

LAB MANUAL

D.S.D.

DIGITAL SYSTEM DESIGN LAB

 L T P CLASS WORK : 25
 0 0 2 EXAM :25
 TOTAL :50

DURATION OF EXAM :3 Hrs

LIST OF EXPERIMENTS

1. Design all the gates using VHDL.

2. Write VHDL programs for the following circuits, check the waveforms
generated.
 (a) Half-adder
 (b) Full-adder
3. Write VHDL programs for the following circuits, check the waveforms
generated.
 (a) Multiplexer
 (b) Demultiplexer
4. Write VHDL programs for the following circuits, check the waveforms
generated.
 (a) Decoder
 (b) Encoder
5. Write VHDL programs for the comparator, check the waveforms
generated.

6. Write VHDL programs for the code converter, check the waveforms
generated.

7. Write VHDL programs for the Flip-flop, check the waveforms generated.

8. Write VHDL programs for the counter, check the waveforms generated.

9. Write VHDL programs for the following circuits, check the waveforms
generated.
 (a) Register
 (b) Shift register

10. Implement any three (given above) on FPGA/ CPLD kit.

Rational behind VHDL Lab

VHDL is VHSIC (Very High Speed Integrated Circuits) Hardware Description
Language .VHDL is designed to describe the behavior of the digital systems
It is a design entry language .VHDL is concurrent .Using VHDL test benches, we
can verify our design. VHDL integrates nicely with low level design tools. It is
IEEE standard (1076 and 1164).VHDL has hierarchical design units. Learning
VHDL is easy.
 A structure level description defines the circuit in terms of a collection
of components. It is a language which provides us a mechanism to model the
digital circuits without the requirement of IC’s and hardware. It enables us to
write the code for the digital circuits and useful in designing of the complex
VLSI’s. VHDL supports behavioral, structural descriptions, thus supporting
various levels of abstraction.

Hardware Requirements

Pentium IV Processor
128MB RAM

Software Requirements

Operating System: Windows 95 Onwards
Language: Active_HDL 7.2

An Introduction and Background
VHDL is an acronym which stands for VHSIC Hardware Description Language. VHSIC
is yet another acronym which stands for Very High Speed Integrated Circuits. If you can
remember that, then you're off to a good start. The language has been known to be
somewhat complicated, as its title. The acronym does have a purpose, though; it is
supposed to capture the entire theme of the language, that is to describe hardware much
the same way we use schematics.

VHDL can wear many hats. It is being used for documentation, verification, and
synthesis of large digital designs. This is actually one of the key features of VHDL, since
the same VHDL code can theoretically achieve all three of these goals, thus saving a lot
of effort. In addition to being used for each of these purposes, VHDL can be used to take
three different approaches to describing hardware. These three different approaches are
the structural, data flow, and behavioral methods of hardware description. Most of the
time a mixture of the three methods is employed. The following sections introduce you to
the language by examining its use for each of these three methodologies. There are also
certain guidelines that form an approach to using VHDL for synthesis, which is not
addressed by this tutorial.

VHDL is a standard (VHDL-1076) developed by IEEE (Institute of Electrical and
Electronics Engineers). The language has been through a few revisions, and you will
come across this in the VHDL community. Currently, the most widely used version is the
1987 (std 1076-1987) version, sometimes referred to as VHDL'87, but also just VHDL.
However, there is a newer revision of the language referred to as VHDL'93. VHDL'93
(adopted in 1994 of course) is fairly new and is still in the process of replacing VHDL'87.

Descriptions
To make designs more understandable and maintainable, a design is typically
decomposed into several blocks. These blocks are then connected together to form a
complete design. Using the schematic capture approach to design, this might be done
with a block diagram editor. Every portion of a VHDL design is considered a block. A
VHDL design may be completely described in a single block, or it may be decomposed in
several blocks. Each block in VHDL is analogous to an off-the-shelf part and is called an
entity. The entity describes the interface to that block and a separate part associated with
the entity describes how that block operates. The interface description is like a pin
description in a data book, specifying the inputs and outputs to the block. The description
of the operation of the part is like a schematic for the block. For the remainder of the

tutorial we will refer to a block as a design, even though a complete design may be a
collection of many blocks interconnected.

