll  ooff  aannyy  ttoouurr  ccaann  bbee  ccoommppuutteedd  aass  ffoolllloowwss 

 FFoorr  eeaacchh  cciittyy  ii,,  11  ≤ i ≤ n, find the sum si of the distances from city i to the two 

nearest cities. 

 Compute the sum s of these n numbers. 

 Divide the result by 2 and round up the result to the nearest integer 

lb = s / 2 

 The lower bound for the graph shown in the Fig 5.1 can be computed as follows: 



lb = [(1 + 3) + (3 + 6) + (1 + 2) 

+ (3 + 4) + (2 + 3)] / 2 = 14. 

 For any subset of tours that must include particular edges of a given graph, the lower 

bound can be modified accordingly. E.g.: For all the Hamiltonian circuits of the graph 

that must include edge (a, d), the lower bound can be computed as follows:

lb = [(1 + 5) + (3 + 6) + (1 + 2) + (3 + 5) + (2 + 3)] / 2 = 16. 

 Applying the branch-and-bound algorithm, with the bounding function lb = s / 2, to 

find the shortest Hamiltonian circuit for the given graph, we obtain the state-space 

tree as shown below: 

 To reduce the amount of potential work, we take advantage of the following two 

observations: 

 We can consider only tours that start with a. 

 Since the graph is undirected, we can generate only tours in which b is visited 

before c. 

 In addition, after visiting n – 1 cities, a tour has no choice but to visit the remaining 

unvisited city and return to the starting one is shown in the Fig 5.2 

 



Root node includes only the starting vertex a with a lower bound of 

lb = [(1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3)] / 2 = 14. 

 Node 1 represents the inclusion of edge (a, b) 

lb = [(1 + 3) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 3)] / 2 = 14. 

 Node 2 represents the inclusion of edge (a, c). Since b is not visited before c, 

this node is terminated. 

 Node 3 represents the inclusion of edge (a, d) 

lb = [(1 + 5) + (3 + 6) + (1 + 2) + (3 + 5) + (2 + 3)] / 2 = 16. 

 Node 1 represents the inclusion of edge (a, e) 

lb = [(1 + 8) + (3 + 6) + (1 + 2) + (3 + 4) + (2 + 8)] / 2 = 19. 

 Among all the four live nodes of the root, node 1 has a better lower bound. 

Hence we branch from node 1. 

 Node 5 represents the inclusion of edge (b, c) 

lb = [(1 + 3) + (3 + 6) + (1 + 6) + (3 + 4) + (2 + 3)] / 2 = 16. 

 Node 6 represents the inclusion of edge (b, d) 

lb = [(1 + 3) + (3 + 7) + (1 + 2) + (3 + 7) + (2 + 3)] / 2 = 16. 

 Node 7 represents the inclusion of edge (b, e) 

lb = [(1 + 3) + (3 + 9) + (1 + 2) + (3 + 4) + (2 + 9)] / 2 = 19. 



 Since nodes 5 and 6 both have the same lower bound, we branch out from 

each of them. 

 Node 8 represents the inclusion of the edges (c, d), (d, e) and  (e, a). Hence, 

the length of the tour,

l = 3 + 6 + 4 + 3 + 8 = 24.

 Node 9 represents the inclusion of the edges (c, e), (e, d) and  (d, a). Hence, 

the length of the tour,

l = 3 + 6 + 2 + 3 + 5 = 19.

 Node 10 represents the inclusion of the edges (d, c), (c, e) and  (e, a). Hence, 

the length of the tour,

l = 3 + 7 + 4 + 2 + 8 = 24.

 Node 11 represents the inclusion of the edges (d, e), (e, c) and  (c, a). Hence, 

the length of the tour, 

l = 3 + 7 + 3 + 2 + 1 = 16. 

 Node 11 represents an optimal tour since its tour length is better than or equal 

to the other live nodes, 8, 9, 10, 3 and 4. 

 The optimal tour is a → b→ d→ e→ c→ a with a tour length of 16. 

 

 Uniformed or Blind search 

 Breadth First Search (BFS): BFS expands the leaf node with the lowest path cost so 

far, and keeps going until a goal node is generated. If the path cost simply equals the 

number of links, we can implement this as a simple queue (“first in, first out”). 

 



 This is guaranteed to find an optimal path to a goal state. It is memory intensive if the 

state space is large. If the typical branching factor is b, and the depth of the shallowest 

goal state is d – the space complexity is O(bd), and the time complexity is O(bd). 

 BFS is an easy search technique to understand. The algorithm is presented below. 

breadth_first_search () 

{

store initial state in queue Q 

set state in the front of the Q as current state ; 

while (goal state is reached OR Q is empty) 

{

apply rule to generate a new state from the current

state ; 

if (new state is goal state) quit ; 

else if (all states generated from current states are 

exhausted) 

{

delete the current state from the Q ; 

set front element of Q as the current state ; 

}

else continue ; 

}

}

 The algorithm is illustrated using the bridge components configuration problem. The 

initial state is PDFG, which is not a goal state; and hence set it as the current state. 

Generate another state DPFG (by swapping 1st and 2nd position values) and add it to 



the list. That is not a goal state, hence; generate next successor state, which is FDPG 

(by swapping 1st and 3rd position values). This is also not a goal state; hence add it to 

the list and generate the next successor state GDFP.  

 Only three states can be generated from the initial state. Now the queue Q will have 

three elements in it, viz., DPFG, FDPG and GDFP. Now take DPFG (first state in the 

list) as the current state and continue the process, until all the states generated from 

this are evaluated. Continue this process, until the goal state DGPF is reached.  

 The 14th evaluation gives the goal state. It may be noted that, all the states at one 

level in the tree are evaluated before the states in the next level are taken up; i.e., the 

evaluations are carried out breadth-wise. Hence, the search strategy is called breadth-

first search. 

 Depth First Search (DFS): DFS expands the leaf node with the highest path cost so 

far, and keeps going until a goal node is generated. If the path cost simply equals the 

number of links, we can implement this as a simple stack (“last in, first out”). 

 

 This is not guaranteed to find any path to a goal state. It is memory efficient even if 

the state space is large. If the typical branching factor is b, and the maximum depth of 

the tree is m – the space complexity is O(bm), and the time complexity is O(bm).

 In DFS, instead of generating all the states below the current level, only the first state 

below the current level is generated and evaluated recursively. The search continues 

till a further successor cannot be generated.

 Then it goes back to the parent and explores the next successor. The algorithm is 

given below. 

depth_first_search () 

{

set initial state to current state ; 

if (initial state is current state) quit ;



else

{

if (a successor for current state exists)

{ 

generate a successor of the current state and 

set it as current state ; 

} 

else return ;

depth_first_search (current_state) ;

if (goal state is achieved) return ; 

else continue ; 

} 

}

 Since DFS stores only the states in the current path, it uses much less memory during 

the search compared to BFS.  

 The probability of arriving at goal state with a fewer number of evaluations is higher 

with DFS compared to BFS. This is because, in BFS, all the states in a level have to 

be evaluated before states in the lower level are considered. DFS is very efficient 

when more acceptable solutions exist, so that the search can be terminated once the 

first acceptable solution is obtained.  

 BFS is advantageous in cases where the tree is very deep. 

 An ideal search mechanism is to combine the advantages of BFS and DFS. 

 Depth Limited Search (DLS): DLS is a variation of DFS. If we put a limit l on how 

deep a depth first search can go, we can guarantee that the search will terminate 

(either in success or failure). 



 

 If there is at least one goal state at a depth less than l, this algorithm is guaranteed to 

find a goal state, but it is not guaranteed to find an optimal path. The space 

complexity is O(bl), and the time complexity is O(bl). 

 Depth First Iterative Deepening Search (DFIDS): DFIDS is a variation of DLS. If 

the lowest depth of a goal state is not known, we can always find the best limit l for 

DLS by trying all possible depths l = 0, 1, 2, 3, … in turn, and stopping once we have 

achieved a goal state. 

 This appears wasteful because all the DLS for l less than the goal level are useless, 

and many states are expanded many times. However, in practice, most of the time is 

spent at the deepest part of the search tree, so the algorithm actually combines the 

benefits of DFS and BFS. 

 Because all the nodes are expanded at each level, the algorithm is complete and 

optimal like BFS, but has the modest memory requirements of DFS. Exercise: if we 

had plenty of memory, could/should we avoid expanding the top level states many 

times? 

 The space complexity is O(bd) as in DLS with l = d, which is better than BFS.   

 The time complexity is O(bd) as in BFS, which is better than DFS. 

 Bi-Directional Search (BDS): The idea behind bi-directional search is to search 

simultaneously both forward from the initial state and backwards from the goal state, 

and stop when the two BFS searches meet in the middle. 

 

 This is not always going to be possible, but is likely to be feasible if the state 

transitions are reversible. The algorithm is complete and optimal, and since the two 



search depths are ~d/2, it has space complexity O(bd/2), and time complexity O(bd/2). 

However, if there is more than one possible goal state, this must be factored into the 

complexity. 

 Repeated States: In the above discussion we have ignored an important complication 

that often arises in search processes – the possibility that we will waste time by 

expanding states that have already been expanded before somewhere else on the 

search tree.

 For some problems this possibility can never arise, because each state can only be 

reached in one way. 

 For many problems, however, repeated states are unavoidable. This will include all 

problems where the transitions are reversible, e.g. 

 

 The search trees for these problems are infinite, but if we can prune out the repeated 

states, we can cut the search tree down to a finite size, We effectively only generate a 

portion of the search tree that matches the state space graph. 

 Avoiding Repeated States: There are three principal approaches for dealing with 

repeated states: 

 Never return to the state you have just come from  

The node expansion function must be prevented from generating any 

node successor that is the same state as the node’s parent. 

 Never create search paths with cycles in them  

The node expansion function must be prevented from generating  

any node successor that is the same state as any of the node’s 

ancestors. 

 Never generate states that have already been generated before 

This requires that every state ever generated is remembered, potentially 

resulting in space complexity of O(bd). 

 Comparing the Uninformed Search Algorithms: We can now summarize the 

properties of our five uninformed search strategies: 



       

 Simple BFS and BDS are complete and optimal but expensive with respect to space 

and time.  

 DFS requires much less memory if the maximum tree depth is limited, but has no 

guarantee of finding any solution, let alone an optimal one. DLS offers an 

improvement over DFS if we have some idea how deep the goal is.  

 The best overall is DFID which is complete, optimal and has low memory 

requirements, but still exponential time. 

 Informed search 

 Informed search uses some kind of evaluation function to tell us how far each 

expanded state is from a goal state, and/or some kind of heuristic function to help us 

decide which state is likely to be the best one to expand next. 

 The hard part is to come up with good evaluation and/or heuristic functions. Often 

there is a natural evaluation function, such as distance in miles or number objects in 

the wrong position.  

 Sometimes we can learn heuristic functions by analyzing what has worked well in 

similar previous searches. 

 The simplest idea, known as greedy best first search, is to expand the node that is 

already closest to the goal, as that is most likely to lead quickly to a solution. This is 

like DFS in that it attempts to follow a single route to the goal, only attempting to try 

a different route when it reaches a dead end. As with DFS, it is not complete, not 

optimal, and has time and complexity of O(bm). However, with good heuristics, the 

time complexity can be reduced substantially. 

 Branch and Bound: An enhancement of backtracking. 

 Applicable to optimization problems. 



 For each node (partial solution) of a state-space tree, computes a bound on the value 

of the objective function for all descendants of the node (extensions of the partial 

solution). 

 Uses the bound for: 

 Ruling out certain nodes as “nonpromising” to prune the tree – if a node’s 

bound is not better than the best solution seen so far.  

 Guiding the search through state-space. 

 The search path at the current node in a state-space tree can be terminated for any one 

of the following three reasons: 

 The value of the node’s bound is not better than the value of the best solution 

seen so far. 

 The node represents no feasible solutions because the constraints of the 

problem are already violated. 

 The subset of feasible solutions represented by the node consists of a single 

point and hence we compare the value of the objective function for this 

feasible solution with that of the best solution seen so far and update the latter 

with the former if the new solution is better. 

 Best-First branch-and-bound: 

 A variation of backtracking. 

 Among all the nonterminated leaves, called as the live nodes, in the current 

tree, generate all the children of the most promising node, instead of 

generation a single child of the last promising node as it is done in 

backtracking. 

 Consider the node with the best bound as the most promising node. 

 A* Search: Suppose that, for each node n in a search tree, an evaluation function f(n) 

is defined as the sum of the cost g(n) to reach that node from the start state, plus an 

estimated cost h(n) to get from that state to the goal state. That f(n) is then the 

estimated cost of the cheapest solution through n. 

 A* search, which is the most popular form of best-first search, repeatedly picks the 

node with the lowest f(n) to expand next. It turns out that if the heuristic function h(n) 

satisfies certain conditions, then this strategy is both complete and optimal. 

 In particular, if h(n) is an admissible heuristic, i.e. is always optimistic and never 

overestimates the cost to reach the goal, then A* is optimal. 



 The classic example is finding the route by road between two cities given the straight 

line distances from each road intersection to the goal city. In this case, the nodes are 

the intersections, and we can simply use the straight line distances as h(n).

 Hill Climbing / Gradient Descent: The basic idea of hill climbing is simple: at each 

current state we select a transition, evaluate the resulting state, and if the resulting 

state is an improvement we move there, otherwise we try a new transition from where 

we are.  

