
Introduction: Pipeline 

 Parallel Processing 

 Simultaneous data processing tasks for the purpose of increasing the 
computational speed 

 Perform concurrent data processing to achieve faster execution time 

 Multiple Functional Unit :  

 Separate the execution unit into eight functional units operating in parallel 

=      



Adder-subtractor 

Integer multiply 

Floating-point 
add-subtract 

Incrementer 

Shift unit 

Logic unit 

Floating-point 
divide 

Floating-point 
multiply 

Processor 

registers 

To Memory 



   Pipelining : it is the process of Decomposing a sequential process into suboperations 

with Each subprocess is executed in a special dedicated segment concurrently with all 

other segments. 

 It is a collection of processing segments through which binary information flows. Where 

each segment performs partial processing dedicated by the way the task is partioned. 

 Pipelining 

 Multiply and add operation :                  ( for i = 1, 2, …, 7 ) 

 3 Suboperation Segment 

» 1)                                        : Input Ai and Bi 

» 2)                                        : Multiply and input Ci 

» 3)                                        : Add Ci 

 Content of registers in pipeline example :  

435

4,2*13

2,1

RRR

CiRRRR

BiRAiR







CiBiAi *



R1 R2 

Multiplier 

R3 R4 

Adder 

R5 

Ai Bi Ci 



Segment 3

R1 R2 R3 R4 R5

1 A1 B1 - - -

2 A2 B2 A1*B1 C1 -

3 A3 B3 A2*B2 C2 A1*B1+C1

4 A4 B4 A3*B3 C3 A2*B2+C2

5 A5 B5 A4*B4 C4 A3*B3+C3

6 A6 A6 A5*B5 C5 A4*B4+C4

7 A7 A7 A6*B6 C6 A5*B5+C5

8 - - A7*B7 C7 A6*B6+C6

9 - - - - A7*B7+C7

Clock pulse Number

Segment1 Segment 2



General considerations 

4 segment pipeline : the operand pass through all four segments in a 
fixed sequence. Each segment consists of a combinational ckt Si that 
performs a sub operation over the data stream. The segments are 
separated by the registers to hold the intermediate results. 

 

 

 

 

 

 

 

Space-time diagram :  

»Show segment utilization as a function of time 

Task : T1, T2, T3,…, T6 executed in four segments. 

»Total operation performed going through all the segment 

S1 R1 S2 R2 S4 R4 S3 R3 

Clock 

Input 

Fig.: Four Segment pipeline 



1 8765432 9

1

4

3

2

Clock cycles

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

T1 T6T3 T5T2 T4

S
eg

m
en

t

Pipeline= 9 clock cycles 



 Speedup S : Nonpipeline / Pipeline 

 S = n • tn / ( k + n - 1 ) • tp = 6 • 6 tn / ( 4 + 6 - 1 ) • tp = 36 tn / 9 tn = 4 

» n : task number ( 6 ) 

» tn : time to complete each task in nonpipeline ( 6 cycle times = 6 tp) 

» tp : clock cycle time ( 1 clock cycle ) 

» k : segment number ( 4 ) 

 If n  이면, S = tn / tp 

 If we assume that the time it takes to process a task is the same in the pipeline and 

nonpipeline circuits then we have  

nonpipeline ( tn ) = pipeline ( k • tp ) 

 

S = tn / tp  = k • tp / tp  = k 

Where k is the number of segments.  

 

  Arithmetic Pipeline 

 Floating-point Adder Pipeline Example :  

 Add / Subtract two normalized floating-point binary number 

» X = A  x 2a  = 0.9504  x 103  

» Y = B  x 2b  = 0.8200  x 102  

k + n - 1  n 



 4 segments suboperations 

» 1) Compare exponents by subtraction : 

              3 - 2 = 1 

 X = 0.9504  x 103  

 Y = 0.8200  x 102  

» 2) Align mantissas 

 X = 0.9504  x 103  

 Y = 0.08200  x 103 

» 3) Add mantissas 

 Z = 1.0324  x 103  

» 4) Normalize result 

 Z = 0.1324  x 104 



R

Compare
exponents

by subtraction

R

Choose exponent Align mantissas

R

Add or subtract
mantissas

R

Normalize
result

R

R

Adjust
exponent

R

R

a b BA
Exponents Mantissas

Difference
Segment 1 :

Segment 4 :

Segment 3 :

Segment 2 :



Instruction Pipeline 

Instruction Cycle 

1) Fetch the instruction from memory 

2) Decode the instruction 

3) Calculate the effective address 

4) Fetch the operands from memory 

5) Execute the instruction 

6) Store the result in the proper place 



Segment 1 : 

Segment 4 : 

Segment 3 : 

Segment 2 : 

Fetch instruction  
from memory 

Decode instruction 

and calculate the 

effective address 

Fetch operand  
from memory 

Execute instruction 

Branch ? 

