

JAVA LAB (LC-CSE-327G)

LABORATORY MANUAL

B.Tech. Semester- V

JAVA LAB

Subject code: LC-CSE-327G

Prepared by: Checked by: Approved by:

Dr. Ashima Mehta Dr. Ashima Mehta Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

TABLE OF CONTENTS

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO-PO and CO-PSO Mapping

9. Course Overview

10. List of Experiments

11. DOs and DON’Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Details of Conducted Experiments

16. Lab Experiments

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

VISION AND MISSION OF THE INSTITUTE

Vision:

“Empowering human values and advanced technical education to navigate and address global

challenges with excellence.”

Mission:

 M1: Seamlessly integrate human values with advanced technical education.

 M2: Supporting the cultivation of a new generation of innovators who are not only

skilled but also ethically responsible.

 M3: Inspire global citizens who are equipped to create positive and sustainable impact, driving

progress towards a more inclusive and harmonious world.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

VISION AND MISSION OF THE DEPARTMENT

Vision:

“Steering the future of computer science through innovative advancements, fostering

ethical values and principles through technical education.”

Mission:

M1: Directing future innovations in computer science through revolutionary progress.

M2: Instilling a foundation of ethical values and principles in every technologist.

M3: Offering a comprehensive technical education to equip individuals for a meaningful

and influential future.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1: Apply the technical competence in Computer Science and Engineering for solving

problems in the real world.

PEO2: Carry out research and develop solutions on problems of social applications.

PEO3: Work in a corporate environment, demonstrating team skills, work morals, flexibility

and lifelong learning.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyse complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modelling to complex engineering

activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Exhibit design and programming skills to develop and mechanize business solutions

using revolutionary technologies.

PSO2: Learn strong theoretical foundation leading to brilliance and enthusiasm towards

research, to provide well-designed solutions to complicated problems.

PSO3: Work effectively with diverse Engineering fields as a team to design, build and

develop system applications.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

UNIVERSITY SYLLABUS

1. Write a java program to check whether given alphabet is vowel or not.

2. Write a java program to implement method overloading.

3. Write a java program to implement method riding.

4. Write a java program to solve Fibonacci series using recursive method.

5. Write a java program to create a class circle and initialize and display its variables

center and radius.

6. Write a java program to implement parameterized constructor.

7. Write a java program to implement stack operations using array.

8. Write a java program to perform addition of two matrices.

9. Write a java program to implement exception handling.

10. Write a java program extend thread class.

11. Write a java program to implement ArrayList using collection framework.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

COURSE OUTCOMES (COs)

Upon successful completion of the course, the students will:

1. Gain knowledge of the structure and model of the Java programming language,

(knowledge)

2. Use the Java programming language for various programming technologies

(understanding)

3. Develop software in the Java programming language

CO-PO Mapping:

 PSO1 PSO2 PSO3 PSO4 PSO5 PSO6 PSO7 PSO8 PSO9 PSO10 PSO11 PSO12

C327.1 3 3 2 2 2 1 - 1 - 1 1 3

C327.2 3 3 3 2 3 1 - 1 - 1 1 3

C327.3 3 3 2 1 2 1 - 1 - 1 1 3

CO-PSO Mapping:

 PSO1 PSO2 PSO3

C327.1 3 2 1

C327.2 3 3 2

C327.3 3 2 3

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

COURSE OVERVIEW

A Java lab course is a practical component accompanying a Java programming course that

focuses on hands-on experience with the Java programming language. The course covers

topics such as setting up the Java development environment, basic syntax, object-oriented

programming (OOP) concepts, Java classes and packages, exception handling, file handling,

and input/output operations. Students gain practical experience by working on programming

exercises and projects, applying their knowledge to solve real-world problems. The course

emphasizes writing clean, efficient, and well-structured code, and provides students with the

skills and confidence to develop Java applications. By the end of the course, students should

be able to design and implement Java programs, effectively utilize OOP principles, handle

exceptions, and work with files and data input/output.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

LIST OF EXPERIMENTS MAPPED WITH COs

S.No Experiment Course Outcome Page No.

1 Write a java program to check whether given

alphabet is vowel or not.

C327.1 1

2 Write a java program to implement method

overloading.

C327.1 4

3 Write a java program to implement method riding. C327.1, C327.2 8

4 Write a java program to solve Fibonacci series

using recursive method.

C327.1, C327.2 12

5 Write a java program to create a class circle and

initialize and display its variables center and radius.

C327.1 15

6 Write a java program to implement parameterized

constructor.

C327.3 18

7 Write a java program to implement stack operations

using array.

C327.1, C327.2 21

8 Write a java program to perform addition of two

matrices.

C327.1 27

9 Write a java program to implement exception

handling.

C327.3 31

10 Write a java program extend thread class. C327.3 35

11 Write a java program to implement ArrayList using

collection framework.

