UNIT 2
 Networks

GATE 2011

ONE MARK

MCQ 2.1

In the circuit shown below, the Norton equivalent current in amperes with respect to the terminals P and Q is

(A) $6.4-j 4.8$
(B) $6.56-j 7.87$
(C) $10+j 0$
(D) $16+j 0$

MCQ 2.2

In the circuit shown below, the value of R_{L} such that the power transferred to R_{L} is maximum is

(A) 5Ω
(B) 10Ω
(C) 15Ω
(D) 20Ω

MCQ 2.3

The circuit shown below is driven by a sinusoidal input $v_{i}=V_{p} \cos (t / R C)$. The steady state output v_{o} is

(A) $\left(V_{p} / 3\right) \cos (t / R C)$
(B) $\left(V_{p} / 3\right) \sin (t / R C)$
(C) $\left(V_{p} / 2\right) \cos (t / R C)$
(D) $\left(V_{p} / 2\right) \sin (t / R C)$

2011

MCQ 2.4

In the circuit shown below, the current I is equal to

(A) $1.4 \angle 0^{\circ} \mathrm{A}$
(B) $2.0 \angle 0^{\circ} \mathrm{A}$
(C) $2.8 \angle 0^{\circ} \mathrm{A}$
(D) $3.2 \angle 0^{\circ} \mathrm{A}$

MCQ 2.5

In the circuit shown below, the network N is described by the following Y matrix:
$Y=\left[\begin{array}{rr}0.1 \mathrm{~S} & -0.01 \mathrm{~S} \\ 0.01 \mathrm{~S} & 0.1 \mathrm{~S}\end{array}\right]$. the voltage gain $\frac{V_{2}}{V_{1}}$ is

Chap 2 Networks

(A) $1 / 90$
(B) $-1 / 90$
(C) $-1 / 99$
(D) $-1 / 11$

MCQ 2.6

In the circuit shown below, the initial charge on the capacitor is 2.5 mC , with the voltage polarity as indicated. The switch is closed at time $t=0$. The current $i(t)$ at a time t after the switch is closed is

(A) $i(t)=15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(B) $i(t)=5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(C) $i(t)=10 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$
(D) $i(t)=-5 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}$

2010 ONE MARK

MCQ 2.7

For the two-port network shown below, the short-circuit admittance parameter matrix is

Chap 2 Networks

(A) $\left[\begin{array}{cr}4 & -2 \\ -2 & 4\end{array}\right] S$
(B) $\left[\begin{array}{cc}1 & -0.5 \\ -0.5 & 1\end{array}\right] \mathrm{S}$
(C) $\left[\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right] \mathrm{S}$
(D) $\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right] \mathrm{S}$

MCQ 2.8

For parallel $R L C$ circuit, which one of the following statements is NOT correct?
(A) The bandwidth of the circuit decreases if R is increased
(B) The bandwidth of the circuit remains same if L is increased
(C) At resonance, input impedance is a real quantity
(D) At resonance, the magnitude of input impedance attains its minimum value.

2010
TWO MARKS

MCQ 2.9

In the circuit shown, the switch S is open for a long time and is closed at $t=0$. The current $i(t)$ for $t \geq \theta^{+}$is

(A) $i(t)=0.5-0.125 e^{-1000 t} \mathrm{~A}$
(B) $i(t)=1.5-0.125 e^{-1000 t} \mathrm{~A}$
(C) $i(t)=0.5-0.5 e^{-1000 t} \mathrm{~A}$
(D) $i(t)=0.375 e^{-1000 t} \mathrm{~A}$

MCQ 2.10

The current I in the circuit shown is

(A) $-j 1 \mathrm{~A}$
(B) $j 1 \mathrm{~A}$
(C) 0 A
(D) 20 A

MCQ 2.11

In the circuit shown, the power supplied by the voltage source is

(A) 0 W
(C) 10 W

(-)

GATE 2009

IINI

MCQ 2.12

In the interconnection of ideal sources shown in the figure, it is known that the 60 V source is absorbing power.

Which of the following can be the value of the current source I ?
(A) 10 A
(B) 13 A
(C) 15 A
(D) 18 A

MCQ 2.13

If the transfer function of the following network is

Chap 2 Networks

$$
\frac{V_{o}(s)}{V_{i}(s)}=\frac{1}{2+s C R}
$$

The value of the load resistance R_{L} is
(A) $\frac{R}{4}$
(B) $\frac{R}{2}$
(C) R
(D) $2 R$

MCQ 2.14

A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that, during the talk-time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the battery deliver during this talk-time?

(A) 220 J
(B) 12 kJ
(C) 13.2 kJ
(D) 14.4 J

GATE 2009 TWO MARK

MCQ 2.15

An AC source of RMS voltage 20 V with internal impedance $Z_{s}=(1+2 j) \Omega$ feeds a load of impedance $Z_{L}=(7+4 j) \Omega$ in the figure below. The reactive power consumed by the load is

(A) 8 VAR
(B) 16 VAR
(C) 28 VAR
(D) 32 VAR

MCQ 2.16

The switch in the circuit shown was on position a for a long time, and is move to position b at time $t=0$. The current $i(t)$ for $t>0$ is given by

(A) $0.2 e^{-125 t} u(t) \mathrm{mA}$
(B) $20 e^{-1250 t} u(t) \mathrm{mA}$
(C) $0.2 e^{-1250 t} u(t) \mathrm{mA}$
(D) $20 e^{-1000 t} u(t) \mathrm{mA}$

MCQ 2.17

In the circuit shown, what value of R_{L} maximizes the power delivered to R_{L} ?

(A) 2.4Ω
(B) $\frac{8}{3} \Omega$
(C) 4Ω
(D) 6Ω

MCQ 2.18

The time domain behavior of an $R L$ circuit is represented by

$$
L \frac{d i}{d t}+R i=V_{0}\left(1+B e^{-R t / L} \sin t\right) u(t)
$$

For an initial current of $i(0)=\frac{V_{0}}{R}$, the steady state value of the current is given by
(A) $i(t) \rightarrow \frac{V_{0}}{R}$
(B) $i(t) \rightarrow \frac{2 V_{0}}{R}$
(C) $i(t) \rightarrow \frac{V_{0}}{R}(1+B)$
(D) $i(t) \rightarrow \frac{2 V_{0}}{R}(1+B)$

GATE 2008
ONE MARK

MCQ 2.19

In the following graph, the number of trees (P) and the number of cut-set (Q) are

(A) $P=2, Q=2$
(B) $P=2, Q=6$
(C) $P=4, Q=6$
(D) $P=4, Q=10$

MCQ 2.20

In the following circuit, the switch S is closed at $t=0$. The rate of change of current $\frac{d i}{d t}\left(0^{+}\right)$is given by

(A) 0
(B) $\frac{R_{s} I_{s}}{L}$
(C) $\frac{\left(R+R_{s}\right) I_{s}}{L}$
(D) ∞

Chap 2
Networks
GATE 2008
TWO MARKS

MCQ 2.21

The Thevenin equivalent impedance $Z_{t h}$ between the nodes P and Q in the following circuit is

(A) 1
(B) $1+s+\frac{1}{s}$
(C) $2+s+\frac{1}{s}$
(D) $\frac{s^{2}+s+1}{s^{2}+2 s+1}$

MCQ 2.22

The driving point impedance of the following network is given by

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

The component values are
(A) $L=5 \mathrm{H}, R=0.5 \Omega, C=0.1 \mathrm{~F}$
(B) $L=0.1 \mathrm{H}, R=0.5 \Omega, C=5 \mathrm{~F}$
(C) $L=5 \mathrm{H}, R=2 \Omega, C=0.1 \mathrm{~F}$
(D) $L=0.1 \mathrm{H}, R=2 \Omega, C=5 \mathrm{~F}$

MCQ 2.23

The circuit shown in the figure is used to charge the capacitor C alternately from two current sources as indicated. The switches S_{1} and S_{2} are mechanically coupled and connected as follows:

For $2 n T \leq t \leq(2 n+1) T,(n=0,1,2, ..) S_{1}$ to P_{1} and S_{2} to P_{2}

For $(2 n+1) T \leq t \leq(2 n+2) T,(n=0,1,2, \ldots) S_{1}$ to Q_{1} and S_{2} to Q_{2}

Assume that the capacitor has zero initial charge. Given that $u(t)$ is a unit step function, the voltage $v_{c}(t)$ across the capacitor is given by
(A) $\sum_{n=1}^{\infty}(-1)^{n} t u(t-n T)$
(B) $u(t)+2 \sum_{n=1}^{\infty}(-1)^{n} u(t-n T)$
(C) $t u(t)+2 \sum_{n=1}^{\infty}(-1)^{n} u(t-n T)(t-n T)$
(D) $\sum_{n=1}^{\infty}\left[0.5-e^{-(t-2 n T)}+0.5 e^{-(t-2 n T)}-T\right]$

Common data question $2.23 \& 2.24$:

The following series $R L C$ circuit with zero conditions is excited by a unit impulse functions $\delta(t)$.

MCQ 2.24

For $t>0$, the output voltage $v_{C}(t)$ is
(A) $\frac{2}{\sqrt{3}}\left(e^{\frac{-1}{2} t}-e^{\frac{\sqrt{3}}{2} t}\right)$
(B) $\frac{2}{\sqrt{3}} t e^{\frac{-1}{2}} t$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)$
(D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)$

MCQ 2.25

For $t>0$, the voltage across the resistor is
(A) $\frac{1}{\sqrt{3}}\left(e^{\frac{\sqrt{3}}{2} t}-e^{-\frac{1}{2} t}\right)$
(B) $e^{\frac{-1}{2} t}\left[\cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{1}{\sqrt{3}} \sin \left(\frac{\sqrt{3} t}{2}\right)\right]$
(C) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \sin \left(\frac{\sqrt{3} t}{2}\right)$
(D) $\frac{2}{\sqrt{3}} e^{\frac{-1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)$

Statement for linked Answers Questions 2.25 \& 2.26:

A two-port network shown below is excited by external DC source. The voltage and the current are measured with voltmeters V_{1}, V_{2} and ammeters. A_{1}, A_{2} (all assumed to be ideal), as indicated

Under following conditions, the readings obtained are:
(1) S_{1}-open, S_{2} - closed $A_{1}=0, V_{1}=4.5 \mathrm{~V}, V_{2}=1.5 \mathrm{~V}, A_{2}=1 \mathrm{~A}$
(2) S_{1}-open, S_{2} - closed $A_{1}=4 \mathrm{~A}, V_{1}=6 \mathrm{~V}, V_{2}=6 \mathrm{~V}, A_{2}=0$

MCQ 2.26

The z-parameter matrix for this network is
(A) $\left[\begin{array}{ll}1.5 & 1.5 \\ 4.5 & 1.5\end{array}\right]$
(B) $\left[\begin{array}{ll}1.5 & 4.5 \\ 1.5 & 4.5\end{array}\right]$
(C) $\left[\begin{array}{ll}1.5 & 4.5 \\ 1.5 & 1.5\end{array}\right]$
(D) $\left[\begin{array}{ll}4.5 & 1.5 \\ 1.5 & 4.5\end{array}\right]$

MCQ 2.27

The h-parameter matrix for this network is
(A) $\left[\begin{array}{cc}-3 & 3 \\ -1 & 0.67\end{array}\right]$
(B) $\left[\begin{array}{rr}-3 & -1 \\ 3 & 0.67\end{array}\right]$

Chap 2 Networks

(C) $\left[\begin{array}{cc}3 & 3 \\ 1 & 0.67\end{array}\right]$
(D) $\left[\begin{array}{rc}3 & 1 \\ -3 & -0.67\end{array}\right]$

GATE 2007
ONE MARK

MCQ 2.28

An independent voltage source in series with an impedance $Z_{s}=R_{s}+j X_{s}$ delivers a maximum average power to a load impedance Z_{L} when
(A) $Z_{L}=R_{s}+j X_{s}$
(B) $Z_{L}=R_{s}$
(C) $Z_{L}=j X_{s}$
(D) $Z_{L}=R_{s}-j X_{s}$

MCQ 2.29

The $R C$ circuit shown in the figure is

(A) a low-pass filter
(B) a high-pass filter
(C) a band-pass filter
(D) a band-reject filter

GATE 2007
TWO MARKS

MCQ 2.30

Two series resonant filters are as shown in the figure. Let the $3-\mathrm{dB}$ bandwidth of Filter 1 be B_{1} and that of Filter 2 be B_{2}. the value $\frac{B_{1}}{B_{2}}$ is

(A) 4
(B) 1
(C) $1 / 2$
(D) $1 / 4$

MCQ 2.31

For the circuit shown in the figure, the Thevenin voltage and resistance looking into $X-Y$ are

(A) $\frac{4}{3} \mathrm{~V}, 2 \Omega$
(B) $4 \mathrm{~V}, \frac{2}{3} \Omega$
(C) $\frac{4}{3} \mathrm{~V}, \frac{2}{3} \Omega$
(D) $4 \mathrm{~V}, 2 \Omega$

