
COMPILER DESIGN LAB (LC-CSE-324G)

LABORATORY MANUAL

B.Tech. Semester- VI

COMPILER DESIGN LAB

Subject code: LC-CSE-324G

Prepared by: Checked by: Approved by:

Prof. Vimmi Malhotra Dr. Ashima Mehta Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

DEPARTMENT OF CSE/CSIT/IT/IOT

DRONACHARYA COLLEGE OF ENGINEERING

KHENTAWAS, FARRUKH NAGAR, GURUGRAM (HARYANA)

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Table of Contents

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO- PO and CO-PSO mapping

9. Course Overview

10. List of Experiments

11. DOs and DON’Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Details of Conducted Experiments

16. Lab Experiments

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Vision and Mission of the Institute

Vision:

“Empowering human values and advanced technical education to navigate and address

global challenges with excellence.”

Mission:

 M1: Seamlessly integrate human values with advanced technical education.

 M2: Supporting the cultivation of a new generation of innovators who are not

only skilled but also ethically responsible.

 M3: Inspire global citizens who are equipped to create positive and sustainable impact,

driving progress towards a more inclusive and harmonious worl.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

VISION AND MISSION OF THE

DEPARTMENT

 Vision:

“Steering the future of computer science through innovative advancements, fostering ethical values and

principles through technical education.”

Mission:

M1: Directing future innovations in computer science through revolutionary

progress.

M2: Instilling a foundation of ethical values and principles in every technologist.

M3: Offering a comprehensive technical education to equip individuals for a

meaningful and influential future.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Programme Educational Objectives (PEOs)

PEO1: Apply the technical competence in Computer Science and Engineering for solving

problems in the real world.

PEO2: Carry out research and develop solutions on problems of social applications.

PEO3: Work in a corporate environment, demonstrating team skills, work morals,

flexibility and lifelong learning.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Programme Outcomes (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Specific Outcomes (PSOs)

PSO1: Exhibit design and programming skills to develop and mechanize business

solutions using revolutionary technologies.

PSO2: Learn strong theoretical foundation leading to brilliance and enthusiasm towards

research, to provide well-designed solutions to complicated problems.

PSO3: Work effectively with diverse Engineering fields as a team to design, build and

develop system applications.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

University Syllabus

1. Write a Program for Token separation with a given expression.

2. Write a Program for Token separation with a given file.

3. Write a Program for Lexical analysis using LEX tools.

4. Write a Program to identify whether a given line is a comment or not.

5. Write a Program to check whether a given identifier is valid or not.

6. Write a Program to recognize strings under ‘a’, ‘a*b+’, ‘abb’.

7. Write a Program to simulate lexical analyzer for validating operators.

8. Write a Program for implementation of Operator Precedence Parser.

9. Study of LEX and YACC tools:

(i) Write a Program for implementation of calculator using YACC tool.

(ii) Write a Program for implementation of Recursive Descent Parser using LEX tool.

10. Write a Program for implementation of LL (1) Parser.

11. Write a Program for implementation of LALR Parser.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Course Outcomes (COs)

Upon successful completion of the course, the students will be able to:

C324.1: Help in improving the programming skills of the students.

C324.2: The implementation of different parsers.

C324.3: Acquire knowledge of different phases of compiler.

C324.4: Able to use the compiler tools like LEX, YACC, etc.

C324.5: Identify different types of grammars.

CO-PO Mapping

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C324.1 3 3 1 3 1 3 3 2 1 3

C324.2 3 2 1 1 3 1 3 3

C324.3 2 2 1 3 1 1 1 2

C324.4 2 2 3 3 1 1 2 1 1 2

C324.5 1 3 3 1 3 1 1 1

C324 2.2 2.4 1.8 1 3 1 1 1 1.8 1 1 2

CO-PSO Mapping

 PSO1 PSO2 PSO3

C324.1 1 3 2

C324.2 1 3 1

C324.3 1 3 2

C324.4 1 3 1

C324.5 1 3 2

C324 1.8 3 1.6

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Course Overview

Computers are a balanced mix of software and hardware. Hardware is just a piece of mechanical

device and its functions are being controlled by a compatible software. Hardware understands

instructions in the form of electronic charge, which is the counterpart of binary language in

software programming. Binary language has only two alphabets, 0 and 1. To instruct, the hardware

codes must be written in binary format, which is simply a series of 1s and 0s. It would be a difficult

and cumbersome task for computer programmers to write such codes, which is why we have

compilers to write such codes.

This course is intended to teach his course covers all the phases of a compiler such as lexical

analysis, syntax analysis, semantic analysis, intermediate code generation, code optimization,

target code generation, symbol table and error handler in details.

Compilers have become part and parcel of today’s computer systems. They are responsible for

making the user’s computing requirements, specified as a piece of program, understandable to the

underlying machine. There tools work as interface between the entities of two different domains –

the human being and the machine. The actual process involved in this transformation is quite

complex. Automata Theory provides the base of the course on which several automated tools can

be designed to be used at various phases of a compiler. Advances in computer architecture,

memory management and operating systems provide the compiler designer large number of

options to try out for efficient code generation. This course on compiler design is to address all

these issues, starting from the theoretical foundations to the architectural issues to automated tools.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

List of Experiments mapped with COs

S

No.