C327.3 39

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

DOs and DON’Ts

DOs

1. Login-on with your username and password.

2. Log off the Computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

GENERAL SAFETY PRECAUTIONS

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or plastic

to break the contact. Do not touch the victim with bare hands to avoid the risk of electrifying

yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the circuit

off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press the

chest in and out to continue breathing function. Use mouth-to-mouth resuscitation if

necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by

covering it with a heavy cloth if possible isolate the burning equipment from the other

surrounding equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency : 200 (Reception)

Security : 248 (Gate No.1)

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

GUIDELINES TO STUDENTS FOR REPORT PREPARATION

All students are required to maintain a record of the experiments conducted by them.

Guidelines for its preparation are as follows:-

1) All files must contain a title page followed by an index page. The files will not be signed

by the faculty without an entry in the index page.

2) Student’s Name, Roll number and date of conduction of experiment must be written on all

pages.

3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment

(ii) Pre-experiment work (as given by the faculty)

(iii) Lab assignment questions and their solutions

(iv) Test Cases (if applicable to the course)

(v) Results/ output

Note:

1. Students must bring their lab record along with them whenever they come for the lab.

2. Students must ensure that their lab record is regularly evaluated.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

LAB ASSESSMENT CRITERIA

An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes

are assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as

shown in following table. Assessed performance in each experiment is used to compute CO

attainment as well as internal marks in the lab course.

Grading

Criteria

Exemplary (4) Competent (3) Needs

Improvement (2)

Poor (1)

AC1: Complete Underlined Not able to write Underlined

Pre-Lab written procedure with concept is written concept and concept is not

work (this may underlined but procedure is procedure clearly

be assessed concept is incomplete

understood

through viva) properly written

AC2: Assigned problem Assigned problem Assigned problem Assigned

Program is properly is properly is properly problem is

Writing/ analyzed, correct analyzed, correct analyzed & properly

Modeling solution designed, solution designed, correct solution analyzed

appropriate appropriate designed

language language

constructs/ tools constructs/ tools

are applied, are applied

Program/solution

written is readable

AC3: Able to identify Able to identify Is dependent Unable to

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

Identification & errors/ bugs and errors/ bugs and totally on understand the

Removal of remove them remove them with someone for reason for errors/

errors/ bugs

little bit of identification of bugs even after

guidance errors/ bugs and they are

their removal explicitly pointed

out

AC4:Execution All variants of All variants of Only few variants Solution is not

& Demonstration input /output are input /output are of input /output well

tested, Solution is not tested, are tested, demonstrated

well demonstrated However, solution Solution is well and implemented

and implemented is well demonstrated but concept is not

concept is clearly demonstrated and implemented clearly explained

explained implemented concept is not

concept is clearly clearly explained

explained

AC5:Lab Record All assigned More than 70 % of Less than 70 % of Less than 40 %

Assessment problems are well the assigned the assigned of the assigned

recorded with problems are well problems are well problems are

objective, design recorded with recorded with well recorded

constructs and objective, design objective, design with objective,

solution along contracts and contracts and design contracts

with solution along solution along and solution

Performance with with along with

analysis using all Performance Performance Performance

variants of input analysis is done analysis is done analysis is done

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

 and output with all variants of

input and output

with all variants of

input and output

with all variants

of input and

output

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

LAB EXPERIMENTS

1

OBJECTIVE:

LAB EXPERIMENT 1

Write a java program to check whether given alphabet is vowel or not.

PRE-EXPERIMENT QUESTIONS:

1. How can you check whether a given alphabet is a vowel or not in Java?

2. What are the common approaches to implement vowel checking in a programming

language?

BRIEF DISCUSSION AND EXPLANATION:

import java.util.Scanner;

public class VowelChecker {

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);

System.out.print("Enter an alphabet: ");

char alphabet = scanner.next().charAt(0);

// Convert the alphabet to lowercase for case-insensitive comparison

alphabet = Character.toLowerCase(alphabet);

if (isVowel(alphabet)) {

System.out.println(alphabet + " is a vowel.");

} else {

2

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

System.out.println(alphabet + " is not a vowel.");

}

}

public static boolean isVowel(char alphabet) {

// Check if the alphabet is one of the vowels (a, e, i, o, u)

return alphabet == 'a' || alphabet == 'e' || alphabet == 'i' || alphabet == 'o' || alphabet == 'u';

}

}

1. The program starts by importing the `Scanner` class from the `java.util` package. This

class allows us to read user input from the console.

2. In the `main` method, a `Scanner` object named `scanner` is created to read input from the

user.

3. The program prompts the user to enter an alphabet by using `System.out.print("Enter an

alphabet: ");`. The input is read as a string using `scanner.next()`, and then the first character

is extracted using `charAt(0)` to obtain the alphabet.

4. The alphabet is converted to lowercase using `Character.toLowerCase(alphabet)` to make

the comparison case-insensitive.

5. The program then calls the `isVowel` method, passing the alphabet as an argument. This

method checks if the given alphabet is a vowel by comparing it with the lowercase vowels ('a',

'e', 'i', 'o', 'u'). It returns `true` if the alphabet is a vowel and `false` otherwise.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

3

6. Based on the result of `isVowel`, the program prints the appropriate message to the console.

Output:

POST EXPERIMENT QUESTIONS:

1. Explain the structure of the VowelCheck Java program.

2. What is the purpose of the isVowel method in the program? How does it check for

vowels?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

4

LAB EXPERIMENT 2

OBJECTIVE:

Write a java program to implement method overloading.

PRE-EXPERIMENT QUESTIONS:

1. What is method overloading in Java?

2. What are the requirements for method overloading?

BRIEF DISCUSSION AND EXPLANATION:

public class MethodOverloadingExample {

public static void main(String[] args) {

MethodOverloadingExample obj = new MethodOverloadingExample();

obj.add(5, 10);

obj.add(3.7, 2.5);

obj.add("Hello", "World");

}

// Method to add two integers

public void add(int a, int b) {

int sum = a + b;

System.out.println("Sum of integers: " + sum);

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

5

}

// Method to add two doubles

public void add(double a, double b) {

double sum = a + b;

System.out.println("Sum of doubles: " + sum);

}

// Method to concatenate two strings

public void add(String a, String b) {

String concat = a + " " + b;

System.out.println("Concatenation of strings: " + concat);

}

}

Discussion:

1. The program defines a class called `MethodOverloadingExample`.

2. In the `main` method, an instance of the class is created using

`MethodOverloadingExample obj = new MethodOverloadingExample();`.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

6

3. The program demonstrates method overloading by defining multiple methods with the

same name (`add`) but different parameter types.

4. The first `add` method takes two integer parameters and calculates their sum. It then prints

the result.

5. The second `add` method takes two double parameters and calculates their sum. It then

prints the result.

6. The third `add` method takes two string parameters and concatenates them with a space in

between. It then prints the result.

7. Inside the `main` method, the `add` method is called three times with different arguments

to demonstrate method overloading.

Output:

In this sample output, the `add` method is called three times with different arguments.

- In the first call, the `add` method with integer parameters is invoked, and the sum of 5 and

10 is printed.

- In the second call, the `add` method with double parameters is invoked, and the sum of 3.7

and 2.5 is printed.

- In the third call, the `add` method with string parameters is invoked, and the concatenation

of "Hello" and "World" is printed.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

7

POST EXPERIMENT QUESTIONS:

1. Explain the structure of the MethodOverloadingExample Java program.

2. What is the purpose of the add method in the program?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

8

LAB EXPERIMENT 3

OBJECTIVE:

Write a java program to implement method riding.

PRE-EXPERIMENT QUESTIONS:

1. What is method overriding in Java?

2. What are the requirements for method overriding?

BRIEF DISCUSSION AND EXPLANATION:

class Vehicle {

public void sound() {

System.out.println("Vehicle makes a sound");

}

}

class Car extends Vehicle {

@Override

public void sound() {

System.out.println("Car goes vroom");

}

}

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

9

class Motorcycle extends Vehicle {

@Override

public void sound() {

System.out.println("Motorcycle goes vroom vroom");

}

}

public class MethodOverridingExample {

public static void main(String[] args) {

Vehicle vehicle1 = new Vehicle();

Vehicle vehicle2 = new Car();

Vehicle vehicle3 = new Motorcycle();

vehicle1.sound(); // Output: Vehicle makes a sound

vehicle2.sound(); // Output: Car goes vroom

vehicle3.sound(); // Output: Motorcycle goes vroom vroom

}

}

Discussion:

1. The program defines a base class `Vehicle` with a `sound` method that prints "Vehicle

makes a sound".

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

1
0

2. The classes `Car` and `Motorcycle` inherit from the `Vehicle` class and override the

`sound` method with their own implementations.

3. The `Car` class overrides the `sound` method to print "Car goes vroom" instead of the

default message.

4. The `Motorcycle` class overrides the `sound` method to print "Motorcycle goes vroom

vroom" instead of the default message.

5. In the `main` method, objects of `Vehicle`, `Car`, and `Motorcycle` classes are created.

6. The `sound` method is called on each object, and the output demonstrates the method

overriding behavior.

Sample Output:

In this sample output, the `sound` method is called on objects of the `Vehicle`, `Car`, and

`Motorcycle` classes.

- When `sound` is called on the `Vehicle` object, the base class implementation is invoked,

and the default message "Vehicle makes a sound" is printed.

- When `sound` is called on the `Car` object, the overridden method in the `Car` class is

invoked, and "Car goes vroom" is printed.

