
DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G)
Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

LABORATORY MANUAL

B.Tech. Semester- V

DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB

Subject code: LC-CSE-325G

Prepared by: Checked by: Approved by:

Prof. Vimmi Malhotra Dr. Ashima Mehta Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

DEPARTMENT OF CSE/CSIT/IT/IOT

DRONACHARYA COLLEGE OF ENGINEERING

KHENTAWAS, FARRUKH NAGAR, GURUGRAM (HARYANA)

1

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Table of Contents

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO- PO and CO-PSO mapping

9. Course Overview

10. List of Experiments

11. DOs and DON’Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Details of Conducted Experiments

16. Lab Experiments

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Vision and Mission of the Institute

Vision:
“Empowering human values and advanced technical education to navigate and address global

challenges with excellence.”

Mission:
 M1: Seamlessly integrate human values with advanced technical education.

 M2: Supporting the cultivation of a new generation of innovators who are not only

skilled but also ethically responsible.

 M3: Inspire global citizens who are equipped to create positive and sustainable impact, driving

progress towards a more inclusive and harmonious world.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Vision and Mission of the Department

Vision:
“Steering the future of computer science through innovative advancements, fostering

ethical values and principles through technical education.”

Mission:
M1: Directing future innovations in computer science through revolutionary progress.

M2: Instilling a foundation of ethical values and principles in every technologist.

M3: Offering a comprehensive technical education to equip individuals for a meaningful

and influential future.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Programme Educational Objectives (PEOs)

PEO1: Apply the technical competence in Computer Science and Engineering for solving

problems in the real world.

PEO2: Carry out research and develop solutions on problems of social applications.

PEO3: Work in a corporate environment, demonstrating team skills, work morals, flexibility

and lifelong learning.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Programme Outcomes (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological change.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Program Specific Outcomes (PSOs)

PSO1: Exhibit design and programming skills to develop and mechanize business solutions

using revolutionary technologies.

PSO2: Learn strong theoretical foundation leading to brilliance and enthusiasm towards

research, to provide well-designed solutions to complicated problems.

PSO3: Work effectively with diverse Engineering fields as a team to design, build and

develop system applications.

PSO1: Exhibit design and programming skills to develop and mechanize business solutions

using revolutionary technologies.

PSO2: Learn strong theoretical foundation leading to brilliance and enthusiasm towards

research, to provide well-designed solutions to complicated problems.

PSO3: Work effectively with diverse Engineering fields as a team to design, build and

develop system applications.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

University Syllabus

1. Write a Program for iterative and recursive Binary Search.

2. Write a Program for iterative and recursive Linear Search.

3. Write a Program to sort a given set of elements using the Quick Sort.

4. Write a Program to sort a given set of elements using the Merge Sort.

5. Write a Program to sort a given set of elements using the Selection Sort.

6. Write a Program for implementation of Fractional Knapsack problem using Greedy

Method and 0/1 Knapsack problem using Dynamic Programming.

7. Write a Program to find the shortest path from a given vertex to other vertices in a

weighted connected graph using Dijkstra’s algorithm.

8. Write a Program to find the minimum cost spanning tree (MST) of a given undirected

graph using Kruskal’s algorithm/Prim’s Algorithms.

9. Write a Program to implement N-Queens problem using back tracking.

10. Write a Program to check whether a given graph is connected or not using DFS method.

11. Write a program to implement the Travelling Salesman Problem (TSP).

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Course Outcomes (COs)

Upon successful completion of the course, the students will be able to:

C324.1: Help in improving the programming skills of the students.

C325.2: Design of algorithms for any problem.

C325.3: inculcate structured thinking process in the students and

C325.4: Improve the analytical power.

CO-PO Mapping

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C325.1 1 1 3 3 3 3 3 3 2 2 2

C325.2 1 1 3 3 3 3 2 2 1 1 2

C325.3 2 3 2 1 2 3 3 1 2

C325.4 2 3 3 1 1 2 2 1 1 2

C325 1 1.5 3 2.75 2 1.5 2.5 2.5 1 1 1 2

CO-PSO Mapping

 PSO1 PSO2 PSO3

C325.1 1 1 1

C325.2 2 1 2

C325.3 3 3 3

C325.4 1 1 1

C325 1.75 1.5 1.75

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Course Overview

The design and analysis of algorithms is a field within computer science that focuses on

developing efficient and effective algorithms for solving computational problems. It involves the

study of various techniques, methodologies, and mathematical tools to design algorithms,

analyze their performance, and evaluate their efficiency.

The process of designing an algorithm involves understanding the problem at hand, defining the

problem's requirements and constraints, and devising a step-by-step procedure to solve it. This

includes selecting appropriate data structures, determining the sequence of operations, and

considering algorithmic paradigms such as divide and conquer, greedy algorithms, dynamic

programming, and more.

Once an algorithm is designed, the next step is to analyze its performance. This involves

evaluating factors like time complexity (how the algorithm's running time increases with input

size), space complexity (how much memory the algorithm requires), and other relevant metrics.

By analyzing an algorithm's performance, we can determine its efficiency and scalability,

enabling us to make informed decisions about which algorithm to use for a given problem.

The goal of the design and analysis of algorithms is to develop algorithms that are correct,

efficient, and scalable. Correctness ensures that the algorithm produces the correct output for all

possible inputs. Efficiency focuses on minimizing the use of computational resources such as

time and memory. Scalability considers how well the algorithm performs as the input size

becomes larger.

By studying the design and analysis of algorithms, computer scientists can develop solutions that

are both practical and optimized, leading to improved performance and resource utilization in a

wide range of applications, including data processing, optimization problems, artificial

intelligence, and much more.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

List of Experiments mapped with COs

S

No

.

Name of the

Experiment

Course

Outcome

Page

Number

1 Write a Program for iterative and recursive Binary Search. C325.1,

C325.3

1

2 Write a Program for iterative and recursive Linear Search. C325.3 5

3 Write a Program to sort a given set of elements using the Quick Sort C325.3 9

4 Write a Program to sort a given set of elements using the Merge Sort C325.4 12

5 Write a Program to sort a given set of elements using the Selection Sort C325.3 16

6 Write a Program for implementation of Fractional Knapsack problem using Greedy

Method and 0/1 Knapsack problem using Dynamic Programming.

C325.2,

C325.1

19

7 Write a Program to find the shortest path from a given vertex to other vertices

in a weighted connected graph using Dijkstra’s algorithm.

C325.3 23

8 Write a Program to find the minimum cost spanning tree (MST) of a given

undirected graph using Kruskal’s algorithm/Prim’s Algorithms.

C325.2,

C325.3

26

9 Write a Program to implement N-Queens problem using back tracking C325.4 33

10 Write a Program to check whether a given graph is connected or not using DFS

method.

C325.3,
C325.2

37

11 Write a program to implement the Travelling Salesman Problem (TSP). C325.3 40

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

DOs and DON’Ts

DOs

1. Login-on with your username and password.

2. Log off the computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly

prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

General Safety Precautions

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or

plastic to break the contact. Do not touch the victim with bare hands to avoid the risk

of electrifying yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the

circuit off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press

the chest in and out to continue breathing function. Use mouth-to-mouth resuscitation

if necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be

best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by

covering it with a heavy cloth if possible isolate the burning equipment from the other

surrounding equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency : Reception

(Reception) Security : Front Gate

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Guidelines to students for report preparation

All students are required to maintain a record of the experiments conducted by them. Guidelines

for its preparation are as follows: -

1) All files must contain a title page followed by an index page. The files will not be signed

by the faculty without an entry in the index page.

2) Student’s Name, Roll number and date of conduction of experiment must be written on

all pages.

3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment

(ii) Pre-experiment work (as given by the faculty)

(iii) Lab assignment questions and their solutions

(iv) Test Cases (if applicable to the course)

(v) Results/ output

Note:

1. Students must bring their lab record along with them whenever they come for the lab.

2. Students must ensure that their lab record is regularly evaluated.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

Lab Assessment Criteria

An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes

are assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as

shown in following table. Assessed performance in each experiment is used to compute CO

attainment as well as internal marks in the lab course.

Grading

Criteria
Exemplary (4)

Competent (3)
Needs Improvement

(2)
Poor (1)

AC1:

Pre-Lab

written work

(this may be

assessed
through viva)

Complete procedure

with underlined

concept is properly
written

Underlined concept is

written but procedure

is incomplete

Not able to write

concept and procedure

Underlined concept is

not clearly

Understood

AC2:

Program

Writing/

Modeling

Assigned problem is
properly analyzed,

correct solution

designed, appropriate

language constructs/
tools are applied,
Program/solution
written is readable

Assigned problem is

properly analyzed,

correct solution
designed, appropriate

language constructs/

tools are applied

Assigned problem is

properly analyzed &

correct solution
designed

Assigned problem is
properly analyzed

AC3:

Identification

& Removal of

errors/ bugs

Able to identify

errors/ bugs and

remove them

Able to identify errors/

bugs and remove them

with little bit of

guidance

Is dependent totally on

someone for
identification of
errors/ bugs and their
removal

Unable to understand
the reason for errors/
bugs even after they
are explicitly pointed
out

AC4:

Execution &

Demonstratio

n

All variants of input

/output are tested,

Solution is well
demonstrated and

implemented concept

is clearly explained

All variants of input

/output are not tested,

However, solution is
well demonstrated and

implemented concept

is clearly explained

Only few variants of

input /output are

tested,
Solution is well
demonstrated but
implemented concept
is not clearly
explained

Solution is not well

demonstrated and
implemented concept

is not clearly

explained

AC5: Lab

Record

Assessment

All assigned

problems are well

recorded with

objective, design
constructs and

solution along with

Performance analysis
using all variants of

input and output

More than 70 % of the

assigned problems are
well recorded with

objective, design

contracts and solution

along with
Performance analysis

is done with all

variants of input and
output

Less than 70 % of the

assigned problems are
well recorded with

objective, design

contracts and solution

along with
Performance analysis

is done with all

variants of input and
output

Less than 40 % of the

assigned problems
are well recorded

with objective, design

contracts and solution

along with
Performance analysis

is done with all

variants of input and
output

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

LAB EXPERIMENTS

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

1

LAB EXPERIMENT 1

OBJECTIVE:

Write a Program for iterative and recursive Binary Search.

BRIEF DESCRIPTION:

Binary Search is defined as a searching algorithm used in a sorted array by repeatedly dividing

the search interval in half. The idea of binary search is to use the information that the array is

sorted and reduce the time complexity to O (log N).

To apply Binary Search algorithm:

 The data structure must be sorted.

 Access to any element of the data structure takes constant time.

Binary Search Algorithm:

In this algorithm,

 Divide the search space into two halves by finding the middle index “mid”.

 Compare the middle element of the search space with the key.

 If the key is found at middle element, the process is terminated.

 If the key is not found at middle element, choose which half will be used as the next

search space.

o If the key is smaller than the middle element, then the left side is used for next
search.

o If the key is larger than the middle element, then the right side is used for next
search.

 This process is continued until the key is found or the total search space is exhausted.

The Binary Search Algorithm can be implemented in the following two ways:

 Iterative Binary Search Algorithm

 Recursive Binary Search Algorithm

PRE-EXPERIMENT QUESTIONS:

 What is binary search?

 How does the binary search algorithm work, and what are its main steps?

 Discuss the time complexity of the binary search algorithm. Is it efficient compared to other
search algorithms?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

2

Program Code: (Iterative Binary Search)

#include <iostream>

using namespace std;

int binarySearchIterative(int arr[], int left, int right, int target) {

while (left <= right) {

int mid = left + (right - left) / 2;

if (arr[mid] == target)

return mid;

if (arr[mid] < target)

left = mid + 1;

else

right = mid - 1;

}

return -1;

}

int main() {

int arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91};
int n = sizeof(arr) / sizeof(arr[0]);

int target = 23;

int result = binarySearchIterative(arr, 0, n - 1, target);

if (result == -1)

cout << "Element not found in the array.";

else

cout << "Element found at index " << result << ".";

return 0;

}

Output:

Students will be able to recognize actual position of element in iterative way as shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

3

Program Code: (Recursive Binary Search)

#include <iostream>

using namespace std;

int binarySearchRecursive(int arr[], int left, int right, int target) {

if (left <= right) {

int mid = left + (right - left) / 2;

if (arr[mid] == target)

return mid;

if (arr[mid] < target)

return binarySearchRecursive(arr, mid + 1, right, target);

return binarySearchRecursive(arr, left, mid - 1, target);

}

return -1;

}

int main() {

int arr[] = {2, 5, 8, 12, 16, 23, 38, 56, 72, 91};

int n = sizeof(arr) / sizeof(arr[0]);

int target = 23;

int result = binarySearchRecursive(arr, 0, n - 1, target);

if (result == -1)

cout << "Element not found in the array.";

else

cout << "Element found at index " << result << ".";

return 0;

}

Output:

Students will be able to recognize actual position of element in recursive way as shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

4

POST EXPERIMENT QUESTIONS:

 What is the basic principle behind binary search, and how does it reduce the search space?

 Explain the time complexity of the binary search algorithm and compare it with other

search algorithms.

 What are the necessary conditions for binary search to be applicable, and what happens if

these conditions are not met?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

5

LAB EXPERIMENT 2

OBJECTIVE:

Write a Program for iterative and recursive Linear Search.

BRIEF DESCRIPTION:

Linear search, also known as sequential search, is a simple and straightforward searching

algorithm used to find an element within a collection of items. It is applicable to both ordered

and unordered lists.

The linear search algorithm starts at the beginning of the list and compares each element

sequentially until a match is found or the end of the list is reached. If the target element is found,

the search terminates, and the index or position of the element is returned. If the end of the list is

reached without finding a match, the search concludes, and a special value (e.g., -1) is typically

returned to indicate that the element was not found.

Linear search is intuitive and easy to implement. It works well for small lists or when the target

element is located near the beginning of the list. However, its performance is linear with respect

to the size of the list, resulting in a worst-case time complexity of O(n), where n is the number of

elements in the list. This means that as the size of the list grows, the time required for the search

increases linearly.

Linear search is often used when:

 The list is unsorted or only partially sorted.

 The list is small.

 The cost of sorting the list in advance is not justified.

 The search is infrequent or not time-critical.

PRE-EXPERIMENT QUESTIONS:

 What is linear search, and how does it work?

 What is the time complexity of linear search, and when is it suitable to use?

 What are the advantages and disadvantages of linear search?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

6

Program Code:(Iterative Linear Search)

#include <iostream>

using namespace std;

int linearSearchIterative(int arr[], int size, int target) {

for (int i = 0; i < size; i++) {

if (arr[i] == target)

return i;

}

return -1;

}

int main() {

int arr[] = {5, 12, 8, 2, 16, 23, 38, 56, 72, 91};

int size = sizeof(arr) / sizeof(arr[0]);

int target = 23;

int result = linearSearchIterative(arr, size, target);

if (result == -1)

cout << "Element not found in the array.";

else

cout << "Element found at index " << result << ".";

return 0;

}

Output:

Students will be able to recognize actual position of element in iterative way in unsorted way as shown

below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

7

Program Code:(Recursive Linear Search)

#include <iostream>

using namespace std;

int linearSearchRecursive(int arr[], int left, int right, int target) {

if (left > right)

return -1;

if (arr[left] == target)

return left;

return linearSearchRecursive(arr, left + 1, right, target);

}

int main() {

int arr[] = {5, 12, 8, 2, 16, 23, 38, 56, 72, 91};

int size = sizeof(arr) / sizeof(arr[0]);

int target = 23;

int result = linearSearchRecursive(arr, 0, size - 1, target);

if (result == -1)

cout << "Element not found in the array.";

else

cout << "Element found at index " << result << ".";

return 0;

}

Output:

Students will be able to recognize actual position of element in recursive way in unsorted way as

shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

8

POST EXPERIMENT QUESTIONS:

 What is the time complexity of linear search, and under what circumstances is it efficient

to use?

 What is the best-case and worst-case time complexity of linear search?

 Are there any modifications or optimizations that can be applied to improve the efficiency

of linear search?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

9

OBJECTIVE:

LAB EXPERIMENT 3

Write a Program to sort a given set of elements using the Quick Sort.

BRIEF DESCRIPTION:

Quick Sort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the

given an array around the picked pivot.

There are many different versions of Quick Sort that pick pivot in different ways.

 Always pick first element as pivot.

 Always pick last element as pivot (implemented below)

 Pick a random element as pivot.

 Pick median as pivot.

The key process in Quick Sort is partition. Target of partitions is, given an array and an element

x of array as pivot, put x at its correct position in sorted array and put all smaller elements

(smaller than x) before x, and put all greater elements (greater than x) after x.

In this program, the partition function is responsible for rearranging the elements around a pivot

element, such that all elements less than the pivot are on its left, and all elements greater than the

pivot are on its right. It returns the index of the pivot element.

The quick_sort function recursively partitions the array using the pivot element's index. It then

applies the quick_sort function to the sub-arrays formed by the partitioning.

Sort a given set of elements using the Quick sort method and determine the time required to sort

the elements. Repeat the experiment for different values of n, the number of elements in the list

to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or

can be generated using the random number generator.

PRE-EXPERIMENT QUESTIONS:

 Explain the concept of divide and conquer.

 Define in place sorting algorithm.

 List different ways of selecting pivot element.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

10

Program Code:

#include <iostream>

#include <vector>

using namespace std;

// Partition the array and return the index of the pivot element

int partition(vector<int>& arr, int low, int high) {

int pivot = arr[high];

int i = low - 1;

for (int j = low; j <= high - 1; j++) {

if (arr[j] < pivot) {

i++;

swap(arr[i], arr[j]);

}

}
swap(arr[i + 1], arr[high]);

return i + 1;

}

// Quick Sort implementation
void quick_sort(vector<int>& arr, int low, int high) {

if (low < high) {

int pivot_index = partition(arr, low, high);

quick_sort(arr, low, pivot_index - 1);

quick_sort(arr, pivot_index + 1, high);

}

}

int main() {

vector<int> elements = {9, 5, 1, 3, 8, 6, 2, 7, 4};

cout << "Before sorting: ";

for (int num : elements) {

cout << num << " ";
}

cout << endl;

quick_sort(elements, 0, elements.size() - 1);

cout << "After sorting: ";

for (int num : elements) {

cout << num << " ";

}
cout << endl;

return 0;

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

11

Output:

Students will be able to sort the given array with the help of Pivot element as shown below:

POST EXPERIMENT QUESTIONS:

 What is the average case time complexity of quick sort?

 Describe a technique or modification to the Quick Sort algorithm that ensures better

performance even in the worst-case scenario.

 How does the choice of pivot element affect the performance of the Quick Sort algorithm?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

12

OBJECTIVE:

LAB EXPERIMENT 4

Write a Program to sort a given set of elements using the Merge Sort.

BRIEF DESCRIPTION:

Merge Sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself

for the two halves and then merges the two sorted halves.

The merge () function is used for merging two halves. The merge (a, low, mid, high) is key

process that assumes that a [low, mid] and a [mid+1, high] are sorted and merges the two sorted

sub-arrays into one.

In this program, the merge function merges two sorted subarrays (left and right) into a single

sorted array. It uses three indices (i, j, and k) to traverse the subarrays and the merged array.

The merge_sort function recursively divides the array into two halves and applies the merge_sort

function to each half. It then merges the sorted halves using the merge function.

In the main function, we define the elements vector with the input set of elements. The vector is

printed before and after sorting using the Merge Sort algorithm.

Implement merge sort algorithm to sort a given set of elements and determine the time required

to sort the elements. Repeat the experiment for different values of n, the number of elements in

the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a

file or can be generated using the random number generator.

While comparing two sub lists for merging, the first element of both lists is taken into

consideration. While sorting in ascending order, the element that is of a lesser value becomes a

new element of the sorted list. This procedure is repeated until both the smaller sub lists are

empty and the new combined sub list comprises all the elements of both the sub lists.

PRE-EXPERIMENT QUESTIONS:

 What is the running time of merge sort?

 What technique is used to sort elements in merge sort?

 Is merge sort in place sorting algorithm?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

13

Program Code:

#include <iostream>

#include <vector>

using namespace std;

// Merge two sorted subarrays into a single sorted array

void merge(vector<int>& arr, int low, int mid, int high) {

int left_size = mid - low + 1;

int right_size = high - mid;

vector<int> left(left_size);

vector<int> right(right_size);

// Copy elements to temporary arrays

for (int i = 0; i < left_size; i++)

left[i] = arr[low + i];

for (int j = 0; j < right_size; j++)

right[j] = arr[mid + 1 + j];

// Merge the temporary arrays back into arr

int i = 0; // Index of the left subarray

int j = 0; // Index of the right subarray

int k = low; // Index of the merged array

while (i < left_size && j < right_size) {

if (left[i] <= right[j]) {

arr[k] = left[i];

i++;

} else {

arr[k] = right[j];

j++;

}

k++;

}

// Copy the remaining elements of left[] and right[], if any

while (i < left_size) {

arr[k] = left[i];

i++;

k++;

}

while (j < right_size) {

arr[k] = right[j];

j++;

k++;

}

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

14

// Merge Sort implementation

void merge_sort(vector<int>& arr, int low, int high) {

if (low < high) {

int mid = low + (high - low) / 2;

// Divide the array into two halves

merge_sort(arr, low, mid);

merge_sort(arr, mid + 1, high);

// Merge the sorted halves

merge(arr, low, mid, high);

}

}

int main() {

vector<int> elements = {9, 5, 1, 3, 8, 6, 2, 7, 4};

cout << "Before sorting: ";

for (int num : elements) {

cout << num << " ";

}

cout << endl;

merge_sort(elements, 0, elements.size() - 1);

cout << "After sorting: ";

for (int num : elements) {

cout << num << " ";

}

cout << endl;

return 0;

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

15

Output:

Students will be able to identify sorting with divide and conquer technique as shown below:

POST EXPERIMENT QUESTIONS:

 What makes merge sort a stable sorting algorithm?

 How does Merge Sort manage its memory usage during the sorting process?

 Discuss the advantages and limitations of Merge Sort compared to other sorting

algorithms.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

16

OBJECTIVE:

LAB EXPERIMENT 5

Write a Program to sort a given set of elements using the Selection Sort.

BRIEF DESCRIPTION:

Selection sort is a simple and efficient sorting algorithm that works by repeatedly selecting the

smallest (or largest) element from the unsorted portion of the list and moving it to the sorted

portion of the list.

The algorithm repeatedly selects the smallest (or largest) element from the unsorted portion of

the list and swaps it with the first element of the unsorted part. This process is repeated for the

remaining unsorted portion until the entire list is sorted.

Advantages of Selection Sort Algorithm:

 Simple and easy to understand.

 Works well with small datasets.

Disadvantages of the Selection Sort Algorithm:

 Selection sort has a time complexity of O(n^2) in the worst and average case.

 Does not work well on large datasets.

 Does not preserve the relative order of items with equal keys which means it is not stable.

In this algorithm, the array is divided into two parts, first is sorted part, and another one is the

unsorted part. Initially, the sorted part of the array is empty, and unsorted part is the given array.

Sorted part is placed at the left, while the unsorted part is placed at the right.

In selection sort, the first smallest element is selected from the unsorted array and placed at the

first position. After that second smallest element is selected and placed in the second position.

The process continues until the array is entirely sorted.

This program defines a function selectionSort to perform the Selection Sort algorithm on the

given array. It iterates through the array and selects the minimum element in each iteration and

swaps it with the first unsorted element. The program also includes a helper function printArray

to print the elements of an array.

PRE-EXPERIMENT QUESTIONS:

 Is Selection Sort Algorithm stable?

 Is Selection Sort Algorithm in-place?

 Does Selection Sort have any advantages or disadvantages compared to other sorting

algorithms?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

17

Program Code:

#include <iostream>

void selectionSort(int arr[], int size) {

for (int i = 0; i < size - 1; ++i) {

int minIndex = i;

for (int j = i + 1; j < size; ++j) {

if (arr[j] < arr[minIndex]) {

minIndex = j;

}

}

// Swapping the minimum element with the first unsorted element

int temp = arr[i];

arr[i] = arr[minIndex];

arr[minIndex] = temp;

}

}

void printArray(int arr[], int size) {

for (int i = 0; i < size; ++i) {

std::cout << arr[i] << " ";

}

std::cout << std::endl;

}

int main() {

int arr[] = {64, 25, 12, 22, 11};

int size = sizeof(arr) / sizeof(arr[0]);

std::cout << "Original array: ";

printArray(arr, size);

selectionSort(arr, size);

std::cout << "Sorted array: ";

printArray(arr, size);

return 0;

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

18

Output:

Students will be able to analysis elements position with larger space taken by them as shown

below:

POST EXPERIMENT QUESTIONS:

1. What is the time complexity of Selection Sort? Can we improve it?

2. What is Selection Sort, and how does it work?

3. What is space complexity of selection sort?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

19

OBJECTIVE:

LAB EXPERIMENT 6

Write a Program for implementation of Fractional Knapsack problem using Greedy Method and

0/1 Knapsack problem using Dynamic Programming.

BRIEF DESCRIPTION:

Fractional Knapsack Problem:

Given the weights and profits of N items, in the form of {profit, weight} put these items in a

knapsack of capacity W to get the maximum total profit in the knapsack. In Fractional Knapsack,

we can break items for maximizing the total value of the knapsack.

The basic idea of the greedy approach is to calculate the ratio profit/weight for each item and sort

the item on the basis of this ratio. Then take the item with the highest ratio and add them as much

as we can (can be the whole element or a fraction of it).

This will always give the maximum profit because, in each step it adds an element such that this

is the maximum possible profit for that much weight.

Example:

Input: arr [] = {{60, 10}, {100, 20}, {120, 30}}, W = 50

Output: 240

Explanation: By taking items of weight 10 and 20 kg and 2/3 fraction of 30 kg.

Hence total price will be 60+100+(2/3) (120) = 240.

0/1 Knapsack Problem:

We are given N items where each item has some weight and profit associated with it. We are

also given a bag with capacity W, [i.e., the bag can hold at most W weight in it]. The target is to

put the items into the bag such that the sum of profits associated with them is the maximum

possible.

The constraint here is we can either put an item completely into the bag or cannot put it at all [It

is not possible to put a part of an item into the bag].

Example:

Input: N = 3, W = 4, profit[] = {1, 2, 3}, weight[] = {4, 5, 1}

Output: 3

Explanation: There are two items which have weight less than or equal to 4. If we select the item

with weight 4, the possible profit is 1. And if we select the item with weight 1, the possible profit

is 3. So the maximum possible profit is 3. Note that we cannot put both the items with weight 4

and 1 together as the capacity of the bag is 4.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

20

PRE-EXPERIMENT QUESTIONS:

 What is the time complexity of the Greedy algorithm for the Fractional Knapsack

problem?

 What is the main advantage of using the Greedy method for the Fractional Knapsack

problem?

 How does the time complexity of the Dynamic Programming approach for the 0/1

Knapsack problem depend on the number of items and the knapsack capacity?

Program Code:(Fractional Knapsack Problem using Greedy Method)

#include <iostream>

#include <algorithm>

#include <vector>

struct Item {

int weight;

int value;

double valuePerWeight;

Item(int weight, int value)

: weight(weight), value(value) {

valuePerWeight = static_cast<double>(value) / weight;

}
};

bool compare(Item a, Item b) {

return a.valuePerWeight > b.valuePerWeight;

}

double fractionalKnapsack(int capacity, std::vector<Item>& items) {

std::sort(items.begin(), items.end(), compare);

double totalValue = 0.0;

for (const auto& item : items) {

if (capacity >= item.weight) {

totalValue += item.value;

capacity -= item.weight;

} else {

totalValue += (capacity * item.valuePerWeight);

break;

}

}

return totalValue;

}

int main() {

int capacity = 50;

std::vector<Item> items = {

Item(10, 60),

Item(20, 100),

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

21

Item(30, 120),

};

double maxValue = fractionalKnapsack(capacity, items);

std::cout << "Maximum value in the knapsack: " << maxValue << std::endl;

return 0;

}

Output:

Students will be able to calculate maximum and optimal profit using Greedy approach as shown

below:

Program Code:(0/1 Knapsack Problem using Dynamic Approach)

#include <iostream>

#include <vector>

#include <algorithm>

int knapsack(int capacity, const std::vector<int>& weights, const std::vector<int>& values, int n) {

std::vector<std::vector<int>> dp(n + 1, std::vector<int>(capacity + 1, 0));

for (int i = 1; i <= n; ++i) {

for (int j = 1; j <= capacity; ++j) {

if (weights[i - 1] <= j) {

dp[i][j] = std::max(values[i - 1] + dp[i - 1][j - weights[i - 1]], dp[i - 1][j]);

} else {

dp[i][j] = dp[i - 1][j];

}

}

}

return dp[n][capacity];

}

int main() {

int capacity = 50;

std::vector<int> weights = {10, 20, 30};

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

22

std::vector<int> values = {60, 100, 120};

int n = weights.size();

int maxValue = knapsack(capacity, weights, values, n);

std::cout << "Maximum value in the knapsack: " << maxValue << std::endl;

return 0;

}

Output:

Students will be able to calculate maximum and optimal profit using Greedy approach as shown

below:

POST EXPERIMENT QUESTIONS:

 How does the Greedy method ensure that it finds the optimal solution for the Fractional

Knapsack problem?

 Under what circumstances would the Greedy method produce the same solution as the

Dynamic Programming approach for the Fractional Knapsack problem?

 Can the 0/1 Knapsack problem be solved using a Greedy approach? Why or why not?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

23

OBJECTIVE:

LAB EXPERIMENT 7

Write a Program to find the shortest path from a given vertex to other vertices in a weighted

connected graph using Dijkstra’s algorithm.

BRIEF DESCRIPTION:

Given a graph and a source vertex in the graph, find the shortest paths from the source to all

vertices in the given graph.

Example:

Input: src = 0, the graph is shown below.

Output: 0 4 12 19 21 11 9 8 14

Explanation: The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

PRE-EXPERIMENT QUESTIONS:

 What is the time complexity of Dijkstra’s algorithm?

 Define cost matrix.

 Define directed graph.

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

24

Program Code:

#include <iostream>

#include <vector>

#include <queue>

#include <limits>

#define INF std::numeric_limits<int>::max()

typedef std::pair<int, int> pii; // pair of (vertex, weight)

void dijkstra(const std::vector<std::vector<pii>>& graph, int start, std::vector<int>& dist) {

int numVertices = graph.size();

dist.resize(numVertices, INF);

dist[start] = 0;

std::priority_queue<pii, std::vector<pii>, std::greater<pii>> pq;

pq.push({start, 0});

while (!pq.empty()) {

int u = pq.top().first;

int uDist = pq.top().second;

pq.pop();

// Skip if the current distance is already greater than the stored distance

if (uDist > dist[u]) {

continue;

}

for (const auto& neighbor : graph[u]) {

int v = neighbor.first;

int weight = neighbor.second;

if (dist[u] + weight < dist[v]) {

dist[v] = dist[u] + weight;

pq.push({v, dist[v]});

}

}

}

}

int main() {

int numVertices = 5;

std::vector<std::vector<pii>> graph(numVertices);

// Adding edges to the graph

graph[0].push_back({1, 2});

graph[0].push_back({2, 4});

graph[1].push_back({2, 1});

graph[1].push_back({3, 7});

graph[2].push_back({3, 3});

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

25

graph[2].push_back({4, 5});

graph[3].push_back({4, 2});

int startVertex = 0;

std::vector<int> dist;

dijkstra(graph, startVertex, dist);

// Printing the shortest distances from the start vertex

std::cout << "Shortest distances from vertex " << startVertex << ":\n";

for (int i = 0; i < numVertices; ++i) {

std::cout << "Vertex " << i << ": " << dist[i] << std::endl;

}

return 0;

}

Output:

Students will be able to find shortest map and understand the application GOOGLE MAPS as

shown below:

POST EXPERIMENT QUESTIONS:

 How does Dijkstra's algorithm find the shortest path in a weighted graph?

 How does Dijkstra's algorithm handle graphs with unconnected or disconnected vertices?

 Does Dijkstra’s works for negative edge cycle?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

26

OBJECTIVE:

LAB EXPERIMENT 8

Write a Program to find the minimum cost spanning tree (MST) of a given undirected graph

using Kruskal’s algorithm/Prim’s Algorithms.

BRIEF DESCRIPTION:

Both Prim’s and Kruskal’s algorithm finds the Minimum Spanning Tree and follow the Greedy

approach of problem-solving, but there are few major differences between them.

Prim’s Algorithm Kruskal’s Algorithm

It starts to build the Minimum Spanning

Tree from any vertex in the graph.

It starts to build the Minimum Spanning Tree

from the vertex carrying minimum weight in

the graph.

It traverses one node more than one time to

get the minimum distance.

It traverses one node only once.

Prim’s algorithm has a time complexity of

O(V2), V being the number of vertices and

can be improved up to O(E log V) using

Fibonacci heaps.

Kruskal’s algorithm’s time complexity is O(E

log V), V being the number of vertices.

Prim’s algorithm gives connected

component as well as it works only on

connected graph.

Kruskal’s algorithm can generate

forest(disconnected components) at any

instant as well as it can work on disconnected

components

Prim’s

graphs.

algorithm runs faster in dense Kruskal’s algorithm runs faster in sparse

graphs.

It generates the minimum spanning tree

starting from the root vertex.

It generates the minimum spanning

starting from the least weighted edge.

tree

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

27

Prim’s Algorithm Kruskal’s Algorithm

Applications of prim’s algorithm are

Travelling Salesman Problem, Network for

roads and Rail tracks connecting all the

cities etc.

Applications of Kruskal algorithm are LAN

connection, TV Network etc.

Prim’s algorithm prefer list data structures.
Kruskal’s

structures.

algorithm prefer heap data

PRE-EXPERIMENT QUESTIONS:

 Why Prim’s and Kruskal's MST algorithm fails for Directed Graph?

 Can Kruskal's algorithm and Prim's algorithm handle graphs with cycles? Why or why

not?

 What is the time complexity of Kruskal's algorithm and Prim's algorithm?

Program Code:(Kruskal’s Algorithm)

#include <iostream>

#include <vector>

#include <algorithm>

struct Edge {

int src;

int dest;

int weight;

Edge(int src, int dest, int weight)

: src(src), dest(dest), weight(weight) {}

};

struct Graph {

int numVertices;

std::vector<Edge> edges;

Graph(int numVertices)

: numVertices(numVertices) {}

void addEdge(int src, int dest, int weight) {

edges.push_back(Edge(src, dest, weight));

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

28

static bool compare(Edge a, Edge b) {

return a.weight < b.weight;

}

};

struct DisjointSet {

std::vector<int> parent;

std::vector<int> rank;

DisjointSet(int size) {

parent.resize(size);

rank.resize(size);

for (int i = 0; i < size; ++i) {

parent[i] = i;

rank[i] = 0;

}

}

int find(int x) {

if (x != parent[x]) {

parent[x] = find(parent[x]);

}

return parent[x];

}

void unite(int x, int y) {

int rootX = find(x);

int rootY = find(y);

if (rootX != rootY) {

if (rank[rootX] < rank[rootY]) {

parent[rootX] = rootY;

} else if (rank[rootX] > rank[rootY]) {

parent[rootY] = rootX;

} else {

parent[rootY] = rootX;

rank[rootX]++;

}

}

}

};

std::vector<Edge> kruskalMST(Graph& graph) {

std::vector<Edge> mst;

std::sort(graph.edges.begin(), graph.edges.end(), Graph::compare);

DisjointSet disjointSet(graph.numVertices);

for (const auto& edge : graph.edges) {

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

29

int srcRoot = disjointSet.find(edge.src);

int destRoot = disjointSet.find(edge.dest);

if (srcRoot != destRoot) {

mst.push_back(edge);

disjointSet.unite(srcRoot, destRoot);

}

}

return mst;

}

int main() {

int numVertices = 4;

Graph graph(numVertices);

graph.addEdge(0, 1, 10);

graph.addEdge(0, 2, 6);

graph.addEdge(0, 3, 5);

graph.addEdge(1, 3, 15);

graph.addEdge(2, 3, 4);

std::vector<Edge> mst = kruskalMST(graph);

std::cout << "Minimum Spanning Tree (Kruskal's Algorithm):\n";

for (const auto& edge : mst) {

std::cout << edge.src << " -- " << edge.dest << " : " << edge.weight << std::endl;

}

return 0;

}

Output:

Students will be able to implement Kruskal’s algorithm as shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

30

Program Code:(Prim’s Algorithm)

#include <iostream>

#include <vector>

#include <queue>

#include <limits>

struct Edge {

int dest;

int weight;

Edge(int dest, int weight)

: dest(dest), weight(weight) {}

};

struct Graph {

int numVertices;

std::vector<std::vector<Edge>> adjList;

Graph(int numVertices)

: numVertices(numVertices), adjList(numVertices) {}

void addEdge(int src, int dest, int weight) {

adjList[src].push_back(Edge(dest, weight));

adjList[dest].push_back(Edge(src, weight));

}

};

std::vector<Edge> primMST(Graph& graph) {

std::vector<Edge> mst;

std::vector<bool> visited(graph.numVertices, false);

std::vector<int> dist(graph.numVertices, std::numeric_limits<int>::max());

std::vector<int> parent(graph.numVertices, -1);

auto compare = [](Edge a, Edge b) {

return a.weight > b.weight;

};

std::priority_queue<Edge, std::vector<Edge>, decltype(compare)> pq(compare);

int startVertex = 0;

dist[startVertex] = 0;

pq.push(Edge(startVertex, 0));

while (!pq.empty()) {

int u = pq.top().dest;

pq.pop();

visited[u] = true;

for (const auto& edge : graph.adjList[u]) {

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

31

int v = edge.dest;

int weight = edge.weight;

if (!visited[v] && weight < dist[v]) {

dist[v] = weight;

parent[v] = u;

pq.push(Edge(v, weight));

}

}

}

for (int i = 1; i < graph.numVertices; ++i) {

mst.push_back(Edge(i, parent[i]));

}

return mst;

}

int main() {

int numVertices = 4;

Graph graph(numVertices);

graph.addEdge(0, 1, 10);

graph.addEdge(0, 2, 6);

graph.addEdge(0, 3, 5);

graph.addEdge(1, 3, 15);

graph.addEdge(2, 3, 4);

std::vector<Edge> mst = primMST(graph);

std::cout << "Minimum Spanning Tree (Prim's Algorithm):\n";

for (const auto& edge : mst) {

std::cout << edge.dest << " -- " << edge.weight << std::endl;

}

return 0;

}

Output:

Students will be able to implement Prim’s algorithm as shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

32

POST EXPERIMENT QUESTIONS:

 How does Prim's algorithm select the next vertex to expand the minimum cost spanning

tree?

 What is the key difference between Kruskal's algorithm and Prim's algorithm?

 How does Kruskal's algorithm ensure that it forms a minimum cost spanning tree?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

33

OBJECTIVE:

LAB EXPERIMENT 9

Write a Program to implement N-Queens problem using back tracking.

BRIEF DESCRIPTION:

Backtracking is an algorithmic technique for solving problems recursively by trying to build a

solution incrementally, one piece at a time, removing those solutions that fail to satisfy the

constraints of the problem at any point in time (by time, here, is referred to the time elapsed till

reaching any level of the search tree).

Backtracking can also be said as an improvement to the brute force approach. So basically, the

idea behind the backtracking technique is that it searches for a solution to a problem among all

the available options. Initially, we start the backtracking from one possible option and if the

problem is solved with that selected option then we return the solution else we backtrack and

select another option from the remaining available options. There also might be a case where

none of the options will give you the solution and hence we understand that backtracking won’t

give any solution to that particular problem. We can also say that backtracking is a form of

recursion.

This is because the process of finding the solution from the various option available is repeated

recursively until we don’t find the solution or we reach the final state. So we can conclude that

backtracking at every step eliminates those choices that cannot give us the solution and proceeds

to those choices that have the potential of taking us to the solution.

There are three types of problems in backtracking –

 Decision Problem – In this, we search for a feasible solution.

 Optimization Problem – In this, we search for the best solution.

 Enumeration Problem – In this, we find all feasible solutions.

This program solves the N-Queens problem using backtracking. The printBoard function is used

to display the board configuration. The isSafe function checks if it is safe to place a queen in a

particular position on the board. The solveNQueensUtil function recursively places queens in

safe positions and backtracks when a solution is found or when it reaches an unsafe

configuration. The solveNQueens function initializes the board and calls solveNQueensUtil to

find and print all the valid solutions. In the main function, the program sets N as the number of

queens and the size of the board.

PRE-EXPERIMENT QUESTIONS:

 What is backtracking, and how does it work in the context of problem-solving?

 How does backtracking solve the N-Queens problem?

 What is the time complexity of the backtracking solution for the N-Queens problem?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

34

Program Code:

#include <iostream>

#include <vector>

void printBoard(const std::vector<std::vector<char>>& board) {

for (const auto& row : board) {

for (char cell : row) {

std::cout << cell << " ";

}

std::cout << std::endl;

}

std::cout << std::endl;

}

bool isSafe(const std::vector<std::vector<char>>& board, int row, int col, int N) {

// Check if there is a queen in the same column

for (int i = 0; i < row; ++i) {

if (board[i][col] == 'Q') {

return false;

}

}

// Check if there is a queen in the upper-left diagonal

for (int i = row, j = col; i >= 0 && j >= 0; --i, --j) {

if (board[i][j] == 'Q') {

return false;

}

}

// Check if there is a queen in the upper-right diagonal

for (int i = row, j = col; i >= 0 && j < N; --i, ++j) {

if (board[i][j] == 'Q') {

return false;

}

}

return true;

}

void solveNQueensUtil(std::vector<std::vector<char>>& board, int row, int N, int& count) {

if (row == N) {

// Solution found

++count;

std::cout << "Solution " << count << ":\n";

printBoard(board);

return;

}

for (int col = 0; col < N; ++col) {

if (isSafe(board, row, col, N)) {

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

35

board[row][col] = 'Q'; // Place the queen

solveNQueensUtil(board, row + 1, N, count);

board[row][col] = '.'; // Backtrack, remove the queen

}

}

}

void solveNQueens(int N) {

std::vector<std::vector<char>> board(N, std::vector<char>(N, '.'));

int count = 0;

solveNQueensUtil(board, 0, N, count);

std::cout << "Total solutions: " << count << std::endl;

}

int main() {

int N = 4; // Number of queens and size of the board

solveNQueens(N);

return 0;

}

Output:

Students will be able to implement the concept of backtracking and can solve puzzles such as

Sudoku as shown below:

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

36

POST EXPERIMENT QUESTIONS:

 How does the isSafe function determine if a queen can be placed in a given position on

the chessboard?

 What is the role of the solveNQueensUtil function in the N-Queens program?

 How can the N-Queens program be modified to find and store all possible solutions,

rather than just printing them?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

37

OBJECTIVE:

LAB EXPERIMENT 10

Write a Program to check whether a given graph is connected or not using DFS method.

BRIEF DESCRIPTION:

Both DFS and BFS are widely used graph traversal algorithms with different characteristics.

DFS explores deeply before backtracking, while BFS explores broadly in a level-by-level

manner. The choice between DFS and BFS depends on the problem requirements and the

structure of the graph being traversed.

Depth-First Search is a graph traversal algorithm that explores vertices and their edges in a depth

ward motion. It starts from a selected vertex and explores as far as possible along each branch

before backtracking. DFS uses a stack (either an explicit stack or the call stack) to keep track of

vertices to visit. The algorithm marks each visited vertex to avoid revisiting it. DFS is often

implemented using recursion, where the function calls itself to explore neighboring vertices. It is

useful for solving problems such as finding connected components, detecting cycles, and

traversing trees or graphs.

Breadth-First Search is a graph traversal algorithm that explores vertices and their edges in a

breadth ward motion. It starts from a selected vertex and visits all of its neighboring vertices

before moving on to their neighbors. BFS uses a queue to keep track of vertices to visit. The

first-in, first-out (FIFO) order ensures visiting vertices in increasing order of distance from the

starting vertex. The algorithm marks each visited vertex to avoid revisiting it. BFS is often

implemented using a while loop that dequeues a vertex, explores its neighbors, and enqueues

them for further exploration. It is useful for solving problems such as finding the shortest path,

finding connected components, and traversing trees or graphs in a level-by-level manner.

This program checks whether a given graph is connected or not using the DFS method. The DFS

function performs a depth-first search traversal starting from a given vertex and marks all visited

vertices. The isConnected function initializes a vector to track the visited status of each vertex

and calls the DFS function starting from the first vertex. It then checks if all vertices are visited

to determine if the graph is connected.

In the main function, a sample graph is created using an adjacency list representation. The graph

is then passed to the isConnected function, and based on the result, it prints whether the graph is

connected or not.

PRE-EXPERIMENT QUESTIONS:

 What does it mean for a graph to be connected?

 What is the main difference between a connected graph and a disconnected graph?

 How can we determine whether a graph is connected or disconnected?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

38

Program Code:
#include <iostream>

#include <vector>

void DFS(const std::vector<std::vector<int>>& graph, std::vector<bool>& visited, int vertex) {

visited[vertex] = true;

for (int neighbor : graph[vertex]) {

if (!visited[neighbor]) {

DFS(graph, visited, neighbor);

}

}

}

bool isConnected(const std::vector<std::vector<int>>& graph, int numVertices) {

std::vector<bool> visited(numVertices, false);

// Perform DFS starting from the first vertex

DFS(graph, visited, 0);

// Check if all vertices are visited

for (bool status : visited) {

if (!status) {

return false;

}

}

return true;

}

int main() {

int numVertices = 5;

std::vector<std::vector<int>> graph(numVertices);

// Add edges to the graph

graph[0] = {1, 2};

graph[1] = {0, 3};

graph[2] = {0, 3};

graph[3] = {1, 2};

graph[4] = {}; // isolated vertex

bool connected = isConnected(graph, numVertices);

if (connected) {

std::cout << "The graph is connected." << std::endl;

} else {

std::cout << "The graph is not connected." << std::endl;

}

return 0;

}

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

39

Output:

Students will be able to analysis the connected or disconnected graph performance as shown

below:

POST EXPERIMENT QUESTIONS:

 What is the time complexity of determining whether a graph is connected or disconnected

using DFS or BFS?

 How does the program you provided determine whether a graph is connected or

disconnected?

 Can a disconnected graph contain isolated vertices? Why or why not?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

40

OBJECTIVE:

LAB EXPERIMENT 11

Write a program to implement the Travelling Salesman Problem (TSP).

BRIEF DESCRIPTION:

Given a set of cities and the distance between every pair of cities, the problem is to find the

shortest possible route that visits every city exactly once and returns to the starting point. Note

the difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle problem is to find if

there exists a tour that visits every city exactly once. Here we know that Hamiltonian Tour exists

(because the graph is complete) and in fact, many such tours exist, the problem is to find a

minimum weight Hamiltonian Cycle.

For example, consider the graph shown in the figure on the right side. A TSP tour in the graph is

1-2-4-3-1. The cost of the tour is 10+25+30+15 which is 80. The problem is a famous NP-hard

problem. There is no polynomial-time know solution for this problem. The following are

different solutions for the traveling salesman problem.

PRE-EXPERIMENT QUESTIONS:

 What is the Traveling Salesman Problem (TSP)?

 What is the significance of the TSP in the field of computer science?

 What are the different approaches to solving the TSP?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

41

Program Code:

#include <iostream>

#include <vector>

#include <algorithm>

#include <cmath>

#include <climits>

int tspDynamicProgramming(std::vector<std::vector<int>>& graph, int n) {

int numSubsets = 1 << n; // Number of subsets of the vertex set

// Initialize the dynamic programming table

std::vector<std::vector<int>> dp(numSubsets, std::vector<int>(n, INT_MAX));

// Initialize the base case

dp[1][0] = 0;

// Iterate over all subsets of vertices

for (int subset = 1; subset < numSubsets; ++subset) {

for (int last = 0; last < n; ++last) {

// Check if the last vertex is in the subset

if (subset & (1 << last)) {

// Iterate over all possible second-to-last vertices

for (int secondLast = 0; secondLast < n; ++secondLast) {

// Check if the second-to-last vertex is different from the last vertex and is in the subset

if (secondLast != last && (subset & (1 << secondLast))) {

// Compute the cost of reaching the last vertex via the second-to-last vertex

int cost = graph[secondLast][last] + dp[subset ^ (1 << last)][secondLast];

dp[subset][last] = std::min(dp[subset][last], cost);

}

}

}

}

}

// Find the minimum cost of reaching the starting vertex from any other vertex

int minCost = INT_MAX;

for (int last = 1; last < n; ++last) {

int cost = graph[last][0] + dp[numSubsets - 1][last];

minCost = std::min(minCost, cost);

}

return minCost;

}

int main() {

int n = 4; // Number of cities

// Graph representation (adjacency matrix)

std::vector<std::vector<int>> graph = {

{0, 10, 15, 20},

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

42

{10, 0, 35, 25},

{15, 35, 0, 30},

{20, 25, 30, 0}

};

int minCost = tspDynamicProgramming(graph, n);

std::cout << "Minimum cost for the TSP: " << minCost << std::endl;

return 0;

}

Output:

Students will be able to implement TSP using dynamic programming as shown below:

POST EXPERIMENT QUESTIONS:

 Name a heuristic algorithm commonly used to approximate solutions for the TSP.

 What is the main limitation of the brute-force approach to solving the TSP?

 What are the different approaches to solving the TSP?

Department of CSE DESIGN & ANALYSIS OF ALGORITHMS USING C++ LAB (LC-CSE-325G) 2023-2024

43

This lab manual has been updated by

Prof. Vimmi Malhotra (vimmi.malhotra@ggnindia.dronacharya.info)

Crosschecked By

HOD CSE

Please spare some time to provide your valuable feedback.

	Table of Contents
	Vision and Mission of the Institute
	Mission:
	Vision and Mission of the Department
	Mission: (1)
	Programme Educational Objectives (PEOs)
	Programme Outcomes (POs)
	Program Specific Outcomes (PSOs)
	University Syllabus
	Course Outcomes (COs)
	List of Experiments mapped with COs
	DOs
	DON’Ts

	General Safety Precautions
	Precautions (In case of Injury or Electric Shock)
	Precautions (In case of Fire)

	Guidelines to students for report preparation
	Note:

	Lab Assessment Criteria
	LAB EXPERIMENT 1
	OBJECTIVE:
	BRIEF DESCRIPTION:
	Binary Search Algorithm:

	PRE-EXPERIMENT QUESTIONS:
	Program Code: (Iterative Binary Search)
	Output:
	Program Code: (Recursive Binary Search)
	Output: (1)

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 2
	OBJECTIVE:
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:(Iterative Linear Search)
	Output:
	Output: (1)

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 3
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 4
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 5
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 6
	BRIEF DESCRIPTION:
	Example:
	Example: (1)

	PRE-EXPERIMENT QUESTIONS:
	Program Code:(Fractional Knapsack Problem using Greedy Method)
	Output:
	Program Code:(0/1 Knapsack Problem using Dynamic Approach)
	Output: (1)

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 7
	BRIEF DESCRIPTION:
	Example:
	Output: 0 4 12 19 21 11 9 8 14

	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 8
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:(Kruskal’s Algorithm)
	Output:
	Program Code:(Prim’s Algorithm)
	Output: (1)

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 9
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 10
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

	LAB EXPERIMENT 11
	BRIEF DESCRIPTION:
	PRE-EXPERIMENT QUESTIONS:
	Program Code:
	Output:

	POST EXPERIMENT QUESTIONS:

