
Pipeline and Vector Processing

 Parallel Processing

 Simultaneous data processing tasks for the purpose of increasing the
computational speed

 Perform concurrent data processing to achieve faster execution time

 Multiple Functional Unit :

 Separate the execution unit into eight functional units operating in parallel

=

Adder-subtractor

Integer multiply

Floating-point
add-subtract

Incrementer

Shift unit

Logic unit

Floating-point
divide

Floating-point
multiply

Processor

registers

To Memory

 Pipelining : it is the process of Decomposing a sequential process into suboperations

with Each subprocess is executed in a special dedicated segment concurrently with all

other segments.

 It is a collection of processing segments through which binary information flows. Where

each segment performs partial processing dedicated by the way the task is partioned.

 Pipelining의 예제 : Fig. 9-2

 Multiply and add operation : (for i = 1, 2, …, 7)

 3 개의 Suboperation Segment로 분리

» 1) : Input Ai and Bi

» 2) : Multiply and input Ci

» 3) : Add Ci

 Content of registers in pipeline example : Tab. 9-1

435

4,2*13

2,1

RRR

CiRRRR

BiRAiR







CiBiAi *

R1 R2

Multiplier

R3 R4

Adder

R5

Ai Bi Ci

Segment 3

R1 R2 R3 R4 R5

1 A1 B1 - - -

2 A2 B2 A1*B1 C1 -

3 A3 B3 A2*B2 C2 A1*B1+C1

4 A4 B4 A3*B3 C3 A2*B2+C2

5 A5 B5 A4*B4 C4 A3*B3+C3

6 A6 A6 A5*B5 C5 A4*B4+C4

7 A7 A7 A6*B6 C6 A5*B5+C5

8 - - A7*B7 C7 A6*B6+C6

9 - - - - A7*B7+C7

Clock pulse Number

Segment1 Segment 2

General considerations

4 segment pipeline : the operand pass through all four segments in a
fixed sequence. Each segment consists of a combinational ckt Si that
performs a sub operation over the data stream. The segments are
separated by the registers to hold the intermediate results.

Space-time diagram :

»Show segment utilization as a function of time

Task : T1, T2, T3,…, T6 executed in four segments.

»Total operation performed going through all the segment

S1 R1 S2 R2 S4 R4 S3 R3

Clock

Input

Fig.: Four Segment pipeline

1 8765432 9

1

4

3

2

Clock cycles

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

S
eg

m
en

t

Pipeline에서의 처리 시간 = 9 clock cycles

 Speedup S : Nonpipeline / Pipeline

 S = n • tn / (k + n - 1) • tp = 6 • 6 tn / (4 + 6 - 1) • tp = 36 tn / 9 tn = 4

» n : task number (6)

» tn : time to complete each task in nonpipeline (6 cycle times = 6 tp)

» tp : clock cycle time (1 clock cycle)

» k : segment number (4)

 If n  이면, S = tn / tp

 If we assume that the time it takes to process a task is the same in the pipeline and

nonpipeline circuits then we have

nonpipeline (tn) = pipeline (k • tp)

S = tn / tp = k • tp / tp = k

Where k is the number of segments.

 Arithmetic Pipeline

 Floating-point Adder Pipeline Example :

 Add / Subtract two normalized floating-point binary number

» X = A x 2a = 0.9504 x 103

» Y = B x 2b = 0.8200 x 102

k + n - 1  n

 4 segments suboperations

» 1) Compare exponents by subtraction :

 3 - 2 = 1

 X = 0.9504 x 103

 Y = 0.8200 x 102

» 2) Align mantissas

 X = 0.9504 x 103

 Y = 0.08200 x 103

» 3) Add mantissas

 Z = 1.0324 x 103

» 4) Normalize result

 Z = 0.1324 x 104

R

Compare
exponents

by subtraction

R

Choose exponent Align mantissas

R

Add or subtract
mantissas

R

Normalize
result

R

R

Adjust
exponent

R

R

a b BA
Exponents Mantissas

Difference
Segment 1 :

Segment 4 :

Segment 3 :

Segment 2 :

Instruction Pipeline

Instruction Cycle

1) Fetch the instruction from memory

2) Decode the instruction

3) Calculate the effective address

4) Fetch the operands from memory

5) Execute the instruction

6) Store the result in the proper place

Segment 1 :

Segment 4 :

Segment 3 :

Segment 2 :

Fetch instruction
from memory

Decode instruction

and calculate the

effective address

Fetch operand
from memory

Execute instruction

Branch ?

Interrupt ?
Interrupt
handling

Update PC

Empty pipe

 Example : Four-segment Instruction Pipeline

 Four-segment CPU pipeline :

» 1) FI : Instruction Fetch

» 2) DA : Decode Instruction & calculate EA

» 3) FO : Operand Fetch

» 4) EX : Execution

 Timing of Instruction Pipeline :

Branch

1 32

1

4

3

2

7

6

5

87654 9 121110 13

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI

Instruction :

(Branch)

 Step :

No Branch

 Pipeline Conflicts : 3 major difficulties

 1) Resource conflicts

» memory access by two segments at the same time.

» Can be avoided by using separate instruction stream and data memories.

 2) Data dependency

» when an instruction depend on the result of a previous instruction, but this result is not
yet available

 3) Branch difficulties

» branch and other instruction (interrupt, ret, ..) that change the value of PC

 Data Dependency 해결 방법

 Hardware 적인 방법

» Hardware Interlock

 previous instruction의 결과가 나올 때 까지 Hardware 적인 Delay를 강제 삽입

» Operand Forwarding
 previous instruction의 결과를 곧바로 ALU 로 전달 (정상적인 경우, register를 경유함)

 Software 적인 방법

» Delayed Load
 previous instruction의 결과가 나올 때 까지 No-operation instruction 을 삽입

Assignment

 What do you mean by pipeline and parallel processing.

 Explain vector processing.

