

Dronacharya College of Engineering,

Gurgaon

Lab Manual

Lab: “ARTIFICIAL INTELLIGENCE LAB USING PYTHON”

Course Code: LC-CSE-326G

1. Write a Program to Implement Breadth First Search using Python.

Program to print BFS traversal

from a given source vertex. BFS(int s)

traverses vertices reachable from s.

from collections import defaultdict

This class represents a directed graph

using adjacency list representation

class Graph:

 # Constructor

 def __init__(self):

 # default dictionary to store graph

 self.graph = defaultdict(list)

 # function to add an edge to graph

 def addEdge(self,u,v):

 self.graph[u].append(v)

 # Function to print a BFS of graph

 def BFS(self, s):

 # Mark all the vertices as not visited

 visited = [False] * (max(self.graph) + 1)

 # Create a queue for BFS

 queue = []

 # Mark the source node as

 # visited and enqueue it

 queue.append(s)

 visited[s] = True

 while queue:

 # Dequeue a vertex from

 # queue and print it

 s = queue.pop(0)

 print (s, end = " ")

 # Get all adjacent vertices of the

 # dequeued vertex s. If a adjacent

 # has not been visited, then mark it

 # visited and enqueue it

 for i in self.graph[s]:

 if visited[i] == False:

 queue.append(i)

 visited[i] = True

Driver code

Create a graph given in

the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print ("Following is Breadth First Traversal"

 " (starting from vertex 2)")

g.BFS(2)

Output:

Following is Breadth First Traversal (starting from vertex 2)

> 3

2 0 3 1 3

>

2. Write a Program to Implement Depth First Search using Python.

program to print DFS traversal

from a given given graph

from collections import defaultdict

This class represents a directed graph using

adjacency list representation

class Graph:

 # Constructor

 def __init__(self):

 # default dictionary to store graph

 self.graph = defaultdict(list)

 # function to add an edge to graph

 def addEdge(self, u, v):

 self.graph[u].append(v)

 # A function used by DFS

 def DFSUtil(self, v, visited):

 # Mark the current node as visited

 # and print it

 visited.add(v)

 print(v, end=' ')

 # Recur for all the vertices

 # adjacent to this vertex

 for neighbour in self.graph[v]:

 if neighbour not in visited:

 self.DFSUtil(neighbour, visited)

 # The function to do DFS traversal. It uses

 # recursive DFSUtil()

 def DFS(self, v):

 # Create a set to store visited vertices

 visited = set()

 # Call the recursive helper function

 # to print DFS traversal

 self.DFSUtil(v, visited)

Driver code

Create a graph given

in the above diagram

g = Graph()

g.addEdge(0, 1)

g.addEdge(0, 2)

g.addEdge(1, 2)

g.addEdge(2, 0)

g.addEdge(2, 3)

g.addEdge(3, 3)

print("Following is DFS from (starting from vertex 2)")

g.DFS(2)

Output:

Following is Depth First Traversal (starting from vertex 2)

2 0 1 9 3

3. Write a Program to Implement Tic-Tac-Toe game using Python.

Tic-Tac-Toe Program using

random number in Python

importing all necessary libraries

import numpy as np

import random

from time import sleep

Creates an empty board

def create_board():

 return(np.array([[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]))

Check for empty places on board

def possibilities(board):

 l = []

 for i in range(len(board)):

 for j in range(len(board)):

 if board[i][j] == 0:

 l.append((i, j))

 return(l)

Select a random place for the player

def random_place(board, player):

 selection = possibilities(board)

 current_loc = random.choice(selection)

 board[current_loc] = player

 return(board)

Checks whether the player has three

of their marks in a horizontal row

def row_win(board, player):

 for x in range(len(board)):

 win = True

 for y in range(len(board)):

 if board[x, y] != player:

 win = False

 continue

 if win == True:

 return(win)

 return(win)

Checks whether the player has three

of their marks in a vertical row

def col_win(board, player):

 for x in range(len(board)):

 win = True

 for y in range(len(board)):

 if board[y][x] != player:

 win = False

 continue

 if win == True:

 return(win)

 return(win)

