Introduction: Instruction Format

- Instruction word should have the complete information required to fetch and execute the instruction
- Fields of an instruction word
 - Opcode of the operation to be carried out
 - Varying length (CISC)
 - Fixed length (RISC)
 - Size of the operands:
 - Byte, Word, Longword, Quadword for integer operands
 - Float, Double for real operands
 - Addressing mode (AM) of each operand
 - Specification of each operand involves specifying one or more of the following:
 - General purpose register
 - Value of an immediate operand
 - Address of operand
 - Base register
 - Index register
 - Displacement

Instruction Representation

• 3-operand CISC instruction format:

ADD dst, src1, src2

Opcode	Size of	AM of	Specification	AM of	Specification	AM of	Specification
	operands	dst	of dst	src1	of src1	src2	of src2

Opcode	Size of	AM of	Specification	AM of	Specification	AM of	Specification
	operands	dst	of dst	src1	of src1	src2	of src2

0011	01	000	00011	101	00001	00000	110	0011 0010	00010
------	----	-----	-------	-----	-------	-------	-----	--------------	-------

Instruction RepresentationExamples of RISC instructions:

ADD.w R2, R0, R1

Opcode	Size of operands	Specification of dst	Specification of src1	Specification of src2
000111	01	00010	00000	00001

LOAD.w R2, [R1][R0]

Opcode Size of operands		Specification	AM of	Specif	fication
		of dst	src	of	src
010011	01	00010	101	00001	00000

Registers

• The <u>registers set</u> stores intermediate data used during the execution of the instructions

- <u>Processor register</u> is a small amount of very fast <u>computer memory</u> used to speed the execution of <u>computer program</u>s by providing quick access to commonly used values typically, the values being in the midst of a calculation at a given point in time. (AC)
- **Data registers** are used to store <u>integer</u> numbers (DR)
- Address registers hold memory addresses and are used to access memory. (AR)
- General Purpose registers (GPRs) can store both data and addresses, i.e., they are combined Data/Address registers
- Floating Point registers (FPRs) are used to store <u>floating point</u>Computer arithmetic
- **Constant registers** hold read-only values (e.g., zero, one, pi, ...).
- Vector registers hold data for vector processing
- **Special Purpose registers** store internal CPU data, like the program counter which indicates where the computer is in its instruction sequence
- **Control Registers** which ctrl the general behavior of the CPU

- <u>Program counter</u>: Holds address for instruction (i.e. address of the next instruction after execution of the current instruction is completed (PC)
- Instruction Register: holds the instruction code. (IR)
- <u>Temporary register</u>: holds temporary data (TR)
- <u>Input register</u>: holds input character (INPR)
- <u>Output registers:</u> holds output character (OUTR)

Instruction codes

- The internal organization of a digital system is defined by the sequence of micro operations it performs on data stored in its registers.
- Digital computer is capable of executing various micro operations & can be instructed as to what sequence of operations it must perform.
- The user of a computer can control the process by means of a program.
- A program is a set of instructions that specify the operations, operands, and the sequence by which processing has to occur.
- The data processing task maybe altered by specifying a new program with different instructions or specifying the same instructions with different data.

- A computer instruction is a binary code that specifies a sequence of micro operations for the computer. Instructions codes together with data are stored in memory.
- The computer reads each instruction from memory and places it in a control register. The control then interprets the binary code of the instruction and proceeds to execute it by issuing a sequence of micro operations.
- Every **computer has its own instruction set**. The ability to store and execute , the stored program concept, is the most important property of a general purpose computer.
- <u>An instruction code is a group of bits that instruct the</u> <u>computer to perform a specific operation.</u> It usually divided into two parts, each having its own particular interpretation.

- The most basic part of an instruction code is its <u>operation part</u>. The operation code of an instruction is a group of bits that <u>define such</u> <u>operations as add, subtract, multiply, shift and complement.</u>
- As an illustration, consider a computer with 64 distinct operations. One of them being an ADD operation. When this <u>operation code is</u> <u>decoded in the control unit</u>, the computer <u>issues control signals to</u> <u>read an operand from memory and add the operand to a processor</u> <u>register.</u>
- The relationship between a computer operation and a micro operation. An operation is a part of an instruction stored in computer memory. It is a binary code that <u>tells the computer to perform a</u> <u>specific operation.</u>
- The control unit receives the instruction from memory and interprets the computer code bits.

- <u>It then issues a sequence of control signals to initiate micro</u> <u>operations in internal computer registers.</u>
- For every operation code, the control issues a sequence of micro operations needed for the hardware implementation of the specified operation.
- For this reason, an operation code is sometimes called a macro operations because it specifies a set of micro operations.
- The operation part of an instruction code specifies the operation to be performed. This operation must be performed on some data stored in processor

- Instruction Code specifies operation and registers where the operands are to be found.
- Instruction Code format with two parts

OPCODE	ADDRESS
--------	---------

- Opcode specifies the operation to be performed
- Address tells the control where to find an operand in memory.

Memory

Instruction Format

STORED PROGRAM ORGANIZATION

PROCESSOR REGISTERS

COMMON BUS SYSTEM

- BASIC COMPUTER HAS
 - EIGHT REGISTERS
 - > MEMORY UNIT
 - CONTROL UNIT
- Path must be provided to transfer information from one register to another and between memory and registers.
- The number of wires will be excessive if connections are made between the o/p of each register and i/p of other registers.
- A more efficient scheme of transferring the information in a system with many registers is to use a common bus

Lectures 6-10:

Basic Computer Organization and Design Section 5-2: Registers

5

Computer Instructions

- Computer instruction code format has 16 bits
- OPCODE : part of the instruction contains three bits and the meaning of the 13 bits depends upon the operation code encountered.

Computer instruction are of three types

- Memory reference instruction
- Register reference instruction
- Input-output instruction

Memory reference instruction

Lectures 6-10:

Basic Computer Organization and Design Section 5-1: Instruction codes

3

Register reference instruction

- They are recognized by the OPCOde 111 and 0 with the left most bit
- The other 12 bits specifies the operation.
- Register reference instruction specifies operation on register.
- So, does not need any reference to memory

Input-output instruction

- They are recognized by the OPCOde 111 and 1 with the left most bit
- The other 12 bits specifies the operation.
- Input-output instruction does not need any reference to memory

Assignment

Explain Instruction set format. What do you mean by register.