The following is an example of an entity declaration in VHDL.

entity latch is
 port (s,r: in bit;
 q,nq: out bit);
end latch;
The first line indicates a definition of a new entity, whose name is latch. The last line
marks the end of the definition. The lines in between, called the port clause, describe the
interface to the design. The port clause contains a list of interface declarations. Each
interface declaration defines one or more signals that are inputs or outputs to the design.

The second part of the description of the latch design is a description of how the design
operates. This is defined by the architecture declaration. The following is an example of
an architecture declaration for the latch entity.

architecture dataflow of latch is
 signal q0 : bit := '0';
 signal nq0 : bit := '1';
begin
 q0<=r nor nq0;
 nq0<=s nor q0;

 nq<=nq0;
 q<=q0;
end dataflow;

The first line of the declaration indicates that this is the definition of a new architecture
called dataflow and it belongs to the entity named latch. So this architecture describes the
operation of the latch entity. The lines in between the begin and end describe the latch's
operation..

 Connecting Blocks
Once we have defined the basic building blocks of our design using entities and their
associated architectures, we can combine them together to form other designs. This
section describes how to combine these blocks together in a structural description.

Let's specify the operation of the latch entity used in the previous section by connecting
some previously defined entities. The entity declaration for the latch was:

entity latch is
 port (s,r: in bit;
 q,nq: out bit);
end latch;

We will declare an architecture different from the one in the last section that
demonstrates the structural approach. To do so, we assume that an entity named nor_gate
has been defined that will be used in the design. The schematic for the latch might be

We can specify the same connections that occur in the schematic using VHDL with the
following architecture declaration:

architecture structure of latch is
 component nor_gate
 port (a,b: in bit;
 c: out bit);
 end component;
begin
 n1: nor_gate
 port map (r,nq,q);
 n2: nor_gate
 port map (s,q,nq);
end structure;
The lines between the first and the keyword begin are a component declaration. It
describes the interface of the entity nor_gate that we would like to use as a component in
(or part of) this design. Between the begin and end keywords, the first two lines and
second two lines define two component instances.

 A First Example
In the data flow approach, circuits are described by indicating how the inputs and outputs
of built-in primitive components (ex. an and gate) are connected together. In other words
we describe how signals (data) flow through the circuit. Let's look at the first example.

Suppose we were to describe the following SR latch using VHDL as in the following

schematic.

We might build an entity like the one that follows.

entity latch is
 port (s,r : in bit;
 q,nq : out bit);
end latch;

architecture dataflow of latch is
begin
 q<=r nor nq;
 nq<=s nor q;
end dataflow;

As we saw in the last section, the entity describes the interface to the design. There are
four signals s,r,q, and nq that are accessible externally to the design. Again we model the
signals in our design with the VHDL data type bit, which can represent two level logic
values. A signal assignment statement describes how data flows from the signals on the
right side of the <= operator to the signal on the left side. The right side of the <=
operator is called an expression..

How it Works
The scheme used to model a VHDL design is called discrete event time simulation. When
the value of a signal changes, we say an event has occurred on that signal. If data flows
from signal A to signal B, and an event has occurred on signal A (i.e. A's value changes),
then we need to determine the possibly new value of B. This is the foundation of the
discrete event time simulation. The values of signals are only updated when certain
events occur and events occur at discrete instances of time.

The following is a schematic version of the SR latch.

The internal
operation of the latch was essentially captured using the following two statements.

q<=r nor nq;
nq<=s nor q;
Since data flows from r and nq to q, we say that q depends on r and nq. In general, given
any signal assignment statement, the signal on the left side of the <= operator depends on
all the signals appearing on the right side. to update q.