Checks whether the player has three

of their marks in a diagonal row

def diag_win(board, player):

 win = True

 y = 0

 for x in range(len(board)):

 if board[x, x] != player:

 win = False

 if win:

 return win

 win = True

 if win:

 for x in range(len(board)):

 y = len(board) - 1 - x

 if board[x, y] != player:

 win = False

 return win

Evaluates whether there is

a winner or a tie

def evaluate(board):

 winner = 0

 for player in [1, 2]:

 if (row_win(board, player) or

 col_win(board,player) or

 diag_win(board,player)):

 winner = player

 if np.all(board != 0) and winner == 0:

 winner = -1

 return winner

Main function to start the game

def play_game():

 board, winner, counter = create_board(), 0, 1

 print(board)

 sleep(2)

 while winner == 0:

 for player in [1, 2]:

 board = random_place(board, player)

 print("Board after " + str(counter) + " move")

 print(board)

 sleep(2)

 counter += 1

 winner = evaluate(board)

 if winner != 0:

 break

 return(winner)

Driver Code

print("Winner is: " + str(play_game()))

Output:

[[0 0 0]

 [0 0 0]

 [0 0 0]]

Board after 1 move

[[0 0 0]

 [0 0 0]

 [1 0 0]]

Board after 2 move

[[0 0 0]

 [0 2 0]

 [1 0 0]]

Board after 3 move

[[0 1 0]

 [0 2 0]

 [1 0 0]]

Board after 4 move

[[0 1 0]

 [2 2 0]

 [1 0 0]]

Board after 5 move

[[1 1 0]

 [2 2 0]

 [1 0 0]]

Board after 6 move

[[1 1 0]

 [2 2 0]

 [1 2 0]]

Board after 7 move

[[1 1 0]

 [2 2 0]

 [1 2 1]]

Board after 8 move

[[1 1 0]

 [2 2 2]

 [1 2 1]]

Winner is: 2

4. Write a Program to Implement 8-Puzzle problem using Python

class Solution:

 def solve(self, board):

 dict = {}

 flatten = []

 for i in range(len(board)):

 flatten += board[i]

 flatten = tuple(flatten)

 dict[flatten] = 0

 if flatten == (0, 1, 2, 3, 4, 5, 6, 7, 8):

 return 0

 return self.get_paths(dict)

 def get_paths(self, dict):

 cnt = 0

 while True:

 current_nodes = [x for x in dict if dict[x] == cnt]

 if len(current_nodes) == 0:

 return -1

 for node in current_nodes:

 next_moves = self.find_next(node)

 for move in next_moves:

 if move not in dict:

 dict[move] = cnt + 1

 if move == (0, 1, 2, 3, 4, 5, 6, 7, 8):

 return cnt + 1

 cnt += 1

 def find_next(self, node):

 moves = {

 0: [1, 3],

 1: [0, 2, 4],

 2: [1, 5],

 3: [0, 4, 6],

 4: [1, 3, 5, 7],

 5: [2, 4, 8],

 6: [3, 7],

 7: [4, 6, 8],

 8: [5, 7],

 }

 results = []

 pos_0 = node.index(0)

 for move in moves[pos_0]:

 new_node = list(node)

 new_node[move], new_node[pos_0] = new_node[pos_0], new_node[move]

 results.append(tuple(new_node))

 return results

ob = Solution()

matrix = [

 [3, 1, 2],

 [4, 7, 5],

 [6, 8, 0]

]

print(ob.solve(matrix))

Input:

matrix = [

[3, 1, 2],

[4, 7, 5],

[6, 8, 0]]

 Output:

4

5. Write a Program to Implement Water-Jug problem using Python

This function is used to initialize the

dictionary elements with a default value.

from collections import defaultdict

jug1 and jug2 contain the value

for max capacity in respective jugs

and aim is the amount of water to be measured.