Name of the

Experiment

Course

Outcome

1 Write a Program for Token separation with a given expression. C324.1,

C324.3

2 Write a Program for Token separation with a given file. C324.3

3 Write a Program for Lexical analysis using LEX tools. C324.4

4 Write a Program to identify whether a given line is a comment or not. C324.3

5 Write a Program to check whether a given identifier is valid or not. C324.2,

C324.1

6 Write a Program to recognize strings under ‘a’, ‘a*b+’, ‘abb’. C324.3

7 Write a Program to simulate lexical analyser for validating operators. C324.5

8 Write a Program for implementation of Operator Precedence Parser. C324.4

9 Study of LEX and YACC tools:
(i) Write a Program for implementation of calculator using YACC tool.

(ii) Write a Program for implementation of Recursive Descent Parser using LEX tool.

C324.3,

C324.2

10 Write a Program for implementation of LL (1) Parser. C324.3

11 Write a Program for implementation of LALR Parser. C324.3

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

DOs and DON’Ts

DOs

1. Login-on with your username and password.

2. Log off the computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly

prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

General Safety Precautions

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or

plastic to break the contact. Do not touch the victim with bare hands to avoid the risk

of electrifying yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the

circuit off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press

the chest in and out to continue breathing function. Use mouth-to-mouth resuscitation

if necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by

covering it with a heavy cloth if possible isolate the burning equipment from the other

surrounding equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency : Reception

(Reception) Security : Front Gate

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Guidelines to students for report preparation

All students are required to maintain a record of the experiments conducted by them. Guidelines

for its preparation are as follows: -

1) All files must contain a title page followed by an index page. The files will not be signed

by the faculty without an entry in the index page.

2) Student’s Name, Roll number and date of conduction of experiment must be written on

all pages.

3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment

(ii) Pre-experiment work (as given by the faculty)

(iii) Lab assignment questions and their solutions

(iv) Test Cases (if applicable to the course)

(v) Results/ output

Note:

1. Students must bring their lab record along with them whenever they come for the lab.

2. Students must ensure that their lab record is regularly evaluated.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Lab Assessment Criteria

An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes are

assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as shown

in following table. Assessed performance in each experiment is used to compute CO attainment as

well as internal marks in the lab course.

Grading

Criteria
Exemplary (4)

Competent (3)
Needs Improvement

(2)

Poor (1)

AC1:

Pre-Lab

written work

(this may be

assessed

through viva)

Complete procedure

with underlined

concept is properly

written

Underlined concept is

written but procedureis

incomplete

Not able to write

concept and procedure

Underlined concept is

not clearly

Understood

AC2:

Program

Writing/

Modeling

Assigned problem is

properly analyzed,

correct solution

designed, appropriate

language constructs/

tools are applied,
Program/solution
written is readable

Assigned problem is

properly analyzed,

correct solution

designed, appropriate

language constructs/

tools are applied

Assigned problem is

properly analyzed &

correct solution

designed

Assigned problem is

properly analyzed

AC3:

Identification

& Removal of

errors/ bugs

Able to identify

errors/ bugs and

remove them

Able to identify errors/

bugs and remove them

with little bit of

guidance

Is dependent totally on

someone for

identification of

errors/ bugs and their
removal

Unable to understand
the reason for errors/
bugs even after they
are explicitly pointed
out

AC4:

Execution &

Demonstratio

n

All variants of input

/output are tested,

Solution is well

demonstrated and

implemented concept

is clearly explained

All variants of input

/output are not tested,

However, solution is

well demonstrated and

implemented concept

is clearly explained

Only few variants of

input /output are

tested,

Solution is well
demonstrated but
implemented concept
is not clearly
explained

Solution is not well

demonstrated and

implemented concept

is not clearly

explained

AC5: Lab

Record

Assessment

All assigned

problems are well

recorded with

objective, design

constructs and

solution along with

Performance analysis

using all variants of

input and output

More than 70 % of the

assigned problems are

well recorded with

objective, design

contracts and solution

along with

Performance analysis

is done with all

variants of input and

output

Less than 70 % of the

assigned problems are

well recorded with

objective, design

contracts and solution

along with

Performance analysis

is done with all

variants of input and

output

Less than 40 % of the

assigned problems

are well recorded

with objective, design

contracts and solution

along with

Performance analysis

is done with all

variants of input and

output

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENTS

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 1

OBJECTIVE:

Write a Program for Token separation with a given expression.

BRIEF DESCRIPTION:

Token is a group of characters having collective meaning: typically, a word or punctuation mark,

separated by a lexical analyzer and passed to a parser. A lexeme is an actual character sequence

forming a specific instance of a token, such as num.

The basic token includes:

• Terminal Symbols (TRM)- Keywords and Operators,

• Literals (LIT), and

• Identifiers (IDN).

The output of Lexical Analyzer serves as an input to Syntax Analyzer as a sequence of tokens

and not the series of lexemes because during the syntax analysis phase individual unit is not vital

but the category or class to which this lexeme belongs is considerable.