- When `sound` is called on the `Motorcycle` object, the overridden method in the

`Motorcycle` class is invoked, and "Motorcycle goes vroom vroom" is printed.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

11

This demonstrates method overriding, where the behavior of the method is determined by the

actual type of the object at runtime.

POST EXPERIMENT QUESTIONS:

1. What is the output of the program? Explain the behavior of the overridden methods.

2. How can you modify the program to include additional subclasses that override the

makeSound method?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

1
2

LAB EXPERIMENT 4

OBJECTIVE:

Write a java program to solve Fibonacci series using recursive method.

PRE-EXPERIMENT QUESTIONS:

1. What is the Fibonacci series?

2. How can you solve the Fibonacci series using a recursive approach?

BRIEF DISCUSSION AND EXPLANATION:

public class FibonacciRecursive {

public static void main(String[] args) {

int n = 10; // Number of Fibonacci numbers to generate

System.out.println("Fibonacci Series:");

for (int i = 0; i < n; i++) {

System.out.print(fibonacci(i) + " ");

}

}

public static int fibonacci(int n) {

if (n <= 1) {

return n;

}

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

13

return fibonacci(n - 1) + fibonacci(n - 2);

}

}

Discussion:

1. The program defines a class named `FibonacciRecursive`.

2. In the `main` method, an integer variable `n` is initialized with the number of Fibonacci

numbers to generate. In this example, we generate 10 Fibonacci numbers.

3. The program uses a `for` loop to iterate `n` times and print the Fibonacci numbers.

4. Inside the loop, the `fibonacci` method is called with the current index `i` as an argument,

and the result is printed.

5. The `fibonacci` method is implemented using recursion. It takes an integer `n` as an

argument and returns the `n`th Fibonacci number.

6. In the recursive implementation, if `n` is less than or equal to 1, the method returns `n` as it

is (base case).

7. Otherwise, the method calls itself recursively with `n - 1` and `n - 2` as arguments, and

adds the results of the two recursive calls to calculate the Fibonacci number for `n`.

Sample Output:

In this sample output, the program generates the first 10 Fibonacci numbers using recursion.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

1
4

- The `main` method initializes `n` as 10, indicating that we want to generate 10 Fibonacci

numbers.

- The program enters a loop that iterates from 0 to 9 (inclusive).

- For each iteration, the `fibonacci` method is called with the current index as an argument.

- The Fibonacci numbers are calculated recursively using the formula `fibonacci(n) =

fibonacci(n - 1) + fibonacci(n - 2)`.

- The Fibonacci numbers are printed sequentially, separated by spaces.

The output shows the generated Fibonacci series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.

POST EXPERIMENT QUESTIONS:

1. Explain the structure of the FibonacciSeries Java program.

2. What is the purpose of the fibonacci method in the program?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

15

LAB EXPERIMENT 5

OBJECTIVE:

Write a java program to create a class circle and initialize and display its variables center and

radius.

PRE-EXPERIMENT QUESTIONS:

1. What is a class in Java?

2. What are instance variables? How are they defined and used in Java classes?

BRIEF DISCUSSION AND EXPLANATION:

class Circle {

private double centerX;

private double centerY;

private double radius;

public Circle(double centerX, double centerY, double radius) {

this.centerX = centerX;

this.centerY = centerY;

this.radius = radius;

}

public void display() {

System.out.println("Center: (" + centerX + ", " + centerY + ")");

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

1
6

System.out.println("Radius: " + radius);

}

}

public class CircleExample {

public static void main(String[] args) {

Circle circle = new Circle(3.0, 4.0, 2.5);

circle.display();

}

}

Discussion:

1. The program defines a class named `Circle` to represent a circle.

2. The `Circle` class has three private instance variables: `centerX` and `centerY` for the

coordinates of the center and `radius` for the radius of the circle.

3. The `Circle` class has a constructor that takes the center coordinates (`centerX` and

`centerY`) and the radius as parameters to initialize the object's variables.

4. The `display` method in the `Circle` class prints the values of the center and radius.

5. The `CircleExample` class contains the `main` method where the program is executed.

6. Inside the `main` method, a `Circle` object named `circle` is created with center

coordinates (3.0, 4.0) and a radius of 2.5.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

17

7. The `display` method is called on the `circle` object to print the values of the center and

radius.

Sample Output:

In this sample output, the program creates a `Circle` object with center coordinates (3.0, 4.0)

and a radius of 2.5. Then, the `display` method is called on the `circle` object, which prints

the values of the center and radius. The output shows the center as (3.0, 4.0) and the radius as

2.5.

POST EXPERIMENT QUESTIONS:

1. How can you modify the program to add additional methods or variables to the Circle

class?

2. What is the scope of the center and radius variables in the Circle class?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

1
8

LAB EXPERIMENT 6

OBJECTIVE:

Write a java program to implement parameterized constructor.