jug1, jug2, aim = 4, 3, 2

Initialize dictionary with

default value as false.

visited = defaultdict(lambda: False)

Recursive function which prints the

intermediate steps to reach the final

solution and return boolean value

(True if solution is possible, otherwise False).

amt1 and amt2 are the amount of water present

in both jugs at a certain point of time.

def waterJugSolver(amt1, amt2):

 # Checks for our goal and

 # returns true if achieved.

 if (amt1 == aim and amt2 == 0) or (amt2 == aim and amt1 == 0):

 print(amt1, amt2)

 return True

 # Checks if we have already visited the

 # combination or not. If not, then it proceeds further.

 if visited[(amt1, amt2)] == False:

 print(amt1, amt2)

 # Changes the boolean value of

 # the combination as it is visited.

 visited[(amt1, amt2)] = True

 # Check for all the 6 possibilities and

 # see if a solution is found in any one of them.

 return (waterJugSolver(0, amt2) or

 waterJugSolver(amt1, 0) or

 waterJugSolver(jug1, amt2) or

 waterJugSolver(amt1, jug2) or

 waterJugSolver(amt1 + min(amt2, (jug1-amt1)),

 amt2 - min(amt2, (jug1-amt1))) or

 waterJugSolver(amt1 - min(amt1, (jug2-amt2)),

 amt2 + min(amt1, (jug2-amt2))))

 # Return False if the combination is

 # already visited to avoid repetition otherwise

 # recursion will enter an infinite loop.

 else:

 return False

print("Steps: ")

Call the function and pass the

initial amount of water present in both jugs.

waterJugSolver(0, 0)

Output:

Steps:

0 0

4 0

4 3

0 3

3 0

3 3

4 2

0 2

6. Write a Program to Implement Travelling Salesman Problem using Python.

program to implement traveling salesman

problem using naive approach.

from sys import maxsize

from itertools import permutations

V = 4

implementation of traveling Salesman Problem

def travellingSalesmanProblem(graph, s):

 # store all vertex apart from source vertex

 vertex = []

 for i in range(V):

 if i != s:

 vertex.append(i)

 # store minimum weight

 min_path = maxsize

 next_permutation=permutations(vertex)

 for i in next_permutation:

 # store current Path weight(cost)

 current_pathweight = 0

 # compute current path weight

 k = s

 for j in i:

 current_pathweight += graph[k][j]

 k = j

 current_pathweight += graph[k][s]

 # update minimum

 min_path = min(min_path, current_pathweight)

 return min_path

Driver Code

if __name__ == "__main__":

 # matrix representation of graph

 graph = [[0, 10, 15, 20], [10, 0, 35, 25],

 [15, 35, 0, 30], [20, 25, 30, 0]]

 s = 0

 print(travellingSalesmanProblem(graph, s))

Output

80

7. Write a Program to Implement Tower of Hanoi using Python.

Recursive Python function to solve tower of hanoi

def TowerOfHanoi(n , from_rod, to_rod, aux_rod):

 if n == 1:

 print("Move disk 1 from rod",from_rod,"to rod",to_rod)

 return

 TowerOfHanoi(n-1, from_rod, aux_rod, to_rod)

 print("Move disk",n,"from rod",from_rod,"to rod",to_rod)

 TowerOfHanoi(n-1, aux_rod, to_rod, from_rod)

Driver code

n = 4

TowerOfHanoi(n, 'A', 'C', 'B')

A, C, B are the name of rods

 Output

Move disk 1 from rod A to rod B

Move disk 2 from rod A to rod C

Move disk 1 from rod B to rod C

Move disk 3 from rod A to rod B

Move disk 1 from rod C to rod A

Move disk 2 from rod C to rod B

Move disk 1 from rod A to rod B

Move disk 4 from rod A to rod C

Move disk 1 from rod B to rod C

Move disk 2 from rod B to rod A

Move disk 1 from rod C to rod A

Move disk 3 from rod B to rod C

Move disk 1 from rod A to rod B

Move disk 2 from rod A to rod C

Move disk 1 from rod B to rod C

Output:

Tower of Hanoi Solution for 4 disks:

A: [4, 3, 2, 1] B: [] C: []

Move disk from rod A to rod B

A: [4, 3, 2] B: [1] C: []

Move disk from rod A to rod C

A: [4, 3] B: [1] C: [2]

Move disk from rod B to rod C

A: [4, 3] B: [] C: [2, 1]

Move disk from rod A to rod B

A: [4] B: [3] C: [2, 1]

Move disk from rod C to rod A

A: [4, 1] B: [3] C: [2]

Move disk from rod C to rod B

A: [4, 1] B: [3, 2] C: []

Move disk from rod A to rod B

A: [4] B: [3, 2, 1] C: []

Move disk from rod A to rod C

A: [] B: [3, 2, 1] C: [4]

Move disk from rod B to rod C

A: [] B: [3, 2] C: [4, 1]

Move disk from rod B to rod A

A: [2] B: [3] C: [4, 1]

Move disk from rod C to rod A

A: [2, 1] B: [3] C: [4]

Move disk from rod B to rod C

A: [2, 1] B: [] C: [4, 3]

Move disk from rod A to rod B

A: [2] B: [1] C: [4, 3]

Move disk from rod A to rod C

A: [] B: [1] C: [4, 3, 2]

Move disk from rod B to rod C

A: [] B: [] C: [4, 3, 2, 1]

8. Write a Program to Implement Monkey Banana Problem using Python.

from poodle import Object, schedule

from typing import Set

class Position(Object):

 def __str__(self):

 if not hasattr(self, "locname"): return "unknown"

 return self.locname

class HasHeight(Object):

 height: int

class HasPosition(Object):

 at: Position

class Monkey(HasHeight, HasPosition): pass

class PalmTree(HasHeight, HasPosition):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.height = 2

class Box(HasHeight, HasPosition): pass

class Banana(HasHeight, HasPosition):

 owner: Monkey

 attached: PalmTree

class World(Object):

 locations: Set[Position]

p1 = Position()

p1.locname = "Position A"

p2 = Position()

p2.locname = "Position B"

p3 = Position()

p3.locname = "Position C"

w = World()

w.locations.add(p1)

w.locations.add(p2)

w.locations.add(p3)

m = Monkey()

m.height = 0 # ground

m.at = p1

box = Box()

box.height = 2

box.at = p2

p = PalmTree()

p.at = p3

b = Banana()

b.attached = p

def go(monkey: Monkey, where: Position):

 assert where in w.locations

 assert monkey.height < 1, "Monkey can only move while on the ground"

 monkey.at = where

 return f"Monkey moved to {where}"

def push(monkey: Monkey, box: Box, where: Position):

 assert monkey.at == box.at

 assert where in w.locations

 assert monkey.height < 1, "Monkey can only move the box while on the ground"

 monkey.at = where

 box.at = where

 return f"Monkey moved box to {where}"

def climb_up(monkey: Monkey, box: Box):

 assert monkey.at == box.at

 monkey.height += box.height

 return "Monkey climbs the box"

def grasp(monkey: Monkey, banana: Banana):

 assert monkey.height == banana.height

 assert monkey.at == banana.at

 banana.owner = monkey

 return "Monkey takes the banana"

def infer_owner_at(palmtree: PalmTree, banana: Banana):

 assert banana.attached == palmtree

 banana.at = palmtree.at

 return "Remembered that if banana is on palm tree, its location is where palm tree is"

def infer_banana_height(palmtree: PalmTree, banana: Banana):

 assert banana.attached == palmtree

 banana.height = palmtree.height

 return "Remembered that if banana is on the tree, its height equals tree's height"

print('\n'.join(x() for x in schedule(

 [go, push, climb_up, grasp, infer_banana_height, infer_owner_at],

 [w,p1,p2,p3,m,box,p,b],

 goal=lambda: b.owner == m)))

Result:

$ pip install poodle

$ python ./monkey.py

Monkey moved to Position B

Remembered that if banana is on the tree, its height equals tree's height

Remembered that if banana is on palm tree, its location is where palm tree is

Monkey moved box to Position C

Monkey climbs the box

Monkey takes the banana

9. Write a Program to Implement Missionaries-Cannibals Problems using Python.

''' mclib.py '''

class MCState:

 ### MC is missionaries and cannibals

 def __init__(self, state_vars, num_moves=0, parent=None):

 self.state_vars = state_vars

 self.num_moves = num_moves

 self.parent = parent

 ### decorator

 @classmethod

 def root(cls):

 return cls((3,3,1))

 def get_possible_moves(self):

 ''' return all possible moves in the game as tuples

 possible moves:

 1 or 2 mis

 1 or 2 cannibals

 1 mis, 1 can

 '''

 moves = [(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)]

 return moves

 def is_legal(self):

 missionaries = self.state_vars[0]

 cannibals = self.state_vars[1]

 ## could have done tuple unpacking too:

 ## missionaries, cannibals, boat = self.state_vars

 if missionaries < 0 or missionaries > 3:

 return False
 elif cannibals < 0 or cannibals > 3:

 return False

 return True

 ## alternate

 # if 0 <= missionaries <= 3 and 0 <= cannibals <= 3

 # return True

 ###

 def is_solution(self):

 if self.state_vars == (0,0,0):

 return True

 return False

 def is_failure(self):

 missionaries = self.state_vars[0]

 cannibals = self.state_vars[1]

 boat = self.state_vars[2]

 ## could have done tuple unpacking too:

 ## missionaries, cannibals, boat = self.state_vars

 ### missionaries on right side AND more cannibals than missionaries

 if missionaries > 0 and missionaries < cannibals:

 return True

 ## to make this easier to understand, I will create temporary variables

 ## but we could just substitute the math and skip the variables

 missionaries_on_left = 3 - missionaries

 cannibals_on_left = 3 - cannibals

 if missionaries_on_left > 0 and missionaries_on_left < cannibals_on_left:

 return True
 ## if you replace the math in, you get:

 #if 3 - missionaries > 0 and 3 - missionaires < 3 - cannaibals

 # which leads to:

 #if missionaries < 3 and cannibals < missionaries:

 ### if we make it here, we aren't in a failed state!

 return False

 def get_next_states(self):

 ## using possible move, get next states

 moves = self.get_possible_moves()

 all_states = list()

 mis_right, can_right, raft_right = self.state_vars

 ## if raft is on right, subtract move from these numbers

 ## if raft is on left, add these move numbers to these numbers

 for move in moves:

 change_mis, change_can = move

 if raft_right == 1: ## mis_right = 3; can_right = 3, raft_right = 1

 new_state_vars = (mis_right-change_mis, can_right-change_can, 0)

 else:

 new_state_vars = (mis_right+change_mis, can_right+change_can, 1)

 ## notice the number of moves is increasing by 1

 ## also notice we are passing self to our child.

 new_state = MCState(new_state_vars, self.num_moves+1, self)

 if new_state.is_legal():

 all_states.append(new_state)

 return all_states

 def __str__(self):

 return "MCState[{}]".format(self.state_vars)

 def __repr__(self):

 return str(self)

def search(dfs=True):

 ### this is the stack/queue that we used before

 from collections import deque

 ### create the root state

 root = MCState.root()

 ### we use the stack/queue for keeping track of where to search next

 to_search = deque()

 ### use a set to keep track fo where we've been

 seen_states = set()

 ### use a list to keep track of the solutions that have been seen

 solutions = list()

 ### start the search with the root

 to_search.append(root)

 ### safety variable for infinite loops!

 loop_count = 0

 max_loop = 10000

 ### while the stack/queue still has items

 while len(to_search) > 0:

 loop_count += 1

 if loop_count > max_loop:

 print(len(to_search))

 print("Escaping this super long loop!")

 break

 ### get the next item

 current_state = to_search.pop()

 ## look at the current state's children

 ## this uses the rule for actions and moves to create next states

 ## it is also removing all illegal states

 next_states = current_state.get_next_states()

 ## next_states is a list, so iterate through it

 for possible_next_state in next_states[::-1]:

 ## to see if we've been here before, we look at the state variables

 possible_state_vars = possible_next_state.state_vars

 ## we use the set and the "not in" boolean comparison

 if possible_state_vars not in seen_states:

 if possible_next_state.is_failure():

 #print("Failure!")

 continue
 elif possible_next_state.is_solution():

 ## Save it into our solutions list

 solutions.append(possible_next_state)

 #print("Solution!")

 continue

 # the state variables haven't been seen yet

 # so we add the state itself into the searching stack/queue

 #### IMPORTANT

 ## which side we append on changes how the search works

 ## why is this?

 if dfs:

 to_search.append(possible_next_state)

 else:

 to_search.appendleft(possible_next_state)

 # now that we have "seen" the state, we add the state vars to the set.

 # this means next time when we do the "not in", that will return False

 # because it IS in

 #seen_states.add(possible_state_vars)

 seen_states.add(possible_state_vars)

 ## finally, we reach this line when the stack/queue is empty (len(to_searching==))

 print("Found {} solutions".format(len(solutions)))

 return solutions

sol_dfs = search(True)

sol_bfs = search(False)

current_state = sol_dfs[0]

while current_state:

 print(current_state)

 current_state = current_state.parent

print("--")

current_state = sol_dfs[1]

while current_state:

 print(current_state)

 current_state = current_state.parent

print("--")

current_state = sol_bfs[0]

while current_state:

 print(current_state)

 current_state = current_state.parent

print("--")

current_state = sol_bfs[1]

while current_state:

 print(current_state)

 current_state = current_state.parent

Found 2 solutions

Found 2 solutions

MCState[(0, 0, 0)]

MCState[(1, 1, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(3, 1, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(0, 2, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(3, 1, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(0, 2, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(2, 2, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(1, 1, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(2, 2, 0)]

MCState[(3, 3, 1)]

10. Write a Program to Implement N-Queens Problem using Python.

Python program to solve N Queen

Problem using backtracking

global N

N = 4

def printSolution(board):

 for i in range(N):

 for j in range(N):

 print board[i][j],

 print

A utility function to check if a queen can

be placed on board[row][col]. Note that this

function is called when "col" queens are

already placed in columns from 0 to col -1.

So we need to check only left side for

attacking queens

def isSafe(board, row, col):

 # Check this row on left side

 for i in range(col):

 if board[row][i] == 1:

 return False

 # Check upper diagonal on left side

 for i, j in zip(range(row, -1, -1), range(col, -1, -1)):

 if board[i][j] == 1:

 return False

 # Check lower diagonal on left side

 for i, j in zip(range(row, N, 1), range(col, -1, -1)):

 if board[i][j] == 1:

 return False

 return True

def solveNQUtil(board, col):

 # base case: If all queens are placed

 # then return true

 if col >= N:

 return True

 # Consider this column and try placing

 # this queen in all rows one by one

 for i in range(N):

 if isSafe(board, i, col):

 # Place this queen in board[i][col]

 board[i][col] = 1

 # recur to place rest of the queens

 if solveNQUtil(board, col + 1) == True:

 return True

 # If placing queen in board[i][col

 # doesn't lead to a solution, then

 # queen from board[i][col]

 board[i][col] = 0

 # if the queen can not be placed in any row in

 # this colum col then return false

 return False

This function solves the N Queen problem using

Backtracking. It mainly uses solveNQUtil() to

solve the problem. It returns false if queens

cannot be placed, otherwise return true and

placement of queens in the form of 1s.

note that there may be more than one

solutions, this function prints one of the

feasible solutions.

def solveNQ():

 board = [[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]

]

 if solveNQUtil(board, 0) == False:

 print "Solution does not exist"

 return False

 printSolution(board)

 return True

driver program to test above function

solveNQ()

Output:

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