PRE-EXPERIMENT QUESTIONS:

1. What is tokens and explain its category.

2. What is lexical analysis in compiler design?

3. What is expression?

Explanation:

int a = 10; //Input Source code

Tokens:

int (keyword), a(identifier), =(operator), 10(constant) and ;(punctuation-semicolon)

Answer: Total number of tokens = 5

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

#include <stdio.h>

#include <string.h>

#include <ctype.h>

void main()

{

int i, ic=0, m, cc=0, oc=0, j;

char b[30], operator[30], identifier[30], constant[30];

printf("Enter the string: ");

scanf("%[^\n]s",&b);

for(int i=0;i<strlen(b);i++){

if(isspace(b[i])){

continue;

}

else if(isalpha(b[i])){

identifier[ic] = b[i];

ic++;

}

else if(isdigit(b[i])){

m = (b[i]-'0');

i = i+1;

while(isdigit(b[i])){

m = m*10+(b[i]-'0');

i++;

}

i = i-1;

constant[cc] = m;

cc++;

}

else{

if(b[i]=='*'){

operator[oc] = '*';

oc++;

}

else if(b[i]=='+'){

operator[oc] = '+';

oc++;

}

else if(b[i]=='-'){

operator[oc] = '-';

oc++;

}

else if(b[i]=='=')

{ operator[oc] = '=';

oc++;

}

}

}

printf("Identifier: ");

for(int i=0;i<ic;i++){

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

printf("%c, ", identifier[i]);

}

printf("\n");

printf("operator: ");

for(int i=0;i<oc;i++){

printf("%c, ", operator[i]);

}

printf("\n");

printf("constant: ");

for(int i=0;i<cc;i++){

printf("%d, ", constant[i]);

}

}

Output:

Students will be able to recognize tokens as shown below:

POST EXPERIMENT QUESTIONS:

1. Differentiate between Tokens, Lexemes, and Pattern?

2. How many tokens are there in given expression: printf (“%d %d”, hello”); ?

3. How are regular sets different from non-regular sets?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

LAB EXPERIMENT 2

OBJECTIVE:

Write a Program for Token separation with a given file.

BRIEF DESCRIPTION:

Token separation at phone, syllable and word levels. A Separator is made of 3 entries phone,

syllable and word defining the token separators for each of these levels within an utterance. A

token separator can be a string or None. If not None, the entries 'phone', 'syllable' and 'word'

must be all different.

PRE-EXPERIMENT QUESTIONS:

1. What is token separation?

2. Difference between tokens and terminals.

3. How to count total number of tokens?

Explanation:

Scanning is the first phase of a compiler in which the source program is read character by character

and then grouped in to various tokens. Token is defined as sequence of characters with collective

meaning. The various tokens could be identifiers, keywords, operators, punctuations, constants,

etc. The input is a program written in any high level language and the output is stream of tokens.

Regular expressions can be used for implementing this token separation

Algorithm

Step 1: Read the content of the file using File Reader.

Step 2: Separate the string with the delimiter space using String Tokenizer.

Step 3: Match the String with the pattern using Regular Expression.

Step 4: Group the tokens as identifier, keywords, operators , punctuations etc… and display it

using the given format <keyword, int>

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

#include <stdbool.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

bool isDelimiter(char ch)

{

if (ch == ' ' || ch == '+' || ch == '-' || ch == '*' ||

ch == '/' || ch == ',' || ch == ';' || ch == '>' ||

ch == '<' || ch == '=' || ch == '(' || ch == ')' ||

ch == '[' || ch == ']' || ch == '{' || ch == '}')

return (true);

return (false);

}

bool isOperator(char ch)

{

if (ch == '+' || ch == '-' || ch == '*' ||

ch == '/' || ch == '>' || ch == '<' ||

ch == '=')

return (true);

return (false);

}

bool validIdentifier(char* str)

{

if (str[0] == '0' || str[0] == '1' || str[0] == '2' ||

str[0] == '3' || str[0] == '4' || str[0] == '5' ||

str[0] == '6' || str[0] == '7' || str[0] == '8' ||

str[0] == '9' || isDelimiter(str[0]) == true)

return (false);

return (true);

}

bool isKeyword(char* str)

{

if (!strcmp(str, "if") || !strcmp(str, "else") ||

!strcmp(str, "while") || !strcmp(str, "do") ||

!strcmp(str, "break") ||

!strcmp(str, "continue") || !strcmp(str, "int")

|| !strcmp(str, "double") || !strcmp(str, "float")

|| !strcmp(str, "return") || !strcmp(str, "char")

|| !strcmp(str, "case") || !strcmp(str, "char")

|| !strcmp(str, "sizeof") || !strcmp(str, "long")

|| !strcmp(str, "short") || !strcmp(str, "typedef")

|| !strcmp(str, "switch") || !strcmp(str, "unsigned")

|| !strcmp(str, "void") || !strcmp(str, "static")

|| !strcmp(str, "struct") || !strcmp(str, "goto"))

return (true);

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

return (false);

}

bool isInteger(char* str)

{

int i, len = strlen(str);

if (len == 0)

return (false);

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2'

&& str[i] != '3' && str[i] != '4' && str[i] != '5'

&& str[i] != '6' && str[i] != '7' && str[i] != '8'

&& str[i] != '9' || (str[i] == '-' && i > 0))

return (false);

}

return (true);

}

bool isRealNumber(char* str)

{

int i, len = strlen(str);

bool hasDecimal = false;

if (len == 0)

return (false);

for (i = 0; i < len; i++) {

if (str[i] != '0' && str[i] != '1' && str[i] != '2'

&& str[i] != '3' && str[i] != '4' && str[i] != '5'

&& str[i] != '6' && str[i] != '7' && str[i] != '8'

&& str[i] != '9' && str[i] != '.' ||

(str[i] == '-' && i > 0))

return (false);

if (str[i] == '.')

hasDecimal = true;

}

return (hasDecimal);

}

char* subString(char* str, int left, int right)

{

int i;

char* subStr = (char*)malloc(

sizeof(char) * (right - left + 2));

for (i = left; i <= right; i++)

subStr[i - left] = str[i];

subStr[right - left + 1] = '\0';

return (subStr);

}

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

void parse(char* str)