Other Types
In the previous sections all of the signals in the examples have been of the type bit.
VHDL provides several other types, some of which are described here. Often times we
use several bit signals together to represent a binary number in a design. VHDL provides
a mechanism for defining new types which represent a collection of several data items of
the same type. These kinds of types are called arrays. There is a predefined array type
called bit_vector which represents a collection of bits. The following example
demonstrates how the bit_vector type can be used to define a 1-to-4-line demultiplexer.
entity demux is
 port (e: in bit_vector (3 downto 0); -- enables for each output
 s: in bit_vector (1 downto 0); -- select signals
 d: out bit_vector (3 downto 0)); -- four output signals
end demux;

architecture rtl of demux is
 signal t : bit_vector(3 downto 0); -- an internal signal
begin
 t(3)<=s(1) and s(0);
 t(2)<=s(1) and not s(0);
 t(1)<=not s(1) and s(0);
 t(0)<=not s(1) and not s(0);
 d<=e and t;
end rtl;

 Other Operators
The previous sectioned mentioned a few different types that are available in VHDL.
There are also several built-in operators that can be used with those types. This section
mentions some of these.

The logical operators NOT, AND, OR, NAND, NOR, and XOR can be used with any bit
type or bit_vector. When used as operators on bits they have their usual meaning. When
used with bit_vectors, the bit_vectors must have the same number of elements, and the
operation is performed bitwise. For example, "00101001" xor "11100101" results in
"11001100".

The typical algebraic operators are available for integers, such as +,-,* (multilication),
and / (division). Although these operations are not built-in for bit_vectors, they are often
provided in libraries that come with your VHDL software. They are used with bit_vectors
by interpreting them as a binary representation of integers, which may be added,
subtracted, multiplied, or divided.

Also predefined are the normal relational operators. They are =, /=, <, <=, > and >= and
have their usual meanings (/= denotes the not equal operator). The result of all these
operators is a boolean value (TRUE or FALSE). The arguments to the = and /= operators
may be of any type. The arguments of the <, <=, > and >= operators may be any scalar
type (integer, real, and physical types) or the bit_vector type. If the arguments are
bit_vectors, then the arguments must be the same length and the result is TRUE only if
the relation is true for each corresponding element of the array arguments.

The & operator is a built-in VHDL operator that performs the concatenation of
bit_vectors. For example, with the following declarations:

signal a: bit_vector (1 to 4);

signal b: bit_vector (1 to 8);

The following statement would connect a to the right half of b and make the left half of b
constant '0'.
b<="0000" & a;
The & appends the a to the end of the "0000" to form a result that contains 8 bits.

The Process Statement
The behavioral approach to modeling hardware components is different from the other
two methods in that it does not necessarily in any way reflect how the design is
implemented. It is basically the black box approach to modeling. It accurately models
what happens on the inputs and outputs of the black box, but what is inside the box (how
it works) is irrelevant.

Behavioral descriptions are supported with the process statement. The process statement
can appear in the body of an architecture declaration just as the signal assignment
statement does. The contents of the process statement can include sequential statements
like those found in software programming languages. These statements are used to
compute the outputs of the process from its inputs. Sequential statements are often more
powerful, but sometimes have no direct correspondence to a hardware implementation.

The process statement can also contain signal assignments in order to specify the outputs
of the process.

Our first example of the process statement is trivial and would not normally be done in a
process statement. However, it allows us to examine the process statement without
learning any sequential statements first.

compute_xor: process (b,c)
begin
 a<=b xor c;
end process;
The first part
compute_xor:
is used to name the process. Next is the keyword process that starts the definition of a
process. Following that is a list of signals in parenthesis, called the sensitivity list. The
signal sensitivity list is used to specify which signals should cause the process to be re-
evaluated. Whenever any event occurs on one of the signals in the sensitivity list, the
process is re-evaluated. A process is evaluated by performing each statement that it
contains. These statements (the body of the process) appear between the begin and end
keywords.

Using Variables
There are two major kinds of objects used to hold data. The first kind, used mostly in
structural and data flow descriptions, is the signal. The second, which can only be used in
processes is called a variable. A variable behaves like you would expect in a software
programming language, which is much different than the behavior of a signal.