 We repeat this until we reach a goal state, or have no more transitions to try. The 

transitions explored can be selected at random, or according to some problem specific 

heuristics. 

 In some cases, it is possible to define evaluation functions such that we can compute 

the gradients with respect to the possible transitions, and thus compute which 

transition direction to take to produce the best improvement in the evaluation 

function.  

 Following the evaluation gradients in this way is known as gradient descent. 

 In neural networks, for example, we can define the total error of the output activations 

as a function of the connection weights, and compute the gradients of how the error 

changes as we change the weights. By changing the weights in small steps against 

those gradients, we systematically minimize the network’s output errors. 

 Searching And-Or graphs 

 The DFS and BFS strategies for OR trees and graphs can be adapted for And-Or trees 

 The main difference lies in the way termination conditions are determined, since all 

goals following an And node must be realized, whereas a single goal node following 

an Or node will do 

 A more general optimal strategy is AO* (O for ordered) algorithm 

 As in the case of the A* algorithm, we use the open list to hold nodes that have been 

generated but not expanded and the closed list to hold nodes that have been expanded 

 The algorithm is a variation of the original given by Nilsson 

 It requires that nodes traversed in the tree be labeled as solved or unsolved in the 

solution process to account for And node solutions which require solutions to all 

successors nodes. 

 A solution is found when the start node is labeled as solved 



 The AO* algorithm

 Step 1: Place the start node s on open 

 Step 2: Using the search tree constructed thus far, compute the most promising 

solution tree T0 

 Step 3:Select a node n that is both on open and a part of T0. Remove n from 

open and place it on closed 

 Step 4: If n ia terminal goal node, label n as solved. If the solution of n results 

in any of n’s ancestors being solved, label all the ancestors as solved. If the 

start node s is solved, exit with success where T0 is the solution tree. Remove 

from open all nodes with a solved ancestor 

 Step 5: If n is not a solvable node, label n as unsolvable. If the start node is 

labeled as unsolvable, exit with failure. If any of n’s ancestors become 

unsolvable because n is, label them unsolvable as well. Remove from open all 

nodes with unsolvable ancestors 

 Otherwise, expand node n generating all of its successors. For each such 

successor node that contains more than one subproblem, generate their 

successors to give individual subproblems. Attach to each newly generated 

node a back pointer to its predecessor. Compute the cost estimate h* for each 

newly generated node and place all such nodes thst do not yet have 

descendents on open. Next recomputed the values oh h* at n and each 

ancestors of n 

 Step 7: Return to step 2 

 It can be shown that AO* will always find a minimum-cost solution tree if one exists, 

provided only that h*(n) ≤ h(n), and all arc costs are positive. Like A*, the efficiency

depends on how closely h* approximates h 

 

 Constraint Satisfaction Search 

 

 Search can be used to solve problems that are limited by constraints, such as the eight-

queens problem. Such problems are often known as Constraint Satisfaction Problems, 

or CSPs. I 



 n this problem, eight queens must be placed on a chess board in such a way that no 

two queens are on the same diagonal, row, or column. If we use traditional chess 

board notation, we mark the columns with letters from a to g and the rows with 

numbers from 1 to 8. So, a square can be referred to by a letter and a number, such as 

a4 or g7.  

 This kind of problem is known as a constraint satisfaction problem (CSP) because a 

solution must be found that satisfies the constraints.  

 In the case of the eight-queens problem, a search tree can be built that represents the 

possible positions of queens on the board. One way to represent this is to have a tree 

that is 8-ply deep, with a branching factor of 64 for the first level, 63 for the next 

level, and so on, down to 57 for the eighth level.  

 A goal node in this tree is one that satisfies the constraints that no two queens can be 

on the same diagonal, row, or column.  

 An extremely simplistic approach to solving this problem would be to analyze every 

possible configuration until one was found that matched the constraints.  

 A more suitable approach to solving the eight-queens problem would be to use depth-

first search on a search tree that represents the problem in the following manner:  

 The first branch from the root node would represent the first choice of a square 

for a queen. The next branch from these nodes would represent choices of

where to place the second queen. 

 The first level would have a branching factor of 64 because there are 64 

possible squares on which to place the first queen.  The next level would have 

a somewhat lower branching factor because once a queen has been placed, the 

constraints can be used to determine possible squares upon which the next 

queen can be placed.  

 The branching factor will decrease as the algorithm searches down the tree. At 

some point, the tree will terminate because the path being followed will lead to 

a position where no more queens can be placed on legal squares on the board, 

and there are still some queens remaining. 



In fact, because each row and each column must contain exactly one queen, the branching 
factor can be significantly reduced by assuming that the first queen must be placed in row 1, 
the second in row 2, and so on. In this way, the first level will have a branching factor of 8 (a 
choice of eight squares on which the first queen can be placed), the next 7, the next 6, and so 
on. 

 The search tree can be further simplified as each queen placed on the board “uses up” 

a diagonal, meaning that the branching factor is only 5 or 6 after the first choice has 

been made, depending on whether the first queen is placed on an edge of the board 

(columns a or h) or not.  

 The next level will have a branching factor of about 4, and the next may have a 

branching factor of just 2, as shown in Fig 6.1.  

 The arrows in Fig 6.1 show the squares to which each queen can move.  

 Note that no queen can move to a square that is already occupied by another queen. 



    

 

 In Fig 6.1, the first queen was placed in column a of row 8, leaving six choices for the 

next row. The second queen was placed in column d of row 7, leaving four choices for 

row 6. The third queen was placed in column f in row 6, leaving just two choices 

(column c or column h) for row 5.  

 Using knowledge like this about the problem that is being solved can help to

significantly reduce the size of the search tree and thus improve the efficiency of the 

search solution. 

 A solution will be found when the algorithm reaches depth 8 and successfully places 

the final queen on a legal square on the board.  

 A goal node would be a path containing eight squares such that no two squares shared 

a diagonal, row, or column.  

 One solution to the eight-queens problem is shown in  above Fig .  

 Note that in this solution, if we start by placing queens on squares e8, c7, h6, and then 

d5, once the fourth queen has been placed, there are only two choices for placing the 

fifth queen (b4 or g4). If b4 is chosen, then this leaves no squares that could be chosen 

for the final three queens to satisfy the constraints. If g4 is chosen for the fifth queen, 

as has been done in Fig 6.2, only one square is available for the sixth queen (a3), and 

the final two choices are similarly constrained. So, it can be seen that by applying the 



constraints appropriately, the search tree can be significantly reduced for this 

problem.

 Using chronological backtracking in solving the eight-queens problem might not be 

the most efficient way to identify a solution because it will backtrack over moves that 

did not necessarily directly lead to an error, as well as ones that did. In this case, 

nonchronological backtracking, or dependency-directed backtracking  could be more 

useful because it could identify the steps earlier in the search tree that caused the 

problem further down the tree.

Forward Checking 

 In fact, backtracking can be augmented in solving problems like the eightqueens

problem by using a method called forward checking. 

 As each queen is placed on the board, a forward-checking mechanism is used to 

delete from the set of possible future choices any that have been rendered impossible 

by placing the queen on that square.  

 For example, if a queen is placed on square a1, forward checking will remove all 

squares in row 1, all squares in column a, and also squares b2, c3, d4, e5, f6, g7, and 

h8.  

 In this way, if placing a queen on the board results in removing all remaining squares, 

the system can immediately backtrack, without having to attempt to place any more 

queens.  

 This can often significantly improve the performance of solutions for CSPs such as 

the eight-queens problem. 

 

Most-Constrained Variables 

 A further improvement in performance can be achieved by using the most-constrained 

variable heuristic.  

 At each stage of the search, this heuristic involves working with the variable that has 

the least possible number of valid choices.  



 In the case of the eight-queens problem, this might be achieved by considering the 

problem to be one of assigning a value to eight variables, a through h. Assigning 

value 1 to variable a means placing a queen in square a1.  

 To use the most constrained variable heuristic with this representation means that at 

each move we assign a value to the variable that has the least choices available to it. 

Hence, after assigning a = 1, b = 3, and c = 5, this leaves three choices for d, three 

choices for e, one choice for f, three choices for g, and three choices for h. Hence, our 

next move is to place a queen in column f. 

 This heuristic is perhaps more clearly understood in relation to the mapcoloring 

problem. It makes sense that, in a situation where a particular country can be given 

only one color due to the colors that have been assigned to its neighbors, that country 

be colored next. 

 The most-constraining variable heuristic is similar in that it involves assigning a value 

next to the variable that places the greatest number of constraints on future variables.  

 The least-constraining value heuristic is perhaps more intuitive than the two already 

presented in this section.  

 This heuristic involves assigning a value to a variable that leaves the greatest number 

of choices for other variables. 

 This heuristic can be used to make n-queens problems with extremely large values of 

n quite solvable. 

 

Example: Cryptographic Problems 

 The constraint satisfaction procedure is also a useful way to solve problems such as 

cryptographic problems. For example: 

FORTY 

+ TEN 

+ TEN 

SIXTY 

Solution: 

29786 



+ 850 

+ 850 

31486 

 This cryptographic problem can be solved by using a Generate and Test method, 

applying the following constraints:  

 Each letter represents exactly one number. 

 No two letters represent the same number. 

 Generate and Test is a brute-force method, which in this case involves cycling 

through all possible assignments of numbers to letters until a set is found that meets 

the constraints and solves the problem. 

 Without using constraints, the method would first start by attempting to assign 0 to all 

letters, resulting in the following sum: 

00000 

+ 000

+ 000

00000 

 Although this may appear to be a valid solution to the problem, it does not meet the 

constraints laid down that specify that each letter can be assigned only one number, 

and each number can be assigned only to one letter. 

 Hence, constraints are necessary simply to find the correct solution to the problem.

They also enable us to reduce the size of the search tree.  

 In this case, for example, it is not necessary to examine possible solutions where two 

letters have been assigned the same number, which dramatically reduces the possible 

solutions to be examined. 

 

 

 

 Heuristic Repair 



 Heuristics can be used to improve performance of solutions to constraint satisfaction 

problems.  

 One way to do this is to use a heuristic repair method, which involves generating a 

possible solution (randomly, or using a heuristic to generate a position that is close to 

a solution) and then making changes that reduce the distance of the state from the 

goal. 

 In the case of the eight-queens problem, this could be done using the minconflicts 

heuristic. 

 To move from one state to another state that is likely to be closer to a solution using 

the min-conflicts heuristic, select one queen that conflicts with another queen (in 

other words, it is on the same row, column, or diagonal as another queen).  

 Now move that queen to a square where it conflicts with as few queens as possible. 

Continue with another queen. To see how this method would work, consider the 

starting position shown in Fig 6.3. 

 

  

 

 

 

 



 This starting position has been generated by placing the queens such that there are no 

conflicts on rows or columns. The only conflict here is that the queen in column 3 (on 

c7) is on a diagonal with the queen in column h (on h2).  

 To move toward a solution, we choose to move the queen that is on column h. 

 We will only ever apply a move that keeps a queen on the same column because we 

already know that we need to have one queen on each column.  

 Each square in column h has been marked with a number to show how many other 

queens that square conflicts with. Our first move will be to move the queen on column 

h up to row 6, where it will conflict only with one queen. Then we arrive at the 

position shown in below Fig  

 Because we have created a new conflict with the queen on row 6 (on f6), our next 

move must be to move this queen. In fact, we can move it to a square where it has 

zero conflicts. This means the problem has been solved, and there are no remaining 

conflicts. 

 This method can be used not only to solve the eight-queens problem but also has been 

successfully applied to the n-queens problem for extremely large values of n. It has 

been shown that, using this method, the 1,000,000 queens problem can be solved in an 

average of around 50 steps. 

 Solving the 1,000,000-queens problem using traditional search techniques would be 

impossible because it would involve searching a tree with a branching factor of 1012. 



Local Search and Metaheuristics

 Local search methods work by starting from some initial configuration (usually 

random) and making small changes to the configuration until a state is reached from 

which no better state can be achieved.  

 Hill climbing is a good example of a local search technique.  

 Local search techniques, used in this way, suffer from the same problems as hill 

climbing and, in particular, are prone to finding local maxima that are not the best 

solution possible. 

 The methods used by local search techniques are known as metaheuristics.  

 Examples of metaheuristics include simulated annealing, tabu search, genetic 

algorithms, ant colony optimization, and neural networks.  

 This kind of search method is also known as local optimization because it is 

attempting to optimize a set of values but will often find local maxima rather than a 

global maximum.  

 A local search technique applied to the problem of allocating teachers to classrooms 

would start from a random position and make small changes until a configuration was 

reached where no inappropriate allocations were made. 

 Exchanging Heuristics 

 The simplest form of local search is to use an exchanging heuristic.  



 An exchanging heuristic moves from one state to another by exchanging one 

or more variables by giving them different values. We saw this in solving the 

eight-queens problem as heuristic repair. 

 A k-exchange is considered to be a method where k variables have their values 

changed at each step.  

 The heuristic repair method we applied to the eight-queens problem was 2-

exchange. 

 A k-exchange can be used to solve the traveling salesman problem. A tour (a 

route through the cities that visits each city once, and returns to the start) is 

generated at random. Then, if we use 2-exchange, we remove two edges from 

the tour and substitute them for two other edges. If this pro duces a valid tour 

that is shorter than the previous one, we move on from here. Otherwise, we go 

back to the previous tour and try a different set of substitutions. 