{

int left = 0, right = 0;

int len = strlen(str);

while (right <= len && left <= right) {

if (isDelimiter(str[right]) == false)

right++;

if (isDelimiter(str[right]) == true && left == right) {

if (isOperator(str[right]) == true)

printf("'%c' IS AN OPERATOR\n", str[right]);

right++;

left = right;

}

else if (isDelimiter(str[right]) == true && left != right || (right == len && left != right)) {

char* subStr = subString(str, left, right - 1);

if (isKeyword(subStr) == true)

printf("'%s' IS A KEYWORD\n", subStr);

else if (isInteger(subStr) == true)

printf("'%s' IS AN INTEGER\n", subStr);

else if (isRealNumber(subStr) == true)

printf("'%s' IS A REAL NUMBER\n", subStr);

else if (validIdentifier(subStr) == true

&& isDelimiter(str[right - 1]) == false)

printf("'%s' IS A VALID IDENTIFIER\n", subStr);

else if (validIdentifier(subStr) == false

&& isDelimiter(str[right - 1]) == false)

printf("'%s' IS NOT A VALID IDENTIFIER\n", subStr);

left = right;

}

}

return;

}

int main()

{

char str[100] = " int a = b + 1c; ";

parse(str);

return (0);

}

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Output:

Students will be able to recognize tokens in a file as shown below:

POST EXPERIMENT QUESTIONS:

1. What are the various functions of lexical analyzer?

2. Which mathematical model is used in the lexical analyzer?

3. What elements are included in non-tokens components?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 3

Write a Program for Lexical analysis using LEX tools.

BRIEF DESCRIPTION:

LEX is a program generator designed for lexical processing of character input/output stream.

Anything from simple text search program that looks for pattern in its input-output file to a C

compiler that transforms a program into optimized code.

PRE-EXPERIMENT QUESTIONS:

1. What is LEX?

2. Differentiate between LEX and FLEX.

3. Define phases of LEX.

Explanation:

Algorithm

1. First, a specification of a lexical analyzer is prepared by creating a program lexp. l in the

LEX language.

2. The Lexp.l program is run through the LEX compiler to produce an equivalent code in C

language named Lex.yy.c

3. The program lex.yy.c consists of a table constructed from the Regular Expressions of

Lexp.l, together with standard routines that uses the table to recognize lexemes.

4. Finally, lex.yy.c program is run through the C Compiler to produce an object program

a.out, which is the lexical analyzer that transforms an input stream into a sequence of

tokens.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

%{

#include <stdio.h>

%}

%%

"hi" {

printf("Reply: By");

}

.* {
printf("error");

}

%%

int main(){

printf("Enter the input: ");

yylex();

}

int yywrap()

{

return 1;

}

Output:

Students will be able to do programming in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. What is Lex tool used for?

2. Why do we need a lexical analyzer?

3. What is a lexical error?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 4

Write a Program to identify whether a given line is a comment or not.

BRIEF DESCRIPTION:

Comment lines are of the form:

%% {START} {whatever symbols, alphanumeric and letters} {END} %%

START symbol can be // or /* in C.

END symbol is */

If it is "//" any other symbol can follow it in the LINE including a second occurances of // (which

is ignored). IF it is " /* " it will find the next immediate match for " */ " and all the rest of the

patterns that appear in between is matched (This matching may include blank spaces, tabs,"//" and

" /* " in it)

Given a string S, representing a line in a program, the task is to check if the given string is a

comment or not. The following are the types of comments in programs:

a) Single Line Comment: Comments preceded by a Double Slash (‘//’)

b) Multi-line Comment: Comments starting with (‘/*’) and ending with (‘*/’).

PRE-EXPERIMENT QUESTIONS:

1. What are the different types of comment?

2. Why lexical and syntax analyzers are separated out?

3. What is yylex in lex?

Explanation:

The idea is to check whether the input string is a comment or not. Below are the steps:

1. Check if at the first Index (i.e. index 0) the value is ‘/’ then follow below steps else print

“It is not a comment”.

2. If line[0] == ‘/’:

a) If line[1] == ‘/’, then print “It is a single line comment”.

b) If line[1] == ‘*’, then traverse the string and if any adjacent pair of ‘*’ & ‘/’ is found

then print “It is a multi-line comment”.

3. Otherwise, print “It is not a comment”.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

%{

#include<stdio.h>

%}

%%

[\t]+ ;

[0-9]+|[0-9]*\.[0-9]+ { printf("\n%s is NUMBER", yytext);}

#.* { printf("\n%s is COMMENT", yytext);}

[a-zA-Z][a-zA-Z0-9]+ { printf("\n%s is IDENTIFIER", yytext);}

\"[^ \"\n]*\" { printf("\n%s is STRING", yytext);}

\n { ECHO;}

%%

int main()

{

while(yylex());

}

int yywrap()

{

return 1;

}

Output:

Students will be able to identify comment in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. What is the structure of Lex and YACC?

2. In which phase yacc is used?

3. What are the uses of Lex in compiler design?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 5

Write a Program to check whether a given identifier is valid or not.

BRIEF DESCRIPTION:

Transition diagram is a special kind of flowchart for language analysis. In transition diagram the

boxes of flowchart are drawn as circle and called as states. States are connected by arrows called

as edges. The label or weight on edge indicates the input character that can appear after that

state. Transition diagram of identifier is given below:

Given a string str, the task is to check if the string is a valid identifier or not. In order to qualify

as a valid identifier, the string must satisfy the following conditions:

a) It must start with an either underscore (_) or any of the characters from the ranges [‘a’,

‘z’] and [‘A’, ‘Z’].

b) There must not be any white space in the string.

c) And, all the subsequent characters after the first character must not consist of any special

characters like $, #, % etc.