PRE-EXPERIMENT QUESTIONS:

1. What is a constructor in Java?

2. What is the purpose of a parameterized constructor?

BRIEF DISCUSSION AND EXPLANATION:

class Person {

private String name;

private int age;

public Person(String name, int age) {

this.name = name;

this.age = age;

}

public void display() {

System.out.println("Name: " + name);

System.out.println("Age: " + age);

}

}

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

19

public class ParameterizedConstructorExample {

public static void main(String[] args) {

Person person = new Person("John Doe", 30);

person.display();

}

}

Discussion:

1. The program defines a class named `Person` to represent a person.

2. The `Person` class has two private instance variables: `name` to store the person's name

and `age` to store the person's age.

3. The `Person` class has a parameterized constructor that takes `name` and `age` as

parameters to initialize the object's variables.

4. The `display` method in the `Person` class prints the values of the name and age.

5. The `ParameterizedConstructorExample` class contains the `main` method where the

program is executed.

6. Inside the `main` method, a `Person` object named `person` is created using the

parameterized constructor, with the name set as "John Doe" and age as 30.

7. The `display` method is called on the `person` object, which prints the values of the name

and age.

Output:

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

2
0

In this sample output, the program creates a `Person` object using the parameterized

constructor with the name "John Doe" and age 30. Then, the `display` method is called on the

`person` object, which prints the values of the name and age. The output shows the name as

"John Doe" and the age as 30.

POST EXPERIMENT QUESTIONS:

1. Explain the structure of the ParameterizedConstructorExample Java program.

2. What is the purpose of the ParameterizedConstructorExample class?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

21

LAB EXPERIMENT 7

OBJECTIVE:

Write a java program to implement stack operations using array.

PRE-EXPERIMENT QUESTIONS:

1. What is a stack in computer science? How does it work?

2. What are the common operations performed on a stack?

BRIEF DISCUSSION AND EXPLANATION:

class Stack {

private int maxSize;

private int[] stackArray;

private int top;

public Stack(int size) {

maxSize = size;

stackArray = new int[maxSize];

top = -1;

}

public void push(int value) {

if (top == maxSize - 1) {

System.out.println("Stack is full. Cannot push " + value);

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

2
2

} else {

stackArray[++top] = value;

System.out.println("Pushed " + value + " onto the stack");

}

}

public int pop() {

if (top == -1) {

System.out.println("Stack is empty. Cannot pop");

return -1;

} else {

int value = stackArray[top--];

System.out.println("Popped " + value + " from the stack");

return value;

}

}

public int peek() {

if (top == -1) {

System.out.println("Stack is empty");

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

23

return -1;

} else {

int value = stackArray[top];

System.out.println("Top element of the stack is " + value);

return value;

}

}

public boolean isEmpty() {

return top == -1;

}

}

public class StackExample {

public static void main(String[] args) {

Stack stack = new Stack(5);

stack.push(10);

stack.push(20);

stack.push(30);

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

2
4

stack.peek();

stack.pop();

stack.pop();

stack.pop();

stack.pop();

stack.isEmpty();

}

}

Discussion:

1. The program defines a class named `Stack` to implement stack operations using an array.

2. The `Stack` class has private instance variables: `maxSize` to store the maximum capacity

of the stack, `stackArray` to store the elements of the stack, and `top` to keep track of the

index of the top element.

3. The `Stack` class has a constructor that takes the size as a parameter and initializes the

stack with the given size.

4. The `push` method pushes an element onto the stack. It first checks if the stack is full, and

if not, increments `top` and assigns the value to `stackArray[top]`.

5. The `pop` method pops the top element from the stack. It checks if the stack is empty, and

if not, returns the top element by decrementing `top` and accessing `stackArray[top]`.

6. The `peek` method returns the top element of the stack without removing it. It checks if the

stack is empty and returns the top element by accessing `stackArray[top]`.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

25

7. The `isEmpty` method checks if the stack is empty by comparing `top` with -1.

8. The `StackExample` class contains the `main` method where the program is executed.

9. Inside the `main` method, a `Stack` object named `stack` is created with a maximum size

of 5.

10. Stack operations are performed on the `stack` object, such as pushing elements, peeking

the top element, and popping elements.

Output:

In this sample output, the program demonstrates stack operations using an array.

- The elements 10, 20, and 30 are pushed onto the stack using the `push` method.

- The `peek` method is called to retrieve the top element, which is 30.

- The elements are popped from the stack using the `pop` method, starting from the top. The

values 30, 20, and 10 are displayed as they are popped.

- After all elements are popped, the `isEmpty` method is called to verify that the stack is

empty.

The output shows the results of the various stack operations performed.

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

2
6

POST EXPERIMENT QUESTIONS:

1. What is a stack in computer science? How does it work?

2. What are the common operations performed on a stack?

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

27

LAB EXPERIMENT 8

OBJECTIVE:

Write a java program to perform addition of two matrices.

PRE-EXPERIMENT QUESTIONS:

1. What are matrices in mathematics and computer science?

2. How can you represent matrices in Java programs?

BRIEF DISCUSSION AND EXPLANATION:

public class MatrixAddition {

public static void main(String[] args) {

int[][] matrix1 = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };

int[][] matrix2 = { { 9, 8, 7 }, { 6, 5, 4 }, { 3, 2, 1 } };

int[][] result = addMatrices(matrix1, matrix2);

displayMatrix(result);

}

public static int[][] addMatrices(int[][] matrix1, int[][] matrix2) {

int rows = matrix1.length;

int columns = matrix1[0].length;

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

2
8

int[][] result = new int[rows][columns];

for (int i = 0; i < rows; i++) {

for (int j = 0; j < columns; j++) {

result[i][j] = matrix1[i][j] + matrix2[i][j];

}

}

return result;

}

public static void displayMatrix(int[][] matrix) {

int rows = matrix.length;

int columns = matrix[0].length;

System.out.println("Matrix Addition Result:");

for (int i = 0; i < rows; i++) {

for (int j = 0; j < columns; j++) {

System.out.print(matrix[i][j] + " ");

Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024

29

}

System.out.println();

}

}

}


``` 

 

 

 
 

Discussion: 

 
1. The program defines a class named `MatrixAddition` to perform matrix addition. 

 
2. The program uses two-dimensional arrays (`matrix1` and `matrix2`) to represent the 

matrices to be added. 

3. The `main` method initializes the input matrices (`matrix1` and `matrix2`), calls the 

 

`addMatrices` method   to   perform   the   addition,   and   displays   the   result   using   the 

 

`displayMatrix` method. 

 
4. The `addMatrices` method takes two matrices as input and returns the result of their 

addition. 

5. The method determines the number of rows and columns in the matrices (`matrix1.length` 

and `matrix1[0].length`) and creates a new array called `result` to store the sum. 

6. The nested `for` loops iterate through each element of the matrices and calculate the sum 

by adding corresponding elements from `matrix1` and `matrix2`. The sum is stored in the 

`result` array. 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

3
0 

 

 

 

7. The `displayMatrix` method takes a matrix as input and displays its elements row by row. 

 
8. Inside the `displayMatrix` method, the number of rows and columns are determined, and 

then the elements are printed using nested `for` loops. 

Output: 
 
 

 

In this sample output, the program performs the addition of two matrices. 

 
- `matrix1` is initialized as a 3x3 matrix with elements 1, 2, 3, 4, 5, 6, 7, 8, and 9. 

 
- `matrix2` is initialized as another 3x3 matrix with elements 9, 8, 7, 6, 5, 4, 3, 2, and 1. 

 
- The `addMatrices` method adds the corresponding elements from `matrix1` and `matrix2` 

and returns the result as a new matrix called `result`. 

- The `displayMatrix` method is called with `result` as an argument, which displays the 

elements of the resulting matrix. 

- The output shows the result of the matrix addition, which is a 3x3 matrix with elements 10, 

10, 10, 10, 10, 10, 10, 10, and 10. 

 

 
 

POST EXPERIMENT QUESTIONS: 

 

1. Explain the structure of the MatrixAddition Java program. 

 

2. How are the input matrices (matrix1 and matrix2) defined and initialized? 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

31 

 

 

 

LAB EXPERIMENT 9 
 

OBJECTIVE: 

 
Write a java program to implement exception handling. 

 
PRE-EXPERIMENT QUESTIONS: 

 
1. What is exception handling in Java? 

 
2. What is the purpose of using try-catch blocks in exception handling? 

 
BRIEF DISCUSSION AND EXPLANATION: 

 
import java.util.InputMismatchException; 

import java.util.Scanner; 

public class ExceptionHandlingExample { 

public static void main(String[] args) { 

Scanner scanner = new Scanner(System.in); 

 

 

 
 

try { 

 
System.out.print("Enter an integer: "); 

int num = scanner.nextInt(); 

int result = 10 / num; 

System.out.println("Result: " + result); 

} catch (InputMismatchException e) { 

 
System.out.println("Invalid input! Please enter an integer."); 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

3
2 

 

 

 

} catch (ArithmeticException e) { 

System.out.println("Cannot divide by zero!"); 

} finally { 

scanner.close(); 

System.out.println("Program execution completed."); 

 
} 

 

} 
 

} 

 
Discussion: 

 
1. The program imports `InputMismatchException` and `Scanner` classes from the `java.util` 

package for exception handling and user input. 

2. The `main` method prompts the user to enter an integer. 

 
3. Inside the `try` block, the program reads an integer from the user using the `nextInt` 

method of the `Scanner` class. It then performs a division by the user-provided number and 

displays the result. 

4. If an `InputMismatchException` occurs, it means the user did not enter a valid integer. The 

program catches this exception and displays an error message. 

5. If an `ArithmeticException` occurs due to division by zero, the program catches this 

exception and displays an appropriate error message. 

6. The `finally` block is executed regardless of whether an exception occurred or not. It 

closes the `Scanner` object and prints a completion message. 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

33 

 

 

 

Output 1 (Valid Input - Non-zero Integer): 
 
 

 

In this sample output, the user enters the integer 5. The program successfully performs the 

division and displays the result as 2. The program execution completes, and the closing 

message is printed. 

Output 2 (Valid Input - Zero): 
 
 

 

In this sample output, the user enters the integer 0. Since division by zero is not possible, an 

 

`ArithmeticException` occurs. The program catches the exception, displays an error message, 

and then completes execution. 

 

 
 

Output 3 (Invalid Input - Non-integer): 
 
 

 

In this sample output, the user enters a non-integer input ("abc"). Since it is not a valid 

integer, an `InputMismatchException` occurs. The program catches the exception, displays 

an error message, and then completes execution. 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

3
4 

 

 

 

Note: The program demonstrates exception handling for specific exceptions 

(`InputMismatchException` and `ArithmeticException`). Depending on your requirements, 

you can modify the program to handle other exceptions as needed. 

POST EXPERIMENT QUESTIONS: 

 

1. What is the purpose of the Scanner object in the Java program? 

 

2. What exceptions are expected to be thrown in the code within the try block? Why? 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

35 

 

 

 

LAB EXPERIMENT 10 
 

OBJECTIVE: 

 
Write a java program extend thread class. 

 
PRE-EXPERIMENT QUESTIONS: 

 
1. What is multithreading in Java? 

 
2. How can you create a new thread in Java? 

 
BRIEF DISCUSSION AND EXPLANATION: 

 
class CustomThread extends Thread { 

@Override 

public void run() { 

 
for (int i = 1; i <= 5; i++) { 

System.out.println("Custom Thread: " + i); 

try { 

Thread.sleep(1000); // Sleep for 1 second 

 
} catch (InterruptedException e) { 

e.printStackTrace(); 

} 

 
} 

 
} 

 
} 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

3
6 

 

 

 

 
 

 

public class ThreadExtensionExample { 

public static void main(String[] args) { 

CustomThread customThread = new CustomThread(); 

customThread.start(); 

 

 
for (int i = 1; i <= 5; i++) { 

System.out.println("Main Thread: " + i); 

try { 

Thread.sleep(1000); // Sleep for 1 second 

 
} catch (InterruptedException e) { 

e.printStackTrace(); 

} 

 
} 

 
} 

 
} 

 
Discussion: 

 
1. The program defines a class named `CustomThread` that extends the `Thread` class to 

create a custom thread. 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

37 

 

 

 

2. The `CustomThread` class overrides the `run` method, which is the entry point for the 

custom thread's execution. 

3. Inside the `run` method, a loop is used to print the numbers from 1 to 5 with a delay of 1 

second between each iteration using `Thread.sleep(1000)`. 

4. The `ThreadExtensionExample` class contains the `main` method where the program is 

executed. 

5. Inside the `main` method, an instance of the `CustomThread` class named `customThread` 

is created. 

6. The `start` method is called on `customThread` to start the execution of the custom thread. 

 
7. Another loop in the `main` method is used to print the numbers from 1 to 5 by the main 

thread with a delay of 1 second between each iteration. 

Output: 
 
 

 

In this sample output, the program demonstrates the execution of the custom thread and the 

main thread. 

- The custom thread (`CustomThread`) is created as an instance of the `CustomThread` class 

and started by calling the `start` method. 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

3
8 

 

 

 

- The custom thread runs concurrently with the main thread. Both threads print numbers from 

1 to 5 using separate loops. 

- The custom thread and the main thread take turns executing their respective code blocks 

with a delay of 1 second between each iteration. 

- The output shows the interleaved execution of the custom thread and the main thread, each 

printing their respective numbers. 

Note: The exact interleaving of the custom thread and the main thread may vary in different 

program runs due to the nature of thread scheduling. 

POST EXPERIMENT QUESTIONS: 

 

1. How is a custom thread created by extending the Thread class in the Java program? 

 

2. What is the purpose of the run method in the CustomThread class? 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

39 

 

 

 

LAB EXPERIMENT 11 
 

OBJECTIVE: 

 
Write a java program to implement ArrayList using collection framework. 

 
PRE-EXPERIMENT QUESTIONS: 

 
1. What is an ArrayList in Java? 

 
2. What advantages does the ArrayList class offer compared to regular arrays? 

 
BRIEF DISCUSSION AND EXPLANATION: 

 
import java.util.ArrayList; 

import java.util.List; 

public class ArrayListExample { 

 