 In fact, using k = 2 does not work well for the traveling salesman problem, 

whereas using k = 3 produces good results.  

 Using larger numbers of k will give better and better results but will also 

require more and more iterations. 

 Using k = 3 gives reasonable results and can be implemented efficiently. It 

does, of course, risk finding local maxima, as is often the case with local 

search methods. 

 Iterated Local Search 

 Iterated local search techniques attempt to overcome the problem of local 

maxima by running the optimization procedure repeatedly, from different 

initial states.  

 If used with sufficient iterations, this kind of method will almost always find a 

global maximum.  

 The aim, of course, in running methods like this is to provide a very good 

solution without needing to exhaustively search the entire problem space.  

 In problems such as the traveling salesman problem, where the search space

grows extremely quickly as the number of cities increases, results can be

generated that are good enough (i.e., a local maximum) without using many 

iterations, where a perfect solution would be impossible to find (or at least it 

would be impossible to guarantee a perfect solution even one iteration of local 

search may happen upon the global maximum). 



 Tabu Search

 Tabu search is a metaheuristic that uses a list of states that have already been 

visited to attempt to avoid repeating paths. 

 The tabu search metaheuristic is used in combination with another heuristic 

and operates on the principle that it is worth going down a path that appears to 

be poor if it avoids following a path that has already been visited.  

 In this way, tabu search is able to avoid local maxima. 

Simulated Annealing 

 Annealing is a process of producing very strong glass or metal, which involves 

heating the material to a very high temperature and then allowing it to cool very 

slowly.  

 In this way, the atoms are able to form the most stable structures, giving the material 

great strength.  

 Simulated annealing is a local search metaheuristic based on this method and is an 

extension of a process called metropolisMonteCarlo simulation.  

 Simulated annealing is applied to a multi-value combinatorial problem where values 

need to be chosen for many variables to produce a particular value for some global 

function, dependent on all the variables in the system.  

 This value is thought of as the energy of the system, and in general the aim of

simulated annealing is to find a minimum energy for a system.  

 Simple Monte Carlo simulation is a method of learning information (such as shape) 

about the shape of a search space. The process involves randomly selecting points 

within the search space.  

 An example of its use is as follows: A square is partially contained within a circle. 

Simple Monte Carlo simulation can be used to identify what proportion of the square 

is within the circle and what proportion is outside the circle. This is done by randomly 

sampling points within the square and checking which ones are within the circle and 

which are not.  

 Metropolis Monte Carlo simulation extends this simple method as follows: Rather 

than selecting new states from the search space at random, a new state is chosen by 

making a small change to the current state.  



 If the new state means that the system as a whole has a lower energy than it did in the 

previous state, then it is accepted.  

 If the energy is higher than for the previous state, then a probability is applied to 

determine whether the new state is accepted or not. This probability is called a 

Boltzmann acceptance criterion and is calculated as follows: e(_dE/T) where T is the 

current temperature of the system, and dE is the increase in energy that has been 

produced by moving from the previous state to the new state.  

 The temperature in this context refers to the percentage of steps that can be taken that 

lead to a rise in energy: At a higher temperature, more steps will be accepted that lead 

to a rise in energy than at low temperature. 

 To determine whether to move to a higher energy state or not, the probability 

e(_dE/T) is calculated, and a random number is generated between 0 and 1. If this 

random number is lower than the probability function, the new state is accepted. In 

cases where the increase in energy is very high, or the temperature is very low, this 

means that very few states will be accepted that involve an increase in energy, as 

e(_dE/T) approaches zero.  

 The fact that some steps are allowed that increase the energy of the system enables the 

process to escape from local minima, which means that simulated annealing often can 

be an extremely powerful method for solving complex problems with many local 

maxima.  

 Some systems use e(_dE/kT) as the probability that the search will progress to a state 

with a higher energy, where k is Boltzmann’s constant (Boltzmann’s constant is 

approximately 1.3807 _ 10_23 Joules per Kelvin). 

 Simulated annealing usesMonte Carlo simulation to identify the most stable state (the 

state with the lowest energy) for a system.  

 This is done by running successive iterations of metropolis Monte Carlo simulation, 

using progressively lower temperatures. Hence, in successive iterations, fewer and 

fewer steps are allowed that lead to an overall increase in energy for the system. 

 A cooling schedule (or annealing schedule) is applied, which determines the manner

in which the temperature will be lowered for successive iterations.  

 Two popular cooling schedules are as follows: 

Tnew = Told _ dT 

Tnew = C _ Told (where C < 1.0) 



 The cooling schedule is extremely important, as is the choice of the number of steps 

of metropolis Monte Carlo simulation that are applied in each iteration.  

 These help to determine whether the system will be trapped by local minima (known 

as quenching). The number of times the metropolis Monte Carlo simulation is applied 

per iteration is for later iterations. 

 Also important in determining the success of simulated annealing are the choice of the 

initial temperature of the system and the amount by which the temperature is 

decreased for each iteration.  

 These values need to be chosen carefully according to the nature of the problem being 

solved. When the temperature, T, has reached zero, the system is frozen, and if the 

simulated annealing process has been successful, it will have identified a minimum 

for the total energy of the system.  

 Simulated annealing has a number of practical applications in solving problems with 

large numbers of interdependent variables, such as circuit design.  

 It has also been successfully applied to the traveling salesman problem. 

 Uses of Simulated Annealing 

 Simulated annealing was invented in 1983 by Kirkpatrick, Gelatt, and Vecchi.  

 It was first used for placing VLSI* components on a circuit board.  

 Simulated annealing has also been used to solve the traveling salesman 

problem, although this approach has proved to be less efficient than using 

heuristic methods that know more about the problem.  

 It has been used much more successfully in scheduling problems and other 

large combinatorial problems where values need to be assigned to a large 

number of variables to maximize (or minimize) some function of those 

variables. 

 Real-Time A* 

 Real-time A* is a variation of A*.  

 Search continues on the basis of choosing paths that have minimum values of f(node) 

= g(node) + h(node). However, g(node) is the distance of the node from the current 

node, rather than from the root node.  

 Hence, the algorithm will backtrack if the cost of doing so plus the estimated cost of 

solving the problem from the new node is less than the estimated cost of solving the 

problem from the current node. 



 Implementing real-time A* means maintaining a hash table of previously visited 

states with their h(node) values. 

Iterative-Deepening A* (IDA*) 

 By combining iterative-deepening with A*, we produce an algorithm that is optimal 

and complete (like A*) and that has the low memory requirements of depth-first 

search.  

 IDA* is a form of iterative-deepening search where successive iterations impose a 

greater limit on f(node) rather than on the depth of a node. 

 IDA* performs well in problems where the heuristic value f (node) has relatively few

possible values.  

 For example, using the Manhattan distance as a heuristic in solving the eight-queens

problem, the value of f (node) can only have values 1, 2, 3, or 4.  

 In this case, the IDA* algorithm only needs to run through a maximum of four 

iterations, and it has a time complexity not dissimilar from that of A*, but with a 

significantly improved space complexity because it is effectively running depth-first 

search. 

 In cases such as the traveling salesman problem where the value of f (node) is 

different for every state, the IDA* method has to expand 1 + 2 + 3 + . . . + n nodes = 

O(n2) where A* would expand n nodes.  

Propositional and Predicate Logic 

Logic is concerned with reasoning and the validity of arguments. In general, in logic, we are 

not concerned with the truth of statements, but rather with their validity. That is to say, 

although the following argument is clearly logical, it is not something that we would consider 

to be true:  

All lemons are blue 

Mary is a lemon 

Therefore, Mary is blue 

This set of statements is considered to be valid because the conclusion (Mary is blue) follows 

logically from the other two statements, which we often call the premises. The reason that 

validity and truth can be separated in this way is simple: a piece of a reasoning is considered 



to be valid if its conclusion is true in cases where its premises are also true. Hence, a valid set 

of statements such as the ones above can give a false conclusion, provided one or more of the 

premises are also false. 

We can say: a piece of reasoning is valid if it leads to a true conclusion in every

situation where the premises are true. 

Logic is concerned with truth values. The possible truth values are true and false. 

These can be considered to be the fundamental units of logic, and almost all logic is 

ultimately concerned with these truth values. 

Logic is widely used in computer science, and particularly in Artificial Intelligence. Logic is 

widely used as a representational method for Artificial Intelligence. Unlike some other 

representations, logic allows us to easily reason about negatives (such as, “this book is not 

red”) and disjunctions (“or”—such as, “He’s either a soldier or a sailor”).  

Logic is also often used as a representational method for communicating concepts and 

theories within the Artificial Intelligence community. In addition, logic is used to represent 

language in systems that are able to understand and analyze human language.  

As we will see, one of the main weaknesses of traditional logic is its inability to deal 

with uncertainty. Logical statements must be expressed in terms of truth or falsehood—it is 

not possible to reason, in classical logic, about possibilities. We will see different versions of 

logic such as modal logics that provide some ability to reason about possibilities, and also 

probabilistic methods and fuzzy logic that provide much more rigorous ways to reason in

uncertain situations. 

 

Logical Operators  

 In reasoning about truth values, we need to use a number of operators, which can be 

applied to truth values. 

 We are familiar with several of these operators from everyday language: 

I like apples and oranges. 

You can have an ice cream or a cake. 



If you come from France, then you speak French.

 Here we see the four most basic logical operators being used in everyday language. 

The operators are:

 and

 or

 not

 if . . . then . . . (usually called implies) 

 One important point to note is that or is slightly different from the way we usually use 

it. In the sentence, “You can have an icecream or a cake,” the mother is usually 

suggesting to her child that he can only have one of the items, but not both. This is 

referred to as an exclusive-or in logic because the case where both are allowed is 

excluded.  

 The version of or that is used in logic is called inclusive-or and allows the case with 

both options.  

 The operators are usually written using the following symbols, although other

symbols are sometimes used, according to the context: 

and ∧ 

or ∨ 

not  

implies → 

iff ↔ 

 Iff is an abbreviation that is commonly used to mean “if and only if.”  

 We see later that this is a stronger form of implies that holds true if one thing implies 

another, and also the second thing implies the first.  

 For example, “you can have an ice-cream if and only if you eat your dinner.” It may

not be immediately apparent why this is different from “you can have an icecream if 

you eat your dinner.” This is because most mothers really mean iff when they use if in 

this way. 

 



Translating between English and Logic Notation  

 To use logic, it is first necessary to convert facts and rules about the real world into 

logical expressions using the logical operators 

 Without a reasonable amount of experience at this translation, it can seem quite a 

daunting task in some cases.

 Let us examine some examples. First, we will consider the simple operators, ∧, ∨, and 

.

 Sentences that use the word and in English to express more than one concept, all of 

which is true at once, can be easily translated into logic using the AND operator, ∧. 

 For example: “It is raining and it is Tuesday.” might be expressed as: R ∧ T, Where R

means “it is raining” and T means “it is Tuesday.” 

 For example, if it is not necessary to discuss where it is raining, R is probably enough.  

 If we need to write expressions such as “it is raining in New York” or “it is raining 

heavily” or even “it rained for 30 minutes on Thursday,” then R will probably not 

suffice. To express more complex concepts like these, we usually use predicates. 

Hence, for example, we might translate “it is raining in New York” as: N(R) We

might equally well choose to write it as: R(N)  

 This depends on whether we consider the rain to be a property of New York, or vice 

versa. In other words, when we write N(R), we are saying that a property of the rain is 

that it is in New York, whereas with R(N) we are saying that a property of New York 

is that it is raining. Which we use depends on the problem we are solving. It is likely 

that if we are solving a problem about New York, we would use R(N), whereas if we 

are solving a problem about the location of various types of weather, we might use 

N(R). 

 Let us return nowto the logical operators. The expression “it is raining inNew York, 

and I’meither getting sick or just very tired”can be expressed as follows: R(N) ∧ (S(I)

∨ T(I)) 

 Here we have used both the ∧ operator, and the ∨ operator to express a collection of 

statements. The statement can be broken down into two sections, which is indicated 

by the use of parentheses. 



 The section in the parentheses is S(I) ∨T(I), which means “I’m either getting sick OR 

I’m very tired”. This expression is “AND’ed”with the part outside the parentheses, 

which is R(N). 

 Finally, the  operator is applied exactly as you would expect—to express negation.  

 For example, It is not raining in New York, might be expressed as R(N) 

 It is important to get the  in the right place. For example: “I’m either not well or 

just very tired” would be translated as W(I) ∨ T(I) 

 The position of the  here indicates that it is bound to W(I) and does not play any 

role in affecting T(I).  

 Now let us see how the → operator is used. Often when dealing with logic we are 

discussing rules, which express concepts such as “if it is raining then I will get wet.”  

 This sentence might be translated into logic as R→W(I) 

 This is read “R implies W(I)” or “IF R THEN W(I)”. By replacing the symbols R and 

W(I) with their respective English language equivalents, we can see that this sentence 

can be read as “raining implies I’ll get wet” or “IF it’s raining THEN I’ll get wet.”  

 Implication can be used to express much more complex concepts than this.  

 For example, “Whenever he eats sandwiches that have pickles in them, he ends up 

either asleep at his desk or singing loud songs” might be translated as 

S(y) ∧ E(x, y) ∧ P(y)→A(x) ∨ (S(x, z) ∧ L(z)) 

 Here we have used the following symbol translations:  S(y) means that y is a 

sandwich.                                                                                                 E(x, y) 

means that x (the man) eats y (the sandwich). 

P(y) means that y (the sandwich) has pickles in it. 

A(x) means that x ends up asleep at his desk. 

S(x, z) means that x (the man) sings z (songs). 

L(z) means that z (the songs) are loud. 



 The important thing to realize is that the choice of variables and predicates is 

important, but that you can choose any variables and predicates that map well to your 

problem and that help you to solve the problem. 

 For example, in the example we have just looked at, we could perfectly well have 

used instead S→A ∨ L where S means “he eats a sandwich which has pickles in it,” A 

means “he ends up asleep at his desk,” and L means “he sings loud songs.” 

 The choice of granularity is important, but there is no right or wrong way to make this 

choice. In this simpler logical expression, we have chosen to express a simple 

relationship between three variables, which makes sense if those variables are all that 

we care about—in other words, we don’t need to know anything else about the 

sandwich, or the songs, or the man, and the facts we examine are simply whether or 

not he eats a sandwich with pickles, sleeps at his desk, and sings loud songs.  

 The first translation we gave is more appropriate if we need to examine these concepts

in more detail and reason more deeply about the entities involved.  

 Note that we have thus far tended to use single letters to represent logical variables. It 

is also perfectly acceptable to use longer variable names, and thus to write expressions 

such as the following: 

Fish (x) ∧ living (x) →has_scales (x) 

 This kind of notation is obviously more useful when writing logical expressions that 

are intended to be read by humans but when manipulated by a computer do not add 

any value. 

 

Truth Tables  

 We can use variables to represent possible truth values, in much the same way that 

variables are used in algebra to represent possible numerical values.  

 We can then apply logical operators to these variables and can reason about the way 

in which they behave.  

 It is usual to represent the behavior of these logical operators using truth tables.  

 A truth table shows the possible values that can be generated by applying an operator 

to truth values.  

 Not 



 First of all, we will look at the truth table for not, .

 Not is a unary operator, which means it is applied only to one variable.  

 Its behavior is very simple:  

 true is equal to false 

 false is equal to true 

If variable A has value true, then A has value false. 

If variable B has value false, then B has value true. 

 These can be represented by a truth table, 

  

 And

 Now, let us examine the truth table for our first binary operator—one which 

acts on two variables: 

A B A ∧

 ∧ is also called the conjunctive operator.  

 A ∧ B is the conjunction of A and B.  

 You can see that the only entry in the truth table for which A ∧ B is true is the 

one where A is true and B is true. If A is false, or if B is false, then A ∧ B is 

false. If both A and B are false, then A ∧ B is also false. 

 What do A and B mean? They can represent any statement, or proposition,

that can take on a truth value.  



 For example, A might represent “It’s sunny,” and B might represent “It’s 

warm outside.” In this case, A ∧ B would mean “It is sunny and it’s warm 

outside,” which clearly is true only if the two component parts are true (i.e., if 

it is true that it is sunny and it is true that it is warm outside). 

 Or 

 The truth table for the or operator, ∨ 

  

 ∨ is also called the disjunctive operator. 

 A ∨ B is the disjunction of A and B. 

 Clearly A ∨ B is true for any situation except when both A and B are false.  

 If A is true, or if B is true, or if both A and B are true, A ∨B is true.  

 This table represents the inclusive-or operator.  

 A table to represent exclusive-or would have false in the final row. In other 

words, while A ∨ B is true if A and B are both true, A EOR B (A exclusive-or 

B) is false if A and B are both true.  

 You may also notice a pleasing symmetry between the truth tables for ∧ and ∨.

This will become useful later, as will a number of other symmetrical

relationships.

 Implies

 The truth table for implies (→) is a little less intuitive. 

  



 This form of implication is also known as material implication 

 In the statement A→B, A is the antecedent, and B is the consequent. The

bottom two lines of the table should be obvious. If A is true and B is true, then 

A → B seems to be a reasonable thing to believe.  

 For example, if A means “you live in France” and B means “You speak 

French,” then A→B corresponds to the statement “if you live in France, then

you speak French.”  

 Clearly, this statement is true (A→B is true) if I live in France and I speak 

French (A is true and B is true).  

 Similarly, if I live in France, but I don’t speak French (A is true, but B is 

false), then it is clear that A→B is not true.  

 The situations where A is false are a little less clear. If I do not live in France 

(A is not true), then the truth table tells us that regardless of whether I speak 

French or not (the value of B), the statement A→B is true. A→B is usually 

read as “A implies B” but can also be read as “If A then B” or “If A is true 

then B is true.”  

 Hence, if A is false, the statement is not really saying anything about the value 

of B, so B is free to take on any value (as long as it is true or false, of course!).  

 All of the following statements are valid: 

52 = 25 →4 = 4 (true →true) 

9 _ 9 = 123 →8 > 3 (false →true) 

52 = 25 →0 = 2 (false →false) 

 In fact, in the second and third examples, the consequent could be given any 

meaning, and the statement would still be true. For example, the following 

statement is valid: 

52 = 25 →Logic is weird 

 Notice that when looking at simple logical statements like these, there does 

not need to be any real-world relationship between the antecedent and the 

consequent.  

 For logic to be useful, though, we tend to want the relationships being 

expressed to be meaningful as well as being logically true.  

 iff 



 The truth table for iff (if and only if {↔}) is as follows: 

A 

 It can be seen that A ↔ B is true as long as A and B have the same value. 

 In other words, if one is true and the other false, then A ↔ B is false.

Otherwise, if A and B have the same value, A↔ B is true. 

 

 Complex Truth Tables  

 Truth tables are not limited to showing the values for single operators.  

 For example, a truth table can be used to display the possible values for A ∧ (B ∨C). 

 

 Note that for two variables, the truth table has four lines, and for three variables, it has 

eight. In general, a truth table for n variables will have 2n lines.

 The use of brackets in this expression is important. A ∧ (B ∨C) is not the same as (A

∧ B) ∨ C. 

 To avoid ambiguity, the logical operators are assigned precedence, as with 

mathematical operators.  

 The order of precedence that is used is as follows: , ∧, ∨,→,↔  



 Hence, in a statement such as A ∨B ∧ C, the  operator has the greatest 

precedence, meaning that it is most closely tied to its symbols. ∧ has a greater 

precedence than ∨, which means that the sentence above can be expressed as (A) ∨ 

((B) ∧ C) 

 Similarly, when we write A ∨ B this is the same as (A) ∨B rather than (A ∨ B) 

 In general, it is a good idea to use brackets whenever an expression might otherwise 

be ambiguous. 

 

Tautology  

 Consider the following truth table: 

 

 This truth table has a property that we have not seen before: the value of the 

expression A∨A is true regardless of the value of A. 

 An expression like this that is always true is called a tautology.  

 If A is a tautology, we write: |=A   

 A logical expression that is a tautology is often described as being valid. 

 A valid expression is defined as being one that is true under any interpretation.  

 In other words, no matter what meanings and values we assign to the variables in a 

valid expression, it will still be true.  

 For example, the following sentences are all valid:  

If wibble is true, then wibble is true. 

Either wibble is true, or wibble is not true. 

 In the language of logic, we can replace wibble with the symbol A, in which case 

these two statements can be rewritten as 

A→A 



A ∨ A 

 If an expression is false in any interpretation, it is described as being contradictory.  

 The following expressions are contradictory: 

A ∧ A 

(A ∨ A)→(A ∧  A) 

Equivalence  

 Consider the following two expressions: 

A ∧  B 

B ∧  A 

 It should be fairly clear that these two expressions will always have the same value

for a given pair of values for A and B.  

 In otherwords, we say that the first expression is logically equivalent to the second 

expression. 

 We write this as A ∧  B _ B ∧  A. This means that the ∧  operator is commutative. 

 Note that this is not the same as implication: A ∧  B→B ∧  A, although this second 

statement is also true.  

 The difference is that if for two expressions e1 and e2: e1 _ e2, then e1 will always 

have the same value as e2 for a given set of variables.  

 On the other hand, as we have seen, e1→e2 is true if e1 is false and e2 is true.  

 There are a number of logical equivalences that are extremely useful.  

 The following is a list of a few of the most common: 

A ∨  A _ A 

A ∧  A _ A 

A ∧  (B ∧  C) _ (A ∧  B) ∧C (∧  is associative) 

A ∨  (B ∨  C) _ (A ∨  B) ∨C (∨  is associative) 

A ∧  (B ∨  C) _ (A ∧  B) ∨  (A ∧  C) (∧  is distributive over ∨ ) 



A ∧  (A ∨ B) _ A 

A ∨  (A ∧  B) _ A 

A ∧  true _ A 

A ∧  false _ false 

A ∨  true _ true 

A ∨  false _ A 

 All of these equivalences can be proved by drawing up the truth tables for each side of 

the equivalence and seeing if the two tables are the same. 

 The following is a very important equivalence: A→B _ A ∨  B 

 We do not need to use the →  symbol at all—we can replace it with a combination 

of  and ∨ .  

 Similarly, the following equivalences mean we do not need to use ∧  or↔: 

A ∧  B _ (A ∨  B) 

A↔ B _ ((A ∨  B) ∨   (B ∨  A)) 

 In fact, any binary logical operator can be expressed using  and ∨ . This is a fact 

that is employed in electronic circuits, where nor gates, based on an operator called 

nor, are used. Nor is represented by ↓, and is defined as follows: 

A ↓ B _ (A ∨  B) 

 Finally, the following equivalences are known as DeMorgan’s Laws: 

A ∧  B _ (A ∨  B) 

A ∨  B _ (A ∧  B) 

 By using these and other equivalences, logical expressions can be simplified.  

 For example, (C ∧  D) ∨  ((C ∧  D) ∧  E) can be simplified using the following rule: A 

∨  (A ∧  B) _ A hence, (C ∧  D) ∨  ((C ∧  D) ∧  E) _ C ∧  D 



 In this way, it is possible to eliminate subexpressions that do not contribute to the 

overall value of the expression.

Propositional Logic  

 There are a number of possible systems of logic.  

 The system we have been examining so far is called propositional logic.  

 The language that is used to express propositional logic is called the propositional 

calculus.  

 A logical system can be defined in terms of its syntax (the alphabet of symbols and 

how they can be combined), its semantics (what the symbols mean), and a set of rules 

of deduction that enable us to derive one expression from a set of other expressions 

and thus make arguments and proofs.  

 Syntax 

 We have already examined the syntax of propositional calculus. The alphabet 

of symbols, _ is defined as follows 

∑ = {true, false, ,→, (, ), ∧ , ∨ ,↔, p1, p2, p3, . . . , pn, . . . } 

 Here we have used set notation to define the possible values that are contained 

within the alphabet ∑.  

 Note that we allow an infinite number of proposition letters, or propositional 

symbols, p1, p2, p3, . . . , and so on.  

 More usually, we will represent these by capital letters P, Q, R, and so on,  

 If we need to represent a very large number of them, we will use the subscript 

notation (e.g., p1). 

 An expression is referred to as a well-formed formula (often abbreviated as 

wff) or a sentence if it is constructed correctly, according to the rules of the 

syntax of propositional calculus, which are defined as follows.  

 In these rules, we use A, B, C to represent sentences. In other words, we 

define a sentence recursively, in terms of other sentences.  

 The following are wellformed sentences: 

P,Q,R. . . 

true, false 



(A) 

A

A ∧  B 

A ∨  B 

A→B 

A↔ B 

 Hence, we can see that the following is an example of a wff: 

P ∧  Q ∨  (B ∧  C)→A ∧  B ∨  D ∧  (E) 

 Semantics 

 The semantics of the operators of propositional calculus can be defined in 

terms of truth tables.  

 The meaning of P ∧  Q is defined as “true when P is true and Q is also true.” 

 The meaning of symbols such as P and Q is arbitrary and could be ignored 

altogether if we were reasoning about pure logic.  

 In other words, reasoning about sentences such as P ∨  Q∧  R is possible 

without considering what P, Q, and R mean. 

 Because we are using logic as a representational method for artificial 

intelligence, however, it is often the case that when using propositional logic, 

the meanings of these symbols are very important.  

 The beauty of this representation is that it is possible for a computer to reason 

about them in a very general way, without needing to know much about the 

real world.  

 In other words, if we tell a computer, “I like ice cream, and I like chocolate,” it 

might represent this statement as A ∧  B, which it could then use to reason 

with, and, as we will see, it can use this to make deductions. 

 

 Predicate Calculus  

 Syntax  



 Predicate calculus allows us to reason about properties of objects and 

relationships between objects. 

 In propositional calculus, we could express the English statement “I like 

cheese” by A. This enables us to create constructs such as A, which means 

“I do not like cheese,” but it does not allow us to extract any information about 

the cheese, or me, or other things that I like. 

 In predicate calculus, we use predicates to express properties of objects. So the 

sentence “I like cheese” might be expressed as L(me, cheese) where L is a 

predicate that represents the idea of “liking.” Note that as well as expressing a 

property of me, this statement also expresses a relationship between me and 

cheese. This can be useful, as we will see, in describing environments for 

robots and other agents.  

 For example, a simple agent may be concerned with the location of various 

blocks, and a statement about the world might be T(A,B), which could mean: 

Block A is on top of Block B.  

 It is also possible to make more general statements using the predicate 

calculus.  

 For example, to express the idea that everyone likes cheese, we might say 

(x)(P(x)→L(x, C))    

 The symbol  is read “for all,” so the statement above could be read as “for 

every x it is true that if property P holds for x, then the relationship L holds 

between x and C,” or in plainer English: “every x that is a person likes 

cheese.” (Here we are interpreting P(x) as meaning “x is a person” or, more 

precisely, “x has property P.”)  

 Note that we have used brackets rather carefully in the statement above.  

 This statement can also be written with fewer brackets: x P(x) →L(x, C),  

is called the universal quantifier. 

 The quantifier  can be used to express the notion that some values do have a 

certain property, but not necessarily all of them: (x)(L(x,C))  

 This statement can be read “there exists an x such that x likes cheese.” 

 This does not make any claims about the possible values of x, so x could be a 

person, or a dog, or an item of furniture. When we use the existential 



quantifier in this way, we are simply saying that there is at least one value of x

for which L(x,C) holds.  

 The following is true: (x)(L(x,C))→( x)(L(x,C)), but the following is not:

(x)(L(x,C))→( x)(L(x,C))

 Relationships between  and 

 It is also possible to combine the universal and existential quantifiers, such as

in the following statement: (x) (y) (L(x,y)).  

 This statement can be read “for all x, there exists a y such that L holds for x

and y,” which we might interpret as “everyone likes something.”  

 A useful relationship exists between  and . Consider the statement “not 

everyone likes cheese.” We could write this as  

(x)(P(x)→L(x,C))  --------------  (1) 

 As we have already seen, A→B is equivalent to A ∨  B. Using DeMorgan’s 

laws, we can see that this is equivalent to (A ∧  B). Hence, the statement  

(1) above, can be rewritten:   

(x)(P(x) ∧  L(x,C))  ------------- (2) 

 This can be read as “It is not true that for all x the following is not true: x is a 

person and x does not like cheese.” If you examine this rather convoluted 

sentence carefully, you will see that it is in fact the same as “there exists an x 

such that x is a person and x does not like cheese.” Hence we can rewrite it as 

(x)(P(x) ∧  L(x,C)) ------------- (3) 

 In making this transition from statement (2) to statement (3), we have utilized 

the following equivalence: x   (x) 

 In an expression of the form (x)(P(x, y)), the variable x is said to be bound, 

whereas y is said to be free. This can be understood as meaning that the 

variable y could be replaced by any other variable because it is free, and the 

expression would still have the same meaning, whereas if the variable x were 

to be replaced by some other variable in P(x,y), then the meaning of the 



expression would be changed: (x)(P(y, z)) is not equivalent to (x)(P(x, y)), 

whereas (x)(P(x, z)) is. 

 Note that a variable can occur both bound and free in an expression, as in 

(x)(P(x,y,z) → (y)(Q(y,z))) 

 In this expression, x is bound throughout, and z is free throughout; y is free in

its first occurrence but is bound in (y)(Q(y,z)). (Note that both occurrences of

y are bound here.) 

 Making this kind of change is known as substitution.  

 Substitution is allowed of any free variable for another free variable. 

 Functions 

 In much the same way that functions can be used in mathematics, we can 

express an object that relates to another object in a specific way using 

functions.  

 For example, to represent the statement “my mother likes cheese,” we might 

use L(m(me),cheese) 

 Here the function m(x) means the mother of x. Functions can take more than 

one argument, and in general a function with n arguments is represented as 

f(x1, x2, x3, . . . , xn) 

 

First-Order Predicate Logic  

 The type of predicate calculus that we have been referring to is also called firstorder 

predicate logic (FOPL). 

 A first-order logic is one in which the quantifiers  and  can be applied to objects or 

terms, but not to predicates or functions.  

 So we can define the syntax of FOPL as follows. First,we define a term:  

 A constant is a term.  

 A variable is a term. f(x1, x2, x3, . . . , xn) is a term if x1, x2, x3, . . . , xn are all 

terms. 

 Anything that does not meet the above description cannot be a term.  

 For example, the following is not a term: x P(x). This kind of construction we call a 

sentence or a well-formed formula (wff), which is defined as follows.  



 In these definitions, P is a predicate, x1, x2, x3, . . . , xn are terms, and A,B are wff ’s. 

The following are the acceptable forms for wff ’s:  

P(x1, x2, x3, . . . , xn) 

A 

A ∧  B 

A ∨  B 

A→B 

A↔ B 

(x)A 

(x)A 

 An atomic formula is a wff of the form P(x1, x2, x3, . . . , xn).  

 Higher order logics exist in which quantifiers can be applied to predicates and 

functions, and where the following expression is an example of a wff:

(P)(  x)P(x)

Soundness 

 We have seen that a logical system such as propositional logic consists of a syntax, a 

semantics, and a set of rules of deduction.  

 A logical system also has a set of fundamental truths, which are known as axioms.  

 The axioms are the basic rules that are known to be true and from which all other 

theorems within the system can be proved.  

 An axiom of propositional logic, for example, is A→(B→A)  

 A theorem of a logical system is a statement that can be proved by applying the rules 

of deduction to the axioms in the system.  

 If A is a theorem, then we write ├ A 

 A logical system is described as being sound if every theorem is logically valid, or a 

tautology.  

 It can be proved by induction that both propositional logic and FOPL are sound. 

 Completeness  



 A logical system is complete if every tautology is a theorem—in other words, if 

every valid statement in the logic can be proved by applying the rules of deduction 

to the axioms. Both propositional logic and FOPL are complete. 

 Decidability  

 A logical system is decidable if it is possible to produce an algorithm that will 

determine whether any wff is a theorem. In other words, if a logical system is 

decidable, then a computer can be used to determine whether logical expressions 

in that system are valid or not. 

 We can prove that propositional logic is decidable by using the fact that it is 

complete.  

 We can prove that a wff A is a theorem by showing that it is a tautology. To show 

if a wff is a tautology, we simply need to draw up a truth table for that wff and 

show that all the lines have true as the result. This can clearly be done 

algorithmically because we know that a truth table for n values has 2n lines and is 

therefore finite, for a finite number of variables.  

 FOPL, on the other hand, is not decidable. This is due to the fact that it is not 

possible to develop an algorithm that will determine whether an arbitrary wff in

FOPL is logically valid. 

 Monotonicity  

 A logical system is described as being monotonic if a valid proof in the system 

cannot be made invalid by adding additional premises or assumptions.  

 In other words, if we find that we can prove a conclusion C by applying rules of 

deduction to a premise B with assumptions A, then adding additional assumptions 

A and B will not stop us from being able to deduce C.  

 Monotonicity of a logical system can be expressed as follows:  

If we can prove {A, B} ├  C, 

then we can also prove: {A, B, A_, B_} ├  C. 

 In other words, even adding contradictory assumptions does not stop us from 

making the proof in a monotonic system.  

 In fact, it turns out that adding contradictory assumptions allows us to prove 

anything, including invalid conclusions. This makes sense if we recall the line in 



the truth table for →, which shows that false → true. By adding a contradictory 

assumption, we make our assumptions false and can thus prove any conclusion. 

Modal Logics and Possible Worlds  

 The forms of logic that we have dealt with so far deal with facts and properties of

objects that are either true or false.  

 In these classical logics, we do not consider the possibility that things change or that 

things might not always be as they are now.  

 Modal logics are an extension of classical logic that allow us to reason about

possibilities and certainties.  

 In other words, using a modal logic, we can express ideas such as “although the sky is 

usually blue, it isn’t always” (for example, at night). In this way, we can reason about 

possible worlds.  

 A possible world is a universe or scenario that could logically come about.  

 The following statements may not be true in our world, but they are possible, in the 

sense that they are not illogical, and could be true in a possible world: 

Trees are all blue. 

Dogs can fly. 

People have no legs. 

 It is possible that some of these statements will become true in the future, or even that 

they were true in the past.  

 It is also possible to imagine an alternative universe in which these statements are true

now.  

 The following statements, on the other hand, cannot be true in any possible world: 

A ∧  A 

(x > y) ∧  (y > z) ∧  (z > x) 

 The first of these illustrates the law of the excluded middle, which simply states that a 

fact must be either true or false: it cannot be both true and false.  

 It also cannot be the case that a fact is neither true nor false. This is a law of classical 

logic, it is possible to have a logical system without the law of the excluded middle, 

and in which a fact can be both true and false. 



 The second statement cannot be true by the laws of mathematics. We are not 

interested in possible worlds in which the laws of logic and mathematics do not hold. 

 A statement that may be true or false, depending on the situation, is called contingent.  

 A statement that must always have the same truth value, regardless of which possible 

world we consider, is noncontingent.  

 Hence, the following statements are contingent: 

A ∧  B 

A ∨  B 

I like ice cream. 

The sky is blue. 

 The following statements are noncontingent: 

A ∨  A 

A ∧  A 

If you like all ice cream, then you like this ice cream. 

 Clearly, a noncontingent statement can be either true or false, but the fact that it is 

noncontingent means it will always have that same truth value.  

 If a statement A is contingent, then we say that A is possibly true, which is written ◊ 

A  

 If A is noncontingent, then it is necessarily true, which is written □ A 

 Reasoning in Modal Logic 

 It is not possible to draw up a truth table for the operators ◊ and □  

 The following rules are examples of the axioms that can be used to reason in 

this kind of modal logic: 

□A→◊A 

□A→◊A 

◊A→□ A 



 Although truth tables cannot be drawn up to prove these rules, you should be 

able to reason about them using your understanding of the meaning of the ◊

and □ operators.

Possible world representations 

 It describes method proposed by Nilsson which generalizes firtst order logic in the 

modeling of uncertain beliefs 

 The method assigns truth values ranging from 0 to 1 to possible worlds 

 Each set of possible worlds corresponds to a different interpretation of sentences 

contained in a knowledge base denoted as KB

 Consider the simple case where a KB contains only the single sentence S, S may be 

either true or false. We envision S as being true in one set of possible worlds W1 and 

false in another set W2 . The actual world , the one we are in, must be in one of the 

two sets, but we are uncertain which one. Uncertainty is expressed by assigning a 

probability P to W1 and 1 – P to W2. We  can say then that the probability of S being 

true is P

 When KB contains L sentences, S1,… SL , more sets of possible worlds are required to 

represent all consistent truth value assignments. There are 2L possible truth 

assignments for L sentences. 

 Truth Value assignments for the set {P. P→Q, Q} 

Consistent Inconsistent

P Q P → Q P Q P → Q

True True True  True True False 

True False False True False True 

False True True False True False 

False False True False False False 

 

 They are based on the use of the probability constraints

       0 ≤ pi ≤ 1, and ∑i  pi = 1 



 The consistent probability assignments are bounded by the hyperplanes of a certain 

convex hull 

Dempster- Shafer theory 

 The Dempster-Shafer theory, also known as the theory of belief functions, is a 

generalization of the Bayesian theory of subjective probability.  

 Whereas the Bayesian theory requires probabilities for each question of interest, belief 

functions allow us to base degrees of belief for one question on probabilities for a 

related question. These degrees of belief may or may not have the mathematical 

properties of probabilities;  

 The Dempster-Shafer theory owes its name to work by A. P. Dempster (1968) and 

Glenn Shafer (1976), but the theory came to the attention of AI researchers in the 

early 1980s, when they were trying to adapt probability theory to expert systems.  

 Dempster-Shafer degrees of belief resemble the certainty factors in MYCIN, and this 

resemblance suggested that they might combine the rigor of probability theory with 

the flexibility of rule-based systems.  

 The Dempster-Shafer theory remains attractive because of its relative flexibility. 

 The Dempster-Shafer theory is based on two ideas:  

 the idea of obtaining degrees of belief for one question from subjective 

probabilities for a related question,  

 Dempster's rule for combining such degrees of belief when they are based on 

independent items of evidence. 

 To illustrate the idea of obtaining degrees of belief for one question from subjective 

probabilities for another, suppose I have subjective probabilities for the reliability of 

my friend Betty. My probability that she is reliable is 0.9, and my probability that she 

is unreliable is 0.1. Suppose she tells me a limb fell on my car. This statement, which 

must true if she is reliable, is not necessarily false if she is unreliable. So her 

testimony alone justifies a 0.9 degree of belief that a limb fell on my car, but only a 

zero degree of belief (not a 0.1 degree of belief) that no limb fell on my car. This zero 

does not mean that I am sure that no limb fell on my car, as a zero probability would; 

it merely means that Betty's testimony gives me no reason to believe that no limb fell 

on my car. The 0.9 and the zero together constitute a belief function.  

 To illustrate Dempster's rule for combining degrees of belief, suppose I also have a 

0.9 subjective probability for the reliability of Sally, and suppose she too testifies, 



independently of Betty, that a limb fell on my car. The event that Betty is reliable is 

independent of the event that Sally is reliable, and we may multiply the probabilities 

of these events; the probability that both are reliable is 0.9x0.9 = 0.81, the probability 

that neither is reliable is 0.1x0.1 = 0.01, and the probability that at least one is reliable 

is 1 - 0.01 = 0.99. Since they both said that a limb fell on my car, at least of them 

being reliable implies that a limb did fall on my car, and hence I may assign this event 

a degree of belief of 0.99. Suppose, on the other hand, that Betty and Sally contradict 

each other—Betty says that a limb fell on my car, and Sally says no limb fell on my 

car. In this case, they cannot both be right and hence cannot both be reliable—only 

one is reliable, or neither is reliable. The prior probabilities that only Betty is reliable, 

only Sally is reliable, and that neither is reliable are 0.09, 0.09, and 0.01, respectively, 

and the posterior probabilities (given that not both are reliable) are 9 19 , 9 19 , and 1 

19 , respectively. Hence we have a 9 19 degree of belief that a limb did fall on my car 

(because Betty is reliable) and a 9 19 degree of belief that no limb fell on my car 

(because Sally is reliable). 

 In summary, we obtain degrees of belief for one question (Did a limb fall on my car?) 

from probabilities for another question (Is the witness reliable?). Dempster's rule 

begins with the assumption that the questions for which we have probabilities are 

independent with respect to our subjective probability judgments, but this 

independence is only a priori; it disappears when conflict is discerned between the 

different items of evidence. 

 Implementing the Dempster-Shafer theory in a specific problem generally involves 

solving two related problems.  

 First, we must sort the uncertainties in the problem into a priori independent 

items of evidence. 

 Second, we must carry out Dempster's rule computationally. These two 

problems and their solutions are closely related.  

 Sorting the uncertainties into independent items leads to a structure involving items of 

evidence that bear on different but related questions, and this structure can be used to 

make computations 

 This can be regarded as a more general approach to representing uncertainty than the 

Bayesian approach.  

 The basic idea in representing uncertainty in this model is:  



 Set up a confidence interval -- an interval of probabilities within which the 

true probability lies with a certain confidence -- based on the Belief B and 

plausibility PL provided by some evidence E for a proposition P.  

 The belief brings together all the evidence that would lead us to believe in P 

with some certainty.  

 The plausibility brings together the evidence that is compatible with P and is 

not inconsistent with it.  

 This method allows for further additions to the set of knowledge and does not 

assume disjoint outcomes.  

 If is the set of possible outcomes, then a mass probability, M, is defined for each 

member of the set and takes values in the range [0,1]. 

The Null set, , is also a member of .  

 NOTE: This deals wit set theory terminology that will be dealt with in a tutorial 

shortly. Also see exercises to get experience of problem solving in this important 

subject matter.  

M is a probability density function defined not just for but for em all subsets.  

So if is the set { Flu (F), Cold (C), Pneumonia (P) } then is the set { , {F}, {C}, 

{P}, {F, C}, {F, P}, {C, P}, {F, C, P} } 

 The confidence interval is then defined as [B(E),PL(E)]  

where  

where i.e. all the evidence that makes us believe in the correctness of P, and 

where i.e. all the evidence that contradicts P.

 Let X be the universal set: the set of all states under consideration. The power set is

the set of all possible sub-sets of X, including the empty set . For example, if:  X =  

{a,b}then 2x = {Ǿ, {a},{b}, X} 

 The elements of the power set can be taken to represent propositions that one might 

be interested in, by containing all and only the states in which this proposition is true. 



 The theory of evidence assigns a belief mass to each element of the power set. 

Formally, a function m: 2x→ [0, 1] is called a basic belief assignment (BBA), when it 

has two properties.  

 First, the mass of the empty set is zero: m (Ǿ) = 0 

 Second, the masses of the remaining members of the power set add up to a total of 1:  

∑ m(A) = 1 

        A€ 2x  

 The mass m(A) of a given member of the power set, A, expresses the proportion of all 

relevant and available evidence that supports the claim that the actual state belongs to 

A but to no particular subset of A. The value of m(A) pertains only to the set A and

makes no additional claims about any subsets of A, each of which have, by definition, 

their own mass.  

 From the mass assignments, the upper and lower bounds of a probability interval can 

be defined. This interval contains the precise probability of a set of interest (in the 

classical sense), and is bounded by two non-additive continuous measures called 

belief (or support) and plausibility: 

bel(A) ≤ P(A) ≤ pl(A) 

 



 

 

 

 



 



 

 Benefits of Dempster-Shafer Theory: 

 Allows proper distinction between reasoning and decision taking 

 No modeling restrictions (e.g. DAGs)

 It represents properly partial and total ignorance

 Ignorance is quantified: 

o low degree of ignorance means 

- high confidence in results 

- enough information available for taking decisions 

o high degree of ignorance means 

        - low confidence in results 

         - gather more information (if possible) before taking decisions 

 Conflict is quantified: 

o low conflict indicates the presence of confirming information sources 

o high conflict indicates the presence of contradicting sources 

 Simplicity: Dempster’s rule of combination covers 

o combination of evidence 

o Bayes’ rule 

o Bayesian updating (conditioning) 

o belief revision (results from non-monotonicity) 

 DS-Theory is not very successful because: 

 Inference is less efficient than Bayesian inference 

 Pearl is the better speaker than Dempster (and Shafer, Kohlas, etc.) 

 Microsoft supports Bayesian Networks 

 The UAI community does not like „outsiders“ 
 



Fuzzy Set Theory

What is Fuzzy Set ?

• The word "fuzzy" means "vagueness". Fuzziness occurs when the 

boundary  of  a  piece  of  information  is  not  clear-cut. 
  

• Fuzzy sets  have  been  introduced  by Lotfi A. Zadeh (1965) as an 

extension of  the  classical  notion of  set.  
 

• Classical  set theory allows  the  membership  of  the  elements  in  the set 

in  binary  terms,  a  bivalent  condition -  an element  either  belongs  or 

does  not belong  to  the  set. 

Fuzzy  set theory  permits  the gradual  assessment  of  the  membership

of elements in a set, described with  the aid of a membership function 

valued  in  the  real  unit  interval [0, 1]. 
 

• Example:   

Words  like young,  tall,  good,  or  high  are  fuzzy.  

− There  is  no  single  quantitative value  which defines  the term young.  

− For  some people,  age 25 is young, and  for others, age 35  is  young.  

− The  concept  young  has  no  clean  boundary.  

− Age 1  is  definitely  young  and  age 100  is  definitely  not  young;  

− Age 35  has some possibility of being young and usually depends 

on  the  context  in  which  it  is  being  considered. 
Introduction

In  real  world,  there  exists  much  fuzzy  knowledge;   

Knowledge that is vague, imprecise, uncertain, ambiguous, inexact, or 

probabilistic in nature.  
 

Human  thinking  and  reasoning  frequently  involve fuzzy  information, 

originating from inherently inexact human concepts. Humans, can give 

satisfactory  answers,  which  are  probably  true.  
 

However,  our  systems  are  unable to answer many questions. The reason 

is,  most systems  are  designed  based  upon  classical  set theory  and

two-valued logic  which  is  unable  to  cope  with  unreliable  and  incomplete 

information  and  give  expert  opinions.  
 



 • Classical Set Theory

A  Set  is  any  well  defined  collection  of  objects.  An  object  in a  set  is  

called  an  element  or  member  of  that  set.  

  − Sets are defined by a simple statement  describing  whether a 

particular element having a certain property belongs to that

particular  set.  
 

 − Classical  set   theory   enumerates   all  its  elements  using 

        A = { a1 , a2 , a3 , a4 , . . . . an }
 
If the elements  ai (i = 1, 2, 3, . . . n)  of  a  set A  are  subset  of 

universal set X,   then  set A  can  be represented  for  all   elements

x ∈ X  by  its  characteristic function 

                         1   if x ∈ X 
µA (x) =                                 

                         0   otherwise
 

  − A  set  A  is  well  described  by  a  function  called  characteristic 

function. 

This function, defined  on  the universal space X, assumes : 

   a  value  of 1  for  those  elements x  that belong to set A,   and  

   a  value  of 0  for  those  elements x  that do not belong to set A. 

The notations used to express these mathematically are
 
Α : Χ → [0, 1]

A(x) = 1 , x is a member of A Eq.(1)

A(x) = 0 , x is not a member of A

 
Alternatively,  the set A  can be  represented  for  all elements x ∈ X

by its characteristic function µA (x)   defined as 

                         1    if x ∈ X 
µA (x) =                                Eq.(2) 

                         0    otherwise 

 
  − Thus  in  classical set theory  µA (x)  has  only  the values 0 ('false') 

and 1 ('true'').  Such sets are called crisp sets.  

 
   



 
 • Fuzzy Set Theory

 
Fuzzy  set  theory  is  an  extension  of  classical  set  theory  where 

elements  have  varying  degrees  of  membership.  A  logic  based on 

the two truth values, True and False, is sometimes inadequate when 

describing human reasoning.  Fuzzy  logic  uses the whole interval between 

0 (false) and 1 (true) to describe human reasoning.   
 

  − A Fuzzy Set  is any  set  that  allows  its  members  to  have  different 

degree  of  membership,  called membership function,  in the interval 

[0 , 1].
 

  − The  degree of membership  or  truth is not same as probability;  

� fuzzy truth is not likelihood of some event or condition.  

� fuzzy truth represents membership in vaguely defined sets;  
 

  − Fuzzy logic  is derived from fuzzy set theory dealing  with  reasoning 

that is approximate rather than precisely deduced from classical 

predicate logic. 
 

  − Fuzzy logic is capable of handling inherently imprecise concepts. 
 

  − Fuzzy logic allows in linguistic form the set membership values to 

imprecise concepts like "slightly", "quite" and "very". 
 

  − Fuzzy set theory defines Fuzzy Operators on Fuzzy Sets.  
   

 

 

• Crisp and Non-Crisp Set

 − As said before, in classical set theory,  the characteristic function

µA(x)  of  Eq.(2)  has only values 0 ('false')  and 1 ('true'').   

Such  sets  are  crisp sets.  
 

 − For Non-crisp sets  the characteristic  function   µA(x)  can be defined.  

� The characteristic  function  µA(x) of  Eq. (2) for the crisp set is 

generalized for the Non-crisp sets.  

� This generalized characteristic function µA(x) of  Eq.(2)  is called 

membership function.  

Such  Non-crisp  sets  are  called  Fuzzy Sets.

 − Crisp set theory is not capable of representing descriptions and 

classifications in many cases; In fact, Crisp set does not provide 

adequate representation for most cases.  



 

• Representation of Crisp and Non-Crisp Set

Example :  Classify students for a basketball team 

This example explains the grade of truth value. 

- tall students qualify and not tall students do not qualify

- if students 1.8 m tall are  to be qualified, then 

     should  we exclude  a student who  is 1/10" less?  or 

     should  we exclude  a student who is 1" shorter? 
 

  ■ Non-Crisp Representation to represent the notion of a tall person. 

 
 
 
 
 
 
 
 
 
 
                Crisp logic                                       Non-crisp logic  
                   

Fig. 1 Set Representation – Degree or grade of truth
 
A student of height 1.79m would belong to both tall and not tall sets 

with a particular degree of membership.  

 
As the height increases the membership grade within the tall set would 

increase whilst the membership grade within the not-tall set would 

decrease.   
 

     

 

Degree or grade of truth
 
        Not Tall Tall
1

 
 
 
  
0

1.8 m Height x

Degree or grade of truth
 
        Not Tall Tall
  1
 
 
 
  
0

1.8 m Height x

• Capturing Uncertainty  

Instead of avoiding or ignoring uncertainty, Lotfi Zadeh introduced Fuzzy 

Set theory that captures uncertainty. 

 ■ A fuzzy set is described by a membership function µA (x)   of  A.    

This  membership  function  associates  to  each element xσ ∈ X  a

number as µA (xσ )  in the closed unit interval [0, 1]. 

 

The number  µA (xσ )  represents the degree of membership of xσ in A.  

 ■ The notation used for membership function µA (x) of a fuzzy set  A  is 
 
Α : Χ → [0, 1] 

 
■ Each membership function maps elements of a given universal base 

set X , which is itself a crisp set, into real numbers in [0, 1] .  



 
■ Example  

Fig. 2 Membership function of a Crisp set C and Fuzzy set F 
 

 

■ In the case of Crisp Sets  the members of a set are :  
 
      either out of the set, with membership of degree " 0 ",  

      or in the set, with membership of degree " 1 ",  
 

Therefore,    Crisp Sets ⊆ Fuzzy Sets  

In other words, Crisp Sets are Special cases of Fuzzy Sets. 
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• Examples of Crisp and Non-Crisp Set

Example 1: Set of prime numbers ( a crisp set)
 
If we consider space X   consisting of  natural numbers ≤ 12  

            ie  X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Then, the set of prime numbers could be described as follows.  

PRIME = {x contained in X | x is a prime number} = {2, 3, 5, 6, 7, 11}

 

Example 2: Set of SMALL ( as  non-crisp set) 
 
A Set  X  that consists of  SMALL cannot be described;   

for example 1 is a member of SMALL and 12  is not a member of SMALL.  

 

Set A, as SMALL, has un-sharp boundaries, can be characterized by a 

function that assigns a real number from the closed interval from 0 to 1 to 

each element x in the set X.  
 

     



 

Fuzzy Set

A Fuzzy Set is any set that allows its members to have different degree 

of  membership,  called membership function,  in  the  interval [0 , 1].  

• Definition of Fuzzy set

A fuzzy set A, defined in the universal space X,  is a function defined 

in X  which  assumes values  in  the  range [0, 1].  
 

A fuzzy set A is written as a set of pairs {x, A(x)}  as  

          A = {{x , A(x)}} , x in the set X

where x   is  an  element  of  the universal space X,   and 

A(x) is  the value  of  the  function A  for  this  element.  
 

The value A(x) is the membership grade of the element x in a 

fuzzy set A. 

 Example :  Set  SMALL  in set X  consisting  of  natural numbers  ≤ to 12. 
 

 Assume: SMALL(1) = 1, SMALL(2) = 1, SMALL(3) = 0.9, SMALL(4) = 0.6,

SMALL(5) = 0.4, SMALL(6) = 0.3, SMALL(7) = 0.2, SMALL(8) = 0.1,

SMALL(u) = 0 for u >= 9.

 
 Then,  following  the  notations  described  in  the  definition  above : 

Set SMALL = {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {7, 0.2},

{8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Note that a fuzzy set can be defined precisely by associating with 

each x ,  its  grade of membership in SMALL. 

      
• Definition of Universal Space

Originally the universal space for fuzzy sets in fuzzy logic was 

defined only on the integers.  Now,  the universal space for fuzzy sets 

and fuzzy relations is defined with three numbers.  
 

The first  two numbers specify the start and end of the universal space, 

and  the  third argument specifies the increment between elements. 

This  gives  the user more flexibility in choosing the universal space.

Example  : The fuzzy set  of  numbers, defined  in  the  universal space  

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}   is presented as  

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]



 
 Fuzzy Membership

A fuzzy set A defined in the universal space X is a function defined 

in X which assumes values in the range [0, 1].  
 

A fuzzy set A is written  as  a set of pairs {x, A(x)}. 

          A = {{x , A(x)}} , x in the set X

                  where x is an element of the universal space X,   and 

A(x) is the value of the function A for this element.
 

The  value A(x)  is  the degree of membership of  the  element x

in  a  fuzzy  set  A. 

 
The Graphic Interpretation of fuzzy membership for the fuzzy sets : 

Small, Prime Numbers, Universal-space, Finite and Infinite 

UniversalSpace,  and  Empty  are  illustrated  in the  next  few  slides. 
  

     

 

• Graphic Interpretation of Fuzzy Sets SMALL

 The fuzzy set  SMALL  of  small  numbers, defined  in  the  universal space

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}   is presented as  

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]

 

The Set  SMALL in set X  is : 

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

 

Therefore SetSmall is represented as  

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2},

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}]

FuzzyPlot [ SMALL, AxesLable → {"X", "SMALL"}]

SMALL
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Fig Graphic Interpretation of Fuzzy Sets SMALL
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• Graphic Interpretation of Fuzzy Sets PRIME Numbers

 The fuzzy set  PRIME  numbers,  defined  in  the universal space  

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]

 

The Set  PRIME  in set X  is : 

PRIME =  FuzzySet {{1, 0}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0},

{9, 0}, {10, 0}, {11, 1}, {12, 0}}

Therefore SetPrime is represented as  

SetPrime = FuzzySet [{{1,0},{2,1}, {3,1}, {4,0}, {5,1},{6,0}, {7,1},

{8, 0}, {9, 0}, {10, 0}, {11, 1}, {12, 0}} , UniversalSpace → {1, 12, 1}]

FuzzyPlot [ PRIME, AxesLable → {"X", "PRIME"}]

PRIME
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Fig Graphic Interpretation of Fuzzy Sets PRIME
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• Graphic Interpretation of Fuzzy Sets UNIVERSALSPACE

 In any application of sets or fuzzy sets theory, all sets are subsets of 

a  fixed set called universal space or universe of discourse denoted by X.  

Universal space X as a fuzzy set is a function equal to 1 for all elements. 
  

The  fuzzy  set  UNIVERSALSPACE  numbers,  defined   in   the   universal 

space  X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}   is presented as  

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]

 

The Set  UNIVERSALSPACE  in set X  is : 
 

UNIVERSALSPACE =  FuzzySet {{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}, {6, 1},

{7, 1}, {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}}

Therefore SetUniversal is represented as  



SetUniversal = FuzzySet [{{1,1},{2,1}, {3,1}, {4,1}, {5,1},{6,1}, {7,1},

{8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}} , UniversalSpace → {1, 12, 1}]

FuzzyPlot [ UNIVERSALSPACE, AxesLable → {"X", " UNIVERSAL SPACE "}]

UNIVERSAL SPACE
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Fig Graphic Interpretation of Fuzzy Set UNIVERSALSPACE
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• Finite and Infinite Universal Space

 Universal sets can be finite or infinite.  

Any universal set is finite if it consists of a specific number of different 

elements, that is, if in counting the different elements of the set, the 

counting can come to an end, else the set is infinite. 

Examples:  

1. Let N be the universal space of the days of the week.

            N = {Mo, Tu, We, Th, Fr, Sa, Su}. N is finite. 

2.  Let  M = {1, 3, 5, 7, 9, ...}. M is infinite. 

3.  Let   L = {u | u is a lake in a city }.   L  is finite. 

     (Although it may be difficult to count the number of lakes in a city,   

      but L is still a finite universal set.) 



 

• Graphic Interpretation of Fuzzy Sets EMPTY

 An empty set is a set that contains only elements with a grade of 

membership  equal  to 0.  

Example: Let EMPTY be a set of people, in Minnesota, older than 120.

The Empty set is also called the Null set.

The  fuzzy  set  EMPTY ,  defined   in   the   universal  space  

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}   is presented as  

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]

 

The Set  EMPTY  in set X  is :

EMPTY =  FuzzySet {{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0},

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}}

Therefore SetEmpty is represented as  

SetEmpty = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0}, {5,0},{6,0}, {7,0},

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}]

FuzzyPlot [ EMPTY, AxesLable → {"X", " UNIVERSAL SPACE "}]

EMPTY
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Fig Graphic Interpretation of Fuzzy Set EMPTY
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Fuzzy Operations

A fuzzy set operations are the operations on fuzzy sets. The fuzzy set 

operations are generalization of crisp set operations. Zadeh [1965] 

formulated the fuzzy set theory in the terms of standard operations: 

Complement,   Union,    Intersection,   and    Difference.

In this section, the graphical interpretation of  the  following  standard 

fuzzy set terms  and  the  Fuzzy Logic  operations  are  illustrated:  
 

Inclusion : FuzzyInclude [VERYSMALL, SMALL]

Equality : FuzzyEQUALITY [SMALL, STILLSMALL]

Complement : FuzzyNOTSMALL = FuzzyCompliment [Small]

Union : FuzzyUNION = [SMALL ∪ MEDIUM]

Intersection : FUZZYINTERSECTON = [SMALL ∩ MEDIUM]

 

 

• Inclusion
 

 Let A and  B  be  fuzzy sets defined in the same universal space X.

The fuzzy set A is included in the fuzzy set B  if and only if  for every x in 

the set X we have A(x) ≤ B(x) 

Example :  

The  fuzzy  set  UNIVERSALSPACE  numbers,  defined   in   the   universal 

space  X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}   is presented as  

SetOption [FuzzySet, UniversalSpace → {1, 12, 1}]

The fuzzy set B SMALL

The Set  SMALL  in set X  is :

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Therefore SetSmall is represented as  

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2},

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}]



The fuzzy set A VERYSMALL

The Set  VERYSMALL in set X is :

VERYSMALL =  FuzzySet {{1, 1 }, {2, 0.8 }, {3, 0.7}, {4, 0.4}, {5, 0.2},

{6, 0.1}, {7, 0 }, {8, 0 }, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Therefore SetVerySmall is represented as  

SetVerySmall = FuzzySet [{{1,1},{2,0.8}, {3,0.7}, {4,0.4}, {5,0.2},{6,0.1},

{7,0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}]

The Fuzzy Operation : Inclusion

Include [VERYSMALL, SMALL]

Membership Grade B A
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Fig Graphic Interpretation of Fuzzy Inclusion
FuzzyPlot [SMALL, VERYSMALL]
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• Comparability
 

Two fuzzy sets A  and  B  are comparable  

if the condition  A ⊂ B or B ⊂ A  holds,  ie,   

if one of the fuzzy sets is a subset of the other set, they are comparable. 
 

Two fuzzy sets A and B are incomparable  

If the condition  A ⊄ B or B ⊄ A  holds. 

Example 1:

Let A = {{a, 1}, {b, 1}, {c, 0}} and

B = {{a, 1}, {b, 1}, {c, 1}}.  

Then A  is  comparable  to  B,  since  A  is   a subset  of  B. 

Example 2 :

Let    C = {{a, 1}, {b, 1}, {c, 0.5}} and

D = {{a, 1}, {b, 0.9}, {c, 0.6}}.  

Then C and D are not comparable since 

C is not a subset of D  and 

D is not a subset of C.  



 

  

 

 
 

 
 

 
 Property Related to Inclusion :

for all x   in the set X,  if  A(x) ⊂ B(x) ⊂

 

• Equality

Let A   and  B   be fuzzy sets defined in the same space X.  

Then A and B are equal,  which is denoted X = Y

if  and  only  if  for  all  x  in  the  set X, A(x) = B(x).

Example.

The fuzzy set B SMALL

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set A STILLSMALL

STILLSMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4},

{6, 0.3}, {7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The Fuzzy Operation : Equality

Equality [SMALL, STILLSMALL] 

Membership Grade B A
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Fig Graphic Interpretation of Fuzzy Equality 
FuzzyPlot [SMALL, STILLSMALL]

 
Note : If equality A(x) = B(x) is not satisfied even for one element x in 

the set X, then we say that A is not equal to B. 
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• Complement

Let A  be a fuzzy set defined in the space X.  

Then the fuzzy  set B  is  a  complement  of  the fuzzy set A,  if and only if, 

for all x  in the set X, B(x) = 1 - A(x). 

 

The complement of the fuzzy set A is often denoted by A' or Ac  or   

Fuzzy Complement :   Ac(x) = 1 – A(x)

Example 1.

The fuzzy set A SMALL

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set Ac NOTSMALL

NOTSMALL =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7},

{7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

 
The Fuzzy Operation : Compliment

NOTSMALL = Compliment [SMALL]

Membership Grade A Ac
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Fig Graphic Interpretation of Fuzzy Compliment
FuzzyPlot [SMALL, NOTSMALL] 
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 Example 2.

The empty set Φ   and  the  universal set X,  as fuzzy sets, are 

complements of one another.    

Φ' = X , X' = Φ 
     

The fuzzy set B EMPTY

Empty =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0}, {5, 0}, {6, 0},

{7, 0}, {8, 0}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set A UNIVERSAL

Universal =  FuzzySet {{1, 1 }, {2, 1 }, {3, 1}, {4, 1}, {5, 1}, {6, 1},

{7, 1}, {8, 1}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

 
The fuzzy operation : Compliment

EMPTY = Compliment [UNIVERSALSPACE]

 Membership Grade       B A 
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Fig Graphic Interpretation of Fuzzy Compliment
FuzzyPlot [EMPTY, UNIVERSALSPACE] 
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• Union

Let A and B  be fuzzy sets defined in the space X.  

The union is defined as the smallest fuzzy set that contains both A and B.  

The union of A and B is denoted by A ∪ B.  

The following relation must be satisfied for the union operation : 

   for all x in the set X, (A ∪ B)(x) = Max (A(x), B(x)).

Fuzzy Union : (A ∪ B)(x) = max [A(x), B(x)] for all x ∈ X

Example 1 : Union of Fuzzy A  and  B
 

A(x) = 0.6 and B(x) = 0.4 ∴ (A ∪ B)(x) = max [0.6, 0.4] = 0.6

Example 2 : Union of SMALL and MEDIUM 

The fuzzy set A SMALL

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set B MEDIUM

MEDIUM =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy operation : Union

FUZZYUNION = [SMALL ∪ MEDIUM]    

SetSmallUNIONMedium = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5},

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}} , 

UniversalSpace → {1, 12, 1}]

Membership Grade FUZZYUNION = [SMALL ∪ MEDIUM]
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Fig Graphic Interpretation of Fuzzy Union  

FuzzyPlot [UNION]  
  

 The notion of the union is closely related to that of the connective "or".  

Let  A is a class of "Young" men, B is a class of "Bald" men.  

If  "David is Young" or "David is Bald,"  then David is associated with the 

union of A and B.   Implies David is a member of A ∪ B. 
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• Intersection

Let A and B  be fuzzy sets defined in the space X.  Intersection is defined 

as the greatest fuzzy set that include both A and B.  Intersection of A and 

B is denoted by A ∩ B.  The following relation must be satisfied for the 

intersection operation :

for all x in the set X, (A ∩ B)(x) = Min (A(x), B(x)). 

Fuzzy Intersection : (A ∩ B)(x) = min [A(x), B(x)] for all x ∈ X

Example 1 : Intersection of Fuzzy A  and  B
 
A(x) = 0.6 and B(x) = 0.4 ∴ (A ∩ B)(x) = min [0.6, 0.4] = 0.4

Example 2 :  Union of SMALL and MEDIUM 

The fuzzy set A SMALL

SMALL =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set B MEDIUM

MEDIUM =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy operation : Intersection

FUZZYINTERSECTION = min [SMALL ∩ MEDIUM]  

SetSmallINTERSECTIONMedium = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2},

{5,0.4}, {6,0.3}, {7,0.2}, {8, 0.1}, {9, 0},

{10, 0}, {11, 0}, {12, 0}} , UniversalSpace → {1, 12, 1}] 

 
Membership Grade FUZZYINTERSECTON = [SMALL ∩ MEDIUM]
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Fig Graphic Interpretation of Fuzzy Union
FuzzyPlot [INTERSECTION]
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• Difference

Let A and B  be fuzzy sets defined in the space X.   

The  difference  of A  and B is denoted by A ∩ B'.   

Fuzzy Difference : (A - B)(x) = min [A(x), 1- B(x)] for all x ∈ X

Example : Difference of MEDIUM and SMALL

The fuzzy set A MEDIUM

MEDIUM =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},
{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy set B SMALL

MEDIUM =  FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},
{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}}

Fuzzy Complement :    Bc(x) = 1 – B(x)

The fuzzy set Bc NOTSMALL

NOTSMALL =  FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7},

{7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

The fuzzy operation : Difference by the definition of Difference

FUZZYDIFFERENCE = [MEDIUM ∩ SMALL']    

SetMediumDIFFERECESmall = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2},

{5,0.5}, {6,0.7}, {7,0.8}, {8, 0.9}, {9, 0.7},

{10, 0.4}, {11, 0.1}, {12, 0}} , UniversalSpace → {1, 12, 1}]

 
Membership Grade FUZZYDIFFERENCE = [MEDIUM ∪ SMALL' ]
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Fig Graphic Interpretation of Fuzzy Union
FuzzyPlot [UNION]
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Fuzzy Properties

Properties related to Union, Intersection, Differences are illustrated below. 
 

• Properties Related to Union

The properties related to union are : 

Identity,  Idempotence,  Commutativity  and  Associativity.  
 

 ■ Identity:   

A ∪ Φ = A

    input    =  Equality [SMALL ∪ EMPTY ,  SMALL] 

   output = True 

A ∪ X = X 

     input   =  Equality [SMALL ∪ UnivrsalSpace ,  UnivrsalSpace] 

    output  = True 
 

 ■ Idempotence :     

A ∪ A = A 

     input   =  Equality [SMALL ∪ SMALL ,  SMALL] 

     output = True 

 ■ Commutativity :   

A ∪ B = B ∪ A

    input   =  Equality [SMALL ∪ MEDIUM,  MEDIUM ∪ SMALL] 

   output = True 
 

   



 

 
  

■ Associativity:  

A ∪ (B∪ C) = (A∪ B) ∪ C  
 
  input  = Equality [Small ∪ (Medium ∪ Big) , (Small ∪ Medium) ∪ Big] 

  output = True 

Fuzzy Set Small , Medium , Big

Small = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}}

Medium = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0 }, {10, 0 }, {11, 0.1}, {12, 0}}

 
Big = FuzzySet [{{1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0.1},

{7,0.2}, {8,0.4}, {9,0.6}, {10,0.8}, {11,1}, {12,1}}]

Calculate Fuzzy relations :

(1) Medium ∪ Big = FuzzySet [{1,0},{2,0}, {3,0}, {4,0.2}, {5,0.5},

{6,0.8},{7,1}, {8, 1}, {9, 0.6}, {10, 0.8}, {11, 1}, {12, 1}] 

(2) Small ∪ Medium = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5},

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}] 

(3) Small ∪ (Medium ∪ Big) = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6},

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.8}, {11, 1}, {12, 1}]

                                                                                                                  

(4) (Small ∪ Medium) ∪ Big] = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6},

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7},{10, 0.8}, {11, 1},{12, 1}]

 

Fuzzy set  (3)   and  (4)  proves  Associativity relation  
 
 

     



 

 

• Properties Related to Intersection

Absorption,  Identity,  Idempotence,  Commutativity,  Associativity.   

 ■ Absorption by Empty Set :

A ∩ Φ = Φ

   input    =  Equality [Small ∩ Empty ,  Empty] 

   output = True 

 ■ Identity :

A ∩ X = A

   input    =  Equality [Small ∩ UnivrsalSpace ,  Small] 

   output = True
 ■ Idempotence :

A ∩ A = A

   input    =  Equality [Small ∩ Small ,  Small] 

   output = True
 ■ Commutativity :

A ∩ B = B ∩ A     

   input    =  Equality [Small ∩ Big ,  Big ∩  Small] 

   output = True

 ■ Associativity :

A ∩ (B ∩ C) = (A ∩ B) ∩ C  

   input = Equality [Small ∩  (Medium ∩ Big), (Small ∩ Medium) ∩ Big] 

   output = True 

     
• Additional Properties

Related  to  Intersection  and  Union  
 

 ■ Distributivity:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 

   input = Equality [Small ∩ (Medium ∪ Big)  , 

                            (Small ∩ Medium) ∪ (Small ∩ Big)]  

   output = True 
 

 ■ Distributivity:

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

   input = Equality [Small ∪ (Medium ∩ Big)  , 

                            (Small ∪ Medium) ∩ (Small ∪ Big)]  

   output = True



 

 

■ Law of excluded middle :

A ∪ A' = X

    input  = Equality [Small ∪  NotSmall  ,  UnivrsalSpace ] 

    output = True 

 

■ Law of contradiction

A ∩ A' = Φ

   input  = Equality [Small ∩  NotSmall  ,  EmptySpace ] 

   output = True 

     

 
• Cartesian Product Of Two Fuzzy Sets

■ Cartesian Product of two Crisp Sets

Let  A  and B  be two  crisp sets in the universe of discourse X and Y..  

The Cartesian product of A and B is denoted by A x B 

Defined as   A x B = { (a , b) │ a ∈ A , b ∈ B } 

Note : Generally A x B ≠ B x A

Example :

Let  A = {a, b, c} and  B = {1, 2}   

then  A x B = { (a , 1) , (a , 2) ,

(b , 1) , (b , 2) ,

(c , 1) , (c , 2) } 

Graphic representation of  A x B
B

2

1

                                   A
          a b c

 
■ Cartesian product of two Fuzzy Sets

Let  A and B  be two fuzzy sets in the universe of discourse X  and Y.  

The Cartesian product of A and B is denoted by A x B

Defined  by their membership function µ A (x) and µ B (y)  as  
 

µ A x B (x , y) = min [ µ A (x)  ,  µ B (y) ]  = µ A (x) ∧  µ B (y)

or      µ A x B (x , y) =   µ A (x) µ B (y) 

         for all x ∈   X   and y ∈   Y

Thus  the  Cartesian   product A x B  is  a  fuzzy  set  of  ordered  pair

(x , y)  for all x ∈ X  and y ∈ Y,  with  grade  membership  of (x , y) in

X x Y   given  by the above equations .  

In a sense  Cartesian  product  of  two  Fuzzy sets  is  a  Fuzzy Relation.



 

Fuzzy Relations

Fuzzy  Relations  describe  the  degree  of association  of  the elements;   

Example :  “x is approximately equal to y”.

− Fuzzy relations offer the capability to capture the uncertainty and vagueness 

in relations between sets and elements of a set.

− Fuzzy Relations  make  the  description of  a  concept  possible. 

− Fuzzy Relations were introduced to supersede classical crisp relations;

It  describes  the  total  presence  or absence  of  association  of  elements.  

 
In this section, first the fuzzy relation is defined and then expressing fuzzy 

relations in  terms  of  matrices and graphical visualizations.  Later the 

properties  of  fuzzy relations and operations that can be performed with fuzzy 

relations  are  illustrated.  

     

 

3.1 Definition of Fuzzy Relation

Fuzzy relation  is  a  generalization  of  the  definition  of  fuzzy  set

from  2-D space  to  3-D  space. 
 

• Fuzzy relation definition

Consider a Cartesian product  

     A x B = { (x , y) | x ∈ A, y ∈ B }

where  A  and B  are subsets of universal sets U1 and U2. 

Fuzzy relation on  A x B is denoted by R  or R(x , y)  is defined as the set 

R = { ((x , y) , µR (x , y)) | (x , y) ∈ A x B , µR (x , y) ∈ [0,1] }

where  µR (x , y) is a function in two variables called membership function. 

− It gives the degree of membership of the ordered pair (x , y) in R

associating with each pair (x , y) in A x B a  real  number  in  the 

interval [0 , 1]. 

− The degree of membership indicates  the degree to which x is in 

relation  to y. 



 

• Example of Fuzzy Relation

R = { ((x1 , y1) , 0)) , ((x1 , y2) , 0.1)) , ((x1 , y3) , 0.2)) ,

((x2 , y1) , 0.7)) , ((x2 , y2) , 0.2)) , ((x2 , y3) , 0.3)) ,

((x3 , y1) , 1)) , ((x3 , y2) , 0.6)) , ((x3 , y3) , 0.2)) ,

The relation can be written in  matrix form as 

y
x

y1 Y2 Y3

x1 0 0.1 0.2

X2 0.7 0.2 0.3

X3 1 0.6 0.2

 
       where symbol         means ' is defined as'   and  

    the values in the matrix are the values of membership function:  

         
µR (x1 , y1) = 0 µR (x1 , y2) = 0.1 µR (x1 , y3) = 0.2

µR (x2 , y1) = 0.7 µR (x2, y2) = 0.2 µR (x2 , y3) = 0.3

µR (x3 , y1) = 1 µR (x3 , y2) = 0.6 µR (x3 , y3) = 0.2 

 
Assuming  x1 = 1 , x2 = 2 , x3 = 3 and  y1 = 1 , y2= 2 , y3= 3 ,  

the  relation  can  be  graphically  represented  by  points   in 3-D  space

(X, Y, µ)  as :  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig Fuzzy Relation R describing
x greater than y

 
 

 

Note : Since the values of the 

membership function 0.7, 1, 0.6

are in the direction of x below the 

major diagonal (0, 0.2, 0.2) in the 

matrix  are  grater than those 

0.1, 0.2, 0.3  in the direction of y, 

we therefore say that  the relation 

R   describes  x  is grater than y.  
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Forming Fuzzy Relations

Assume that V  and  W  are two collections of objects.  
 

A fuzzy relation is characterized in the same way as it is in a fuzzy set.  
 

− The first item is a list containing element and membership grade pairs,

        {{v1, w1}, R11}, {{ v1, w2}, R12}, ... , {{ vn, wm}, Rnm}}.

where  { v1, w1}, { v1, w2}, ... , { vn, wm} are the elements of the relation 

are defined as ordered pairs, and { R11 , R12 , ... , Rnm} are the  membership 

grades of the  elements of the relation that range from 0 to 1, inclusive. 

− The second item is the universal space; for relations, the universal space 

consists of a pair of ordered pairs,  

          {{ Vmin, Vmax, C1}, { Wmin, Wmax, C2}}.
 

where the first pair defines the universal space for the first set  and the second 

pair defines the universal space for the second set.  

Example   showing how fuzzy relations are represented  

          Let V = {1, 2, 3} and W = {1, 2, 3, 4}.

A  fuzzy relation R is,  a function defined in the space V x W, which  takes 

values from the interval [0, 1] ,  expressed as  R : V x W → [0, 1]  

 R = FuzzyRelation [{{{1, 1}, 1}, {{1, 2}, 0.2}, {{1, 3}, 0.7}, {{1, 4}, 0},
{{2, 1}, 0.7}, {{2, 2}, 1}, {{2, 3}, 0.4}, {{2, 4}, 0.8},
{{3, 1}, 0}, {{3, 2}, 0.6}, {{3, 3}, 0.3}, {{3, 4}, 0.5},
UniversalSpace → {{1, 3, 1}, {1, 4, 1}}]

This relation can be represented in the following two forms shown below
 Membership matrix form

w
v

w1 w2 w3 w4

v1 1 0.2 0.7 0

v2 0.7 1 0.4 0.8

v3 0 0.6 0.3 0.5

 

 
 
 

                     Graph form
                
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vertical lines represent membership grades
 

 Elements of fuzzy relation are ordered pairs {vi , wj}, where vi is first and 

wj is second element. The membership grades of the elements are 

represented by the heights of the vertical lines.  
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Projections of Fuzzy Relations

Definition : A  fuzzy  relation  on  A x B is  denoted  by R  or R(x , y)  is 

defined as the set

R = { ((x , y) , µR (x , y)) | (x , y) ∈ A x B , µR (x , y) ∈ [0,1] }

where  µR (x , y)  is  a  function  in  two  variables  called  membership 

function.  The first, the second  and  the total  projections  of  fuzzy 

relations  are  stated  below.  

• First Projection of R : defined as

R(1) = {(x) , µ R(1) (x , y))}

= {(x) , µ R (x , y)) | (x , y) ∈ A x B }

• Second Projection of R : defined as

R(2) = {(y) , µ R(2) (x , y))}

= {(y) , µ R (x , y)) | (x , y) ∈ A x B }

• Total Projection of R : defined as

R(T) = {µ R (x , y) | (x , y) ∈ A x B }

Note : In all these three expression  

means  max with respect to y  while  x  is considered fixed   

 means  max with respect to x  while  y  is considered fixed  

The Total  Projection  is  also known as Global projection 
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• Example : Fuzzy Projections

The Fuzzy Relation  R  together with  First,  Second  and  Total Projection  

of  R  are shown below.   

y
x

y1 y2 y3 y4 Y5 R(1)

x1 0.1 0.3 1 0.5 0.3 1

x2 0.2 0.5 0.7 0.9 0.6 0.9

x3 0.3 0.6 1 0.8 0.2 1

R(2) 0.3 0.6 1 0.9 0.6 1 = R(T)

Note :

For R(1) select means  max with respect to y while  x  is considered fixed  

For R(2) select means  max with respect to x while  y  is considered fixed  

For R(T)   select max with respect to  R(1) and  R(2)

The Fuzzy plot of these projections are shown below. 
  

 
 
 
 
    
 
 
 
 
 
 
 

Fig Fuzzy plot of 1st projection R(1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig Fuzzy plot of 2nd projection R(2) 
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