PRE-EXPERIMENT QUESTIONS:

1. What is identifier and its types?

2. What are basic identifiers?

3. What is difference between identifier and variable?

Explanation:

Traverse the string character by character and check whether all the requirements are met for it to

be a valid identifier i.e. first character can only be either ‘_’ or an English alphabet and the rest

of the characters must neither be a white space or any special character.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

#include <bits/stdc++.h>

using namespace std;

bool isValid(string str, int n)

{

// If first character is invalid

if (!((str[0] >= 'a' && str[0] <= 'z')

|| (str[0] >= 'A' && str[0] <= 'Z')

|| str[0] == '_'))

return false;

// Traverse the string for the rest of the characters

for (int i = 1; i < str.length(); i++) {

if (!((str[i] >= 'a' && str[i] <= 'z')

|| (str[i] >= 'A' && str[i] <= 'Z')

|| (str[i] >= '0' && str[i] <= '9')

|| str[i] == '_'))

return false;

}

// String is a valid identifier

return true;

}

int main()

{

string str = "_geeks123";

int n = str.length();

if (isValid(str, n))

cout << "Valid";

else

cout << "Invalid";

return 0;

}

Output:

Students will be able to identify comment in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. What is an identifier example?

2. Differentiate between keyword and identifier.

3. Which symbol is used in identifier?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 6

Write a Program to recognize strings under ‘a’, ‘a*b+’, ‘abb’.

BRIEF DESCRIPTION:

A deterministic finite automaton (DFA) is a finite-state machine that accepts or rejects a given

string of symbols by running through a state sequence that is uniquely determined by the string

in the theory of computation.

For each input symbol, the state to which the machine will move can be determined using DFA.

It's called as a Deterministic Automaton as a result of this. As it contains a finite number of

states, the machine is called a Deterministic Finite Machine or Deterministic Finite Automaton.

It is represented as 5 tuples (Q, ∑, δ, q0, F) where:

a) Q represents the finite states

b) ∑ represents the is a finite set of symbols, also called the alphabet

c) δ represents the transition function where δ: Q × ∑ → Q

d) q0 represents the initial state from where any input is processed

e) F represents the set of final state of Q.

PRE-EXPERIMENT QUESTIONS:

1. What is NFA?

2. Where is DFA used in compiler?

3. What is difference between DFA and NFA?

Explanation:

The LEX Code that accepts the string ending with ‘abb’ over input alphabet {a, b} and will see

the implementation using LEX code and will understand the approach.

LEX provides us with an INITIAL state by default. So to make a DFA, use this as the initial state

of the DFA. We define four more states: A, B, C, and DEAD, where the DEAD state would be

used if encountering a wrong or invalid input. When the user inputs an invalid character, move to

DEAD state, and then print “Invalid”. If the input string ends at C then display the message

“Accepted”. Else if the input string ends at state INITIAL, A, or B then displays the message “Not

Accepted”.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

%{

%}

%s A B C DEAD

// not accepted state after visiting A

%%

<INITIAL>a BEGIN A;

<INITIAL>b BEGIN INITIAL;

<INITIAL>[^ab\n] BEGIN DEAD;

<INITIAL>\n BEGIN INITIAL; {printf("Not Accepted\n");}

// not accepted state after visiting A and B state

<A>a BEGIN A;

<A>b BEGIN B;

<A>[^ab\n] BEGIN DEAD;

<A>\n BEGIN INITIAL; {printf("Not Accepted\n");}

// // not accepted state after visiting A and C state

a BEGIN A;

b BEGIN C;

[^ab\n] BEGIN DEAD;

\n BEGIN INITIAL; {printf("Not Accepted\n");}

// Accepted case

<C>a BEGIN A;

<C>b BEGIN INITIAL;

<C>[^ab\n] BEGIN DEAD;

<C>\n BEGIN INITIAL; {printf("Accepted\n");}

// Invalid Case

<DEAD>[^\n] BEGIN DEAD;

<DEAD>\n BEGIN INITIAL; {printf("Invalid\n");}

%%

// yywrap method

int yywrap()

{

return 1;

}

// main method

int main()

{

printf("Enter String\n");

// called yylex

yylex();

return 0;

}

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Output:

Students will be able to recognize string in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. Define dead state.

2. Draw a DFA as well as NFA which accept a string containing “ing” at the end of

a string in a string of {a-z}, e.g., “anything” but not “anywhere”.

3. Which is more powerful DFA or NFA?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 7

Write a Program to simulate lexical analyzer for validating operators.

BRIEF DESCRIPTION:

Lexical Analysis is the very first phase in the compiler designing. A Lexer takes the modified

source code which is written in the form of sentences. In other words, it helps you to convert a

sequence of characters into a sequence of tokens. The lexical analyzer breaks this syntax into a

series of tokens. It removes any extra space or comment written in the source code. The role of

Lexical Analyzer in compiler design is to read character streams from the source code, check for

legal tokens, and pass the data to the syntax analyzer when it demands.

PRE-EXPERIMENT QUESTIONS:

1. What is 2 pass compiler?

2. What is the role of symbol table in lexical analyzer?

3. How keywords are recognized in lexical analyzer?

Explanation:

Algorithm

Step 1: Start the program

Step 2: Include necessary header files.