MCQ 2.32

In the circuit shown, v_{C} is 0 volts at $t=0 \mathrm{sec}$. For $t>0$, the capacitor current $i_{C}(t)$, where t is in seconds is given by

(A) $0.50 \exp (-25 t) \mathrm{mA}$
(B) $0.25 \exp (-25 t) \mathrm{mA}$
(C) $0.50 \exp (-12.5 t) \mathrm{mA}$
(D) $0.25 \exp (-6.25 t) \mathrm{mA}$

MCQ 2.33

In the ac network shown in the figure, the phasor voltage V_{AB} (in Volts) is

(A) 0
(B) $5 \angle 30^{\circ}$
(C) $12.5 \angle 30^{\circ}$
(D) $17 \angle 30^{\circ}$

MCQ 2.34

A two-port network is represented by $A B C D$ parameters given by

$$
\left[\begin{array}{c}
V_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{r}
V_{2} \\
-I_{2}
\end{array}\right]
$$

If port- 2 is terminated by R_{L}, the input impedance seen at port- 1 is given by
(A) $\frac{A+B R_{L}}{C+D R_{L}}$
(B) $\frac{A R_{L}+C}{B R_{L}+D}$
(C) $\frac{D R_{L}+A}{B R_{L}+C}$
(D) $\frac{B+A R_{L}}{D+C R_{L}}$

MCQ 2.35

In the two port network shown in the figure below, Z_{12} and Z_{21} and respectively

(A) r_{e} and βr_{0}
(B) 0 and $-\beta r_{0}$
(C) 0 and βr_{o}
(D) r_{e} and $-\beta r_{0}$

MCQ 2.36

The first and the last critical frequencies (singularities) of a driving point impedance function of a passive network having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
(A) $R L$ network only
(B) $R C$ network only
(C) $L C$ network only
(D) $R C$ as well as $R L$ networks

MCQ 2.37

A 2 mH inductor with some initial current can be represented as shown below, where s is the Laplace Transform variable. The value of initial current is

(A) 0.5 A
(B) 2.0 A
(C) 1.0 A
(D) 0.0 A

MCQ 2.38

In the figure shown below, assume that all the capacitors are initially uncharged. If $v_{i}(t)=10 u(t)$ Volts, $v_{o}(t)$ is given by

(A) $8 e^{-t / 0.004}$ Volts
(B) $8\left(1-e^{-t / 0.004}\right)$ Volts
(C) $8 u(t)$ Volts
(D) 8 Volts

MCQ 2.39

A negative resistance $R_{\text {neg }}$ is connected to a passive network N having driving point impedance as shown below. For $Z_{2}(s)$ to be positive real,

(A) $\left|R_{\text {neg }}\right| \leq \operatorname{Re} Z_{1}(j \omega), \forall \omega$
(B) $\left|R_{\text {neg }}\right| \leq\left|Z_{1}(j \omega)\right|, \forall \omega$
(C) $\left|R_{\text {neg }}\right| \leq \operatorname{Im} Z_{1}(j \omega), \forall \omega$
(D) $\left|R_{\text {neg }}\right| \leq \angle Z_{1}(j \omega), \forall \omega$

MCQ 2.40

The condition on R, L and C such that the step response $y(t)$ in the figure has no oscillations, is

(A) $R \geq \frac{1}{2} \sqrt{\frac{L}{C}}$
(B) $R \geq \sqrt{\frac{L}{C}}$
(C) $R \geq 2 \sqrt{\frac{L}{C}}$
(D) $R=\frac{1}{\sqrt{L C}}$

MCQ 2.41

The $A B C D$ parameters of an ideal $n: 1$ transformer shown in the figure are

$$
\left[\begin{array}{cc}
n & 0 \\
0 & x
\end{array}\right] \quad \square \square
$$

The value of x will be
(A) n
(B) $\frac{1}{n}$
(C) n^{2}
(D) $\frac{1}{n^{2}}$

MCQ 2.42

In a series $R L C$ circuit, $R=2 \mathrm{k} \Omega, L=1 \mathrm{H}$, and $C=\frac{1}{400} \mu \mathrm{~F}$ The resonant frequency is
(A) $2 \times 10^{4} \mathrm{~Hz}$
(B) $\frac{1}{\pi} \times 10^{4} \mathrm{~Hz}$
(C) $10^{4} \mathrm{~Hz}$
(D) $2 \pi \times 10^{4} \mathrm{~Hz}$

MCQ 2.43

The maximum power that can be transferred to the load resistor R_{L} from the voltage source in the figure is

Chap 2
Networks Networks

(A) 1 W
(B) 10 W
(C) 0.25 W
(D) 0.5 W

MCQ 2.44

The first and the last critical frequency of an $R C$-driving point impedance function must respectively be
(A) a zero and a pole
(B) a zero and a zero
(C) a pole and a pole
(D) a pole and a zero

GATE 2005
TWO MARKS

MCQ 2.45

For the circuit shown in the figure, the instantaneous current $i_{1}(t)$ is

(A) $\frac{10 \sqrt{3}}{2} \angle 90^{\circ} \mathrm{A}$
(B) $\frac{10 \sqrt{3}}{2} \angle-90^{\circ} \mathrm{A}$
(C) $5 / 60^{\circ} \mathrm{A}$
(D) $5 \angle-60^{\circ} \mathrm{A}$

Chap 2 Networks

MCQ 2.46

Impedance Z as shown in the given figure is

(A) $j 29 \Omega$
(B) $j 9 \Omega$
(C) $j 19 \Omega$
(D) $j 39 \Omega$

MCQ 2.47

For the circuit shown in the figure, Thevenin's voltage and Thevenin's equivalent resistance at terminals $a-b$ is

(A) 5 V and 2Ω
(B) 7.5 V and 2.5Ω
(C) 4 V and 2Ω
(D) 3 V and 2.5Ω

MCQ 2.48

If $R_{1}=R_{2}=R_{4}=R$ and $R_{3}=1.1 R$ in the bridge circuit shown in the figure, then the reading in the ideal voltmeter connected between a and b is

(A) 0.238 V
(B) 0.138 V
(C) -0.238 V
(D) 1 V

MCQ 2.49

The h parameters of the circuit shown in the figure are

(A) $\left[\begin{array}{rr}0.1 & 0.1 \\ -0.1 & 0.3\end{array}\right]$
(B) $\left[\begin{array}{cc}10 & -1 \\ 1 & 0.05\end{array}\right]$
(C) $\left[\begin{array}{ll}30 & 20 \\ 20 & 20\end{array}\right]$
(D) $\left[\begin{array}{cc}10 & 1 \\ -1 & 0.05\end{array}\right]$

MCQ 2.50

A square pulse of 3 volts amplitude is applied to $C-R$ circuit shown in the figure. The capacitor is initially uncharged. The output voltage V_{2} at time $t=2 \mathrm{sec}$ is

(A) 3 V
(B) -3 V
(C) 4 V
(D) -4 V

GATE 2004

MCQ 2.51

Consider the network graph shown in the figure. Which one of the following is NOT a 'tree' of this graph ?

Chap 2 Networks

(A) a
(B) b
(C) c
(D) d

MCQ 2.52

The equivalent inductance measured between the terminals 1 and 2 for the circuit shown in the figure is

(A) $L_{1}+L_{2}+M$
(B) $L_{1}+L_{2}-M$
(C) $L_{1}+L_{2}+2 M$
(D) $L_{1}+L_{2}-2 M$

MCQ 2.53

The circuit shown in the figure, with $R=\frac{1}{3} \Omega, L=\frac{1}{4} \mathrm{H}$ and $C=3 \mathrm{~F}$ has input voltage $v(t)=\sin 2 t$. The resulting current $i(t)$ is

(A) $5 \sin \left(2 t+53.1^{\circ}\right)$
(B) $5 \sin \left(2 t-53.1^{\circ}\right)$
(C) $25 \sin \left(2 t+53.1^{\circ}\right)$
(D) $25 \sin \left(2 t-53.1^{\circ}\right)$

MCQ 2.54

For the circuit shown in the figure, the time constant $R C=1 \mathrm{~ms}$. The input voltage is $v_{i}(t)=\sqrt{2} \sin 10^{3} t$. The output voltage $v_{o}(t)$ is equal to

(A) $\sin \left(10^{3} t-45^{\circ}\right)$
(B) $\sin \left(10^{3} t+45^{\circ}\right)$
(C) $\sin \left(10^{3} t-53^{\circ}\right)$
(D) $\sin \left(10^{3} t+53^{\circ}\right)$

MCQ 2.55

For the $R-L$ circuit shown in the figure, the input voltage $v_{i}(t)=u(t)$. The current $i(t)$ is

(A)

(B)

(C)

(D)

MCQ 2.56

For the lattice shown in the figure, $Z_{a}=j 2 \Omega$ and $Z_{b}=2 \Omega$. The values

of the open circuit impedance parameters $[z]=\left[\begin{array}{ll}z_{11} & z_{12} \\ z_{21} & z_{22}\end{array}\right]$ are

(A) $\left[\begin{array}{ll}1-j & 1+j \\ 1+j & 1+j\end{array}\right]$
(B) $\left[\begin{array}{cc}1-j & 1+j \\ -1+j & 1-j\end{array}\right]$
(C) $\left[\begin{array}{ll}1+j & 1+j \\ 1-j & 1-j\end{array}\right]$
(D) $\left[\begin{array}{cc}1+j & -1+j \\ -1+j & 1+j\end{array}\right]$

MCQ 2.57

The circuit shown in the figure has initial current $i_{L}\left(0^{-}\right)=1 \mathrm{~A}$ through the inductor and an initial voltage $v_{C}\left(0^{-}\right)=-1 \mathrm{~V}$ across the capacitor. For input $v(t)=u(t)$, the Laplace transform of the current $i(t)$ for $t \geq 0$ is

(A) $\frac{s}{s^{2}+s+1}$
(B) $\frac{s+2}{s^{2}+s+1}$
(C) $\frac{s-2}{s^{2}+s+1}$
(D) $\frac{1}{s^{2}+s+1}$

MCQ 2.58

The transfer function $H(s)=\frac{V_{o}(s)}{V_{i}(s)}$ of an $R L C$ circuit is given by

$$
H(s)=\frac{10^{6}}{s^{2}+20 s+10^{6}}
$$

The Quality factor (Q-factor) of this circuit is
(A) 25
(B) 50
(C) 100
(D) 5000

Chap 2 Networks

MCQ 2.59

For the circuit shown in the figure, the initial conditions are zero. Its transfer function $H(s)=\frac{V_{c}(s)}{V_{i}(s)}$ is

(A) $\frac{1}{s^{2}+10^{6} s+10^{6}}$
(B) $\frac{10^{6}}{s^{2}+10^{3} s+10^{6}}$
(C) $\frac{10^{3}}{s^{2}+10^{3} s+10^{6}}$
(D) $\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}$

MCQ 2.60

Consider the following statements S1 and S2
S1 : At the resonant frequency the impedance of a series $R L C$ circuit is zero.

S2 : In a parallel $G L C$ circuit, increasing the conductance G results in increase in its Q factor.

Which one of the following is correct?
(A) S 1 is FALSE and S 2 is TRUE
(B) Both S1 and S2 are TRUE
(C) S1 is TRUE and S2 is FALSE
(D) Both S1 and S2 are FALSE

GATE 2003

ONE MARK

MCQ 2.61

The minimum number of equations required to analyze the circuit shown in the figure is

Chap 2 Networks

(A) 3
(B) 4
(C) 6
(D) 7

MCQ 2.62

A source of angular frequency $1 \mathrm{rad} / \mathrm{sec}$ has a source impedance consisting of 1Ω resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is
(A) 1Ω resistance
(B) 1Ω resistance in parallel with 1 H inductance
(C) 1Ω resistance in series-with 1 F capacitor
(D) 1Ω resistance in parallel with 1 F capacitor

MCQ 2.63

A series $R L C$ circuit has a resonance frequency of 1 kHz and a quality factor $Q=100$. If each of R, L and C is doubled from its original value, the new Q of the circuit is
(A) 25
(B) 50
(C) 100
(D) 200

MCQ 2.64

The differential equation for the current $i(t)$ in the circuit of the figure is

(A) $2 \frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+i(t)=\sin t$
(B) $\frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+2 i(t)=\cos t$
(C) $2 \frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+i(t)=\cos t$
(D) $\frac{d^{2} i}{d t^{2}}+2 \frac{d i}{d t}+2 i(t)=\sin t$

GATE 2003

TWO MARKS

MCQ 2.65

Twelve 1Ω resistance are used as edges to form a cube. The resistance between two diagonally opposite corners of the cube is
(A) $\frac{5}{6} \Omega$
(B) 1Ω
(C) $\frac{6}{5} \Omega$
(D) $\frac{3}{2} \Omega$

MCQ 2.66

The current flowing through the resistance R in the circuit in the figure has the form $P \cos 4 t$ where P is

(A) $(0.18+j 0.72)$
(B) $(0.46+j 1.90)$
(C) $-(0.18+j 1.90)$
(D) $-(0.192+j 0.144)$

The circuit for Q. $2.66 \& 2.67$ is given below.
Assume that the switch S is in position 1 for a long time and thrown to position 2 at $t=0$.

MCQ 2.67

At $t=0^{+}$, the current i_{1} is
(A) $\frac{-V}{2 R}$
(B) $\frac{-V}{R}$
(C) $\frac{-V}{4 R}$
(D) zero

MCQ 2.68

$I_{1}(s)$ and $I_{2}(s)$ are the Laplace transforms of $i_{1}(t)$ and $i_{2}(t)$ respectively. The equations for the loop currents $I_{1}(s)$ and $I_{2}(s)$ for the circuit shown in the figure, after the switch is brought from position 1 to position 2 at $t=0$, are
(A) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -L s \\ -L s & R+\frac{1}{C s}\end{array}\right]\left[\begin{array}{c}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{c}\frac{V}{s} \\ 0\end{array}\right]$
(B) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -L s \\ -L s & R+\frac{1}{C s}\end{array}\left[\begin{array}{l}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{r}-\frac{V}{s} \\ 0\end{array}\right]\right.$
(C) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & L s \\ -L s & R+L s+\frac{1}{C s}\end{array}\right]\left[\begin{array}{l}I_{4}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{r}-\frac{V}{s} \\ 0\end{array}\right]$
(D) $\left[\begin{array}{cc}R+L s+\frac{1}{C s} & -C s \\ -L s & R+L s+\frac{1}{C s}\end{array}\right]\left[\begin{array}{c}I_{1}(s) \\ I_{2}(s)\end{array}\right]=\left[\begin{array}{c}\frac{V}{s} \\ 0\end{array}\right]$

MCQ 2.69

The driving point impedance $Z(s)$ of a network has the pole-zero locations as shown in the figure. If $Z(0)=3$, then $Z(s)$ is

(A) $\frac{3(s+3)}{s^{2}+2 s+3}$
(B) $\frac{2(s+3)}{s^{2}+2 s+2}$
(C) $\frac{3(s+3)}{s^{2}+2 s+2}$
(D) $\frac{2(s-3)}{s^{2}-2 s-3}$

MCQ 2.70

An input voltage $v(t)=10 \sqrt{2} \cos \left(t+10^{\circ}\right)+10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)$

Chap 2
Networks

(A) $10 \cos \left(t+55^{\circ}\right)+10 \cos \left(2 t+10^{\circ}+\tan ^{-1} 2\right)$
(B) $10 \cos \left(t+55^{\circ}\right)+10 \sqrt{\frac{3}{2}} \cos \left(2 t+55^{\circ}\right)$
(C) $10 \cos \left(t-35^{\circ}\right)+10 \cos \left(2 t+10^{\circ}-\tan ^{-1} 2\right)$
(D) $10 \cos \left(t-35^{\circ}\right)+\sqrt{\frac{3}{2}} \cos \left(2 t-35^{\circ}\right)$

MCQ 2.71

The impedance parameters z_{11} and z_{12} of the two-port network in the figure are

(A) $z_{11}=2.75 \Omega$ and $z_{12}=0.25 \Omega$
(B) $z_{11}=3 \Omega$ and $z_{12}=0.5 \Omega$
(C) $z_{11}=3 \Omega$ and $z_{12}=0.25 \Omega$
(D) $z_{11}=2.25 \Omega$ and $z_{12}=0.5 \Omega$

GATE 2002

ONE MARK

MCQ 2.72

The dependent current source shown in the figure

(A) delivers 80 W
(B) absorbs 80 W
(C) delivers 40 W
(D) absorbs 40 W

MCQ 2.73

In the figure, the switch was closed for a long time before opening at $t=0$. The voltage v_{x} at $t=0^{+}$is

(A) 25 V
(C) -50 V
(B) 50 V
(D) 0 V

GATE 2002

MCQ 2.74

In the network of the fig, the maximum power is delivered to R_{L} if its value is

(A) 16Ω
(B) $\frac{40}{3} \Omega$
(C) 60Ω
(D) 20Ω

MCQ 2.75

If the 3-phase balanced source in the figure delivers 1500 W at a leading power factor 0.844 then the value of Z_{L} (in ohm) is approximately

Networks

(A) $90 \angle 32.44^{\circ}$
(B) $80 \angle 32.44^{\circ}$
(C) $80 \angle-32.44^{\circ}$
(D) $90 \angle-32.44^{\circ}$

GATE 2001

ONE MARK

MCQ 2.76

The Voltage e_{0} in the figure is

MCQ 2.77

If each branch of Delta circuit has impedance $\sqrt{3} Z$, then each branch of the equivalent Wye circuit has impedance
(A) $\frac{Z}{\sqrt{3}}$
(B) $3 Z$
(C) $3 \sqrt{3} Z$
(D) $\frac{Z}{3}$

MCQ 2.78

The admittance parameter Y_{12} in the 2-port network in Figure is

(A) -0.02 mho
(B) 0.1 mho
(C) -0.05 mho
(D) 0.05 mho

GATE 2001

TWO MARKS

MCQ 2.79

The voltage e_{0} in the figure is

(A) 48 V
(B) 24 V
(C) 36 V
(D) 28 V

MCQ 2.80

When the angular frequency $w_{\text {in }}$ in the figure is varied 0 to ∞, the locus of the current phasor I_{2} is given by

(A)

(B)

(C)

(D)

MCQ 2.81

In the figure, the value of the load resistor R_{L} which maximizes the power delivered to it is

(A) 14.14Ω
(B) 10Ω
(C) 200Ω
(D) 28.28Ω

MCQ 2.82

The z parameters z_{11} and z_{21} for the 2 -port network in the figure are

(A) $z_{11}=\frac{6}{11} \Omega ; z_{21}=\frac{16}{11} \Omega$
(B) $z_{11}=\frac{6}{11} \Omega ; z_{21}=\frac{4}{11} \Omega$
(C) $z_{11}=\frac{6}{11} \Omega ; z_{21}=-\frac{16}{11} \Omega$
(D) $z_{11}=\frac{4}{11} \Omega ; z_{21}=\frac{4}{11} \Omega$

GATE 2000

ONE MARK

MCQ 2.83

The circuit of the figure represents a

(A) Low pass filter
(B) High pass filter
(C) band pass filter
(D) band reject filter

Chap 2 Networks

MCQ 2.84

In the circuit of the figure, the voltage $v(t)$ is

(A) $e^{a t}-e^{b t}$
(B) $e^{a t}+e^{b t}$
(C) $a e^{a t}-b e^{b t}$
(D) $a e^{a t}+b e^{b t}$

MCQ 2.85

In the circuit of the figure, the value of the voltage source E is

(A) -16 V
(B) 4 V
(C) -6 V
(D) 16 V

GATE 2000

TWO MARKS

MCQ 2.86

Use the data of the figure (a). The current i in the circuit of the figure (b)

(a)

(b)
(A) -2 A
(B) 2 A
(C) -4 A
(D) 4 A

GATE 1999

ONE MARK

MCQ 2.87

Identify which of the following is NOT a tree of the graph shown in the given figure is

(A) begh
(B) defg
(C) $a b f g$
(D) $a e g h$

MCQ 2.88

A 2-port network is shown in the given figure. The parameter h_{21} for this network can be given by

(A) $-1 / 2$
(B) $+1 / 2$
(C) $-3 / 2$
(D) $+3 / 2$

Chap 2 Networks

MCQ 2.89

The Thevenin equivalent voltage $V_{T H}$ appearing between the terminals A and B of the network shown in the given figure is given by

(A) $j 16(3-j 4)$
(B) $j 16(3+j 4)$
(C) $16(3+j 4)$
(D) $16(3-j 4)$

MCQ 2.90

The value of R (in ohms) required for maximum power transfer in the network shown in the given figure is

(A) 2
(B) 4
(C) 8
(D) 16

MCQ 2.91

A Delta-connected network with its Wye-equivalent is shown in the given figure. The resistance R_{1}, R_{2} and R_{3} (in ohms) are respectively

(A) 1.5, 3 and 9
(B) 3, 9 and 1.5
(C) 9, 3 and 1.5
(D) $3,1.5$ and 9

Chap 2 Networks

MCQ 2.92

A network has 7 nodes and 5 independent loops. The number of branches in the network is
(A) 13
(B) 12
(C) 11
(D) 10

MCQ 2.93

The nodal method of circuit analysis is based on
(A) KVL and Ohm's law
(B) KCL and Ohm's law
(C) KCL and KVL
(D) KCL, KVL and Ohm's law

MCQ 2.94

Superposition theorem is NOT applicable to networks containing
(A) nonlinear elements
(C) dependent current sources

MCQ 2.95

The parallel RLC circuit shown in the figure is in resonance. In this circuit

(A) $\left|I_{R}\right|<1 \mathrm{~mA}$
(B) $\left|I_{R}+I_{L}\right|>1 \mathrm{~mA}$
(C) $\left|I_{R}+I_{C}\right|<1 \mathrm{~mA}$
(D) $\left|I_{R}+I_{C}\right|>1 \mathrm{~mA}$

MCQ 2.96

The short-circuit admittance matrix a two-port network is $\left[\begin{array}{cc}0 & -1 / 2 \\ 1 / 2 & 0\end{array}\right]$ The two-port network is
(A) non-reciprocal and passive
(B) non-reciprocal and active
(C) reciprocal and passive
(D) reciprocal and acitve

Chap 2 Networks

MCQ 2.97

The voltage across the terminals a and b in the figure is

(A) 0.5 V
(B) 3.0 V
(C) 3.5 V
(D) 4.0 V

MCQ 2.98

A high-Q quartz crystal exhibits series resonance at the frequency ω_{s} and parallel resonance at the frequency ω_{p}. Then
(A) ω_{s} is very close to, but less than ω_{p}
(B) $\omega_{s} \ll \omega_{p}$
(C) ω_{s} is very close to, but greater than ω_{p}
(D) $\omega_{s} \gg \omega_{p}$

MCQ 2.99

The current i_{4} in the circuit of the figure is equal to

(A) 12 A
(B) -12 A
(C) 4 A
(D) None or these

MCQ 2.100

The voltage V in the figure equal to

Chap 2 Networks

(A) 3 V
(B) -3 V
(C) 5 V
(D) None of these

MCQ 2.101

The voltage V in the figure is always equal to

(A) 9 V
(B) 5 V
(C) 1 V
(D) None of the above

MCQ 2.102

The voltage V in the figure is

(A) 10 V
(B) 15 V
(C) 5 V
(D) None of the above

MCQ 2.103

In the circuit of the figure is the energy absorbed by the 4Ω resistor

Chap 2 Networks

in the time interval $(0, \infty)$ is

(A) 36 Joules
(B) 16 Joules
(C) 256 Joules
(D) None of the above

MCQ 2.104

In the circuit of the figure the equivalent impedance seen across terminals a, b, is

(A) $\left(\frac{16}{3}\right) \Omega$
(B) $\left(\frac{8}{3}\right) \Omega$
(C) $\left(\frac{8}{3}+12 j\right) \Omega$
(D) None of the above

GATE 1996

MCQ 2.105

In the given figure, A_{1}, A_{2} and A_{3} are ideal ammeters. If A_{2} and A_{3} read 3 A and 4 A respectively, then A_{1} should read

Chap 2 Networks

(A) 1 A
(B) 5 A
(C) 7 A
(D) None of these

MCQ 2.106

The number of independent loops for a network with n nodes and b branches is
(A) $n-1$
(B) $b-n$
(C) $b-n+1$
(D) independent of the number of nodes \square

GATE 1996

TWO MARKS

MCQ 2.107

The voltages $V_{C 1}, V_{C 2}$, and $V_{C 3}$ across the capacitors in the circuit in the given figure, under steady state, are respectively.

(A) $80 \mathrm{~V}, 32 \mathrm{~V}, 48 \mathrm{~V}$
(B) $80 \mathrm{~V}, 48 \mathrm{~V}, 32 \mathrm{~V}$
(C) $20 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}$
(D) $20 \mathrm{~V}, 12 \mathrm{~V}, 8 \mathrm{~V}$

Chap 2

SOLUTIONS

SOL 2.1

Replacing $P-Q$ by short circuit as shown below we have

Using current divider rule the current $I_{s c}$ is

$$
I_{S C}=\frac{25}{25+15+j 30}(16 \boxed{\theta})=(6.4-j 4.8) \mathrm{A}
$$

Hence (A) is correct option.

SOL 2.2

Power transferred to R_{L} will be maximum when R_{L} is equal to the thevenin resistance. We determine thevenin resistance by killing all source as follows :

Hence (C) is correct option.

SOL 2.3

The given circuit is shown below

For parallel combination of R and C equivalent impedance is

$$
Z_{\mathrm{p}}=\frac{R \cdot \frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{R}{1+j \omega R C}
$$

Transfer function can be written as

$$
\begin{array}{rlr}
\frac{V_{\text {out }}}{V_{\text {in }}} & =\frac{Z_{\mathrm{p}}}{Z_{\mathrm{s}}+Z_{\mathrm{p}}}=\frac{\frac{1+j \omega R C}{R+\frac{1}{j \omega C}+\frac{\square R}{1+j \omega R C}}}{} & \\
& =\frac{j \omega R C}{j \omega R C+(1+j \omega R C)^{2}} & \text { Here } \omega=\frac{1}{R C}
\end{array}
$$

Thus $\quad v_{\text {out }}=\left(\frac{V_{p}}{3}\right) \cos (t / R C)$
Hence (A) is correct option.

SOL 2.4

From star delta conversion we have

Thus

$$
R_{1}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{6.6}{6+6+6}=2 \Omega
$$

Chap 2 Networks

Here

$$
R_{1}=R_{2}=R_{3}=2 \Omega
$$

Replacing in circuit we have the circuit shown below :

Now the total impedance of circuit is

Current

$$
Z=\frac{(2+j 4)(2-j 4)}{(2+j 4)(2-j 4)}+2=7 \Omega
$$

Hence (B)
sOl 2.5

$$
I=\frac{14 \angle 0^{\circ}}{7}=2 \angle 0^{\circ}
$$

From given admittance matrix we get

$$
\begin{align*}
& I_{1}=0.1 V_{1}-0.01 V_{2} \text { and } \tag{1}\\
& I_{2}=0.01 V_{1}+0.1 V_{2} \tag{2}
\end{align*}
$$

Now, applying KVL in outer loop;

$$
\begin{array}{ll}
& V_{2}=-100 I_{2} \\
\text { or } & I_{2}=-0.01 V_{2} \tag{3}
\end{array}
$$

From eq (2) and eq (3) we have

$$
\begin{aligned}
-0.01 V_{2} & =0.01 V_{1}+0.1 V_{2} \\
-0.11 V_{2} & =0.01 V_{1} \\
\frac{V_{2}}{V_{1}} & =\frac{-1}{11}
\end{aligned}
$$

Hence (D) is correct option.

SOL 2.6

Here we take the current flow direction as positive.
At $t=0^{-}$voltage across capacitor is

$$
V_{C}\left(0^{-}\right)=-\frac{Q}{C}=-\frac{2.5 \times 10^{-3}}{50 \times 10^{-6}}=-50 \mathrm{~V}
$$

Thus $\quad V_{C}\left(0^{+}\right)=-50 \mathrm{~V}$
In steady state capacitor behave as open circuit thus

$$
V(\infty)=100 \mathrm{~V}
$$

Now, $\quad V_{C}(t)=V_{C}(\infty)+\left(V_{C}\left(0^{+}\right)-V_{C}(\infty)\right) e^{-t / R C}$

$$
=100+(-50-100) e^{\frac{-t}{10 \times 50 \times 10^{-6}}}
$$

$$
=100-150 e^{-\left(2 \times 10^{3} t\right)}
$$

Now

$$
\begin{aligned}
i_{c}(t) & =C \frac{d V}{d t} \\
& =50 \times 10^{-6} \times 150 \times 2 \times 10^{3} e^{-2 \times 10^{3} t} \mathrm{~A} \\
& =15 e^{-2 \times 10^{3} t} \\
i_{c}(t) & =15 \exp \left(-2 \times 10^{3} t\right) \mathrm{A}
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.7

Given circuit is as shown below

By writing node equation at input port

$$
\begin{equation*}
I_{1}=\frac{V_{1}}{0.5}+\frac{V_{1}-V_{2}}{0.5}=4 V_{1}-2 V_{2} \tag{1}
\end{equation*}
$$

By writing node equation at output port

$$
\begin{equation*}
I_{2}=\frac{V_{2}}{0.5}+\frac{V_{2}-V_{1}}{0.5}=-2 V_{1}+4 V_{2} \tag{2}
\end{equation*}
$$

From (1) and (2), we have admittance matrix

$$
Y=\left[\begin{array}{rr}
4 & -2 \\
-2 & 4
\end{array}\right]
$$

Hence (A) is correct option.

SOL 2.8

A parallel $R L C$ circuit is shown below :

Chap 2 Networks

Input impedance $Z_{\text {in }}=\frac{1}{\frac{1}{R}+\frac{1}{j \omega L}+j \omega C}$
At resonance $\quad \frac{1}{\omega L}=\omega C$
So,

$$
Z_{\text {in }}=\frac{1}{1 / R}=R \quad \text { (maximum at resonance) }
$$

Thus (D) is not true.
Furthermore bandwidth is ω_{B} i.e $\omega_{B} \propto \frac{1}{R}$ and is independent of L, Hence statements A, B, C, are true.
Hence (D) is correct option.

SOL 2.9

Let the current $i(t)=A+B e^{-t / \tau} \quad \square \quad \tau \rightarrow$ Time constant When the switch S is open for a long time before $t<0$, the circuit is

At $t=0$, inductor current does not change simultaneously, So the circuit is

Current is resistor (AB)

$$
i(0)=\frac{0.75}{2}=0.375 \mathrm{~A}
$$

Similarly for steady state the circuit is as shown below

$$
\left.\begin{array}{l}
1.5 \mathrm{~A} \uparrow\left\{\begin{aligned}
i(\infty)
\end{aligned}\right. \\
i(\infty)
\end{array}\right)=\frac{15}{3}=0.5 \mathrm{~A},
$$

Hence (A) is correct option.

SOL 2.10

Circuit is redrawn as shown below

Where,

$$
\begin{aligned}
Z_{1} & =j \omega L=j \times 10^{3} \times 20 \times 10^{-3}=20 j \\
Z_{2} & =R \| X_{C} \\
X_{C} & =\frac{1}{j \omega C}=\frac{1}{j \times 10^{3} \times 50 \times 10^{-6}}=-20 j \\
Z_{2} & =\frac{1(-20 j)}{1-20 j} \quad R=1 \Omega
\end{aligned}
$$

Voltage across Z_{2}

$$
\begin{aligned}
V_{Z_{2}} & =\frac{Z_{2}}{Z_{1}+Z_{2}} \cdot 20 \angle 0=\frac{\left(\frac{-20 j}{1-20 j}\right)}{\left(20 j-\frac{20 j}{1-20 j}\right)} \cdot 20 \\
& =\left(\frac{(-20 j)}{20 j+400-20 j}\right) \cdot 20=-j
\end{aligned}
$$

Current in resistor R is

$$
I=\frac{V_{Z_{2}}}{R}=-\frac{j}{1}=-j \mathrm{~A}
$$

Hence (A) is correct option.

Chap 2 Networks

SOL 2.11

The circuit can be redrawn as

Applying nodal analysis

$$
\begin{aligned}
\frac{V_{A}-10}{2}+1+\frac{V_{A}-0}{2} & =0 \\
2 V_{A}-10+2 & =0=V_{4}=4 \mathrm{~V}
\end{aligned}
$$

Current,
Current from voltage source is

$$
I_{2}=I_{1}-3=0
$$

Since current through voltage source is zero, therefore power delivered is zero.
Hence (A) is correct option.

SOL 2.12

Circuit is as shown below

Since 60 V source is absorbing power. So, in 60 V source current flows from + to - ve direction

$$
\text { So, } \quad \begin{aligned}
I+I_{1} & =12 \\
I & =12-I_{1}
\end{aligned}
$$

I is always less then 12 A So, only option (A) satisfies this conditions. Hence (A) is correct option.

Chap 2 Networks

SOL 2.13

For given network we have

$$
\begin{aligned}
V_{0} & =\frac{\left(R_{L} \| X_{C}\right) V_{i}}{R+\left(R_{L} \| X_{C}\right)} \\
\frac{V_{0}(s)}{V_{i}(s)} & =\frac{\frac{R_{L}}{1+s R_{L} C}}{R+\frac{R_{L}}{1+s R_{L} C}}=\frac{R_{L}}{R+R R_{L} s C+R_{L}} \\
& =\frac{R_{L}}{R+R R_{L} s C+R_{L}}=\frac{1}{1+\frac{R}{R_{L}}+R s C}
\end{aligned}
$$

But we have been given

Comparing, we get

$$
\text { T.F. }=\frac{V_{0}(s)}{V_{i}(s)}=\frac{1}{2+s C R}
$$

$$
1+\frac{R}{R_{L}}=2 \quad \Rightarrow R_{L}=R
$$

Hence (C) is correct option.

SOL 2.14

gate

The energy delivered in 10 minutes is

$$
\begin{aligned}
E & =\int_{0}^{t} V I d t=I \int_{0}^{t} V d t \perp I \times \text { Area } \\
& =2 \times \frac{1}{2}(10+12) \times 600=13.2 \mathrm{~kJ}
\end{aligned}
$$

Hence (C) is correct option.

SOL 2.15

From given circuit the load current is

$$
\begin{aligned}
I_{L} & =\frac{V}{Z_{s}+Z_{L}}=\frac{20 \angle 0^{\circ}}{(1+2 j)+(7+4 j)}=\frac{20 \angle 0^{\circ}}{8+6 j} \\
& =\frac{1}{5}(8-6 j)=\frac{20 \angle 0^{\circ}}{10 \angle \phi}=2 \angle-\phi \quad \text { where } \phi=\tan ^{-1} \frac{3}{4}
\end{aligned}
$$

The voltage across load is

$$
V_{L}=I_{L} Z_{L}
$$

The reactive power consumed by load is

$$
\begin{aligned}
P_{r} & =V_{L} I_{L}^{*}=I_{L} Z_{L} \times I_{L}^{*}=Z_{L}\left|I_{L}\right|^{2} \\
& =(7 \times 4 j)\left|\frac{20 \angle 0^{\circ}}{8+6 j}\right|^{2}=(7+4 j)=28+16 j
\end{aligned}
$$

Thus average power is 28 and reactive power is 16 .
Hence (B) is correct option.

SOL 2.16

At $t=0^{-}$, the circuit is as shown in fig below :

Thus

$$
V\left(0^{-}\right)=100 \mathrm{~V}
$$

At $t=0^{+}$, the circuit is as shown below

At steady state i.e. at $t=\infty$ is $I(\infty)=0$
Now

$$
\begin{aligned}
i(t) & =I\left(0^{+}\right) e^{-\frac{t}{R C_{c q}}} u(t) \\
C_{e q} & =\frac{(0.5 \mu+0.3 \mu) 0.2 \mu}{0.5 \mu+0.3 \mu+0.2 \mu}=0.16 \mu \mathrm{~F} \\
\frac{1}{R C_{e q}} & =\frac{1}{5 \times 10^{3} \times 0.16 \times 10^{-6}}=1250 \\
i(t) & =20 e^{-1250 t} u(t) \mathrm{mA}
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.17

For $P_{\max }$ the load resistance R_{L} must be equal to thevenin resistance $R_{e q}$ i.e. $R_{L}=R_{e q}$. The open circuit and short circuit is as shown below

The open circuit voltage is

$$
V_{o c}=100 \mathrm{~V}
$$

From fig

$$
\begin{aligned}
I_{1} & =\frac{100}{8}=12.5 \mathrm{~A} \\
V_{x} & =-4 \times 12.5=-50 \mathrm{~V} \\
I_{2} & =\frac{100+V_{x}}{4}=\frac{100-50}{4}=12.5 \mathrm{~A} \\
I_{s c} & =I_{1}+I_{2}=25 \mathrm{~A} \\
R_{t h} & =\frac{V_{o c}}{I_{s c}}=\frac{100}{25}=4 \Omega
\end{aligned}
$$

Thus for maximum power transfer $R_{L}=R_{e q}=4 \Omega$
Hence (C) is correct option.

SOL 2.18

Steady state all transient effect die out and inductor act as short circuits and forced response acts only. It doesn't depend on initial current state. From the given time domain behavior we get that circuit has only R and L in series with V_{0}. Thus at steady state

$$
i(t) \rightarrow i(\infty)=\frac{V_{0}}{R}
$$

Hence (A) is correct option.

SOL 2.19

The given graph is

There can be four possible tree of this graph which are as follows:

Chap 2 Networks

There can be 6 different possible cut-set.

Hence (C) is correct option.

SOL 2.20

Initially $i\left(0^{-}\right)=0$ therefore due to inductor $i\left(0^{+}\right)=0$. Thus all current I_{s} will flow in resistor R and voltage across resistor will be $I_{s} R_{s}$. The voltage across inductor will be equal to voltage across R_{s} as no current flow through R.

Thus

$$
v_{L}\left(0^{+}\right)=I_{s} R_{s}
$$

but

$$
v_{L}\left(0^{+}\right)=L \frac{d i\left(0^{+}\right)}{d t}
$$

Thus

$$
\frac{d i\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{I_{s} R_{s}}{L}
$$

Hence (B) is correct option.

SOL 2.21

Killing all current source and voltage sources we have,

Chap 2 Networks

$$
\begin{aligned}
Z_{t h} & =(1+s) \|\left(\frac{1}{s}+1\right) \\
& =\frac{(1+s)\left(\frac{1}{s}+1\right)}{(1+s)+\left(\frac{1}{s}+1\right)}=\frac{\left[\frac{1}{s}+1+1+s\right]}{s+\frac{1}{s}+1+1} \\
Z_{\text {th }} & =1
\end{aligned}
$$

or

Alternative :

Here at DC source capacitor act as open circuit and inductor act as short circuit. Thus we can directly calculate thevenin Impedance as 1Ω
Hence (A) is correct option.

SOL 2.22

$$
Z(s)=R\left\|\frac{1}{s C}\right\| s L=\frac{\frac{s}{C}}{s^{2}+\frac{s}{R C}+\frac{1}{L C}}
$$

We have been given

$$
Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}
$$

Comparing with given we get

$$
\begin{aligned}
& \frac{1}{C}=0.2 \text { or } C=5 \mathrm{~F} \\
& \frac{1}{R C}=0.1 \text { or } R=2 \Omega \\
& \frac{1}{L C}=2 \text { or } L=0.1 \mathrm{H}
\end{aligned}
$$

Hence (D) is correct option.

SOL 2.23

Voltage across capacitor is

$$
V_{c}=\frac{1}{C} \int_{0}^{t} i d t
$$

Here $C=1 \mathrm{~F}$ and $i=1 \mathrm{~A}$. Therefore

$$
V_{c}=\int_{0}^{t} d t
$$

For $0<t<T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{0}^{t} d t=t
$$

At $t=T, V_{c}=T$ Volts
For $T<t<2 T$, capacitor will be discharged from T volts as

$$
V_{c}=T-\int_{T}^{t} d t=2 T-t
$$

At $t=2 T, V_{c}=0$ volts
For $2 T<t<3 T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{2 T}^{t} d t=t-2 T
$$

At $t=3 T, V_{c}=T$ Volts
For $3 T<t<4 T$, capacitor will be discharged from T Volts

$$
V_{c}=T-\int_{3 T}^{t} d t=4 T-t
$$

At $t=4 T, V_{c}=0$ Volts
For $4 T<t<5 T$, capacitor will be charged from 0 V

$$
V_{c}=\int_{4 T}^{t} d t=t-4 T
$$

At $t=5 T, V_{c}=T$ Volts
Thus the output waveform is

Only option C satisfy this waveform.
Hence (C) is correct option.

SOL 2.24
Writing in transform domain we have

$$
\frac{V_{c}(s)}{V_{s}(s)}=\frac{\frac{1}{s}}{\left(\frac{1}{s}+s+1\right)}=\frac{1}{\left(s^{2}+s+1\right)}
$$

Since $V_{s}(t)=\delta(t) \rightarrow V_{s}(s)=1$ and
or

$$
\begin{aligned}
V_{c}(s) & =\frac{1}{\left(s^{2}+s+1\right)} \\
V_{c}(s) & =\frac{2}{\sqrt{3}}\left[\frac{\frac{\sqrt{ } 3}{2}}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}\right]
\end{aligned}
$$

Taking inverse laplace transform we have

$$
V_{t}=\frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

Hence (D) is correct option.

SOL 2.25

Let voltage across resistor be v_{R}

$$
\frac{V_{R}(s)}{V_{S}(s)}=\frac{1}{\left(\frac{1}{s}+s+1\right)}=\frac{s}{\left(s^{2}+s+1\right)}
$$

Since $v_{s}=\delta(t) \rightarrow V_{s}(s)=1$ we get

$$
\begin{aligned}
V_{R}(s) & =\frac{s}{\left(s^{2}+s+1\right)}=\frac{s}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
& =\frac{\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}}-\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}} \\
v_{R}(t) & =e^{-\frac{1}{2}} \cos \frac{\sqrt{3}}{2} t-\frac{1}{2} \times \frac{2}{\sqrt{3}} e^{-\frac{1}{2}} \sin \frac{\sqrt{3}}{2} t \\
& =e^{-\frac{t}{2}}\left[\cos \frac{\sqrt{3}}{2} t-\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t\right]
\end{aligned}
$$

or

Chap 2 Networks

SOL 2.26

From the problem statement we have

$$
\begin{aligned}
& z_{11}=\left.\frac{v_{1}}{i_{1}}\right|_{i_{2}=0}=\frac{6}{4}=1.5 \Omega \\
& z_{12}=\left.\frac{v_{1}}{i_{2}}\right|_{i=0}=\frac{4.5}{1}=4.5 \Omega \\
& z_{21}=\left.\frac{v_{2}}{i_{1}}\right|_{i_{2}=0}=\frac{6}{4}=1.5 \Omega \\
& z_{22}=\left.\frac{v_{2}}{i_{2}}\right|_{i_{2}=0}=\frac{1.5}{1}=1.5 \Omega
\end{aligned}
$$

Thus z-parameter matrix is

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
1.5 & 4.5 \\
1.5 & 1.5
\end{array}\right]
$$

Hence (C) is correct option.

SOL 2.27

From the problem statement we have

$$
\begin{aligned}
& h_{12}=\left.\frac{v_{1}}{v_{2}}\right|_{i_{1}=0}=\frac{4.5}{1.5}=3 \\
& h_{22}=\left.\frac{i_{2}}{v_{2}}\right|_{i_{1}=0}=\frac{1}{1.5}=0.67
\end{aligned}
$$

From z matrix, we have

$$
\begin{aligned}
& v_{1}=z_{11} i_{1}+z_{12} i_{2} \\
& v_{2}=z_{21} i_{1}+z_{22} i_{2}
\end{aligned}
$$

If $v_{2}=0$
Then

$$
\frac{i_{2}}{i_{1}}=\frac{-z_{21}}{z_{22}}=\frac{-1.5}{1.5}=-1=h_{21}
$$

or

$$
i_{2}=-i_{1}
$$

Putting in equation for v_{1}, we get

$$
v_{1}=\left(z_{11}-z_{12}\right) i_{1}
$$

Chap 2 Networks

$$
\left.\frac{v_{1}}{i_{1}}\right|_{v=0}=h_{11}=z_{11}-z_{12}=1.5-4.5=-3
$$

Hence h-parameter will be

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 3 \\
-1 & 0.67
\end{array}\right]
$$

Hence (A) is correct option.

SOL 2.28

According to maximum Power Transform Theorem

$$
Z_{L}=Z_{s}^{*}=\left(R_{s}-j X_{s}\right)
$$

Hence (D) is correct option.

SOL 2.29

At $\omega \rightarrow \infty$, capacitor acts as short circuited and circuit acts as shown in fig below

At $\omega \rightarrow 0$, capacitor acts as open circuited and circuit look like as shown in fig below

Here we get also $\frac{V_{0}}{V_{i}}=0$
So frequency response of the circuit is as shown in fig and circuit is a Band pass filter.

Hence (C) is correct option.

SOL 2.30

We know that bandwidth of series $R L C$ circuit is $\frac{R}{L}$. Therefore
Bandwidth of filter 1 is $B_{1}=\frac{R}{L_{1}}$
Bandwidth of filter 2 is $B_{2}=\frac{R}{L_{2}}=\frac{R}{L_{1} / 4}=\frac{4 R}{L_{1}}$
Dividing above equation $\frac{B_{1}}{B_{2}}=\frac{1}{4}$
Hence (D) is correct option.

SOL 2.31

Here $V_{t h}$ is voltage across node also. Applying nodal analysis we get

But from circuit $\quad i=\frac{V_{\text {th }}}{1}=V_{\text {th }}$
Therefore

$$
\frac{V_{t h}}{2}+\frac{V_{t h}}{1}+\frac{V_{t h}-2 V_{t h}}{1}=2
$$

or

$$
V_{t h}=4 \text { volt }
$$

From the figure shown below it may be easily seen that the short circuit current at terminal $X Y$ is $i_{s c}=2$ A because $i=0$ due to short circuit of 1Ω resistor and all current will pass through short circuit.

Therefore

$$
R_{t h}=\frac{V_{t h}}{i_{s c}}=\frac{4}{2}=2 \Omega
$$

Hence (D) is correct option.

SOL 2.32

The voltage across capacitor is
At $t=0^{+}$,
$V_{c}\left(0^{+}\right)=0$
At $t=\infty$,
$V_{C}(\infty)=5 \mathrm{~V}$

The equivalent resistance seen by capacitor as shown in fig is

$$
R_{e q}=20 \| 20=10 \mathrm{k} \Omega
$$

Time constant of the circuit is

$$
\tau=R_{e q} C=10 k \times 4 \mu=0.04 \mathrm{~s}
$$

Using direct formula
or

$$
\begin{aligned}
& V_{c}(t)=V_{C}(\infty)-\left[V_{c}(\infty)-V_{c}(0)\right] e^{-t / \tau} \\
&=V_{C}(\infty)\left(1-e^{-t / \tau}\right)+V_{C}(0) e^{-t / \tau}=5\left(1-e^{-t / 0.04}\right) \\
& V_{c}(t)=5\left(1-e^{-25 t}\right) \\
& I_{C}(t)=C \frac{d V_{C}(t)}{d t} \\
&=4 \times 10^{-6} \times\left(-5 \times 25 e^{-25 t}\right)=0.5 e^{-25 t} \mathrm{~mA}
\end{aligned}
$$

Now

Hence (A) is correct option.

SOL 2.33

Impedance $=(5-3 j) \|(5+3 j)=\frac{(5-3 j) \times(5+3 j)}{5-3 j+5+3 j}$

$$
=\frac{(5)^{2}-(3 j)^{2}}{10}=\frac{25+9}{10}=3.4
$$

$$
V_{A B}=\text { Current } \times \text { Impedance }=5 \angle 30^{\circ} \times 34=17 \angle 30^{\circ}
$$

Hence (D) is correct option.

SOL 2.34

The network is shown in figure below.

Chap 2

Networks

also $\quad V_{2}=-I_{2} R_{L}$
From (1) and (2) we get
Thus $\quad \frac{V_{1}}{I_{1}}=\frac{A V_{2}-B I_{2}}{C V_{2}-D I_{2}}$
Substituting value of V_{2} from (3) we get
Input Impedance $Z_{\text {in }}=\frac{-A \times I_{2} R_{L}-B I_{2}}{-C \times I_{2} R_{L}-D I_{2}}$
or

$$
Z_{i n}=\frac{A R_{L}+B}{C R_{L}+D}
$$

Hence (D) is correct option.

SOL 2.35

The circuit is as shown below.

At input port $\quad V_{1}=r_{e} I_{1}$
At output port $\quad V_{2}=r_{0}\left(I_{2}-\beta I_{1}\right)=-r_{0} \beta I_{1}+r_{0} I_{2}$
Comparing standard equation

$$
\begin{aligned}
V_{1} & =z_{11} I_{1}+z_{12} I_{2} \\
V_{2} & =z_{21} I_{1}+z_{22} I_{2} \\
z_{12} & =0 \text { and } z_{21}=-r_{0} \beta
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.36

For series RC network input impedance is

$$
Z_{i n s}=\frac{1}{s C}+R=\frac{1+s R C}{s C}
$$

Thus pole is at origin and zero is at $-\frac{1}{R C}$
For parallel $R C$ network input impedance is

$$
Z_{i n}=\frac{\frac{1}{s C} R}{\frac{1}{s C}+R}=\frac{s C}{1+s R C}
$$

www.gatehelp.com

Chap 2 Networks

Thus pole is at $-\frac{1}{R C}$ and zero is at infinity.
Hence (B) is correct option.

SOL 2.37

We know

$$
v=\frac{L d i}{d t}
$$

Taking laplace transform we get

$$
V(s)=s L I(s)-L i\left(0^{+}\right)
$$

As per given in question

$$
\text { Thus } \quad \begin{aligned}
-L i\left(0^{+}\right) & =-1 \mathrm{mV} \\
i\left(0^{+}\right) & =\frac{1 \mathrm{mV}}{2 \mathrm{mH}}=0.5 \mathrm{~A}
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.38

At initial all voltage are zero. So output is also zero.
Thus

At steady state capacitor act as open eircuit.

Thus,

$$
v_{0}(\infty)=\frac{4}{5} \times v_{i}=\frac{4}{5} \times 10=8
$$

The equivalent resistance and capacitance can be calculate after killing all source

$$
\begin{aligned}
C_{e q} & =4 \| 1=5 \mu \mathrm{~F} \\
\tau & =R_{e q} C_{e q}=0.8 \mathrm{k} \Omega \times 5 \mu \mathrm{~F}=4 \mathrm{~ms} \\
v_{0}(t) & =v_{0}(\infty)-\left[v_{0}(\infty)-v_{0}\left(0^{+}\right)\right] e^{-t / \tau} \\
& =8-(8-0) e^{-t / 0.004} \\
v_{0}(t) & =8\left(1-e^{-t / 0.004}\right) \text { Volts }
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.39

Here

$$
Z_{2}(s)=R_{\text {neg }}+Z_{1}(s)
$$

or

$$
Z_{2}(s)=R_{\text {neg }}+\operatorname{Re} Z_{1}(s)+j \operatorname{Im} Z_{1}(s)
$$

For $Z_{2}(s)$ to be positive real, $\operatorname{Re} Z_{2}(s) \geq 0$
Thus

$$
R_{\text {neg }}+\operatorname{Re} Z_{1}(s) \geq 0
$$

or

$$
\operatorname{Re} Z_{1}(s) \geq-R_{\text {neg }}
$$

But $R_{n e g}$ is negative quantity and $-R_{\text {neg }}$ is positive quantity. Therefore

$$
\operatorname{Re} Z_{1}(s) \geq\left|R_{\text {neg }}\right|
$$

or $\quad\left|R_{\text {neg }}\right| \leq \operatorname{Re} Z_{n}(j \omega)$: For all ω.
Hence (A) is correct option.

Transfer function is

$$
\frac{Y(s)}{U(s)}=\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s c R+1}=\frac{\frac{1}{L C}}{s^{2}+\frac{R}{L} s+\frac{1}{L C}}
$$

Comparing with $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ we have
Here

$$
2 \xi \omega_{n}=\frac{R}{L}
$$

and

$$
\omega_{n}=\frac{1}{\sqrt{L C}}
$$

Thus

$$
\xi=\frac{R}{2 L} \sqrt{L C}=\frac{R}{2} \sqrt{\frac{C}{L}}
$$

For no oscillations, $\xi \geq 1$
Thus

$$
\begin{aligned}
\frac{R}{2} \sqrt{\frac{C}{L}} & \geq 1 \\
R & \geq 2 \sqrt{\frac{L}{C}}
\end{aligned}
$$

or

Hence (C) is correct option.

SOL 2.41

For given transformer
or

$$
\begin{aligned}
\frac{I_{2}}{I_{1}} & =\frac{V_{1}}{V_{2}}=\frac{n}{1} \\
I_{1} & =\frac{I_{2}}{n_{1}} \text { and } V_{1}=n V_{2}
\end{aligned}
$$

Comparing with standard equation

$$
\begin{aligned}
V_{1} & =A V_{2}+B I_{2} \\
I_{1} & =C V_{2}+D I_{2} \\
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] } & =\left[\begin{array}{ll}
n & 0 \\
0 & \frac{1}{n}
\end{array}\right]
\end{aligned}
$$

Thus

$$
x=\frac{1}{n}
$$

Hence (B) is correct option.

SOL 2.42

We have $L=1 H$ and $C=\frac{1}{400} \times 10^{-6}$
Resonant frequency

$$
\begin{aligned}
f_{0} & =\frac{1}{2 \pi \sqrt{L C}}==\frac{1}{2 \pi \sqrt{1 \times \frac{1}{400} \times 10^{-6}}} \\
& =\frac{10^{3} \times 20}{2 \pi}=\frac{10^{4}}{\pi} \mathrm{~Hz}
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.43

Maximum power will be transferred when $R_{L}=R_{s}=100 \Omega$
In this case voltage across R_{L} is 5 V , therefore

$$
P_{\max }=\frac{V^{2}}{R}=\frac{5 \times 5}{100}=0.25 \mathrm{~W}
$$

Hence (C) is correct option.

SOL 2.44

For stability poles and zero interlace on real axis. In $R C$ series network the driving point impedance is

$$
Z_{\text {ins }}=R+\frac{1}{C s}=\frac{1+s R C}{s C}
$$

Here pole is at origin and zero is at $s=-1 / R C$, therefore first critical frequency is a pole and last critical frequency is a zero.

Chap 2 Networks

For $R C$ parallel network the driving point impedance is

$$
Z_{i n p}=\frac{R \frac{1}{C s}}{R+\frac{1}{C s}}=\frac{R}{1+s R C}
$$

Here pole is $s=-1 / R C$ and zero is at ∞, therefore first critical frequency is a pole and last critical frequency is a zero.
Hence (C) is correct option.

SOL 2.45

Applying KCL we get
or

$$
i_{1}(t)+5 \angle 0^{\circ}=10 \angle 60^{\circ}
$$

or

$$
\begin{aligned}
& i_{1}(t)=10 \angle 60^{\circ}-5 \angle 0^{\circ}=5+5 \sqrt{3 j}-5 \\
& i_{1}(t)=5 \sqrt{3} \angle 90^{\circ}=\frac{10}{2} \sqrt{3} \angle 90^{\circ}
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.46

If $L_{1}=j 5 \Omega$ and $L_{3}=j 2 \Omega$ the mutual induction is subtractive because current enters from dotted terminal of $\hat{j} 2 \Omega$ coil and exit from dotted terminal of $j 5 \Omega$. If $L_{2}=j 2 \Omega$ and $L_{3}=j 2 \Omega$ the mutual induction is additive because current enters from dotted terminal of both coil.
Thus

$$
\begin{aligned}
Z & =L_{1}-M_{13}+L_{2}+M_{23}+L_{3}-M_{31}+M_{32} \\
& =j 5+j 10+j 2+j 10+j 2-j 10+j 10=j 9
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.47

Open circuit at terminal ab is shown below

Applying KCL at node we get
or

$$
\begin{aligned}
\frac{V_{a b}}{5}+\frac{V_{a b}-10}{5} & =1 \\
V_{a b} & =7.5=V_{t h}
\end{aligned}
$$

Short circuit at terminal ab is shown below

Chap 2 Networks

Short circuit current from terminal ab is

Thus

$$
I_{s c}=1+\frac{10}{5}=3 \mathrm{~A}
$$

Thus

$$
R_{t h}=\frac{V_{t h}}{I_{s c}}=\frac{7.5}{3}=2.5 \Omega
$$

Here current source being in series with dependent voltage source make it ineffective.
Hence (B) is correct option.

SOL 2.48
Here $V_{a}=5 \mathrm{~V}$ because $R_{1} \equiv R_{2}$ and total voltage drop is 10 V .
Now

$$
\begin{aligned}
& V_{b}=\frac{R_{3}}{R_{3}+R_{4}} \times 10=\frac{1.1}{2.1} \times 10=5.238 \mathrm{~V} \\
& V=V_{a}-V_{b}=5=5.238=-0.238 \mathrm{~V}
\end{aligned}
$$

Hence (C) is correct option.

SOL 2.49

For h parameters we have to write V_{1} and I_{2} in terms of I_{1} and V_{2}.

$$
\begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12} V_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

Applying KVL at input port

$$
V_{1}=10 I_{1}+V_{2}
$$

Applying KCL at output port
or

$$
\begin{aligned}
\frac{V_{2}}{20} & =I_{1}+I_{2} \\
I_{2} & =-I_{1}+\frac{V_{2}}{20}
\end{aligned}
$$

Thus from above equation we get

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]=\left[\begin{array}{cc}
10 & 1 \\
-1 & 0.05
\end{array}\right]
$$

Hence (D) is correct option.

Chap 2 Networks

SOL 2.50

Time constant $\quad R C=0.1 \times 10^{-6} \times 10^{3}=10^{-4} \mathrm{sec}$
Since time constant $R C$ is very small, so steady state will be reached in 2 sec . At $t=2 \mathrm{sec}$ the circuit is as shown in fig.

$$
\begin{aligned}
& V_{c}=3 \mathrm{~V} \\
& V_{2}=-V_{c}=-3 \mathrm{~V}
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.51

For a tree there must not be any loop. So a, c, and d don't have any loop. Only b has loop.
Hence (B) is correct option.

SOL 2.52

(1)

The sign of M is as per sign of L If current enters or exit the dotted terminals of both coil. The sign of M is opposite of L If current enters in dotted terminal of a coil and exit from the dotted terminal of other coil.
Thus

$$
L_{e q}=L_{1}+L_{2}-2 M
$$

Hence (D) is correct option.

SOL 2.53

Here $\omega=2$ and $V=1 \angle 0^{\circ}$

$$
\begin{aligned}
Y & =\frac{1}{R}+j \omega C+\frac{1}{j \omega L} \\
& =3+j 2 \times 3+\frac{1}{j 2 \times \frac{1}{4}}=3+j 4 \\
& =5 \angle \tan ^{-1} \frac{4}{3}=5 \angle 53.11^{\circ} \\
I & =V^{*} Y=\left(1 \angle 0^{\circ}\right)\left(5 \angle 53.1^{\circ}\right)=5 \angle 53.1^{\circ} \\
i(t) & =5 \sin \left(2 t+53.1^{\circ}\right)
\end{aligned}
$$

Thus
Hence (A) is correct option.

Chap 2 Networks

SOL 2.54

$$
v_{i}(t)=\sqrt{2} \sin 10^{3} t
$$

Here $\omega=10^{3} \mathrm{rad}$ and $V_{i}=\sqrt{2} \angle 0^{\circ}$

Now

$$
\begin{aligned}
V_{0} & =\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}} \cdot V_{t}=\frac{1}{1+j \omega C R} V_{i} \\
& =\frac{1}{1+j \times 10^{3} \times 10^{-3}} \sqrt{2} \angle 0^{\circ} \\
& =1 \angle-45^{\circ} \\
v_{0}(t) & =\sin \left(10^{3} t-45^{\circ}\right)
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.55

Input voltage
Taking laplace transform

$$
\begin{aligned}
v_{i}(t) & =u(t) \\
V_{i}(s) & =\frac{1}{s}
\end{aligned}
$$

Impedance
or

$$
I(s)=\frac{1}{2}\left[\frac{1}{s}-\frac{1}{s+2}\right]
$$

Taking inverse laplace transform

$$
i(t)=\frac{1}{2}\left(1-e^{-2 t}\right) u(t)
$$

At $t=0, \quad i(t)=0$
At $t=\frac{1}{2}, \quad i(t)=0.31$
At $t=\infty, \quad i(t)=0.5$
Graph (C) satisfies all these conditions.
Hence (C) is correct option.

SOL 2.56

We know that

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
& V_{2}=z_{11} I_{1}+z_{22} I_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \\
& z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{1}=0}
\end{aligned}
$$

Consider the given lattice network, when $I_{2}=0$. There is two similar

Chap 2 Networks

For z_{11} applying KVL at input port we get

Thus

$$
\begin{aligned}
V_{1} & =I\left(Z_{a}+Z_{b}\right) \\
V_{1} & =\frac{1}{2} I_{1}\left(Z_{a}+Z_{b}\right) \\
z_{11} & =\frac{1}{2}\left(Z_{a}+Z_{b}\right)
\end{aligned}
$$

For Z_{21} applying KVL at output port we get

$$
V_{2}=Z_{a} \frac{I_{1}}{2}-Z_{b} \frac{I_{1}}{2}
$$

Thus

$$
\begin{aligned}
V_{2} & =\frac{1}{2} I_{1}\left(Z_{a}-Z_{b}\right) \\
z_{21} & =\frac{1}{2}\left(Z_{a}-Z_{b}\right)
\end{aligned}
$$

For this circuit $z_{11}=z_{22}$ and $z_{12}=z_{21}$. Thus

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
\frac{Z_{a}+Z_{b}}{2} & \frac{Z_{a}-Z_{b}}{2} \\
\frac{Z_{a}-Z_{b}}{2} & \frac{Z_{a}+Z_{b}}{2}
\end{array}\right]
$$

Here $Z_{a}=2 j$ and $Z_{b}=2 \Omega$
Thus

$$
\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]=\left[\begin{array}{ll}
1+j & j-1 \\
j-1 & 1+j
\end{array}\right]
$$

Hence (D) is correct option.

SOL 2.57

Applying KVL,

$$
v(t)=R i(t)+\frac{L d i(t)}{d t}+\frac{1}{C} \int_{0}^{\infty} i(t) d t
$$

Taking L.T. on both sides,

$$
\begin{aligned}
V(s) & =R I(s)+L s I(s)-L i\left(0^{+}\right)+\frac{I(s)}{s C}+\frac{v_{c}\left(0^{+}\right)}{s C} \\
v(t) & =u(t) \text { thus } V(s)=\frac{1}{s}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{s} & =I(s)+s I(s)-1+\frac{I(s)}{s}-\frac{1}{s} \\
\frac{2}{s}+1 & =\frac{I(s)}{s}\left[s^{2}+s+1\right] \\
I(s) & =\frac{s+2}{s^{2}+s+1}
\end{aligned}
$$

or
Hence (B) is correct option.

SOL 2.58

Characteristics equation is

$$
s^{2}+20 s+10^{6}=0
$$

Comparing with $s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}=0$ we have

Thus

$$
\begin{aligned}
\omega_{n} & =\sqrt{10^{6}}=10^{3} \\
2 \xi \omega & =20
\end{aligned}
$$

$$
\text { Thus } \quad 2 \xi=\frac{\angle \mathrm{U}}{10^{3}}=0.02
$$

Now
Hence (B) is correct

$$
\begin{aligned}
& Q=\frac{1}{2 \xi}=\frac{1}{0.02}=50 \\
& \text { ct option. }
\end{aligned}
$$

SOL 2.59

$$
\begin{aligned}
H(s) & =\frac{V_{0}(s)}{V_{i}(s)} \\
& =\frac{\frac{1}{s C}}{R+s L+\frac{1}{s C}}=\frac{1}{s^{2} L C+s C R+1} \\
& =\frac{1}{s^{2}\left(10^{-2} \times 10^{-4}\right)+s\left(10^{-4} \times 10^{4}\right)+1} \\
& =\frac{1}{10^{-6} s^{2}+s+1}=\frac{10^{6}}{s^{2}+10^{6} s+10^{6}}
\end{aligned}
$$

Hence (D) is correct option.

SOL 2.60

Impedance of series $R L C$ circuit at resonant frequency is minimum, not zero. Actually imaginary part is zero.

$$
Z=R+j\left(\omega L-\frac{1}{\omega C}\right)
$$

At resonance $\omega L-\frac{1}{\omega C}=0$ and $Z=R$ that is purely resistive. Thus S_{1} is false

Now quality factor $Q=R \sqrt{\frac{C}{L}}$
Since $G=\frac{1}{R}, \quad Q=\frac{1}{G} \sqrt{\frac{C}{L}}$
If $G \uparrow$ then $Q \downarrow$ provided C and L are constant. Thus S_{2} is also false. Hence (D) is correct option.

SOL 2.61

Number of loops $=b-n+1$

$$
=\text { minimum number of equation }
$$

Number of branches $=b=8$
Number of nodes $=n=5$
Minimum number of equation

$$
=8-5+1=4
$$

Hence (B) is correct option.

SOL 2.62

For maximum power transfer a

$$
Z_{L}=Z_{S}^{*}=R_{s}-j X_{s}
$$

Thus

$$
Z_{L}=1-1 j
$$

Hence (C) is correct option.

SOL 2.63

$$
Q=\frac{1}{R} \sqrt{\frac{L}{C}}
$$

When R, L and C are doubled,

Thus

$$
Q^{\prime}=\frac{1}{2 R} \sqrt{\frac{2 L}{2 C}}=\frac{1}{2 R} \sqrt{\frac{L}{C}}=\frac{Q}{2}
$$

$$
Q^{\prime}=\frac{100}{2}=50
$$

Hence (B) is correct option.

SOL 2.64

Applying KVL we get,
or $\quad \sin t=2 i(t)+2 \frac{d i(t)}{d t}+\int i(t) d t$
Chap 2 Networks

Chap 2 Networks

Differentiating with respect to t, we get

$$
\cos t=\frac{2 d i(t)}{d t}+\frac{2 d^{2} i(t)}{d t^{2}}+i(t)
$$

Hence (C) is correct option.

SOL 2.65

For current i there is 3 similar path. So current will be divide in three path

$$
\begin{aligned}
& \text { so, we get } \\
& \qquad \begin{array}{l}
V_{a b}-\left(\frac{i}{3} \times 1\right)-\left(\frac{i}{6} \times 1\right)-\left(\frac{1}{3} \times 1\right)=0 \\
\frac{V_{a b}}{i}=R_{e q}=\frac{1}{3}+\frac{1}{6}+\frac{1}{3}=\frac{5}{6} \Omega
\end{array}
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.66

Data are missing in question as $L_{1} \& L_{2}$ are not given.

SOL 2.67

At $t=0^{-}$circuit is in steady state. So inductor act as short circuit and capacitor act as open circuit.

$$
\text { At } t=0^{-}, \quad \begin{aligned}
i_{1}\left(0^{-}\right) & =i_{2}\left(0^{-}\right)=0 \\
v_{c}\left(0^{-}\right) & =V
\end{aligned}
$$

At $t=0^{+}$the circuit is as shown in fig. The voltage across capacitor and current in inductor can't be changed instantaneously. Thus

At $t=0^{+}$,

$$
i_{1}=i_{2}=-\frac{V}{2 R}
$$

Hence (A) is correct option.

SOL 2.68

When switch is in position 2, as shown in fig in question, applying
KVL in loop (1),

$$
R I_{1}(s)+\frac{V}{s}+\frac{1}{s C} I_{1}(s)+s L\left[I_{1}(s)-I_{2}(s)\right]=0
$$

or

$$
\begin{aligned}
& I_{1}(s)\left[R+\frac{1}{s c}+s L\right]-I_{2}(s) s L=\frac{-V}{s} \\
& \quad z_{11} I_{1}+z_{12} I_{2}=V_{1}
\end{aligned}
$$

Applying KVL in loop 2,

$$
\begin{aligned}
s L\left[I_{2}(s)-I_{1}(s)\right]+R I_{2}(s)+\frac{1}{s C} I_{2}(s) & =0 \\
Z_{12} I_{1}+Z_{22} I_{2} & =V_{2} \\
-s L I_{1}(s)+\left[R+s L+\frac{1}{s c}\right] I_{2}(s) & =0
\end{aligned}
$$

Now comparing with

$$
\left[\begin{array}{ll}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

we get

$$
\left[\begin{array}{cc}
R+s L+\frac{1}{s C} & -s L \\
-s L & R+s L+\frac{1}{s C}
\end{array}\right]\left[\begin{array}{l}
I_{1}(s) \\
I_{2}(s)
\end{array}\right]=\left[\begin{array}{r}
-\frac{V}{s} \\
0
\end{array}\right]
$$

Hence (C) is correct option.

SOL 2.69

$$
\begin{aligned}
\text { Zeros } & =-3 \\
\text { Pole }^{1} & =-1+j \\
\text { Pole }^{2} & =-1-j \\
Z(s) & =\frac{K(s+3)}{(s+1+j)(s+1-j)} \\
& =\frac{K(s+3)}{(s+1)^{2}-j^{2}}=\frac{K(s+3)}{(s+1)^{2}+1}
\end{aligned}
$$

From problem statement $\left.Z(0)\right|_{\omega=0}=3$
Thus $\frac{3 K}{2}=3$ and we get $K=2$

$$
Z(s)=\frac{2(s+3)}{s^{2}+2 s+2}
$$

Hence (B) is correct option.

SOL 2.70

$$
v(t)=\underbrace{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}_{v}+\underbrace{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}_{v_{2}}
$$

Thus we get $\omega_{1}=1$ and $\omega_{2}=2$
Now

$$
\begin{aligned}
Z_{1} & =R+j \omega_{1} L=1+j 1 \\
Z_{2} & =R+j \omega_{2} L=1+j 2 \\
i(t) & =\frac{v_{1}(t)}{Z_{1}}+\frac{v_{2}(t)}{Z_{2}} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{1+j}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{1+j 2} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{\sqrt{1^{2}+2^{2}} \angle \tan ^{-1} 1}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{\sqrt{1^{2}+2^{2}} \tan ^{-1} 2} \\
& =\frac{10 \sqrt{2} \cos \left(t+10^{\circ}\right)}{\sqrt{2} \angle \tan ^{-1} 45^{\circ}}+\frac{10 \sqrt{5} \cos \left(2 t+10^{\circ}\right)}{\sqrt{5} \tan ^{-1} 2} \\
i(t) & =10 \cos \left(t-35^{\circ}\right)+10 \cos \left(2 t+10^{\circ}-\tan ^{-1} 2\right)
\end{aligned}
$$

Hence (C) is correct option.

SOL 2.71

Using $\Delta-Y$ conversion

$$
\begin{aligned}
& R_{1}=\frac{2 \times 1}{2+1+1}=\frac{2}{4}=0.5 \\
& R_{2}=\frac{1 \times 1}{2+1+1}=\frac{1}{4}=0.25 \\
& R_{3}=\frac{2 \times 1}{2+1+1}=0.5
\end{aligned}
$$

Chap 2 Networks

Now the circuit is as shown in figure below.

SOL 2.72

Applying KCL at for node 2,

$$
\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{5}=\frac{V_{1}}{5}
$$

or

$$
V_{2}=V_{1}=20 \mathrm{~V}
$$

Voltage across dependent current source is 20 thus power delivered by it is

$$
P V_{2} \times \frac{V_{1}}{5}=20 \times \frac{20}{5}=80 \mathrm{~W}
$$

It deliver power because current flows from its +ive terminals.
Hence (A) is correct option.

SOL 2.73

When switch was closed, in steady state, $i_{L}\left(0^{-}\right)=2.5 \mathrm{~A}$

At $t=0^{+}, i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2.5 \mathrm{~A}$ and all this current of will pass through 2Ω resistor. Thus

$$
V_{x}=-2.5 \times 20=-50 \mathrm{~V}
$$

Hence (C) is correct option.

SOL 2.74

For maximum power delivered, R_{D} must be equal to $R_{t h}$ across same terminal.

Applying KCL at Node, we get

$$
0.5 I_{1}=\frac{V_{t h}}{20}+I_{1}
$$

or

$$
\begin{aligned}
V_{t h}+10 I_{1} & =0 \\
I_{1} & =\frac{V_{t h}-50}{40}
\end{aligned}
$$

but
Thus $\quad V_{t h}+\frac{V_{t h}-50}{4}=0$
or

$$
V_{t h}=10 \mathrm{~V}
$$

For $I_{s c}$ the circuit is shown in figure below.

but

$$
\begin{aligned}
I_{s c} & =0.5 I_{1}-I_{1}=-0.5 I_{1} \\
I_{1} & =-\frac{50}{40}=-1.25 \mathrm{~A} \\
I_{s c} & =-0.5 \times-12.5=0.625 \mathrm{~A} \\
R_{t h} & =\frac{V_{t h}}{I_{s c}}=\frac{10}{0.625}=16 \Omega
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.75

$I_{P}, V_{P} \rightarrow$ Phase current and Phase voltage
$I_{L}, V_{L} \rightarrow$ Line current and line voltage
Now

$$
V_{P}=\left(\frac{V_{L}}{\sqrt{3}}\right) \text { and } I_{P} \xlongequal{ }=I_{L}
$$

So,

$$
\begin{aligned}
\text { Power } & =3 V_{P} I_{L} \cos \theta \\
1500 & =3\left(\frac{V_{L}}{\sqrt{3}}\right)\left(I_{L}\right) \cos \theta
\end{aligned}
$$

also

$$
\begin{aligned}
I_{L} & =\left(\frac{V_{L}}{\sqrt{3} Z_{L}}\right) \\
1500 & =3\left(\frac{V_{L}}{\sqrt{3}}\right)\left(\frac{V_{L}}{\sqrt{3} Z_{L}}\right) \cos \theta \\
Z_{L} & =\frac{(400)^{2}(.844)}{1500}=90 \Omega
\end{aligned}
$$

As power factor is leading
So,

$$
\cos \theta=0.844 \rightarrow \theta=32.44
$$

As phase current leads phase voltage

$$
Z_{L}=90 \angle-\theta=90 \angle-32.44^{\circ}
$$

Hence (D) is correct option.

SOL 2.76

Applying KCL, we get

$$
\frac{e_{0}-12}{4}+\frac{e_{0}}{4}+\frac{e_{0}}{2+2}=0
$$

or

$$
e_{0}=4 \mathrm{~V}
$$

Hence (C) is correct option.

SOL 2.77

The star delta circuit is shown as below

Here

$$
Z_{A B}=Z_{B C}=Z_{C A}=\sqrt{3} Z
$$

and

Now

$$
\begin{aligned}
Z_{A} & =\frac{Z_{A B} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}} \\
Z_{B} & =\frac{Z_{A B} Z_{B C}}{Z_{A B}+Z_{B C}+Z_{C A}} \\
Z_{C} & =\frac{Z_{B C} Z_{C A}}{Z_{A B}+Z_{B C}+Z_{C A}}
\end{aligned}
$$

$$
Z_{A}=Z_{B}=Z_{C}=\frac{\sqrt{3} Z \sqrt{3} Z}{\sqrt{3} Z+\sqrt{3} Z+\sqrt{3} Z}=\frac{Z}{\sqrt{3}}
$$

Hence (A) is correct option.

SOL 2.78

$$
\begin{aligned}
{\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
y_{1}+y_{3} & -y_{3} \\
-y_{3} & y_{2}+y_{3}
\end{array}\right] \\
y_{12} & =-y_{3} \\
y_{12} & =-\frac{1}{20}=-0.05 \mathrm{mho}
\end{aligned}
$$

Hence (C) is correct option.

SOL 2.79

We apply source conversion the circuit as shown in fig below.

Chap 2 Networks

Hence (D) is correct option.

SOL 2.80

$$
\begin{aligned}
I_{2} & =\frac{E_{m} \angle 0^{\circ}}{R_{2}+\frac{1}{j \omega C}}=E_{m} \angle 0^{\circ} \frac{j \omega C}{1+j \omega C R_{2}} \\
\angle I_{2} & =\frac{\angle 90^{\circ}}{\angle \tan ^{-1} \omega C R_{2}} \\
I_{2} & =\frac{E_{m} \omega C}{\sqrt{1+\omega^{2} C^{2} R_{2}^{2}}} \angle\left(90^{\circ}-\tan ^{-1} \omega C R_{2}\right)
\end{aligned}
$$

At $\omega=0$

$$
I_{2}=0
$$

$$
\begin{aligned}
4 e_{0} & =112 \\
e_{0} & =\frac{112}{4}=28 \mathrm{~V}
\end{aligned}
$$

Now applying nodal analysis we have

$$
\frac{e_{0}-80}{10+2}+\frac{e_{0}}{12}+\frac{e_{0}-16}{6}=0
$$

or

SOL 2.80

$$
\begin{array}{ll}
\text { and at } \omega=\infty, & I_{2}=\frac{E_{m}}{R_{2}}
\end{array}
$$

Only fig. given in option (A) satisfies bothconditions.
Hence (A) is correct option.

SOL 2.81

$$
X_{s}=\omega L=10 \Omega
$$

For maximum power transfer

$$
R_{L}=\sqrt{R_{s}^{2}+X_{s}^{2}}=\sqrt{10^{2}+10^{2}}=14.14 \Omega
$$

Hence (A) is correct option.

SOL 2.82

Applying KVL in LHS loop

$$
E_{1}=2 I_{1}+4\left(I_{1}+I_{2}\right)-10 E_{1}
$$

or

$$
E_{1}=\frac{6 I_{1}}{11}+\frac{4 I_{2}}{11}
$$

Thus $z_{11}=\frac{6}{11}$
Applying KVL in RHS loop

$$
\begin{aligned}
E_{2} & =4\left(I_{1}+I_{2}\right)-10 E_{1} \\
& =4\left(I_{1}+I_{2}\right)-10\left(\frac{6 I_{1}}{11}+\frac{4 I_{2}}{11}\right) \\
& =-\frac{16 I_{1}}{11}+\frac{4 I_{2}}{11}
\end{aligned}
$$

Chap 2 Networks

Thus $z_{21}=-\frac{16}{11}$
Hence (C) is correct option.

SOL 2.83

At $\omega=0$, circuit act as shown in figure below.

(finite value)
At $w=\infty$, circuit act as shown in figure below:

$$
\begin{equation*}
\frac{V_{0}}{V_{s}}=\frac{R_{L}}{R_{L}+R_{s}} \tag{finitevalue}
\end{equation*}
$$

At resonant frequency $\omega=\sqrt{\frac{1}{L C}}$ circuit acts as shown in fig and $V_{0}=0$.

Thus it is a band reject filter.
Hence (D) is correct option.

Chap 2 Networks

SOL 2.84

Applying KCL we get

$$
i_{L}=e^{a t}+e^{b t}
$$

Now

$$
V(t)=v_{L}=L \frac{d i_{L}}{d t}=L \frac{d}{d t}\left[e^{a t}+e^{b t}\right]=a e^{a t}+b e^{b t}
$$

Hence (D) is correct option.

SOL 2.85

Going from 10 V to 0 V

SOL 2.86

This is a reciprocal and linear network. So we can apply reciprocity theorem which states "Two loops A \& B of a network N and if an ideal voltage source E in loop A produces a current I in loop B, then interchanging positions an identical source in loop B produces the same current in loop A. Since network is linear, principle of homogeneity may be applied and when volt source is doubled, current also doubles.
Now applying reciprocity theorem

$$
\begin{aligned}
& i=2 \mathrm{~A} \text { for } 10 \mathrm{~V} \\
& V=10 \mathrm{~V}, i=2 \mathrm{~A} \\
& V=-20 \mathrm{~V}, i=-4 \mathrm{~A}
\end{aligned}
$$

Hence (C) is correct option.

SOL 2.87

Tree is the set of those branch which does not make any loop and

Chap 2 Networks

connects all the nodes.
$a b f g$ is not a tree because it contains a loop l node (4) is not connected

Hence (C) is correct option.

SOL 2.88

For a 2-port network the parameter h_{21} is defined as

Applying node equation at node a we get

$$
\begin{aligned}
\frac{V_{a}-V_{1}}{R}+\frac{V_{a}-0}{R}+\frac{V_{a}-0}{R} & =0 \\
3 V_{a}=V_{1} \quad \Rightarrow V_{a} & =\frac{V_{1}}{3}
\end{aligned}
$$

Now $\quad I_{1}=\frac{V_{1}-V_{a}}{R}=\frac{V_{1}-\frac{V_{1}}{3}}{R}=\frac{2 V_{1}}{3 R}$
and

$$
I_{2}=\frac{0-V_{a}}{R}=\frac{0-\frac{V_{1}}{3}}{R}=\frac{-V_{1}}{3 R}
$$

Thus $\left.\quad \frac{I_{2}}{I_{1}}\right|_{V_{2}=0}=h_{21}=\frac{-V_{1} / 3 R}{2 V_{1} / 3 R}=\frac{-1}{2}$
Hence (A) is correct option.

SOL 2.89

Applying node equation at node A

$$
\frac{V_{t h}-100(1+j 0)}{3}+\frac{V_{t h}-0}{4 j}=0
$$

or

$$
4 j V_{t h}-4 j 100+3 V_{t h}=0
$$

or

$$
\begin{aligned}
V_{t h}(3+4 j) & =4 j 100 \\
V_{t h} & =\frac{4 j 100}{3+4 j}
\end{aligned}
$$

Chap 2 Networks

$$
\begin{aligned}
& V_{t h}=\frac{4 j 100}{3+4 j} \times \frac{3-4 j}{3-4 j} \\
& V_{t h}=16 j(3-j 4)
\end{aligned}
$$

Hence (A) is correct option.

SOL 2.90

For maximum power transfer R_{L} should be equal to $R_{T h}$ at same terminal.
so, equivalent Resistor of the circuit is

Hence (C) is correct option.

SOL 2.91

Delta to star conversion

$$
\begin{aligned}
& R_{1}=\frac{R_{a b} R_{a c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \times 30}{5+30+15}=\frac{150}{50}=3 \Omega \\
& R_{2}=\frac{R_{a b} R_{b c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{5 \times 15}{5+30+15}=1.5 \Omega \\
& R_{3}=\frac{R_{a c} R_{b c}}{R_{a b}+R_{a c}+R_{b c}}=\frac{15 \times 30}{5+30+15}=9 \Omega
\end{aligned}
$$

Hence (D) is correct option.

SOL 2.92

No. of branches $=n+l-1=7+5-1=11$
Hence (C) is correct option.

SOL 2.93

In nodal method we sum up all the currents coming \& going at the node So it is based on KCL. Furthermore we use ohms law to determine current in individual branch. Thus it is also based on ohms law.
Hence (B) is correct option.

SOL 2.94

Superposition theorem is applicable to only linear circuits. Hence (A) is correct option.

SOL 2.95

Hence (B) is correct option.

SOL 2.96

For reciprocal network $y_{12}=y_{21}$ but here $y_{12}=-\frac{1}{2} \neq y_{21}=\frac{1}{2}$. Thus circuit is non reciprocal. Furthermore only reciprocal circuit are passive circuit.
Hence (B) is correct option.

SOL 2.97

Taking b as reference node and applying KCL at a we get

$$
\begin{aligned}
\frac{V_{a b}-1}{2}+\frac{V_{a b}}{2} & =3 \\
V_{a b}-1+V_{a b} & =6 \\
V_{a b} & =\frac{6+1}{2}=3.5 \mathrm{~V}
\end{aligned}
$$

or

Hence (C) is correct option.

SOL 2.98

Hence (A) is correct option.

SOL 2.99

The given figure is shown below.

Chap 2 Networks

Applying KCL at node a we have

$$
I=i_{0}+i_{1}=7+5=12 \mathrm{~A}
$$

Applying KCL at node f

$$
\begin{aligned}
& I \\
\text { so } & =-i_{4} \\
i_{4} & =-12 \mathrm{amp}
\end{aligned}
$$

Hence (B) is correct option.

SOL 2.100

so $\quad V=3-0=3$ volt
Hence (A) is correct option.

SOL 2.101

Can not determined V without knowing the elements in box.
Hence (D) is correct option.

SOL 2.102

The voltage V is the voltage across voltage source and that is 10 V . Hence (A) is correct option.

SOL 2.103

Voltage across capacitor

$$
V_{C}(t)=V_{C}(\infty)+\left(V_{C}(0)-V_{C}(\infty)\right) e^{\frac{-t}{R C}}
$$

Here $V_{C}(\infty)=10 \mathrm{~V}$ and $\left(V_{C}(0)=6 \mathrm{~V}\right.$. Thus

Now

$$
\begin{aligned}
V_{C}(t) & =10+(6-10) e^{\frac{-t}{R C}}=10-4 e^{\frac{-t}{R C}}=10-4 e^{\frac{-t}{8}} \\
V_{R}(t) & =10-V_{C}(t) \\
& =10-10+4 e^{\frac{-t}{R C}}=4 e^{\frac{-t}{R C}}
\end{aligned}
$$

Energy absorbed by resistor

$$
E \int_{0}^{\infty} \frac{V_{R}^{2}(t)}{R}=\int_{0}^{\infty} \frac{16 e^{\frac{-t}{4}}}{4}=\int_{0}^{\infty} 4 e^{\frac{-t}{4}}=16 \mathrm{~J}
$$

Hence (B) is correct option.

SOL 2.104

It is a balanced whetstone bridge

$$
\left(\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}}\right)
$$

so equivalent circuit is

Hence (B) is correct option.

SOL 2.105

Current in $A_{2}, \quad I_{2}=3 \mathrm{amp}$
Inductor current can be defined as $I_{2}=-3 j$
Current in $A_{3}, \quad I_{3}=4$
Total current $\quad I_{1}=I_{2}+I_{3}$

$$
I_{1}=4-3 j
$$

$$
|I|=\sqrt{(4)^{2}+(3)^{2}}=5 \mathrm{amp}
$$

Hence (B) is correct option.

SOL 2.106

For a tree we have $(n-1)$ branches. Links are the branches which from a loop, when connect two nodes of tree.
so if total no. of branches $=b$

Chap 2 Networks

No. of links $=b-(n-1)=b-n+1$
Total no. of links in equal to total no. of independent loops.
Hence (C) is correct option.

SOL 2.107

In the steady state condition all capacitors behaves as open circuit \& Inductors behaves as short circuits as shown below :

Thus voltage across capacitor C_{1} is

$$
V_{C_{1}}=\frac{100}{10+40} \times 40=80
$$

Now the circuit faced by capacitor C_{2} and C_{3} can be drawn as below :

Voltage across capacitor C_{2} and C_{3} are

$$
\begin{aligned}
& V_{C_{2}}=80 \frac{C_{3}}{C_{2}+C_{3}}=80 \times \frac{3}{5}=48 \mathrm{volt} \\
& V_{C_{3}}=80 \frac{C_{2}}{C_{2}+C_{3}}=80 \times \frac{2}{5}=32 \mathrm{volt}
\end{aligned}
$$

Hence (B) is correct option.

Exclusive Series By Jhunjhunuwala

GATE CLOUD

By R. K . Kanodia \& Ashish Murolia

GATE Cloud is an exclusive series of books which offers a completely solved question bank to GATE aspirants. The book of this series are featured as
> Over 1300 Multiple Choice Questions with full \& detailed explanations.
> Questions are graded in the order of complexity from basic to advanced level.
> Contains all previous year GATE and IES exam questions from various branches
> Each question is designed to GATE exam level.
> Step by step methodology to solve problems

Available Title In this series

Tignals and Systems (For EC and EE)
Network Analysis (For EC)-- Available in 2 Volumes
Electric Circuit and Fields (For EE) -- Available in two volumes
Electromagnetic (For EC)

Upcoming titles in this series

(1) Digital Electronics (Nov 2012)
[1] Control Systems (Dec 2012)
[a] Communication Systems (Jan 2012)

Exclusive Series By Jhunjhunuwala

GATE GUIDE
Theory, Example and Practice By R. K . Kanodia \& Ashish Murolia

GATE GUIDE is an exclusive series of books which provides theory, solved examples \& practice exercises for preparing for GATE. A book of this series includes :
> Brief and explicit theory
> Problem solving methodology
> Detailed explanations of examples
> Practice Exercises

Available Title In this series

[1] Signals and Systems (For EC and EE)

Network Analysis (For EC)
Electric Circuit and Fields (For EE)

Upcoming titles in this series

[a] Digital Electronics(For EC and EE)
\llbracket Control Systems (For EC and EE)
Communication Systems (For EC and EE)