Interrupt ? 
Interrupt  
handling 

Update PC 

Empty pipe 



 Example : Four-segment Instruction Pipeline 

 Four-segment CPU pipeline :  

» 1) FI : Instruction Fetch 

» 2) DA : Decode Instruction & calculate EA 

» 3) FO : Operand Fetch 

» 4) EX : Execution 

 Timing of Instruction Pipeline : 

 

 

Branch 

1 32

1

4

3

2

7

6

5

87654 9 121110 13

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI EXFODA

FI

Instruction :

(Branch)

 Step :

No Branch 



 Pipeline Conflicts : 3 major difficulties 

 1) Resource conflicts 

» memory access by two segments at the same time.  

» Can be avoided by using separate instruction stream and data memories. 

 2) Data dependency 

» when an instruction depend on the result of a previous instruction, but this result is not 
yet available 

 3) Branch difficulties 

» branch and other instruction (interrupt, ret, ..) that change the value of PC 

 Data Dependency 

 Hardware  

» Hardware Interlock 
 previous instruction의 결과가 나올 때 까지 Hardware 적인 Delay를 강제 삽입  

» Operand Forwarding 
 previous instruction의 결과를 곧바로 ALU 로 전달 (정상적인 경우, register를 경유함) 

 Software 적인 방법 

» Delayed Load 
 previous instruction의 결과가 나올 때 까지 No-operation instruction 을 삽입 



Introduction: Multiprocessor 
 

The slowdown in uniprocessor performance and growing concern over 

power  generated a new era in computer architecture is known as 

multiprocessor. 

 

Mainstream of multiprocessor design: multiprocessors with small to medium  

numbers of processors (4 to 32) 



 Characteristics of Multiprocessors 
 Multiprocessors System = MIMD 

 An interconnection of two or more CPUs with memory and I/O equipment 

» a single CPU and one or more IOPs is usually not included in a multiprocessor system 

 Unless the IOP has computational facilities comparable to a CPU 

 Computation can proceed in parallel in one of two ways 

 1) Multiple independent jobs can be made to operate in parallel 

 2) A single job can be partitioned into multiple parallel tasks 

 Classified by the memory Organization 

 1) Shared memory or Tightly-coupled system: Provides a cache memory with each CPU  and there is 

Global common memory that all CPU can access. 

» Local memory + Shared memory  

 2) Distribute memory or Loosely-coupled system 

» Local memory + message passing scheme (I.e. the processors are tied together by a switching 

scheme designed to route information from one processor to another though message passing 

scheme. 

 Interconnection Structure: the components that form the multiprocessor system 
are CPU ,IOP connected to I/O devices , and memory unit that may be portioned 
into a number of separate modules. 
 Multiprocessor System Components 

 1) Time-shared common bus 

 2) Multi-port memory 

 3) Crossbar switch 

 4) Multistage switching network 

 5) Hypercube system 



 Time-shared Common Bus 

 Time-shared single common bus system :  

» Only one processor can communicate with the memory or another processor at 

any given time 

 when one processor is communicating with the memory, all other processors are 

either busy with internal operations or must be idle waiting for the bus 

Memory unit

CPU 1 CPU 3CPU 2 IOP 1 IOP 2



Dual common bus system : 

»System bus + Local bus 

»Shared memory   

the memory connected to the common system bus is shared by all 

processors 

»System bus controller 

Link each local but to a common system bus 

COmmon 

shared 

memory 

System 

bus 

controller 

CPU IOP 
Local  

memory 

System 

bus 

controller 

CPU IOP 
Local  

memory 

System 

bus 

controller 

CPU 
Local  

memory 

Local bus Local bus 

System Bus 

Local bus 

Tightly coupled system 



Multi-port memory :  
 multiple paths between processors and memory 

» Advantage : high transfer rate can be achieved 

» Disadvantage : expensive memory control logic / large number of cables & connectors 

MM 1 MM 4MM 3MM 2

CPU 1

CPU 4

CPU 3

CPU 2

Memory modules



Crossbar Switch :  

Crosspoints are placed at intersections between processor buses and memory module 

paths. 

A small square in each crosspoints is a switch that determines the path from a processor 

to a memory module. 

Each switch point has a control logic to set up the transfer path between processor and 

memory module. 

MM 1 MM 4MM 3MM 2

CPU 1

CPU 4

CPU 3

CPU 2

Memory modules

Memory
module

Multiplexers
and 

arbitration
logic

Data

Memory

Read/write

Address

enable

Data,address, and
control form CPU 1

Data,address, and
control form CPU 4

Data,address, and
control form CPU 3

Data,address, and
control form CPU 2

 MM 
 CPUs 



Multistage Switching Network 
 Control the communication between a number of sources and destinations 

» Tightly coupled system : PU          MM 

» Loosely coupled system : PU          PU 

 Basic components of a multistage switching network are  

    two-input, two-output interchange switch : the two Input has labled A & B and 

two output labeled 0 & 1. 

A

B
1

0

A connected to 0

A

B
1

0

B connected to 1

A

B
1

0

B connected to 0

A

B
1

0

A connected to 1



It is possible to build a multistage network to control the 

communication between number of sources and destinations. 

The 2 Processor (P1 and P2) are connected through switches to 8 

memory modules marked by (000 - 111)  

0

1

0

1

0

1

0

1

000

111

110

101

100

011

010

001
0

1

0

1

0

1

P0

P1



000

001

100

101

010

011

110

111

0

6

5

4

3

2

1

7

Omega Network : 2 x 2 Interchange switch with N input  x N output network 

topology  



Hypercube Interconnection :  
 The hypercube or binary n-cube multiprocessor structure is a Loosely 

coupled system composed of N=2n processors interconnected in an n-

dimensional binary cube. Each processor forms a node for the cube. 

 Hypercube Architecture  : Intel iPSC ( n = 7, 128 node ) 

 

 

 

 

 

 

 

 
0

0

01

10

11

00

010

011

110

101

100

111

000

001



13-3  Interprocessor Arbitration : Bus Control 

System bus : Bus that connects CPUs, IOPs, and Memory in 
multiprocessor system 

 

 

 

 

 

 

 

e.g. IEEE standard 796 bus 
    - 86 lines 

Data:        16(multiple of 8) 
Address:  24 
Control:    26 
Power:      20 

System Bus - A Backplane level bus 

 

      - Printed Circuit Board 

      - Connects CPU, IOP, and Memory 

      - Each of CPU, IOP, and Memory board can be  

        plugged into a slot in the backplane(system bus) 

      - Bus signals are grouped into 3 groups 

            Data, Address, and Control(plus power) 

            

      - Only one of CPU, IOP, and Memory can be  

        granted to use the bus at a time 

       



SYNCHRONOUS  &  ASYNCHRONOUS  DATA  TRANSFER 

Synchronous Bus 
         Each data item is transferred over a time slice 

         known to both source and destination unit 
           - Common clock source 

           - Or separate clock and synchronization signal 
             is transmitted periodically to synchronize 

             the clocks in the system 
 

Asynchronous Bus 
     

      * Each data item is transferred by Handshake 
         mechanism   

             - Unit that transmits the data transmits a control 
               signal that indicates the presence of data 

             - Unit that receiving the data responds with  
               another control signal to acknowledge the 

               receipt of the data 
    

      * Strobe pulse - supplied by one of the units to  
         indicate to the other unit when the data transfer 

         has to occur 



BUS  SIGNALS 

Bus signal allocation 

- address 
- data 

- control 
- arbitration 
- interrupt 
- timing 

- power, ground 

IEEE Standard 796 Multibus Signals 

Data and address 

 Data lines (16 lines)  DATA0 - DATA15 

 Address lines (24 lines)  ADRS0 - ADRS23 

Data transfer 

 Memory read                 MRDC 

 Memory write                MWTC 

 IO read                                 IORC 

 IO write                                 IOWC 

 Transfer acknowledge  TACK  (XACK) 

Interrupt control 

 Interrupt request           INT0 - INT7 

 interrupt acknowledge  INTA 



BUS  SIGNALS 

IEEE Standard 796 Multibus Signals (Cont’d) 

Miscellaneous control 

 Master clock                 CCLK 

 System initialization  INIT 

 Byte high enable            BHEN 

 Memory inhibit (2 lines)  INH1 - INH2 

 Bus lock          LOCK 

Bus arbitration 

 Bus request                 BREQ 

 Common bus request  CBRQ 

 Bus busy                 BUSY 

 Bus clock                 BCLK 

 Bus priority in                 BPRN 

 Bus priority out                 BPRO 

Power and ground (20 lines) 
 



Amdahl’s law 
 

Speedup S(n): ratio of total execution time T(1) on a sequential computer to 

the corresponding execution time T(n) on the computer whose degree of 

parallelism is n. 

 

S(n) = T(1)/T(n) 



Efficiency E(n) : with which the speedup per degree of 

parallelism. E(n) is also an indication of processor 

utilization. 

 

E(n) = S(n)/n 

 In General speedup and efficiency provides rough 

estimates of the performance changes that can be 

expected in a parallel processing system by increasing 

the parallelism  degree n, I.e. by adding more 

processors  



AMDAHL’S LAW 

This theorem was first described by Gene Amdahl in his 1967 paper titled 

“Validity of the single processor approach to achieving large scale 

computing capability”. The statement was 

 

If F is the fraction of a calculation that is sequential, and (1-F) is the fraction 

that can be parallelized , then the maximum speedup that can be achieved by 

using P processors is 1/(F+(1-F)/P) 



Given a program 

        f  :  Fraction of time that represents operations  

              that must be performed serially 

 

Maximum Possible Speedup: S  

S                                     , with p processors 
f + (1 - f ) / p 

1 

                    S  <  1 / f               , with unlimited number of processors 

- Ignores possibility of new algorithm, with much smaller f 

 

- Ignores possibility that more of program is run from higher speed  

     memory such as Registers, Cache, Main Memory 

 

- Often problem is scaled with number of processors, and f  is a   

     function of size which may be decreasing (Serial code may take  

     constant amount of time, independent of size) 



Ex. Of Amdahl’s Law 

 

If 90% of a calculation can be parallelized (I.e. is sequential) than the 

maximum speed-up which can be achieved on 5- processor is    

1/(0.1+ (1-0.1)/5) or roughly 3.6 (I.e. the program can theoretically 

run 3.6 times faster on five processors than one. 



APPLICATION 

 

STAMP is a new benchmark suite designed for Transactional 

Memory research. It currently consists of eight benchmarks with 

plans for more. 

bayes: Bayesian network learning 

genome: gene sequencing 

intruder: network intrusion detection 

kmeans: K-means clustering 

labyrinth: maze routing 

ssca2: graph kernels 

vacation: client/server travel reservation system 

yada: Delaunay mesh refinement (Ruppert's algorithm) 



 

 

Scope of Research in Multiprocessor 

The objective of research on the MIDAS project is to demonstrate the viability of a 

multiprocessor approach to computing and to develop a general purpose, extensible 

architecture which can be used to address the growing computational requirements of 

the scientific community. To be successful in this endeavor, however, requires more 

than simply designing, or even constructing, new hardware structures. To achieve high 

performance on future systems will require software approaches which can exploit 

parallel architectures as fully as possible. A critical issue, therefore, is to understand 

the functional requirements of a large class of applications. The effective utilization of 

highly parallel architectures, however, raises many new questions. Traditional 

operating system structures must, for example, be re-examined. Fault-tolerant 

environments, with error recovery capability, become increasingly important as the 

number of components and processors increases. Language extensions to support 

parallel operations are obviously required, and ultimately new languages are needed to 

explicitly exploit parallel constructs. A new generation of development and debugging 

tools will be necessary in order to examine programn performance and operation in an 

asynchronous parallel environment. 



Assignment 

 

1. What do you mean by processing. Explain Parallel processing. 

2. What do you mean by Instruction level parallelism. 

 