Although variables represent data like the signal, they do not have or cause events and are
modified differently. Variables are modified with the variable assignment. For example,

a:=b;
assigns the value of b to a. The value is simply copied to a immediately. Since variables
may only be used in processes, the assignment statement may only appear in a process.
The assignment is performed when the process is executed, as explained in the last
section.

The following example shows how a variable is used in a process.

count: process (x)
 variable cnt : integer := -1;
begin
 cnt:=cnt+1;
end process;
Variable declarations appear before the begin keyword of a process statement as in the
example. The variable declaration is the same as the signal declaration except the key
word variable is used instead of signal. The declaration in this example includes an
optional part, which specifies the initial value of the variable, when a simulation begins.

The initialization part is included by adding the := and some constant expression after the
type part of the declaration. This initialization part may also be included in signal
declarations. The variable cnt is declared to be of the type integer. The integer type
represents negative and positive integer values.

Sequential Statements
There are several statements that may only be used in the body of a process. These
statements are called sequential statements because they are executed sequentially. That
is, one after the other as they appear in the design from the top of the process body to the
bottom. In this section we will examine some of these statements.

The first example illustrates the if statement and a common use of the VHDL attribute.

count: process (x)
 variable cnt : integer :=0 ;
begin
 if (x='1' and x'last_value='0') then
 cnt:=cnt+1;
 end if;
end process;
This if statement has two main parts, the condition and the statement body. A condition is
any boolean expression (an expression that evaluates to TRUE and FALSE, such as
expressions using relational operators). The condition in the example uses the attribute
last_value, which is used to determine the last value that a signal had.

The execution of the if statement begins by evaluating the condition. If the condition
evaluates to the value TRUE then the statements in the statement body will be executed.
Otherwise, execution will continue after the end if and the statement body of the if
statement is skipped. Thus, the assignment statement in this example is executed every
time there is a rising edge on the signal x, counting the number of rising edges.

An example of another common form of the if statement is

...
if (inc='1') then
 cnt:=cnt+1;
else
 cnt:=cnt-1;
end if;
...
This form has two statement bodies. If the condition is TRUE, the first list of statements
is executed (between the then and the else) and the second list of statements (between the
else and the end if) is not. Otherwise, the second statement list is executed and the first is
not. Thus, this example will increment cnt if inc is '1' and decrement it otherwise.

The last statement we will look at is the loop statement. We will explain just one form of
the loop statement, often called a for statement. The for statement is used to execute a list

of statements several times. The following example uses a loop statement to compute the
even parity of a bit vector.

signal x : bit_vector (7 downto 0);
...
process (x)
 variable p : bit;
begin
 p:='0'
 for i in 7 downto 0 loop
 p:=p xor x(i);
 end loop;
end process;
The signal x is an 8 bit signal representing a byte. The variable p is used to compute the
parity of this byte. The first part of the for loop i in 7 downto 0 is called the parameter
specification. It specifies how many times the loop body will be executed and creates a
temporary variable. It begins with the name of the temporary variable that will be created,
in this case it is i. This is followed by the key word in and then a range of values as we
have seen before. The body of the loop is executed once for every value in the range
specified. The value of the temporary variable is assigned one of the values in the range
each time the loop body is executed. In this example, the assignment will be executed
first with i=7 then again with i=6, and again with i=5, and so on down to 0. This loop
statement behaves the same as the following statements.
p:='0';
p:=p xor x(7);
p:=p xor x(6);
p:=p xor x(5);
p:=p xor x(4);
p:=p xor x(3);
p:=p xor x(2);
p:=p xor x(1);
p:=p xor x(0);

Signals and Processes
This section is short, but contains important information about the use of signals in the
process statement. The issue of concern is to avoid confusion about the difference
between how a signal assignment and variable assignment behave in the process
statement. Remember a signal assignment, if anything, merely schedules an event to
occur on a signal and does not have an immediate effect. When a process is resumed, it
executes from top to bottom and no events are processed until after the process is
complete. This means, if an event is scheduled on a signal during the execution of a
process, that event can be processed after the process has completed at the earliest. Let's
examine an example of this behavior. In the following process two events are scheduled
on signals x and z.
...
signal x,y,z : bit;
...
process (y)
begin

 x<=y;
 z<=not x;
end process;
If the signal y changes then an event will be scheduled on x to make it the same as y.

This is pointed out because this is not necessarily the intuitive behavior and because
variables operate differently. For example, in

process (y)
variable x,z : bit;
begin
 x:=y;
 z:=not x;
end process;
The value of the variable z would be the opposite of the value of y because the value of
the variable x is changed immediately.

.

Program Output
In most programming languages there is a mechanism for printing text on the monitor
and getting input from the user through the keyboard. Even though your simulator will let
you monitor the value of signals and variables in your design, it is also nice to be able to
output certain information during simulation. It is not provided as a language feature in
VHDL, but rather as a standard library that comes with every VHDL language system. In
VHDL, common code can be put in a separate file to be used by many designs. This
common code is called a library. In order to use the library that provides input and output
capabilities you must add the statement
use textio.all;
immediately before every architecture that uses input and output. The name of the library
is textio and this statement indicates that you wish to use everything or all of the textio
library. Once you have done that, you may use any of the features discussed in this
section. Note that although it is not part of the language, the library is standard and will
be the same regardless of the VHDL tools you are using.
use textio.all;
architecture behavior of check is
begin
 process (x)
 variable s : line;
 variable cnt : integer:=0;
 begin
 if (x='1' and x'last_value='0') then
 cnt:=cnt+1;
 if (cnt>MAX_COUNT) then
 write(s,"Counter overflow - ");
 write(s,cnt);
 writeline(output,s);
 end if;
 end if;
 end process;

end behavior;
The write function is used to append text information at the end of a line variable which
is empty when the simulator is initialized. The function takes two arguments, the first is
the name of the line to append to, and the second is the information to be appended. In
the example, s is set to "Counter overflow - ", and then the current value of cnt is
converted to text and added to the end of that. The writeline function outputs the current
value of a line to the monitor, and empties the line for re-use. The first argument of the
writeline function just indicates that the text should be output to the screen. If
MAX_COUNT were a constant equal to 15 and more than 15 rising edges occur on the
signal x, then the message
Counter overflow - 16
would be printed on the screen.

The write statement can also be used to append constant values and the value of variables
and signals of the types bit, bit_vector, time, integer, and real. Keyboard input is more
complex than output, and is not discussed in this tutorial.

 Design all the gates using VHDL.

 --- OR gate

Library ieee;
use ieee.std_logic_1164.all;

entity OR_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end OR_ent;

architecture OR_arch of OR_ent is
begin

 process(x, y)
 begin
 -- compare to truth table
 if ((x='0') and (y='0')) then
 F <= '0';
 else
 F <= '1';
 end if;
 end process;

end OR_arch;

architecture OR_beh of OR_ent is
begin

 F <= x or y;

end OR_beh;

 -- AND gate
--
library ieee;
use ieee.std_logic_1164.all;
--
entity AND_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end AND_ent;
--

architecture behav1 of AND_ent is
begin

 process(x, y)
 begin
 -- compare to truth table
 if ((x='1') and (y='1')) then
 F <= '1';
 else
 F <= '0';
 end if;
 end process;

end behav1;

architecture behav2 of AND_ent is
begin
 F <= x and y;
end behav2;
--

 -- XOR gate

library ieee;
use ieee.std_logic_1164.all;

entity XOR_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end XOR_ent;

architecture behv1 of XOR_ent is
begin
 process(x, y)
 begin
 -- compare to truth table
 if (x/=y) then
 F <= '1';
 else
 F <= '0';
 end if;
 end process;

end behv1;

architecture behv2 of XOR_ent is
begin
 F <= x xor y;
end behv2;

 -- NOR gate

library ieee;
use ieee.std_logic_1164.all;

entity NOR_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end NOR_ent;

--

architecture behv1 of NOR_ent is
begin

 process(x, y)
 begin
 -- compare to truth table
 if (x='0' and y='0') then
 F <= '1';
 else
 F <= '0';
 end if;
 end process;

end behv1;

architecture behv2 of NOR_ent is
begin

 F <= x nor y;

end behv2;

 -- XOR gate

library ieee;
use ieee.std_logic_1164.all;

entity XNOR_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end XNOR_ent;

architecture behv1 of XNOR_ent is
begin

 process(x, y)
 begin
 -- compare to truth table
 if (x/=y) then
 F <= '0';
 else
 F <= '1';
 end if;
 end process;

end behv1;

architecture behv2 of XNOR_ent is
begin

 F <= x xnor y;

end behv2;

-- NAND gate

library ieee;
use ieee.std_logic_1164.all;
--
entity NAND_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end NAND_ent;

--

architecture behv1 of NAND_ent is
begin

 process(x, y)
 begin
 -- compare to truth table
 if (x='1' and y='1') then
 F <= '0';
 else
 F <= '1';
 end if;
 end process;

end behv1;

architecture behv2 of NAND_ent is
begin
 F <= x nand y;
end behv2;

Write VHDL programs for the following circuits, check the waveforms generated.
(a) Multiplexer (b) Demultiplexer

-- VHDL code for 4:1 multiplexer

library ieee;
use ieee.std_logic_1164.all;

entity Mux is
port(I3: in std_logic_vector(2 downto 0);
 I2: in std_logic_vector(2 downto 0);
 I1: in std_logic_vector(2 downto 0);
 I0: in std_logic_vector(2 downto 0);
 S: in std_logic_vector(1 downto 0);
 O: out std_logic_vector(2 downto 0)
);
end Mux;

architecture behv1 of Mux is
begin
 process(I3,I2,I1,I0,S)
 begin
 -- use case statement
 case S is
 when "00" => O <= I0;
 when "01" => O <= I1;
 when "10" => O <= I2;
 when "11" => O <= I3;
 when others => O <= "ZZZ";
 end case;
 end process;
end behv1;
architecture behv2 of Mux is
begin

 -- use when.. else statement
 O <= I0 when S="00" else
 I1 when S="01" else
 I2 when S="10" else
 I3 when S="11" else
 "ZZZ";
end behv2;

Write VHDL programs for the following circuits, check the waveforms generated.
(a) Decoder (b) Encoder

2:4 Decoder

library ieee;
use ieee.std_logic_1164.all;

entity DECODER is
port(I: in std_logic_vector(1 downto 0);
 O: out std_logic_vector(3 downto 0)
);
end DECODER;

architecture behv of DECODER is
begin
 process (I)
 begin
 case I is
 when "00" => O <= "0001";
 when "01" => O <= "0010";
 when "10" => O <= "0100";
 when "11" => O <= "1000";
 when others => O <= "XXXX";
 end case;
 end process;
end behv;
architecture when_else of DECODER is
begin
 -- use when..else statement

 O <= "0001" when I = "00" else
 "0010" when I = "01" else
 "0100" when I = "10" else

 "1000" when I = "11" else
 "XXXX";
end when_else;
--

Write VHDL programs for the following circuits, check the waveforms generated.
(a) Half-adder (b) Full-adder
 --
-- VHDL code for n-bit adder
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
--
entity ADDER is
generic(n: natural :=2);
port(A: in std_logic_vector(n-1 downto 0);
 B: in std_logic_vector(n-1 downto 0);
 carry: out std_logic;
 sum: out std_logic_vector(n-1 downto 0)
);

end ADDER;
--
architecture behv of ADDER is
signal result: std_logic_vector(n downto 0);
begin

 result <= ('0' & A)+('0' & B);
 sum <= result(n-1 downto 0);
 carry <= result(n);
end behv;
--

Write VHDL programs for the comparator, check the waveforms generated.

-- n-bit Comparator

 library ieee;
use ieee.std_logic_1164.all;

entity Comparator is
generic(n: natural :=2);
port(A: in std_logic_vector(n-1 downto 0);
 B: in std_logic_vector(n-1 downto 0);
 less: out std_logic;
 equal: out std_logic;
 greater: out std_logic
);
end Comparator;

architecture behv of Comparator is

begin

 process(A,B)
 begin
 if (A<B) then
 less <= '1';
 equal <= '0';
 greater <= '0';
 elsif (A=B) then
 less <= '0';
 equal <= '1';
 greater <= '0';
 else

 less <= '0';
 equal <= '0';
 greater <= '1';
 end if;
 end process;

end behv;

Write VHDL programs for the Flip-flop, check the waveforms generated.

-- D Flip-Flop

library ieee ;
use ieee.std_logic_1164.all;
use work.all;

entity dff is
port(data_in: in std_logic;
 clock: in std_logic;
 data_out: out std_logic
);
end dff;
--
architecture behv of dff is
begin

 process(data_in, clock)
 begin

 -- clock rising edge

 if (clock='1' and clock'event) then
 data_out <= data_in;
 end if;

 end process;

end behv;

--

JK Flip-Flop with reset
--
library ieee;
use ieee.std_logic_1164.all;

entity JK_FF is
port (clock: in std_logic;
 J, K: in std_logic;
 reset: in std_logic;
 Q, Qbar: out std_logic
);
end JK_FF;

architecture behv of JK_FF is
 signal state: std_logic;
 signal input: std_logic_vector(1 downto 0);
begin

 input <= J & K;
 p: process(clock, reset) is
 begin
 if (reset='1') then
 state <= '0';
 elsif (rising_edge(clock)) then

 -- compare to the truth table
 case (input) is
 when "11" =>
 state <= not state;
 when "10" =>

 state <= '1';
 when "01" =>
 state <= '0';
 when others =>
 null;
 end case;
 end if;
 end process;
 Q <= state;
 Qbar <= not state;
end behv;

 Write VHDL programs for the following circuits, check the waveforms generated.
(a) Register
(b) Shift register

-- n-bit Register

library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity reg is

generic(n: natural :=2);
port(I: in std_logic_vector(n-1 downto 0);
 clock: in std_logic;
 load: in std_logic;
 clear: in std_logic;
 Q: out std_logic_vector(n-1 downto 0)
);
end reg;

--

architecture behv of reg is

 signal Q_tmp: std_logic_vector(n-1 downto 0);

begin

 process(I, clock, load, clear)
 begin

 if clear = '0' then
 -- use 'range in signal assigment
 Q_tmp <= (Q_tmp'range => '0');
 elsif (clock='1' and clock'event) then
 if load = '1' then
 Q_tmp <= I;
 end if;
 end if;

 end process;

 -- concurrent statement
 Q <= Q_tmp;

end behv;

-- 3-bit Shift-Register/Shifter

library ieee ;
use ieee.std_logic_1164.all;
--
entity shift_reg is
port(I: in std_logic;
 clock: in std_logic;
 shift: in std_logic;
 Q: out std_logic
);
end shift_reg;

architecture behv of shift_reg is

 -- initialize the declared signal
 signal S: std_logic_vector(2 downto 0):="111";

begin

 process(I, clock, shift, S)
 begin

 -- everything happens upon the clock changing
 if clock'event and clock='1' then
 if shift = '1' then
 S <= I & S(2 downto 1);
 end if;
 end if;
 end process;
 -- concurrent assignment

 Q <= S(0);
end behv;
--

Write VHDL programs for the counter, check the waveforms generated.
--
-- VHDL code for n-bit counter
--
library ieee ;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
--
entity counter is
generic(n: natural :=2);
port(clock: in std_logic;
 clear: in std_logic;
 count: in std_logic;
 Q: out std_logic_vector(n-1 downto 0)
);
end counter;
--
architecture behv of counter is
 signal Pre_Q: std_logic_vector(n-1 downto 0);

begin

 process(clock, count, clear)
 begin
 if clear = '1' then
 Pre_Q <= Pre_Q - Pre_Q;
 elsif (clock='1' and clock'event) then
 if count = '1' then
 Pre_Q <= Pre_Q + 1;
 end if;
 end if;

 end process;

 Q <= Pre_Q;
end behv;