Step 3: The ctype header file is to load the file with predicate isdigit.

Step 4: The define directive defines the buffer size, numeric, assignment operator, relational

operator.

Step 5: Initialize the necessary variables.

Step 6: To return index of new string S, token t using insert () function.

Step 7: Initialize the length of every string.

Step 8: Check the necessary condition.

Step 9: Call the initialize () function. This function loads the keywords into the symbol table.

Step 10: Check the conditions such as white spaces, digits, letters and alphanumeric.

Step 11: To return index of entry for string S, or 0 if S is not found using lookup () function.

Step 12: Check this until EOF is found.

Step 13: Otherwise initialize the token value to be none.

Step 14: In the main function if look ahead equals numeric then the value of attribute num is

given by the global variable token value.

Step 15: Check the necessary conditions such as arithmetic operators, parenthesis, identifiers,

assignment operators and relational operators.

Step 16: Stop the program.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

%{

#include <stdio.h>

%}

%%

">"||"<"||"<="||">="||"=="||"!=" {

printf("Relational Operator = %s", yytext);

}

.* {

printf("Wrong");

}

%%

int yywrap() {

return 1;

}

int main () {

printf("Enter the input: ");

yylex();

}

Output:

Students will be able to recognize valid operators in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. Define output of lexical analyzer.

2. Explain BNF.

3. What is type 0 grammar?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 8

Write a Program for implementation of Operator Precedence Parser.

BRIEF DESCRIPTION:

A grammar that is used to define mathematical operators is called an operator grammar or operator

precedence grammar. Such grammars have the restriction that no production has either an empty

right-hand side (null productions) or two adjacent non-terminals in its right-hand side.

An operator precedence parser is a bottom-up parser that interprets an operator grammar. This

parser is only used for operator grammars. Ambiguous grammars are not allowed in any parser

except operator precedence parser. There are two methods for determining what precedence

relations should hold between a pair of terminals:

a) Use the conventional associativity and precedence of operator.

b) The second method of selecting operator-precedence relations is first to construct an

unambiguous grammar for the language, a grammar that reflects the correct associativity

and precedence in its parse trees.

This parser relies on the following three precedence relations: ⋖, ≐, ⋗ a ⋖ b This means a “yields

precedence to” b. a ⋗ b This means a “takes precedence over” b. a ≐ b This means a “has same

precedence as” b.

PRE-EXPERIMENT QUESTIONS:

1. What is operator grammar?

2. What is the role of operator precedence parser in BUP?

3. Differentiate between TDP and BUP?

Explanation:

Algorithm

1. Include the necessary header files.

2. Declare the necessary variables with the operators defined before.

3. Get the input from the user and compare the string for any operators.

4. Find the precedence of the operator in the expression from the predefined operator.

5. Set the operator with the maximum precedence accordingly and give the relational operators for

them.

6. Parse the given expression with the operators and values.

7. Display the parsed expression.

8. Exit the program.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:

#include<stdlib.h>

#include<stdio.h>

#include<string.h>

// function f to exit from the loop

// if given condition is not true

void f()

{

printf("Not operator grammar");

exit(0);

}

void main()

{

char grm[20][20], c;

// Here using flag variable,

// considering grammar is not operator grammar

int i, n, j = 2, flag = 0;

// taking number of productions from user

scanf("%d", &n);

for (i = 0; i < n; i++)

scanf("%s", grm[i]);

for (i = 0; i < n; i++) {

c = grm[i][2];

while (c != '\0') {

if (grm[i][3] == '+' || grm[i][3] == '-'

|| grm[i][3] == '*' || grm[i][3] == '/')

flag = 1;

else {

flag = 0;

f();

}

if (c == '$') {

flag = 0;

f();

}

c = grm[i][++j];

}

}

if (flag == 1)

printf("Operator grammar");

}

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Output:

Students will be able to implement Operator grammar and its parser in LEX as shown below:

POST EXPERIMENT QUESTIONS:

1. How do you parse operator precedence?

2. Can we change operator precedence?

3. What is the level of precedence?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 9 (i)

Write a Program for implementation of calculator using YACC tool.

BRIEF DESCRIPTION:

Lex is a computer program that generates lexical analyzers ("scanners" or "lexers"). LEX is

commonly used with the YACC parser generator. Lex reads an input stream specifying the lexical

analyzer and outputs source code implementing the lexer in the C programming language.

YACC is written in portable C. The class of specifications accepted is a very general one LALR

(1) grammars with disambiguating rules.

PRE-EXPERIMENT QUESTIONS:

1. What is the purpose of YACC?

2. In which phase YACC is used?

3. Which table is created by YACC?

Explanation:

Special Functions

• yytext– where text matched most recently is stored

• yyleng– number of characters in text most recently matched

• yylval– associated value of current token

• yymore()– append next string matched to current contents of yytext

• yyless(n)– remove from yytext all but the first n characters

• unput(c) – return character c to input stream

• yywrap()– may be replaced by user and the yywrap method is called by the lexical analyzer

whenever it inputs an EOF as the first character when trying to match a regular expression

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:
%{

#include<stdio.h>

#include<stdlib.h>

void yyerror(char *);

#include "y.tab.h"

int yylval;

%}

40

%%

[a-z] {yylval=*yytext='&'; return VARIABLE;}

[0-9]+ {yylval=atoi(yytext); return INTEGER;}

[\t] ;

%%

int yywrap(void)

{

return 1;

}

CALC.Y

%token INTEGER VARIABLE

%left '+' '-'

%left '*' '/'

%{

int yylex(void);

void yyerror(char *);

int sym[26];

%}

%%

PROG:

PROG STMT '\n'

;

41

STMT: EXPR {printf("\n %d",$1);}

| VARIABLE '=' EXPR {sym[$1] = $3;}

;

EXPR: INTEGER

| VARIABLE {$$ = sym[$1];}

| EXPR '+' EXPR {$$ = $1 + $3;}

| '(' EXPR ')' {$$ = $2;}

%%

void yyerror(char *s)

{

printf("\n %s",s);

return;

}

int main(void)

{

printf("\n Enter the Expression:");

yyparse();

return 0; }

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Output:

Students will be able to implement applications of LEX and YACC as shown below:

POST EXPERIMENT QUESTIONS:

1. Which parsing technique is used in YACC?

2. What are the parts of a YACC file?

3. Is YACC a bottom-up parser?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 9 (ii)

Write a Program for implementation of Recursive Descent Parser using LEX tool

BRIEF DESCRIPTION:

A recursive descent parser is a top-down parser, so called because it builds a parse tree from the

top (the start symbol) down, and from left to right, using an input sentence as a target as it is

scanned from left to right. (The actual tree is not constructed but is implicit in a sequence of

function calls.) This type of parser was very popular for real compilers in the past, but is not as

popular now. The parser is usually written entirely by hand and does not require any sophisticated

tools.

This parser uses a recursive function corresponding to each grammar rule (that is, corresponding

to each non-terminal symbol in the language). For simplicity one can just use the non-terminal as

the name of the function. The body of each recursive function mirrors the right side of the

corresponding rule. In order for this method to work, one must be able to decide which function to

call based on the next input symbol.

PRE-EXPERIMENT QUESTIONS:

1. What is the purpose of a recursive descent parser?

2. What is the another name of recursive descent parser?

3. What type of parsing is recursive descent parser?

Explanation:

Lex Compiler:

1) Initialize identifier as [a-zA-Z][a-zA-Z0-9].

2) Initialize numbers as [0-9]+|([0-9]*/.[0-9]+).

3) Assign a variable to keep track of the errors.

4) If the symbol is a identifier return VAR, if it is Number return NUM.

5) If it belongs to Relational Operators, return RELOP.

6) If it is a keyword then return their respective name, if it is a data type

7) Then return TYPE.

8) Ignore the white spaces and increment the errors.

YACC Compiler:

1) Get the input as a file name open the file in read mode.

2) Get the input as characters and check them.

3) Check for the error message and display them, Error Handling routine gets

called if a

statement cannot be parsed with the grammar defined.

4) Check the tokens for identifiers, numbers, keywords and operators.

5) Display the result and close the program Execution.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:
%{

#include<stdio.h>

35

#include<stdlib.h>

#include<string.h>

void yyerror(char *);

#include "y.tab.h"

%}

%%

[a-z|A-Z][a-z|A-Z|0-9|_]* {strcpy(yylval.str,yytext); return(ID);}

[0-9]+ {yylval.no=atoi(yytext); return(DIGIT);}

"+" {return (PLUS);}

"-" {return (MINUS);}

"/" {return (DIV);}

"*" {return (MUL);}

"(" {return (OPEN);}

")" {return (CLOSE);}

"\n" {return (0);}

[\t]

%%

int yywrap(void)

{

return 1;

36

}

YACCP.Y

%union

{

int no;

char str[10];

}

%token <no> DIGIT

%token <str> ID

%left PLUS MINUS

%left MUL DIV

%left OPEN CLOSE

%%

STMT: EXPR {printf("\n");}

;

EXPR: EXPR PLUS EXPR {printf("\n + is an ADD Operator");}

| EXPR MINUS EXPR {printf("\n - is an SUBTRACT Operator");}

| EXPR MUL EXPR {printf("\n * is an MULTIPLICATION Operator");}

| EXPR DIV EXPR {printf("\n / is an DIVISION Operator");}

| OPEN EXPR CLOSE

| DIGIT {printf("\n %d is a NUMBER",yylval.no);}

| ID {printf("\n %s is an IDENTIFIER ",yylval.str);}

37

%%

void yyerror(char *s)

{

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

printf("\nError: %s",s);

return;

}

int main(void)

{

yyparse();

return 0;

}

Output:

Students will be able to implement recursive descent parser as shown below:

POST EXPERIMENT QUESTIONS:

1. Why do recursive-descent parsers have to backtrack?

2. What is the complexity of recursive descent parser?

3. Discuss the pros and cons of Recursive Descent Parser.

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 10

Write a Program for implementation of LL (1) Parser.

BRIEF DESCRIPTION:

The first ‘L’ in LL(1) stands for scanning the input from left to right, the second ‘L’ stands for

producing a leftmost derivation, and the ‘1’ for using one input symbol of look ahead at each step

to make parsing action decisions. LL(1) grammar follows Top-down parsing method. For a class

of grammars called LL(1) we can construct grammars predictive parser. That works on the concept

of recursive-descent parser not requiring backtracking.

PRE-EXPERIMENT QUESTIONS:

1. Is LL(1) parser a TDP?

2. What is the purpose of 1 in LL(1)?

3. What type of functions exist in LL(1) parsing table?

Explanation:

The construction of a top-down parser is aided by FIRST and FOLLOW functions, that are

associated with a grammar G. During top-down parsing, FIRST and FOLLOW allow us to choose

which production to apply, based on the next input symbol.

Rules for First computation:

1) If x is terminal, then FIRST(x)={x}

2) If X→ ε is production, then add ε to FIRST(X)

3) If X is a non-terminal and X → PQR then FIRST(X)=FIRST(P)

a) If FIRST(P) contains ε, then

b) FIRST(X) = (FIRST(P) – {ε}) U FIRST(QR)

Rules for Follow computation:

1) For Start symbol, place $ in FOLLOW(S)

2) If A→ α B, then FOLLOW(B) = FOLLOW(A)

3) If A→ α B β, then

a) If ε not in FIRST(β),

FOLLOW(B) = FIRST(β)

else do,

FOLLOW(B) = (FIRST(β)-{ε}) U FOLLOW(A)

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Program Code:
#include<stdio.h>

#include<string.h>

char s[30],stack[20];

int main()

{

char m[5][6][3]={{"tb"," "," ","tb"," "," "},

{" ","+tb"," "," ","n","n"},

{"fc"," "," ","fc"," "," ",},

{" ","n","*fc"," ","n","n"},

{"d"," "," ","(e)"," "," "}};

int size[5][6]={2,0,0,2,0,0,0,3,0,0,1,1,2,0,0,2,0,0,0,1,3,0,1,1,1,0,0,3,0,0};

int i,j,k,n,str1,str2;

printf("\n enter the input string:");

scanf("%s",s);

strcat(s,"$");

n=strlen(s);

stack[0]='$';

stack[1]='e';

i=1;

j=0;

printf("\n stack input\n");

printf("\n");

while((stack[i]!='$')&&(s[j]!='$'))

{

if(stack[i]=s[j])

{

i--;

j++;

}

switch(stack[i])

{

case 'e':str1=0;

break;

case 'b':str1=1;

break;

case 't':str1=2;

break;

case 'c':str1=3;

break;

case 'f':str1=4;

break; }

switch(s[j]) {

case 'd':str2=0;

break;

case '+':str2=1;

break;

case '*':str2=2;

break;

case '(':str2=3;

break;

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

case ')':str2=4;

break;

case '$':str2=5;

break; }

if(m[str1][str2][0]=='$') {

printf("

\n error\n");

return(0); }

else if(m[str1][str2][0]='n') i--;

else if(m[str1][str2][0]='i')

stack[i]='d';

else {

for(k=size[str1][str2]

-1;k>=0;k--

)

{

stack[i]=m[str1][str2][k];

i++; }i--; }

for(k=0;k<=i;k++)

printf("%c",stack[k]);

printf(" ");

for(k=j;k<=n;k++)

printf("%c",s[k]);

printf("\n");

}

printf("\n SUCCESS");

}

Output:

Students will be able to implement LL(1) parser as shown below:

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Rules for construction of parsing table:

Step 1: For each production A → α , of the given grammar perform Step 2 and Step 3.

Step 2: For each terminal symbol ‘a’ in FIRST(α), ADD A → α in table T[A,a], where ‘A’

determines row & ‘a’ determines column.

Step 3: If ε is present in FIRST(α) then find FOLLOW(A), ADD A → ε, at all columns ‘b’, where

‘b’ is FOLLOW(A). (T[A,b])

Step 4: If ε is in FIRST(α) and $ is the FOLLOW(A), ADD A → α to T[A,$].

POST EXPERIMENT QUESTIONS:

1. What is a lazy parser?

2. What elements makeup parsing?

3. What are the methods of parsing?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

OBJECTIVE:

LAB EXPERIMENT 11

Write a Program for implementation of LALR Parser.

BRIEF DESCRIPTION:

LALR Parser is look ahead LR parser. It is the most powerful parser which can handle large classes

of grammar. The size of CLR parsing table is quite large as compared to other parsing table. LALR

reduces the size of this table. LALR works similar to CLR. The only difference is; it combines the

similar states of CLR parsing table into one single state.

The general syntax becomes[A-> . B, a] where A-> . B is production and a is a terminal or right

end marker $ LR(1) items=LR(0) items + look ahead.

PRE-EXPERIMENT QUESTIONS:

1. Is LALR(1) parser better than SLR(1) parser?

2. Which is the most powerful parser?

3. List out some applications of LALR(1) parser.

Explanation:

Construct CLR parsing table for the given context free grammar:

S-->AA

A-->aA|b

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

Advantages and Disadvantages of LALR Parser in Compiler Design
Advantages:

1. Efficient: LALR parsers are efficient with respect to time and space complexity.

2. Can handle large grammars: They can handle huge classes of grammars than any other

parser.

3. Construction of abstract syntax tree: It is used to create an abstract syntax tree (AST) of

the input source code.

Disadvantages:

1. Complexity: It requires a significant amount of effort and expertise to generate an LALR

parser. Since it involves the generation of a parse table which can be large and complex.

2. Overhead: The parsing process can introduce overhead in the compiler, which can impact

performance.

3. Limited look ahead: The amount of look ahead used by an LALR parser is limited, which

can result in parsing errors in some cases.

Output:

Students will be able to find whether a given grammar is LALR(1) or not.

POST EXPERIMENT QUESTIONS:

1. What is the significance of an LALR handle?

2. How is an LALR handle identified?

3. What is the role of an LALR handle in the parsing process?

Compiler Design Lab (LC-CSE-324G)

Department of CSE/CSIT/IT/IOT 2022-2023

This lab manual has been updated by

Prof. Vimmi Malhotra (vimmi.malhotra@ggnindia.dronacharya.info)

Crosschecked By

HOD CSE

Please spare some time to provide your valuable feedback.

