
Cache Memory

Cache Memory
Introduction:

Cache memory is fast memory that is used to hold the most recently accessed
data in slower main memory. The idea is that frequently accessed data will stay
in cache, which allows the CPU to access it more quickly, which means it
doesn't have to wait for the data to arrive.

Cache Memory is the Processor's internal quick-hand storage that it uses for
things that it's currently processing at that given time.
As with most things, the more cache memory a processor has, it will usually
run smoother and faster than one with less of about the same operating
frequency.

• Cache Memory
• Locality of Reference

• the references to memory tend to be confined within a few localized areas
in memory. Ex. Program loops or subroutine.It states that over a short
interval of time the addresses generated by a typical program refers to a
few localized areas of memory repeatedly.

• Cache Memory : a fast small memory
• keeping the most frequently accessed instructions and data in the fast

cache memory
• Cache

• cache size : 256 K byte (512 K byte)
• mapping method : 1) associative, 2) direct, 3) set-associative
• replace algorithm : 1) LRU, 2) LFU, 3) FIFO
• write policy : 1) write-through, 2) write-back

• Hit Ratio
• the ratio of the number of hits divided by the total CPU references (hits +

misses) to memory
• hit : the CPU finds the word in the cache (0.9)
• miss : the word is not found in cache (CPU must read main memory)

• An example where cache memory access time = 100 ns, main memory
access time = 1000 ns, hit ratio = 0.9 produces an average access time of
200 ns.

• 1 miss : 1 x 1000 ns without the cache memory the time is 1000ns
• 9 hit : 9 x 100 ns

1900 ns / 10 = 190 ns

• Mapping

• The transformation of data from main memory to cache memory
• 1) Associative mapping

• 2) Direct mapping

• 3) Set-associative mapping

• Example of cache memory :

main memory : 32 K x 12 bit word (15 bit address lines)

cache memory : 512 x 12 bit word
• CPU sends a 15-bit address to cache

• Hit : CPU accepts the 12-bit data from cache

• Miss : CPU reads the data from main memory (then data is written to
cache)

Main memory
32K¡¿ 12

CPU
Cache memory

512¡¿ 12

Associative mapping : associative memory stores both address and data of the

memory word.

Argument register

0 1 0 0 0

2 2 3 4 5

0 2 7 7 7

3 4 5 0

1 2 3 4

6 7 1 0

Address Data

CPU address(15 bits)

If the address is found, the corresponding

12-bit data is read and send to the CPU. IF

NO MATCH OCCURS, then main memory

is accessed for the word. The address pair is

then transferred to the associative memory.

If the cache is full, an address-data pair

must be displaced to make room for a pair

that is needed and not presently is in cache.

This is done with replacement algorithm.

• Direct mapping cache organization : Fig. 12-13
• For address 02000
1) Index 000 cache , tag 00 and data 1220
2) Suppose CPU wants to access the word at
address 02000.
3) The index address is 000 so it is used to
Access cache. Two tags then compared.
4)Cache tag 00 but address tag 02, not match
5)Main m/m accessed & data word 5670 is
Transferred to CPU.
6)Now 000 is replaced with tag 02 & data 5670.

32K¡¿ 12

Main memory

Address = 15 bits
Data = 12 bits

Tag Index

6 bits 9 bits

Hex
Address

00 000

3F 1FF

512¡¿ 12
Cache memory

Address = 9 bits
Data = 12 bits

 000

 1FF

Octal
address

1 2 2 0

2 3 4 0

3 4 5 0

4 5 6 0

5 6 7 0

6 7 1 0

Memory data
Memory
 address

000000

02777

02000

01777

01000

00777

00 1 2 2 0

02 6 7 1 0

Tag Data
Index

 address

 000

 777

(a) Main memory

(b) Cache memory

Tag (6 bit)

00 - 63

Index (9 bit)

000 - 511

Direct mapping : Fig. 12-12

Cache memory

Tag field (n - k)

Index field (k)

»2k words cache memory and 2n words

main memory

Tag = 6 bit (15 - 9), Index = 9 bit

• Direct mapping cache with block size of 8 words : Fig. 12-14
• 64 block x 8 word = 512 cache words size

000

007

010

017

0 1

0 1

770

777

0 2

0 2

3 4 5 0

6 5 7 8

6 7 1 0

Index Tag Data

Block 0

Block 1

Block 63

Tag Block Word

6 36

Index

0 1 3 4 5 0 0 2 5 6 7 0

0 2 6 7 1 0 0 0 2 3 4 0

000

777

Index Tag Data Tag Data

Set-associative mapping :
Disadvantage of direct mapping: two words with the same index in
their address but with different tag values can not reside in cache
memory at the same time.

• Replacement Algorithm : cache miss or full

• 1) LRU (Least Recently Used) :
• 2) LFU (Least Frequently Used) :
• 3) FIFO (First-In First-Out) :

• Writing to Cache : Cache Coherence
• 1) Write-through : UPDATE the main memory with every memory write operation with cache

memory being updated in parallel.

• 2) Write-back : only cache location is updated during the write operation. The location is then
marked by flag so that later when the word is removed from the cache it is copied into main
memory.

• Cache Initialization

• Cache is initialized :
• 1) when power is applied to the computer

• 2) when main memory is loaded with a complete set of programs from auxiliary memory

• valid bit
• indicate whether or not the word contains valid data

Application

• Cache memory is a mechanism interposed in the memory hierarchy
between main memory and the CPU to improve effective memory transfer
rates and raise processor speeds.

• Cache memory operates like a "frequently used data" file for your CPU. The
cache dynamically stores and accesses the data your CPU and applications
access most often so that it can be more quickly retrieved.

• Caches are designed to alleviate this bottleneck by making the data used
most often by the CPU instantly available. This is accomplished by building
a small amount of memory, known as primary or level 1 cache, right into
the CPU. Level 1 cache is very small, normally ranging between 2 kilobytes
(KB) and 64 KB.

Assignment

• Explain Cache memory.

• Explain mapping.

• What do you mean by associative and set associative mapping.