public static void main(String[] args) { 

 
// Create an ArrayList 

 
List<String> fruits = new ArrayList<>(); 

 

 

 
 

// Add elements to the ArrayList 

fruits.add("Apple"); 

fruits.add("Banana"); 

fruits.add("Orange"); 

 

 
// Access elements of the ArrayList 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

4
0 

 

 

 

System.out.println("Fruits: " + fruits); 

 

 

 
 

// Get the size of the ArrayList 

int size = fruits.size(); 

System.out.println("Size: " + size); 

 

 

 
 

// Check if the ArrayList is empty 

boolean isEmpty = fruits.isEmpty(); 

System.out.println("Is Empty? " + isEmpty); 

 

 

 
 

// Retrieve an element by index 

String firstFruit = fruits.get(0); 

System.out.println("First Fruit: " + firstFruit); 

 

 

 
 

// Update an element at a specific index 

fruits.set(1, "Mango"); 

System.out.println("Updated Fruits: " + fruits); 

 

// Remove an element from the ArrayList 

fruits.remove(2); 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

41 

 

 

 

System.out.println("Updated Fruits: " + fruits); 
 

} 
 

} 

 
Discussion: 

 
1. The program imports the necessary classes from the `java.util` package, including 

 

`ArrayList` and `List`. 

 
2. The `ArrayListExample` class contains the `main` method where the program is executed. 

 
3. Inside the `main` method, an `ArrayList` named `fruits` is created, which can hold 

elements of type `String`. 

4. Elements ("Apple", "Banana", "Orange") are added to the `fruits` ArrayList using the `add` 

method. 

5. The `println` statement is used to display the contents of the ArrayList. 

 
6. The `size` method is called to retrieve the number of elements in the ArrayList. 

 
7. The `isEmpty` method is called to check if the ArrayList is empty. 

 
8. The `get` method is used to retrieve an element from the ArrayList based on its index. 

 
9. The `set` method is used to update an element at a specific index in the ArrayList. 

 
10. The `remove` method is used to remove an element from the ArrayList based on its index. 

 
Output: 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

4
2 

 

 

 

 

In this sample output, the program demonstrates the implementation of an ArrayList using the 

Collection framework. 

- Elements ("Apple", "Banana", "Orange") are added to the `fruits` ArrayList using the `add` 

method. 

- The `println` statement displays the contents of the ArrayList, showing all the fruits. 

 
- The `size` method is called to retrieve the number of elements in the ArrayList, which is 3. 

 
- The `isEmpty` method is called to check if the ArrayList is empty, which returns `false`. 

 
- The `get` method is used to retrieve the first fruit ("Apple") from the ArrayList based on its 

index (0). 

- The `set` method is used to update the second fruit from "Banana" to "Mango" at index 1. 

 
- The `remove` method is used to remove the third fruit ("Orange") from the ArrayList at 

index 2. 

The output demonstrates the various ArrayList operations, including adding elements, 

accessing elements by index, updating elements, and removing elements from the ArrayList. 

POST EXPERIMENT QUESTIONS: 

 

1. How is an ArrayList initialized and created in the Java program? 

 

2. How do you add elements to an ArrayList? What method is used? 



Department of CSE JAVA LAB MANUAL (LC-CSE-327G) 2023-2024 

43 

 

 

 

 
 

 

 
 

This lab manual has been updated by 

 

 

 

 

Dr. Ashima Mehta 

(ashima.mehta@ggnindia.dronacharya.info) 

 
 

Crosschecked By 

HOD CSE 

 
 

 

 

 

 

 

 
 

 

 

 

 
Please spare some time to provide your valuable feedback. 

mailto:ashima.mehta@ggnindia.dronacharya.info

	Sign.: ……………………. Sign.: …………………. Sign.: ………………….
	VISION AND MISSION OF THE INSTITUTE
	Mission:
	VISION AND MISSION OF THE DEPARTMENT
	Mission: (1)
	PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)
	PROGRAMME OUTCOMES (POs)
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	UNIVERSITY SYLLABUS
	COURSE OUTCOMES (COs)
	CO-PO Mapping:

	COURSE OVERVIEW
	LIST OF EXPERIMENTS MAPPED WITH COs
	DOs
	DON’Ts

	GENERAL SAFETY PRECAUTIONS
	Precautions (In case of Injury or Electric Shock)
	Precautions (In case of Fire)

	GUIDELINES TO STUDENTS FOR REPORT PREPARATION
	Note:

	LAB ASSESSMENT CRITERIA
	LAB EXPERIMENT 1
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 2
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:
	LAB EXPERIMENT 3
	PRE-EXPERIMENT QUESTIONS: (1)
	BRIEF DISCUSSION AND EXPLANATION: (1)
	POST EXPERIMENT QUESTIONS: (1)

	LAB EXPERIMENT 4
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 5
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 6
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 7
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 8
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 9
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 10
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 11
	OBJECTIVE:
	PRE-EXPERIMENT QUESTIONS:
	BRIEF DISCUSSION AND EXPLANATION:
	POST EXPERIMENT QUESTIONS:


