PRINCIPALS OF OPERATING SYSTEMS
LAB MANUAL

INDEX

S.no

Practical

Date

Signature

Study of LINUX Operating System (Linux kernel, shell, basig
commands pipe& filtg

2. | Writing of Shell Scripts (Shell programming).

3. | To write a C programolr implementation of System Calls.

4. | To write a C program for File Permissions

5. | To write a C program for File Operations.

6. | To write a C program for File Copy and Move.

7. | To write a C program for Dining Philosophers Program.

8. | Towrite a C program for Produc€onsumer Problem concep

9. | To write a C program for the following Job Scheduling
Algorithms:

1. First Come First Serve Algorithm
2. Shortest Job First Scheduling Algorithm
3. Round Robin Scheduling Algorithm
4. Priority Schedulg Algorithm
10. | To implement the following memory management schemes;
1. First Fit Algorithm
2. Best Fit Algorithm
11. | To implement Page replacement algorithms:
1. First In First Out (FIFO)
2. Least Recently Used (LRU)

12 | Write a shell program to perfornoperations using CAS
statement such as addition, subtraction, multiplication
division.

13 | Write a shell program to find largest of three numbers.

14 | Write a shell program to find average of two numbers

PRACTICAL -1

AIM: Study of Linux ope rating system (Kernel, shell, Basic commands, Pipe and Filter
commands)

What isL inux?

The primary author of Linux is Linus Torvalds. Since his original versions, it has been
improved by countless numbers of people. Linux is a freely distributed, multitasking,
multiuser operating system that behaves like UNIX. Theterm fiLin u Xs@ctually somewhat
vague. fiLi n uig used in two ways. specifically to refer to the kerndl itself ithe heat of
any version of Linux Tand more generally to refer to any collection of applicaions that run
on the kernel, usualy referred to a distribution. The kernel §ab is to provide the basc
environment in which applications can run, including the basic interfaces with hardware.
Today, thousands of software developers are busy upgrading it, al the while, and
extending supportonline.
Today, Linux is used for avariety of applications. This includes:

U File and Print Server
E-mail Server
Fax Server
Internet gateway
Firewdl
Database Server
ISP Server
Applicaion Server
Desktop OS

[t e A e e ant- SN e e

Basic Features of Linux Operating System

Linux systems excel in many areas, ranging from end user concerns such as
stability, spead, and ease of use, to serious concerns such as development and

networking.
Theimportant feaures are listed here.
AMulti-programming ATime Sharing A Multi-taking
AHigh Sped AVirtual memory AShared libraries
APOSIX compliance AX concept A Samba
ADos emulator ACRON scheduler A Office suits
AData archiving utiliti es AlLicensing AWeb server

ANetwork information service(NIS)
ASupportfor programming languages
AText processng and Word processing

Linux architecture

1. Linuxkernel
The central nervous system of Linux is the kernel, the operating system code that runs
thewhole computr. The Linux kernel is the heart of Linux operating system and was
originally developed for the Intel 80386 CPU's. MemOly management is especially
strong with the 80386 (compared to earlier CPU's). Linux kernel has the ability to have
full access to the em& hardware capabilities of the machine. Actually there is no
restriction on what a kernel module is allowed to do.

UsErR REQUEST

I LiNux KERIMNEL, |
L T A e
I COMPUTER HARDVWARE |

SHELL

Typically a kernel might implement a device driver, a file system or a networking
protocol. To support 1t large memory requiremeviten only small amounts of physical
RAM are available, Linux suppolts swap space. Swap siaves pages of mempto

be written to a reserved areha disk and treated as an extension of physical memo

By moving pages back anarfvard between the swappace and RAM, Linux can
effectively behave as if it had much more physical RAM than it does. Besides this,
Linux kernel suppds the following features:

1 Has memory protection between processes, so that one program can't
bring the whole system down.

91 Demand loads executable: Linux only. reads from disk those parts of a
program that are actually use.

2. Linux Shell

A shell is a program that rueveay time you log in. It is a program that lets you interact with

t he machi ne. teavandticahesastrthat theyrenndanning a shell. They just
know that a prompt appears and that from there, they can read their mailrfamoh pgher
tasks. This prompt is the shell that waits for you to tell what to do. Thus, Linux shell is a
user program thahekernel uns when you log in. The shell acts as anrfate between the
user and the Linux operating system and helps in command intelpretation for the kernel.

The figure shows that each user gets a copy of the shell where he is allowed to work.
The shellinteracts with the kernel through system calls. System calls provide a set of
routines that allow aapplication to access kernel @ees.

The structure of the Linux operating system is as follows:

User 1 Programs User 2 Programs User 3 Programs
\ y
Shell Shell Application 1 Application 2
System Calls
y y
Memory Process File Network 110
Manager Manager Manager Manager
Manager
y y
Kernel
Hardware

Structure of Linux operating system

Shells available in Linux

We have several different shells available here:

sh

The first shell, historically, was sh also known as the Bourne shell. It is good for
Writing shell scripts, but not so popular for interactnge.

csh

Also known as €Shell, csti features a syntax somewhat like the C language. It allows
(among other things) adding your commands (aliasing), histOly substitution (re
execution of previously typed commands), and filenaomapletion.

tcsh

This shellallows you to edit your command line while you're typing it, using emacs
like commands. It has a number of other nifty features, but is otherwise compatible
with csh.

zsh

The z shell has the best of the features of the Tcsh shell. It also has the tgajoabili
emulate all the features of the. Kim shell and supports a large number of utilities and a
detailed documentation.

bash

Bash is an acronym for 'BoUine again shell'. It is an enhancement to the BoUine shell

-

Y

o0

and is the default shell for most of the Linsystems. Compatible with sh for
programming purposes, it has many of the good features of csh and tcsh: file name
completion, job control, history substitution, emacslike commared editing, and

many more.

Pdksh

Pdksh stands for public domain Kom dlald is an enhancement of the Kom shell. It
has been Witten by several voluntary programmers. On Linux systems, ksh is the
symbolic link to the pdksh shell.

Basic Linux commands

1 The date command
Linux maintains a system clock. As for now you can singgplay the current date

with the date command, which shows the date and time for the nearest second as shown:
$ date
Thur Nov 4 11:23:52 IST 1999

1 The who command
Linux maintains an account of all the current users of the system. A list of all the users

is displayed by the who command. The who command produces a three column output
.This indicates the number of users of the system with their login names in the first
column. The second column shows the device names of their respective terminals. The
third column indicates the date and time of logging in.

The1 H option prints the column headers:

$ whoi H

1 The tty command
Linux treats even terminals as files. It is therefore reasonable to expect a command which

tells you the device name of the terminal youwsieg with the help of the tty command.
$tty

/dev/ttypl

$

9 The cal command
This command is used for printing the calendar of any particular month or the entire year.
Any calendar from the year 1 to 9999 can be displayed with this command:
$ cal 2000

1 The man command
Linux systems maintain an online documentation about each command so that you can get tc

know the complete description about a particular command. The command:

$ man

will give a description of the man command in general.

The man command is wbé¢o view the description of other commands. For this purpose the

man command is followed by the command name. It has the following format:
$ man command_name

1 The finger utility
This utility is used to display the status of all the users currently logget the Linux
system. The finger utility without any parameter, displays a single line output for each user
currently.

| ogged on . It di splays the information
name, write status, idle time, logintime,thac hi nedés address where
logged in and the office number. The write permission is displayed along with the
terminal name as an asterisk(*). If the asterisk appears after the terminal name, it means
that the write permission is deniélthe syntax of the finger command is as follows:

finger [options] [user name]

1 The chfn utility
The chfn (change your finger information)
information. The chfn util ity etc/passwkiie f or
and allows the user to chane information. The syntax for this utility is as follows:
chfn [options] [username]
The chfn asks for the password of the user to authenticate the user for changing the finger
information. If you do not want to eilnge any particular information, you can press Enter
at the corresponding prompt and proceed with the remaining parameters.

1 The head command
The head command is used to display the top few records of the file. The syntax of
the command is as follows:
$ head [option] file
The option is as follows:
count Display the first count lines of file
The easiest way to use this command is to specify a filename without specifying
the number of lines to be displayed. If this is the case, the first ten records of the
file are displayed.
$ head tmp.Ist
will display the first ten records of the file tmp.Ist.

1 The tail command
The tail command displays the end few records of the file. If no line count is given, the
tail command displays the last ten lines of the file. Vé@ &lave an option to specify a
count and select that many lines from the end of file.
Consider an example: $ taB emp.Ist

1The mesg command
The user has the option to allow or disallow other users to write on his terminal. The two

options available wh the mesg command are as follows:

h

mesg y

This option allows other users to write to your terminal

mesg n

This option disallows other users to write to your terminal

If you type the mesg command without any option, it displays the status of your
terminal,say for example,

$ mesg

isy

1 The wall command
The wall command is used to write to all the users. The wall command sends the message
to all the users who are currently logged on to the Linux system and have their mesg
permi ssi on setftteocommandisasTolows: synt ax o

wall type in the above command at the command prompt. Press <Enter>
Now write the message you want to broadcast. Press ctrl <d>. The message would be
broadcasted to all the users currently logged on.

1 pwd (Print working direc tory) command
Use thepwd command to print the working directory (the current directory you are in).

> pwd

/home

> cd /home/rich/www
> pwd
/home/rich/www

>

Line 1 of this example shows the commametl has been entered

Line 2 displays, or 'prints' the ouwtjpof thepwd command (ie: the directory you are-in
/home in this case)

Line 3 uses thed command (change directory) to move to the /home/rich/www directory
Line 4 enters thepwd commandagain

Line 5 shows we are now in the /home/rich/www directory

Line 6 is the prompt again

1 cd (Change directory) command
Use thecd command to change to another directory.

The syntax izdfollowed by the name of the directory you want to go to.
Example: cd/home/user/wwwill change the directory you are in to /home/user/www.

> cd /home/rich/www
> pwd
/home/rich/www

>

http://www.mediacollege.com/linux/command/cd.html

Line 1 shows the commandd /home/rich/www which should put me in the folder
/home/rich/www

Line 2 is thepwd command (print working directory) to see if we are in the right directory
Line 3 is the output of thgpwd command- which shows that we are indeed in
/home/rich/www

Line 4 is the prompt again

Pipe Command
If you have a series of commands in which the output of one command is the input of the
next, you can pipe the output without saving it in temporary files:
first_command | next_command
For example, if gu wanted to point out a sOlted version of a file that contained a list of
names
and phone numbers, you could use a pipe (as well as input redirection):
sort < my_phone_list|lpr
Similarly, in order to display the contents of the current directory, arstudet a time, you
can give the following commands:
$Is > myfile
$ more myfile
Here, the listing of the directOly is stored in the file, myfile, by the first co and this file
is then used as input by the more command.
The above two steps can be comdia@d executed as a single command without
creating a temporary file,
$ Is| more
The veltical bar (]) is the pipe character which indicates to the shell that the output of
the command before the '|' is the input to the command after the '|'.

Filter Commands
A filter is a program that takes its input from the standard input file, processes (or filters)it

and sends its output to file standard output file. Linux has a rich set of filters that can be used
to work on data in an efficient way. Some examplddtefs are:

grep

tr

Sort

cut

W C

To o o o I

The grep command

The grep command searches a file for a specified pattern ad displays it on screen. The synta
of this command is as follows:

grep[options] regular expression filename[s]

The tr command
The tr conmand is used to squeeze the space between columns or it transliterates character
i.e. it copies the standard input to standard output with substitution or deletion of specific

http://www.mediacollege.com/linux/command/pwd.html
http://www.mediacollege.com/linux/command/pwd.html

characters.

The sort command

The sort command sorts lines of all the spedifiées together and writes the result on the
standard output.

Example

$ sort myfile

will sort the file considering each record of a file as one single field.

The wc command

This command is used to count the number of lines, words and characters ilecpiéeior
standard input.

Three options are possible:

-w for words

-l for lines

-c for characters

The cut command
This command is used to delete some columns in multi columnar output.

Some more basic linux commands

Command Description

Ls lists the content of a directory
Cd change directory

cd .. parent directory

Mkdir creates a new directory
Rmdir eliminates a d&ctory

Cp copy a file

Mv moves a file

Rm remo\es a file

Passwd

changes the user's password

Cat

More

Lpr

displays the file's content and creat
file

displays the file's content with paust

prints the requested file

PRACTICAL -2
AIM: Study of shell programming.

Normally shells are interactive. It means shell accept command from you (via keyboard) and execute
them. But if you use command one by one (sequence of 'n' number of commands) , the you can storg
this sequence of command to text file and tell the shell ¢owde this text file instead of entering the
commands. This is known ahell script

Shell script defined as:

"Shell Script isseries of commandwrittenin plain text file. Shell script is just like batch file is MS
DOS but have more power than the 28S batch file"

Benefits of shell script

Shell script can take input from user, file and output them on screen.
Useful to create our own commands.

Save lots of time.

To automate some task of day today life.

System Administration part can be also aut@uat

=A =4 =4 -4 -4

How to write shell script

Following steps are required to write shell script:

(1) Use any editor like vi or mcedit to write shell script.

(2) After writing shell script set execute permission for your script as follows
syntax:

chmod permission yotscriptname

Examples:

$ chmod +x yousscriptname
$ chmod 755 youscriptname

Note: This will set read write execute(7) permission for owner, for group and other permission is read
and execute only(5).

(3) Execute your script as
syntax:
bash yowsciipt-name

sh yourscriptname
Jyour-scriptname

Examples:
$ bash bar

$ sh bar
$./bar

NOTE In the last syntax ./ means current directory, But only . (dot) means execute given command
file in current shell without starting the new copy of shell, The syfmax(dot) command is as
follows

Syntax:
. commanehame

Example:
$. foo

FIRST SHELL SCRIPT THAT WILL PRINT "KNOWLEDGE IS POWER" ON SCREEN

$ vi first

#

My first shell script

#

clear

echo "Knowledge is Power"

After saving the above script, you can the script as follows:
$ first

This will not run script since we have not set execute permission for ourfgstigb do this type
command

$ chmod 755 first

$ first

First screen will be clear, then Knowledge is Power is printed on screen.

Script Command(s) Meaning
$ vi first Start vi editor

followed by any text is considered as
comment. Comment gives more informatior

)))
My first shell script abqut script, logical explanation about shell
4 script.
Syntax:
commenitext
Clear clear the screen
To print message or value of variables on
screen, we use echo command, general for
echo "Knowledge is Power" echo command is as follows

syntax:
echo "Message"

Variables in shell

To process our data/information, data must be kept in computers Ré&kbm. RAM memory is
divided into small locations, and each location had unique number called memory location/address,
which is used to hold our data. Programmer can give a unique name to this memory location/address
called memory variable or variable (Bsnamed storage location that may take different values, but
only one at a time).

In Linux (Shell), there are two types of variable:

(1) System variables- Created and maintained by Linux itself. This type of variable defined in
CAPITAL LETTERS.

(2) User defned variables (UDV)- Created and maintained by user. This type of variable
defined in lower letters. You can see system variables by giving commai§dsidte

some of the important System variables are:

System Variable
BASH=/bin/kash

BASH_VERSION=1.14.7(1)
COLUMNS=80
HOME=/home/vivek

LINES=25
LOGNAME-=students
OSTYPE=Linux
PATH=/usr/bin:/sbin:/bin:/usr/sbin
PS1=ju@h\W]\$
PWD=/home/students/Common
SHELL=/bin/bash
USERNAME-=vivek

Meaning
Our shell name

Our shell version name

No. of columns for our screen
Our home directory

No. of columns for our screen
students Our logging name
Our Os type

Our path settings

Our prompt settings

Our current working directory

Our shell name

User name who is currently login to this PC

AIM: Write a shell program to perform operations using CASE statement such as addition,
subtraction, multiplication and division.

PROGRAM:

echo nln2
read nl n2
echo a=add
echo b=sub
echo c=mul
echo d=div
echo ch
read ch
case $chin
a) letz=$n1+$n2
echo add=$z
b) let =$n1-$n2
echo sub=%z
C) let z=$n1*$n2
echo mul=%$z
d) let z=$n1/$n2
echo div=%$z
*)
echo invalid option

Esac

nln2
3 4
a=add
b=sub
c=mu
d=div
ch

add=7

OUTPUT

AIM: Write a shell program to find largest of three numbers.
PROGRAM:

echo enterl

read nl

echo enter2

read n2

echo enter3

read n3

if[$n1-gt $n2]&&[$n1-gt $n3]
then echo $n1 is larger
elif[$n2-gt $n1]&&[$n2-gt $n3)]
then echo $n2 is larger

else echo $n3 igrger

fi

OUTPUT

nl n2 n3
12 36 48
48 is larger

AIM: Write a shell program to find average of two numbers.
PROGRAM:

echo Enter the*inumber

read a

echo Enter the"2number

read b

c=06expr $a+$bd

d=$c/2

echo The average of two numbers is $d

OUTPUT

Enter the T number

6

Enter the ¥ number

4

The average of two numbers is 5

AIM: Write a shell prograrto add two numbers
PROGRAM:

Echo enter the first number

Read a

Echo enter the second number
Read b

C=06expr $a+$bd
Echo addition of two numbers is $c.

OUTPUT

Enter the T number

6

Enter the ¥ number

4

The sum of two numbers is 10

PRACTICAL -3
AIM: To write a C program for implementation of System Calls.

A system call is a request for service that a program makes of the kernel. The service is
generally sorathing that only the kernel has the privilege to do, such as doing I/O.
Programmers don't normally need to be concerned with system calls because there are
functions in theLinux Library to do virtually everything that system calls do. These functions
work by making system calls themselves. For example, there is a system call that changes the
permissions of a file, but you don't need to know about it because you can just use the
Library'schmodfunction.

System calls are sometimes called kernel calls

NAME
fork i create a new process system call.

SYNOPSIS
#include<unistd.h>
pid_t fork(void);

DESCRIPTION
The fork() function shall create a new process. The new procéds (@ocess) shall be an
exactcopy of the calling process (parent process). The cpilitess shall have a unique
process ID.
System calfork() is used to create processes. It takes no arguments and returns a process ID.
The purpose ofork() is to create anew process, which becomes thhild process of the
caller. Aftera new child procss is createdyoth processes will execute the next instruction
following thefork()system call. Therefore, we have to distinguish the parent from the child.
This can be done by testitige returned value dbrk() :

A forki() returns a negative value gticreation of a child process was unsuccessful.

Afork() returns a zero to the newly created child process.

Afork() returns a positive value, tipeocess IDof the child process, to the parent.

EXECUTION
Parent and children execute concurrently
Parent was until children terminate

.

paren 27N resumes

iork{} l
K ;/"’ = E“‘\l
child exer: — axt()]

NAME
execl,-execute a file

SYNOPSIS

#include<unistd.h>

extern char **environ;

int execl (const char *path, const char *ar

DESCRIPTION

Theexecfamily of functions shall replace the current praciesage with a new process
image. Thenew image shall be constructed from regular, executable file called the new
process image fileThereshall be no return from a successful exec, because the calling
process image is overlaid by the npmcess image.

Fork-execis a commonly used technique in Unix whereby an executing process spawns a
newprogram. fork() is the name of the system call that the parent process uses to "divide"
itself ("fork™) into two identical processes. After calling fork(), the creatatt process is
actually an exact copy dfie parent which would probably be of limited useso it replaces
itself with another process usitite system call exec(). The parent process can either
continue execution or wait for the child processonplete. The child, after discovering that

it is the child, replaces itself completely with anotheygram, so that the code and address
space of the original program are lost. If the parent choosesaittéor the child to die, then

the parent will receivéhe exit code of the program that the claicecuted. Otherwise, the
parent can ignore the child process and continue executing as it nonoaltl; to prevent

the child becoming a zombie it should wait on children at intervals 81G6G&HLD. When

the chld process calls exec(), all data in the original program is lost, and replébeal

running copy of the new program. This is known as overlaying. Although all data is replaced,
the file descriptors that were open in the parent are closed only ifdgepr has explicitly
markedthemcloseon-exec This allows for the common practice of the parent creating a
pipe prior to callingork() and using it to communicate with the execyteagram.

Using execl()

The following example executes tllecommandspecifying the pathname of the executable
(/bin/Is)
and using arguments supplied directly to the command to produce-cotighen output.

#include<unistd.h>

int ret;

e

ret=execl (it/ d,j n(dmBaOrL, M) G&)O; n

NAME
exit, _exiti terminate a process

SYNOPIS
#include<stdlib.h>
void exit(int status);

g (

DESCRIPTION

The exit status will be n, if specified. Otherwise, the value will be the exit value of the last
commandaexecuted, or zero if no command was executed. \@kitis executed in a trap
action, thdastcommand is considered to be the command that executed immediately
preceding the trap action. Thegstem call is used to terminate (normal/abnormal) the current
running program.

NAME
waitT wait for a child process to stop or terminate

SYNOPIS
#include<sys/types.h>
#include<sys/wait.h>
pid_t wait(int *stat_loc);

DESRIPTION

The wait() and waitpid() functions allow the calling process to obtain status information
pertaining toone of its child processes. Various options permit status informatidoe to
obtained for chilgprocesses that have terminated or stopped. If status information is available
for two or more childorocesses, the order in which their status is reported is unspecified.

There are a number of system calls that a process can ais&ito file information. The most
usefulone is "stat" system call. The stat() system call is used to obtain file information.
1 A parent process usually needs to synchronize its actions by waiting until the child
process hasither stopped or terminated éstions.
1 The wait() system call allows the parent process to suspend its activities until one of
theseactions has occurred.
1 The wait() system call accepts a single argument, which is a pointer to an integer and
returns avalue defined as type pid_t.
1 If the calling process does not have any child associated with it, wait will return
immediatelywith a value of1.
1 If any child processes are still active, the calling process will suspend its activity until
a childprocess terminates.

NAME
Readdir()i To real a directory

SYNOPSIS

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dir);

DESCRIPTION

The readdir() function returns a pointer to a dirent structure representing the next directory
entry inthe directory stream pointed to by.dirreturns NULL on reaching the efd-file or

if an erroroccurred. On Linux, the dirent structure is defined as follows:

struct dirent {
ino_t d_ino; /* inode number */

off_t d_off; /* offset to the next dirent */
unsigned short d_reclen; /* lengthtbfs record */
unsigned char d_type; /* type of file */

char d_name[256]; /* filename */

8

The data returned by readdir() may be overwritten by subsequent calls to readdir() for the
samedirectory stream.

RETURN VALUE

The readdir() function returns aipter to a dirent structure, or NULL if an error occurs or
endof-file is reached. On error, errno is set appropriately.

NAME
Opendir()i To open a directory

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

DESCRIPTION

The opendir() function opens a directory stream corresponding to the directory name, and
returns apointer to the directory stream. The stream is positioned at the first entry in the
directory.

RETURN VALUE
The opendir() function returns a pointer to theectory stream. On error, NULL is returned,
anderrno is set appropriately.

Program: C Program for implementation of the system calls

#include<stdio.h>
#include<conio.h>
#include<dir.h>
#include<dos.h>
void main()
{
int ch;
clrscr();
do
{
printf("\n\t\\\tMAIN MENU \n\t\t-------------------- \n");
printf("1.To Display List of Files1");
printf("2.To Create New Directoky");
printf("3.To Change the Working Directdrny);
printf("4.Exit\n");
printf("Enter the Number:");
scanf("%d",&ch);
switch(ch)
{
case 1:
list_file();
break;

case 2:
directory();
break;

case 3:
change_dir();
break;

case 4:
exit(0);
} Jwhile(ch<=4);
}
int list_file()
{
intl;
char e[]="*.*",
clrscr();
printf("\tXLIST FILE DETAIL \N\t-------=n=nmmmmmmmmmm oo \n");
printf("1.List All Files\n2.List of Extention Filé®3.List of Name Wisa");
scanf("%d",&l);

switch(l)

{

case 1:
printf("List of All(*.*) Files\n");
subfun(e);
break;

case 2:

printf("Enter the Extention:");
scanf("%s",&e);

subfun(e);

break;

case 3:

printf("Enter the Name wise(eg:moha*.*):");
scanf("%s",&e),

subfun(e);

break;

}

return O;

}

int directory()

{

struct ffblk ffblk;

unsigned attrib;

int d;
charname[10],bufferfMAXPATH];
printf("Enter the Directory name:");
scanf("%s",&name);

getcwd(buffer, MAXPATH);
printf("Current directory:%®",buffer);

if(_dos_getfileattr(name,&attrib)==0)

{
printf("%s has already available",name);
return O;

}

else

{

mkdir(name);
printf("%s Directory Successfully Created,name);

}

return O;

}

int change_dir()

{

char buffer[MAXPATH];

intd,d1;

printf("\nCurrent Directory:%s",getcwd(buffer, MAXPATH));
printf("\t\t\Change Directom\t\t----------------- \n");

printf("\n1.Step by Step Backwan®.Goto Root Directoi3.Forward DirectorynEnter the
number:");
scanf("%d",&d);
switch(d)
{
case 1:
chdir("..");
break;

case 2:
chdir("\");
break;

case 3:
printf("Please enter the Filename:");
scanf("%s",buffer);
chdir(buffer);
break;

}

printf("\nCurrent Directory:%s",getcwd(buffer, MAXPATH));
return O;

}

int subfun(s)
char s[10];
{

struct ffblk ffblk;

int d,p=0,i=0;

d=findfirst(s, &ffblk,0);

while(!d)

{
printf("%s\n",ffblk.ff_name);
d=findnext(&ffblk);
i++;

p=p+1;

if(p>=22)

{
printf("Press any key to continde?);
getch();
p=0;

}

}

printf("\nTotal File:%d",i);

return O;

}

SAMPLE INPUT AND OUTPUT:

CHWINDOWS \ System32 cmd.exe - ke

MALM MEHU

the NHumbew:Z
the Directory

ectory

nter the NMunber:_

LIST FILE DETAIL
All Fil

of Extention Files
of Hame Wicze

the Extention:8%.c
o

HATH HMEHU

-To Change the Working Directory
4.Exit
) the Humhber:_

Enter the Mane wisedeg:moha*.*):a
ABC . BAK

ABC.TXT

Total File:5
MATN MEKU

1.To Display List of File
Z2.To Create Hew rECTORY
Change the | ting Divectory
it
= the Humhewr:_

C:HWINDDWS'\ System32'\ crnd.exe - bc
HMAIH HEHU
Display List
2.To Create Mew Directory
Change the Working Divectory
it
er the Mum

Current Directory EBIHN
Divectory

Current Directowry:(TG
MAIH HEHU

Display List of Files
cate Mew Directory
ange the Working Dirvectory

the Munher :

HiIH MEHU

1 To Display List of Files
hange the York Directory
Enter the Humber:3d

Current Dirvecto

p by Step Backwawrd
oot Directory
3. Foruard Director
Enter the numbepr:2

Cuprent Divectopy:(™
HiIN MEHU

vt
* To Lhnnq# the Yorking Directory
4 _Exit

Enter the Humber:

SWINDOWS' System32 cmd.exe - bc

1.To Display List of Files
2.To Create Hew Directopry
ange the Working Directory

» the Humhewp:3

Current Directory:G:s
Change Directory

1.5tep by Step Backuward
2 .Goto Root Divectory
3 .Forvard Directo
the numbe
Pleasze enter the Filename:itc

Current Directory:C:inIC
HAIN MEHU
1.To Display List of Files
2.To Create Hew Directory
3.Ta ange the Working Directory

he Humhep:

PRACTICAL i 4
AIM: To write a C Program for File Permissions.

Every user on a Unix system has a unique username, and is a member of at least one grou
(the primary group for that user). This group information is held in the password file
(/etc/passwd). A user can also be a membenefor more other groups. The auxiliary group
information is held in the file /etc/group. Only the administrator can create new groups or
add/delete group members (one of the shortcomings of the system).

Every directory and file on the system has an owared,also an associated group. It also has
a set of permission flags which specify separate read, write and execute permissions for the
‘user' (owner), ‘group’, and 'other' (everyone else with an account on the computer) The 'Is’
command shows the permisss and group associated with files when used with-Ithe
option. On some systems (e.g. Coos), tHme oOption is also needed to see the group
information.

An example of the output produced by-llss shown below.
drwx------ 2 richard staff 2048 Jan 1897 private
drwxrws--- 2 richard staff 2048 Jan 2 1997 admin

-rw-rw---- 2 richard staff 12040 Aug 20 1996 admin/userinfo
drwxr-xr-x 3 richard user 2048 May 13 09:27 public

Understanding how to read this output is useful to all unix users, betiaky people using
group access permissions.

Field 1: a set of ten permission flags.

Field 2: link count (don't worry about this)

Field 3: owner of the file

Field 4: associated group for the file

Field 5: size in bytes

Field 68: date of lasimodification (format varies, but always 3 fields)

Field 9: name of file (possibly with path, depending on how Is was called)

The permission flags are read as follows (left to right)
position Meaning

directory flag, 'd" if a directory;"'if a normalfile, something else occasionally n
appear here for special devices.

1
2,3,4 read, write, execute permission for User (Owner) of file
5,6,7 read, write, execute permission for Group

8,9,10 read, write, execute permission for Other

value Meaning

- in any position means that flag is not set

r file is readable by owner, group or other
w file is writeable. On a directory, write access means you can add or delete file

file is executable (only for programs and shell scriptet useful for data filgs
Execute permission on a directory means you can list the files in that director

S in the place where 'x' would normally go is called thel &t or setgrouplD flag.

On an executable program with 48D or setgrouplD, that program runs with the edtive
permissions of its owner or group.

For a directory, the sefrouplD flag means that all files created inside that directory will
inherit the group of the directory. Without this flag, a file takes on the primary group of the
user creating the fileThis property is important to people trying to maintain a directory as
group accessible. The subdirectories also inherit thgreaplD property.

The default file permissions (umask):

Each user has a default set of permissions which apply to all file®drey that user, unless

the software explicitly sets something else. This is often called the 'umask’, after the
command used to change it. It is either inherited from the login process, or set in the .cshrc or
Jogin file which configures an individuakccount, or it can be run manually.

Typically the default configuration is equivalent to typing 'umask 22' which produces
permissions of:

-rw-r--r-- for regular files, or
drwxr-xr-x for directories.

In other words, user has full access, everyone elsefdgmod other) has read access to files,
lookup access to directories.

When working with grougaccess files and directories, it is common to use ‘'umask 2' which
produces permissions of:

-rw-rw-r-- for regular files, or

drwxrwxr-x for directories.

For privatework, use 'umask 77" which produces permissions:
-rW------- for regular files, or

drwx------ for directories.

The logic behind the number given to umask is not intuitive.

The command to change the permission flags is "chmod". Only the owner of a file can
change its permissions.

The command to change the group of a file is "chgrp". Only the owner of a file can change its
group, and can only change it to a group of which he is a member.

See the online manual pages for details of these commands on anylgasistem (e.qg.
"man chmod").

Examples of typical useage are given below:
chmod g+w myfile

give group write permission to "myfile", leaving all other permission flags alone
chmod grw myfile

remove read and write access to "myfile", leaving all othenission flags alone
chmod g+rwxs mydir

give full group read/write access to directory "mydir", also setting thgreeplD
flag so that directories created inside it inherit the group

chmod u=rw,go= privatefile

explicitly give user read/write accessdarevoke all group and other access, to file
'privatefile’

chmod-R g+rw .

give group read write access to this directory, ewetythingnside of it (R =
recursive)

chgrp-R medi .

change the ownership of this directory to group 'medi'emadythingnside of it (R
= recursive). The person issuing this command must own all the files or it will fail.

WARNINGS:

Putting 'umask 2' into a startup file (.login or .cshrc) will make these settings apply to
everything you do unless manually changed. Thislead to giving group access to files
such as saved email in your home directory, which is generally not desireable.

Making a file group read/write without checking what its group is can lead to accidentally
giving access to almost everyone on the systearmidlly all users are members of some
default group such as "users", as well as being members of specific {omgated groups.
Don't give group access to "users” when you intended some other group.

Remember that to read a file, you need execute atoed® directory it is in AND read
access to the file itself. To write a file, your need execute access to the directory AND write
access to the file. To create new files or delete files, you need write access to the directory.
You also need execute accessall parent directories back to the root. Group access will
break if a parent directory is made completely private.

Program: A C Program to implement File Operations and System Calls

#include<stdio.h>
#include<conio.h>
#include<dir.h>
#include<dos.h>
void main()

{

int ch;

clrscr();

do

{

printf("\n\t\W\\tMAIN MENU \n\t\t--------------------

printf("1.To Display List of Files1");
printf("2.To Create New Directoky");
printf("3.To Change the Working Directadry);
printf("4.Exit\n™);
printf("Enter the Number:");
scanf("%d",&ch);
switch(ch)
{
case 1:

list_file();

break;

case 2:
directory();
break;

case 3:
change_dir();
break;

case 4:
exit(0);
} Jwhile(ch<=4);
}
int list_file()
{
intl;
char e[]="*.*",
clrscr();

printf("\ttLIST FILE DETAIL\N\t--------------------

printf("1.List All Files\n2.List of Extention Filé®3.List of Name Wisa");

scanf("%d",&l);

switch(l)

{

case 1:
printf("List of All(*.*) Files\n");
subfun(e);
break;

case 2:

printf("Enter the Extention:");
scanf("%s",&e);

subfun(e);

break;

case 3:

printf("Enter the Name wise(eg:moha*.*):");
scanf("%s",&e),

subfun(e);

break;

}

return O;

}

int directory()

{

struct ffblk ffblk;

unsigned attrib;

int d;

char name[10],bufferfMAXPATH];
printf("Enter the Directory name:");
scanf("%s",&name);

getcwd(buffer, MAXPATH);
printf("Current directory:%®",buffer);

if(_dos_getfileattr(name,&attrib)==0)

{
printf("%s has already available",name);
return O;

}

else

{

mkdir(name);
printf("%s Directory Successfully Created,name);

}

return O;

}

int change_dir()

{

char buffer[MAXPATH];

intd,d1;

printf("\nCurrent Directory:%s",getcwd(bdfer, MAXPATH));
printf("\t\t\Change Directom\t\t----------------- \n");

printf("\n1.Step by Step Backwan®.Goto Root Directoi3.Forward DirectorynEnter the
number:");
scanf("%d",&d);
switch(d)
{
case 1:
chdir("..");
break;

case?:
chdir("\");
break;

case 3:
printf("Please enter the Filename:");
scanf("%s",buffer);
chdir(buffer);
break;

}

printf("\nCurrent Directory:%s",getcwd(buffer, MAXPATH));
return O;

}

int subfun(s)
char s[10];
{

struct ffblk ffblk;
int d,p=0,i=0;

d=findfirst(s,&ffblk,0);

while(!d)

{
printf("%s\n",ffblk.ff_name);
d=findnext(&ffblk);
i++;

p=p+1;

if(p>=22)

{
printf("Press any key to continde?);
getch();
p=0;

}

}

printf("\nTotal File:%d",i);

return O;

}

PRACTICAL -5

AIM: To write a C program for File Operations

DESCRIPTION
File-1/O through system calls is simpler and operates at a lower level than making calls to the
C file-1/O library. There are sevenrfdamental filel/O system calls:

1 creat() Create a file for reading or writing.

1 open() Open a file for reading or writing.

1 close() Close a file after reading or writing..

1 write() Write bytes to file.

1 read() Read bytes from file.

These calls were devised fine UNIX operating system and are not part of the ANSI C spec.
Use ofthese system calls requires a header file named "fcntl.h™:

The creat() System Call
The "creat()" system call, of course, creates a file.

It has the syntax:
int fp; /* fp is the file d escriptor variable */
fp = creat(<filename>, <protection bits>);
Ex: fp=creat(fAstudents. dat o, RD_WR) ;

This system call returns an integer, called a "file descriptor”, which is a number that identifies
the filegenerated by "creat()". This number is usgdther system calls in the program to
access the file.

Should the "creat()" call encounter an error, it will return a file descriptor vahie of

The "filename" parameter gives the desired filename for the new file. The "permission bits"
give the"accessights" to the file.

A file has three "permissions" associated with it:
1. Write permission - Allows data to be written to the file.

2. Read permission Allows data to be read from the file.
3. Execute permission Designates that the file is a progr#mat can be run.

These permissions can be set for three different levels:
User level Permissions apply to individual user.
Group level: Permissions apply to members of user's defined "group".
System level Permissions apply to everyone on the system.

The open() Sytem Call
The "open()" system call opens an existing file for reading or writing.

It has the syntax:
<file descriptor variable> = open(<filename>, <access mode>);

The "open()" call is similar to the "creat()" call in that it returns ad@scriptor for the given
file, andreturns a file descriptor el if it encounters an error. However, the second
parameter is an "acceswde”, not a permission code.

There are three modes (defined in the "fcntl.h" header file):
O_RDONLY Open for readingnly.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

For example, to open "data" for writing, assuming that the file had been created by another
program the following statements would be used:

int fd;
fd = open("students.dat", O_ WRONLY);
A few additional comments before proceeding:
A "creat()" call implies an "open()". There is no need to "creat()" a file and then "open()" it.

The close() Sytem Call

The "close()" system call is very simple. All it does is "close()" an open fiknvwhere is no
furtherneed to access it.

The "close()" system call has the syntax:
close(<file descriptor>);

The "close()" call returns a value of O if it succeeds, and retliriist encounters an error.

The write() Sytem Call

The "write()" system call writes data to an open file.

It has the syntax:

write(<file descriptor>, <buffer>, <buffer length>);

The file descriptor is returned by a "creat()" or "open()" system call. The "buffer" is a pointer
to avariable or an array that contains tteta; and the "buffer length" gives the number of
bytes to bewvritten into the file. While different data types may have different byte lengths on
different systemsthe "sizeof()" statement can be used to provide the proper buffer length in
bytes. A "wite()" call could be specified as follows:

float array[10];
write(fd, array, sizeof(array));

The "write()" function returns the number of bytes it actually writes. It will retliron an
error.

The read() Sytem Call

The "read()" system call readata from a open file. Its syntax is exactly the same as that of
the"write()" call:

read(<file descriptor>, <buffer>, <buffer length>);

The "read()" function returns the number of bytes it actually returns.
At the end of file it returns 0, or returris on error.

Algorithm:
1. Start the Program.

2. Open a file for O_RDWR for read and write, O_CREATE for creating a file, O_ TRUNC
for truncates a file.

3. Using getchar function, read the character and stored in the string [] array.
4. The string [] arrays write into a file and close it.

5. Then the file is opened for read only mode and read the characters and displayed it and
closethe file.

6. Stop the program.

Program: To write a C program for File Operations

#include<process.h>
#include<dos.h>
#include<stdio.h>
#include<conio.h>
#include<dir.h>
#include<io.h>

void main()

{

char name[10],c,ch;
unsigned attrib;

int d,n,f,p;

clrscr();

printf("\\WMAIN MENU OF PERMISSIONN\t-------nnn-rnmmmeemmmeenmmes

printf("1.0nly Reat2.0Only Writan3.Exit\nEnter your choicén™);
scanf("%d",&n);
switch(n)

{

case 1:

printf("\nEnter the File Name");
scanf("%s",name);

attrib |= _A_RDONLY;

printf("%s file read permission Accepted”,name);
break;

case 2:

printf("\nEnter the ffe Namein");
scanf("%s",name);

attrib = _A_ARCH;

printf("%s excute permission accepted”,name);
break;

case 3:
exit(0); }

if(_dos_setfileattr(name,attrib)!=0)
{

perror(\nUnable to set");
getch();
return O;

}
getch();
}

SAMPLE INPUT AND OUTPUT:

System3z, enudedce - bc

MATH HMEML OF FILE

cionzeac.doc

MAIN HEHU OF FILE

IMDOWSY System3 2 crndleae - ko

HATH HEHU OF FILE

your cholee:2
Enter the Old file name with extentionzeac.doc
the Mew File name with extentionzea.doc

Ldoe File mame chan 1
MAIM HEML OF FIlLE

MAIN HEWD OF FILE

| = A
WEnter your choice:d

Enter the File name with extentioniea.doc

ea.doc File removed
HAIH HEKU OF FILE
Create

| N
2 . Benane

: wit
Enter wyour cholce

PRACTICAL 71 6
AIM: To write a C program for File Copy and Move

Copying and moving files

When copying files from one dictory to another you need to know for certain which
directory is the current working directory. If you are not sure, uspwidecommand.

Make a copy in the current directory
cp oldfilename newfilename
€g
cp filel.html file2.html
Make a copy in a subdirectory of the current directory
cp filename dir-name
€g
cp filel.html public_html

This will make a copy dfilel.htmlwithin thepublic_htmldirectory (assuming the directory
exists).

Move a file into a sib-directory
mv filename dir-name

Thecp command makes a copy of the file with the new name or in the new location, and
leaves the original file in place. If you use the command the file is moved, so the original
is deleted and the only cops/the one in the new location.

Re-naming a file
Themv command can also be used to rename a file while leaving it in the same directory.
mv oldfilename newfilename
Copying (or moving) to the parent directory
cpfilename ..
or
myv filename ..
Note the space before the two dots. The two dots represent the parent directory.
Copying (or moving) from the parent directory into the current directory

You would use the following commands to copy or move a file from the fpairectory into
the current directory

cp . /filename .
or
mv ../filename .

The dot at the end of these commands stands for the current directory. Note that there is a
space in front of this final dot.

Copying a file into a subdirectory of a sub-directory

Suppose you have a sdivectory within your home directory callgdiblic_html, and
within public_htmlyou have a subdirectory calledoersonal.

If you are currently in your home directory you can copy (or move) a file fromhge
directory into this suisub-directory with the following command:

cp filename public_html/personal
or
mv filename public_html/personal

or if you wanted not only to move the file into the different directory, but also &iiga/
different name you could use this command:

myv filel.html public_html/personal/file2.html

Program: To write a C Program to implement File Copy and Move Operations

#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<dir.h>

char fn2[20];

main()

{

int c;

clrscr();

do{

printf("\n\t\tMain Menun---------------=------—------—- \n");
printf("1.Copy a Filén2.Move a Filen3.Exitn");
scanf("%d",&c);

switch(c)

{

case 1:

copy_file();
break;

case 2:
move_file();
break;

case 3:
exit(0);

}

}while(c<=3);

getch();

return O;

}

copy_file()

{

FILE *f1,*f2;

char ch,s[10],fn1[20];

int a;

printf("\nAre u see the privious files(1/0)?");
scanf("%d",&a);

if(a==1)

print_file();
printf("Enter the sourcel& name:");
scanf("%s",&fnl);
printf("Enter the Destination file name:");
scanf("%s",&fn2);
fl=fopen(fnl,"r");
if(f1l==NULL)

printf("Can't open the file");
else {

f2=fopen(fn2,"w");
while((ch=getc(f1))!=EOF)

putc(ch,f2);

printf("One File Cpied");
fclose(f2);

}

fclose(fl);

return O;

}

move_file()

{

FILE *f1,*f2;

char ch,s[10],fn1[20];

int a;

printf("\nAre u see the privious files(1/0)?");
scanf("%d",&a);

if(a==1)

print_file();

printf("Enter the source file name:");
scaf("%s",&fnl);

printf("Enter the Destination file name:");
scanf("%s",&fn2);

fl=fopen(fnl,"r");
if(fl==NULL)
printf("Can't open the file");
else {
f2=fopen(fn2,"w");
while((ch=getc(f1))!=EOF)
putc(ch,f2);
printf("One File moved");
fclosef2);
remove(fnl);

fclose(fl);
return O;

}

print_file()
{
struct ffblk ffblk;
int d,p=0;
char ch;
d=findfirst("*.*",&ffblk,0);
while(!d)
{
printf("%s\n",ffblk.ff_name);
d=findnext(&ffblk);
p=p+1;
if(p>=20)
{
printf("Press any key to continue");
getchar();
p=0;
}
}

return O;

}

PRACTICAL -7
Aim: To write a C Program to implement Dining Philosophers Program

TheDining Philosophergroblemis aclassic synchronization problem introducsgmaphoress
a corceptual synchronization mechanism

Dining Philosophers

There is a dining room containing a circular table with five chairs. At
chair is a plate, and between each plate is a single chopstick. In the
of the table is a bow! of spaghetti. Nelae room are five philosophers w
spend most of their time thinking, but who occasionally get hungry ang
to eat so they can think some more.

In order to eat, a philosopher must sit at the table, pick up the two cho
to the left and right of algte, then serve and eat the spaghetti on the pl
Thus, each philosopher is represented by the following pseudocode:

process PJi]
while true do
{ THINK;
PICKUP(CHOPSTICK]i], CHOPSTICK][i+1 mod 5]);
EAT,
PUTDOWN(CHOPSTICK]i], CHOPSTICK]Ji+1 mod 5])
}
A philosopher mayHINK indefinately. Every philosopher wHoATs will eventually finish.
Philosophers maRICKUPandPUTDOWNTtheir chopsticks in either order, or
nonceterministically, but these are atomic actions, and, of course, two philosophers cannot
use a singl€HOPSTICKat the same time.

The problem is to design a protocol to satisfy the liveness condimynphilosopher who
tries to EAT, eventually does.

Solution:

Other authors, including Dijkstra, have posed simpler solutions to the dining philosopher
problem than that proposed by Tannenbaum (depending on one's notion of "simplicity," of
course). One such solution is to restrict the number of philosopHevgedl access to the
table. If there ar@&l chopsticks but onl|-1 philosophers allowed to compete for them, at
least one will succeed, even if they follow a rigid sequential protocol to acquire their
chopsticks.

This solution is implemented with amegersemaphore, initialized td-1. Both this and
Tannenbaum's solutions avaldadlocka situation in which all of the philosophers have
grabbed one chopstick and are deterministically waiting for the other, so that there is no hope
of recovery. However, theynay still permitstarvation a scenario in which at least one
hungry philosopher never gets to eat.

Starvation occurs when the asynchronous semantics may allow an individual to eat
repeatedly, thus keeping another from getting a chopstick. The stanviogopiher runs,
perhaps, but doesn't make progress. The observation of this fact leads to some further
refinement of whatairnessmeans. Under some notions of fairness the solutions given above
can be said to be correct.

Program: To write a C program to implement Dining Philosophers Problem

#include<stdio.h>
#include<conio.h>
#include<dos.h>
#include<dir.h>

char fn2[20];

main()

{

int c;

clrscr();

do{

printf("\n\t\tMain Menun---------------=------—------—- \n");
printf("1.Copy a Filén2.Move a Filen3.Exitn");
scanf("%d",&c);

switch(c)

{

case 1:

copy_file();
break;

case 2:
move_file();
break;

case 3:
exit(0);

}

}while(c<=3);

getch();

return O;

}

copy_file()

{

FILE *f1,*f2;

char ch,s[10],fn1[20];

int a;

printf("\nAre u see the privious files(1/0)?");
scanf("%d",&a);

if(a==1)

print_file();
printf("Enter the source file name:");
scanf("%s",&fnl);
printf("Enter the Destination file name:");
scanf("%s",&fn2);
fl=fopen(fnl,"r");
if(f1l==NULL)
printf("Can't ogen the file");
else {
f2=fopen(fn2,"w");
while((ch=getc(f1))!=EOF)
putc(ch,f2);
printf("One File Copied");
fclose(f2);
}
fclose(fl);
return O;

}

move_file()

{

FILE *f1,*f2;

char ch,s[10],fn1[20];

int a;

printf("\nAre u see therpvious files(1/0)?");
scanf("%d",&a);

if(a==1)

print_file();

printf("Enter the source file name:");
scanf("%s",&fnl);

printf("Enter the Destination file name:");
scanf("%s",&fn2);

fl=fopen(fnl,"r");
if(fl==NULL)
printf("Can't open the file");
else {
f2=fopen(fn2,"w");
while((ch=getc(f1))!=EOF)
putc(ch,f2);
printf("One File moved");
fclose(f2);
remove(fnl);

fclose(fl);
return O;

}

print_file()
{
struct ffblk ffblk;
int d,p=0;
char ch;
d=findfirst("*.*",&ffblk,0);
while(!d)
{
printf("%s\n",ffblk.ff_name);
d=findnext(&ffblk);
p=p+1;
if(p>=20)
{
printf("Press any key to continue");
getchar();
p=0;
}
}

return O;

}

SAMPLE INPUT AND OUTPUT:

Philos name Right fork Left fork

A WO NP O
A W NP O
O~ WDNP

Enter the Two Eating Philosophers number:1 3
Round 1

Philosopherre 1 is eating with rhf=1 ariaf=2.
Philosopherre 3 is eating with rhf=3 ard=4.
Round 2

Philosopherre 0 is eating with rhf=0 ariaf=1.
Philosopherre 2 is eating with rhf=2 anihf=3.
Round 4

Philosopherre 2 is eating with rhf=2 artidf=3.
Philosopherre 4 is eating with e and 1hf=0.

Philos name Right fork Left fork

A WDNPEFEO
A WDNPEFO
O~ WNPF

Enter the Two Eating Philosophers number:1 4
Round 1

Philosopherre 1sieating with rhf=1 andhf=2.
Philosopherre 4 is eating with rhf=4 and Ihf=0.
Round 2

Philosopherre 0 is eating with rhf=0 ataf=1.
Philosopherre 2 is eating with rhf=2 antf=3.
Round 4

Philosoplerre 2 is eating with rhf=2 anlthf=3.
Philosopherre 4 is eating with rhf=4 antf=0.

PRACTICAL 71 8
Aim: To write a C Program to implement Producer Consumer Problem

DESCRIPTION

This is an illustration of a solution to the classic prodwmersumer (bundedbuffer)
problem usingsemaphores.

CONCEPT Producers produce items to be stored in the buffer. Consumers remove and
consumeitems which have been stored. Mutual exclusion must be enforced on the buffer
itself. Moreover,producers can store only whehere is an empty slot, and consumers can
remove only when there isfall slot. Three semaphores are used. The binary semaphore
mutex controls access to the buffer itself.

The counting semaphore empty keeps track of empty slots, and the counting seralpho
keepstrack of full slots. In this example, the buffer is implemented as an array of size MAX
treated as aircular (ring) buffer. Variables in and out give the index of the next position for
putting in and takingut (if any). Variable count givdle number of items in the buffer.

Algorithm:

. Start the program.

. Declare the variables in the type of pthread_t as tid_produce tid_consume.
. Declare a structure for semaphore variables.

. During run time read the number of items to be producdadansumed.

. Declare and define semaphore function for creation and destroy.

. Define producer function.

. Define consumer function.

. Call producer and consumer function.

© 00 N O O h W N P

. Stop the execution.

Program: To write a C Program to implement Producer Gonsumer Problem

#include<stdio.h>
#include<conio.h>

void main()
{
int ch,n,c1=0,c2=0,produce[23],consume[23];
clrscr();
printf("\n\n\n\n\n\t\n\n\t\t\tEnter Stack Size : ",n);
scanf("%d",&n);
while(1)
{
clrscr();
printf("\t\tProducer Stack (&ck Size : %d
)\n\t\t~~~ i ",n);
display(cl,produce);
printf("\n\n\t\tConsumer Stack (Stack Size : %d

)\n\t\t~~~ e ".n);
display(c2,caosume);
printf("\n\\tCHOICESn\t\t~~~~~~ An\t1.Produceén\t2.Consuman\t3.

Exit\nEnter your choice : ");
scanf("%d",&ch);

switch(ch)
{
case 1:
if(cl==n)
printf("Produer stack is FULL.So Producer goes to SLNBEP
else
{
cl++;

printf("\t\tEnter PRODUCE item is :");
scanf("%d",&produce[cl]);
}

break;

case 2:
if(c2==n)
printf("Consumer Stack is FULL.So it goes to SLEEP!...\n\tResé& the Cosumer
Stackn",c2=0);
else if(c1==0)
printf("\tProducer stack is EMPT");
else

{

C2++;

consume[c2]=produce[cl];
printf("\tw CONSUME one item");
cl--;

}

break;

case 3:
exit(0);

default:
printf("\tlt is Wrong choice,Please enter correlabice!............. \n");
}
getch();
}
}

display(int c,int stack][])

{

inti;

printf("\n-------------- -~ -- mmmmm oo \n");
if(c==0)

printf("\tStack is EMPTYn\t\t(Now It is sleeping)");

else

for(i=1;i<=c;i++)

printf("\t%d",stack]i]);

PN (AN == o m e e e e \n");
}

SAMPLE INPUT AND OUTPUT:
Enter Stack Size4

Producer Stack (Stack Size : 4)

Stack is EMPTY
(Now lt is sleeping)

Stack is EMPTY
(Now It is sleeping)

1.Producer
2.Consumer
3.Exit
Enter your choice 2
Producer stack is EMPTY
Producer Stack (Stack Size : 4)

Stack is EMPTY
(Now It is sleeping)

1.Producer
2.Consumer
3.Exit
Enter your choice : 1
Enter PRODUCE item is :30
Producer Stack (Stack Size : 4)

Stack is EMPTY
(Now lt is sleeping)

~——————

1.Producer
2.Consumer
3.Exit
Enter your choice 2
Producer Stack (Stack Size : 4)

1.Producer
2.Consumer
3.Exit

Enter your choice :3

PRACTICAL -9

Aim: To write a C program for the following Job Scheduling Algorithms:
1. First Come First Serve Algorithm
2. Shortest Job First Scheduling Algorithm
3. Round Robin Scheduling Algorithm
4. Priority Scheduling Algorithm

DESCRIPTION

First-Come, FirstServed (FCFS) Scheduling

Suppose that the processes arrive in the order
Py, Ps, Py

B [he Gantt chart for the schedule is:

P, Ps P,

0 3 6 30

m_Waiting time for P, =6;FP,=0.P3=.3

m Average waiting time: (6 +0 +3)/3 =3
m Much better than previous case
u

Convoy effect short process behind long process

Process Burst Time

P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, | P,, P,
The Gantt Chart for the schedule is:

P, P, Ps

-

0 24 27 30
m Waiting time for Py =0; Py =24; P3=27
m Average waiting time: (0 + 24 + 27)/3 =17

Algorithm:

1. Start the program.

2. Get the nutmer of processes and their burst time.

3. Initialize the waiting time for process 1 is 0.

4. The waiting time and turaround time for other processes are calculated as
p[i].wt=p[i-1].bt+p[i-1].wt;

p[i].tt=p[i].bt+p[i].wt;

5. The waiting time and turaround time for all the processes are summed and then the
averagewvaiting time and turraround time are calculated.

6. The average waiting time and tdanound time are displayed.

7. Stop the program.

Program: To implement FCFS job Scheduling Algorithm

#indude<stdio.h>
#include<conio.h>
#include<dos.h>

void main()

{

int n,b[10],w[10],i,j,h;

int stime[10];

float avg=0;

clrscr();

printf("\n\tJOB SCHEDULING ALGORITHM[FCFS]");

H (1]
p rin tf(\n\t***

*kkk \n")1

printf("\nEnter howmany jobs:");
scanf("%d",&n);
printf("\nEnter burst time for corresponding joln");
for(i=0;i<n;i++)
{
printf("\nProcess %d:",i+1);
scanf("%d",&Db[i]);
}
w[0]=0;
printf("\nprocess 1 waiting time is 0");
for(i=1;i<n;i++)
{
wli]=b[i -1]+wl[i-1];
printf("\nProcess %d waiting time: %d",i+1,w[i]);
avg+=w(if;
}
printf("\ntotal waiting time:%f",avq);
printf("\n\nthe averagevaiting time is:%fn",avg/n);
printf("\nGant

C h artn*************************************** \n\n\t") ’

h=22:

for(i=0;i<n;i++)
{
printf("%d",b[i]);

for(i=1;j<=b[i];j++)
printf("%c",h);

}

printf("\n\t");

for(i=0;i<n;i++)

{

printf("%d",w[i]);
for(i=1;j<=wl[i];j++)
printf("%c",h);
delay(1000);

}
getch();

}

SAMPLE INPUT AND OUTPUT:

Enter howmany jobs:5

Enter burst time for corresponding job....
Process 1:4

Process 2:2

Process 3:8

Process 4:2

Process 5:9

process lvaiting time is O
Process 2 waiting time: 4
Process 3 waiting time: 6
Process 4 waiting time: 14
Process 5 waiting time: 16
total waiting time:40.000000

the average waiting time is:8.000000
Gaunt Chart

kkkkkkkkkkkkkkkkkkkhkkhkkhkkhkkkhkkkkkkkkkkhkkkx

2222222822222 Z2ZZ2ZZ2Z2ZZ2Z9 222222227

ZZ2ZZ2ZZ2Z60Z2ZZ2Z2ZZ2ZZZ1 422222 Z2ZZ2ZZ2ZZ2ZZ2ZZ2ZZ2Z2Z22Z2106Z2Z2Z2ZZ2ZZ2ZZZ2ZZZ2Z27Z
Z7Z

04
ZZ ZZ

IMPLEMENTATION OF SJF SCHEDULING

DESCRIPTION
Associate with each process the length of its next CPU burst. Use these lengths to schedule
theprocess with the shortesine

Two schemes:

Non Preemptive: once CPU given to the process it cannot be preempted until completes its
CPUburst

Preemptive: if a new process arrives with CPU burst length less than remaining time of
currentexecuting process, preempt. This schenkaavn as the ShorteRemainingTime-

First (SRTF)

SJF is optimalgives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

Process Arrival Time Burst Time
=y 0.0 7
= 2.0 4
P 4.0 1
P4 5.0 4

=]

0 3 I 8 12 1

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Preemptive SJF

Py 0.0 7
P 2.0 4
£ 4.0 1
P4 5.0 4
I SJF (preemptive)

P, P, P P P, P,

| | | | | l 1 | 1

| I [1 1 | 1 | | I

(8] > A 5 7 11 16

B Average waiting time = (9 + 1 + 0 +2)/4 = 3

Algorithm:

1. Start the program.

2. Get the number of processes and their burst time.

3. Initialize the waiting time foprocess 1 is 0.

4. The processes are stored according to their burst time.

5. The waiting time and turaround time for other processes are calculated as
p[i].wt=p[i-1].bt+p[i-1].wt;

p[i].tt=p[i].bt+p[i].wt;

6. The waiting time and turaround time for dlthe processes are summed and then the
averageavaiting time and turraround time are calculated.

7. The averagesaiting time and turraround time are displayed.

8. Stop the program.

Program: To implement Shortest Job First Scheduling Algorithm

#include<stdio.h>
#include<conio.h>
#include<dos.h>

void main()
{
int n,b[10],w[10],i,j,h,t,tt;
int stime[10],a[10];
float avg=0;
clrscr();
printf("\n\tJOB SCHEDULING ALGORITHMI[SJF]");
p I’I ntf(" \n\t***
printf("\nEnter howmany jobs:");
scanf("%d",&n);
printf("\nEnter burst time for corresponding joln");
for(i=1;i<=n;i++)
{
printf("\nProcess %d:",i);
scanf("%d",&Db[i]); a[i]=i;
}
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
if(b[i]>bli])
{
t=Db[i]; tt=ali];
b[i]=b[j]; ali]=alil;
b[il=t; afj]=tt;
}

W[1]=0;

printf("\nprocess %d waiting time is 0",a[1]);

for(i=2;i<=n;i++)

{

wli]=b][i -1]+w[i-1];

printf("\nProcess %d waiting time: %d",alil[i]);
avg+=w(i];

}

printf("\ntotal waiting time:%f",avg);
printf("\n\nthe average waiting time is:%f,avg/n);

\n%);

p ri ntf(" \NGaunt Chakh***x#rkkikkkkikkkkik ko ko kkkkkkkkk

h=22;

for(i=1;i<=n;i++)

{

printf("%d",b[i]);

for(j=1;j<=bl[i];j++)
printf("%c",h);

}

printf("\n\t");

for(i=1;i<=n;i++)

{

printf("%d", wli]);
for(j=1;j<=w[i];j++)
printf("%c",h);
delay(1000);

}

getch();
}

\n\n\t");

SAMPLE INPUT AND OUTPUT:

Enter howmany jobs:3

Enter burst time for corresponding job....

Process 1:5

Process 2:2

Process 3:3

process 2 waiting time is 0

Process 3 waiting time: 2

Process 1 waiting time: 5

total waiting time:7.000000

the average waiting time is:2.333333

Gaunt Chart

kkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkk
227
0227

IMPLEMENTATION OF PRIORITY SCHEDULING

Aim:
To write the program to perform priority scheduling.

DESCRIPTION

A priority number (integer) is associated with each process

The CPU is allocated to the process with ltiighest priority (smallest integer => highest
priority)

- Preemptive

- non preemptive

SJF is a priority scheduling where priority is the predicted next CPU burst time
Problem Starvation low priority processes may never execute

Solution Agingi as timeprogresses increase the priority of the process

Algorithm:

1. Start the program.

2. Get the number of processes, their burst time and priority.

3. Initialize the waiting time for process 1 is O.

4. Based upon the priority processes are arranged.

5. The waing time and turn around time for other processes are calculated as
p[i].wt=p[i-1].bt+p[i-1].wt;

p[i].tt=p[i].bt+p[i].wt;

6. The waiting time and turn around time for all the processes are summed and then the

average

waiting time and turn around time aralculated.

7. The average waiting time and turn around time are displayed.
8. Stop the program.

Program: To implement Priority Scheduling Algorithm

/lpriority scheduling
#include<stdio.h>
#include<conio.h>
#include<dos.h>

void main()
{
int n,b[10],w[10],i,j,h,t,tt;
int stime[10],a[10],p[10];
float avg=0;
clrscr();
printf("\n\tPRIORITY SCHEDULING ALGORITHM");
p I’I ntf(" \n\t*** \n ! ') ’
printf("\nEnter howmany jobs:");
scanf("%d",&n);
printf("\nEnter lurst time & priority for corresponding job\n®);
for(i=1;i<=n;i++)
{
printf("\nProcess %d:",i);
scanf("%d %d",&b[i],&pli]); a[i]=i;
}
for(i=1;i<=n;i++)
for(j=i;j<=n;j++)
if(pli]<plil)
{
t=Db[i]; tt=ali];
b[i]=bli]; afil=a[il;
b[il=t; afj]=tt;
}

w[1]=0;

printf("\nprocess %d waiting time is 0",a[1]);

for(i=2;i<=n;i++)

{

wli]=b[i -1]+wl[i-1];

printf("\nProcess %d waiting time: %d",a[i],wl[i]);

avg+=w(i];

}

printf("\ntotal waiting ime:%f",avg);

printf("\n\nthe average waiting time is:%f,avg/n);

p I’I ntf("\nG a-lt C har‘n*************************************** \n\n\t") ’

h=22;

for(i=1;i<=n;i++)

{

printf("%d",b[i]);
for(j=1;j<=Db[i];j++)
printf("%c",h);

}

printf("\n\t");

for(i=1;i<=n;i++)

{

printf("%d",w[i]);
for(j=1;j<=w[i];j++)
printf("%c",h);
delay(1000);

}

getch();
}

SAMPLE INPUT AND OUTPUT:

Enter howmany jobs:3

Enter burst time & priority for corresponding job....
Process 1:5 2

Process 2:7 1

Process 3:6 3

PRIORITY SCHEDULING ALGORITHM

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk

Enter howmany jobs:3

Enter burst time & priority for corresponding job....
Process 1.5 2

Process 2:7 1

Process 3:6 3

process 3 waiting time is 0
Process 1 waiting time: 6
Process 2 waiting time: 11
total waiting time:17.000000

the average waiting time is:5.666667

Gant Chart

*kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

ZZ2ZZ2Z2ZZ2Z52ZZ2ZZT 2222227
6 ZZ

6
0 Z2Z2Z2ZZ1 122222222227

IMPLEMENTATION OF ROUND ROBI N SCHEDULING
Aim: To write a program for Round Robin Scheduling.

DESCRIPTION

Each process gets a small unit of CPU titira€ quanturjy usually 16100 milliseconds.

After thistime has elapsed, the process is preempted and added to the end of theeeady q
If there aren processes in the ready queue and the time quantgnthisn each process gets
1/n of the CPU time in chunks of at magtime units at once. No process waits more timan (
1)g time units.

Performance

g large:FIFO

g smalt g must be lege with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 20

Process Burst Time
Py 53
P 17
P 68
P4 24

The Gantt chart is:

P, | P Ps | Ps| PP | Pa Py | Pa| Ps

0] 20 37 57 7 97 117 121 134 154 162

Typically, higher average turnaround than SJF, but better
response

Algorithm:

1. Start the program.

2. Get the number of processes, their burst time and time slice for each process.

3. Calculate the total burst time.

4. To check whether the burst timeprocess is less then the time slice, the required time
only allotted to the process.

5. If the burst time of process is greater than the time slice one time slice is allotted for the
process and burst time is subtracted by one time slice.

6. Step 4 anéd is repeated up to process burst time is 0.

7. The waiting time and turn around time for all the processes are summed and then the
average

waiting time and turn around time are calculated.

8. The average waiting time and turn around time are displayed.

9. Stop the program.

Program: To implement Round Robin Algorithm

#include<stdio.h>
#include<conio.h>

int z[10],b[10],n,m[50],r,q,e=0,avg=0,i,j;

float f;
main()
{
clrscr();
printf("\n\tJOB SCHEDULING ALGORITHM[RR]");
p rl ntf(" \n\t********************** kkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkk

printf("\nEnter how many jobs:");

scanf("%d",&n);

printf("\nEnter burst time for corresponding joln");
for(i=1;i<=n;i++)

{

printf("\nProcess %d: ",i);

scanf("%d",&bl[i]); z[i]=bli];

}

printf("\nENTER THE TIME SLICE VALUE:");
scanf("%d",&q);

rr();

average();

getch();
return O;

}

rr()
{
int max=0;
max=Db[1];
for(j=1;j<=n;j++)
if(max<=Dblj])
max=Db[j];

if((max%q)==0)
r=(max/q);

else
r=(max/q)+1;

\n");

for(i=1;i<=r;i++)

{
printf("\nround %d",i);
for(j=1;j<=n;j++)

{
if(b[j]>0)
{
b[j]=bfi] -a;
if(b[j]<=0)
{
b[j]=0;
printf("\nprocess %d is completed",j);
}
else
printf("\nprocess %d remaining time is %d",j,b[j]);
}
}
delay(100);
}
return O;
}
average()
{
for(i=1;i<=n;i++)
{
e=0;
for(j=1;j<=r;j++)
{
if(z[i]'=0)
{
if(z[i]>=0q)
{
mli+e]=q; z[i]-=q;
}
else
{
m[i+e]=z[i]; z[i]=0;
}
}
else
m([i+e]=0;

e=e+n;

}
}
for(i=2;i<=n;i++)
for(j=1;j<=i-1;j++)
avg=avg+m(j];
for(i=n+1;i<=r*n;i++)
{
if(m[i]!'=0)
{
for(j=i-(n-1);j<=i-1;j++)
avg=m[j]+avg;
}
}
f=avg/n;
printf("\nTOTAL WATING:%d",avg);
printf("\n\nAVERAGE WAITING TIME:%f\n",f);
for(i=1;i<=r*n;i++)
{ if(m[i]'=0)
if(i%n==0){
printf("P%d",(i%n)+(n)); }

else

printf("P%d",(i%n));

for(j=1;j<=mli];j++)
printf("%c",22);

printf("*\n");
getch();
return O;

}

SAMPLE INPUT AND OUTPUT:

Enter how nany jobs:4

Enter burst time for corresponding job...
Process 1: 7

Process 2: 5

Process 3: 4

Process 4: 2

ENTER THE TIME SLICE VALUE:2
round 1

process 1 remaining time is 5
process 2 remaining time is 3
process 3 remaining time is 2
process 4 is completed

round 2

process 1 remaining time is 3
process 2 remaining time is 1
process 3 is completed

round 3

process 1 remaining time is 1
process 2 is completed

round 4

process 1 is completed

TOTAL WATING:39

AVERAGE WAITING TIME:9.000000
P1Z2ZP22Z2Z2P32Z2P4Z22P122P22Z2P32Z2P122P22P1Z%

PROGRAM T 10

Aim: To implement the following memory management schemes:
1. First Fit Algorithm
2. Best Fit Algorithm

DESCRIPTION

Memory Management Algorithms

In an environment that suppodgnamic memory allocation, the memory manager must keep
arecord of the usage of each allocable block of memory. This record could be kept by using
almostany data structure that implements linked lists. An obvious implementation is to
define a free list oblock descriptors, with each desdap containing a pointer to the next
descriptor, a pointer to tH#ock, and the length of the block. The memory manager keeps a
free list pointer and inserts entriego the list in some order conducive to its allma
strategy. A number of strategies are usedlticate space to the processes that are competing
for memory.

First Fit

Another strategy is first fit, which simply scans the free list until a large enough hole is
found.

Despite the name, fidit is generally better than beft because it leads to less
fragmentation. Smaholes tend to accumulate near the beginning of the free list, making the
memory allocator seardarther and farther each timgolution:Next Fit

Best Fit

The allocator places process in the smallest block of uoahted memory in which it will

fit. It requires an expensive search of the entire free list to find the best hole. More
importantly, it leads téhe creation of lots of little holes that are not big enough to satisfy a
requests. This situation ealledfragmentationand is a problem for all mememanagement
strategies, although it @articularly bad for bedit. One way to avoid making little holes is

to give the client a bigger blodkan it asked for. For exangy we might round all requests

up to the next larger multiple of 64 bytes.

That doesn't make the fragmentation go away, it just hides it.
- Unusable space in the form of holes is catigtérnal fragmentation
- Unusable space in the form of holes isexddixternal fragmentation

Algorithm:

1. Start the program.

2. Get the number of segments and size.

3. Get the memory requirement and select the option.

4 . I f the option is 626 call first fit fun
5 I f the option is 616 calll best fit func
6. Otrerwise exit.

7. For first fit, allocate the process to first possible segment which is free.

ct
ti

8. For best fit, do the following steps.

a. Sorts the segments according to their sizes.

b. Allocate the process to the segment which is equal to or slightlegtean the
process size.

9. Stop the program.

Program: To write a C program to implement First Fit and Best Fit Memory
Management Algorithms

#include<stdio.h>
#include<conio.h>
#define MAXSIZE 25

void printlayout(int[],int);
int firstfit(int[],int, int);
int bestfit(int[],int, int);

void main()

{

int i,a[25],n,req,choice,pos,ch;

clrscr();

printf("How MAny Segments");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Segent Size");

scanf("%d",&ali]);

}

loop:

printf("How Much Is Your Memory Requirment");
scan{"%d",&req);
printf("\n1.Bestfitn2.Firstfiln3.Exitn");
printf("Enter Your Choic");
scanf("%d",&choice);

switch(choice)

{

case 1:

pos=Dbestfit(a,n,req);

break;

case 2:

pos=firstfit(a,n,req);

break;

}

printf("\tBestfit and Firstfit Algorithnn");
printf("\t \n\n");
printlayout(a,n);

printf("Your Memory Requirment is :%d\n",req);
printf("Alloted Memory Region is:%h\n",a[pos));
a[pos]=0;

printf("Do You Want To Continue 1/0");
scanf("%d",&ch);

if(ch==1)

goto loop;

getch();

}

void printlayout(int a[],int n)
{

intij;

printf("\t\tMemory Free List");
printf("\n\t\t \n\n");
printf("\t\t|~~~}n");
for(i=0;i<n;i++)

{

if(a[i]'=0)

{

for(j=1;j<=(a[i]/100);j++)
printf("\t\t| \n");

printf("\t\t| %dn",al[i]);
printf("\t\t|---\n");

1

printf("\n\n");

}

int firstfit(int a[],int n,int r)
{

inti;

for(i=0;i<n;i++)

if(afi]>=r)

break;

return i;

}

int bestfit(int a[],int n,int r)
{

int b[25],i,j,temp,val,
for(i=0;i<n;i++)
bli]=afi];
for(i=0;i<n-1;i++)
for(j=i;j<n-1;j++)
if(b[i]>b[j])

{

temp=Db[i];

blil=b(il;

b[j]=temp;

}

for(i=0;i<n;i++)

if(b[i]>=r)
break;

val=Dbl[i];
for(i=0;i<n;i++)
if(afi]==val)
break;

return i

}

SAMPLE INPUT AND OUTPUT:

How Many Segments4
Segent Size500

Segent Size200

Segent Size300

Segent Size400

How Muchls Your Memory Requirment200
1.Bestfit

2.Firstfit

3.Exit

Enter Your Choice 1

Bestfit and Firstfit Algorithm

Memory Free List

|400]|

|-~ |

Your Memory Requirment is :200

Alloted Memory Region is:200

Do You Want To Continue 1/0

1

How Much Is Your Memory Requirment250
1.Bestfit

2 .Firstfit

3.Exit

Enter Your Choice

1

Bestfit and FirstfitAlgorithm

Memory Free List

|

|

|

|500]

73

|- |

|

|

|300]|

|- |

|

|

|

|400]

|- |

Your Memory Requirment is :250
Alloted Memory Region is:300
Do You Want TaContinue 1/0
0

PROGRAM-11

Aim: To implement Page replacement algorithms:
1. First In First Out (FIFO)
2. Least Recently Used (LRU)

DESCRIPTION

Page replacement algorithms are used to decide what pages to page out when a page needs
be allocated. This hamms when a page fault occurs and free page cannot be used to satisfy
allocation

First In First Out (FIFO):

The frames are empty in the beginning and initially no page fault occurs so it is set to minus
one. When a page fault occurs the page referencagstis brought into memory. The
operating systerkeeps track of all the pages in memory, herby keeping track of the most
recently arrived and theldest one. If the page in the page reference string is not in memory,
the page fault is incremented atheé odest page is replaced. If the page in the page reference
string is in the memory, take the ngdge without calculating the page fault. Take the next
page in the page reference string and chetheifpage is already present in the memory or
not. Repeathe process until all the pages are refermad calculate the page fault for all
those pages in the page reference string for the number of avéitabés.

LeastRecentlyUsed (LRU):

A good approximation to the optimal algorithm is based on the oltgerviaat pages that
havebeen heavily used in the last few instructions will probably be heavily used again in the
next few.

Conversely, pages that have not been used for ages will probably remain unused for a long
time. Thisidea suggests a realizablgalithm: when a page fault occurs, throw out the page
that has beennused for the longest time. This strategy is called LRU (Least Recently Used)

paging.

Algorithm:

1. Start the program

2. Obtain the number of sequences, number of frames and sequencktn the user

3. Now when a page is not in the frame comes, increment the number of page fault and
remove

the page that come in the first in FIFO algorithm

4. In LRU algorithm, when a page fault occurs, the page which most recently used is
removed

5. Display the number of faults

6. Stop the program

Program: To write a C Program to Implement FIFO and LRU Page Replacement
Algorithms

#include<stdio.h>
int m,n,i,j,k,flag,count=0,refer[100],page_frame[100][2],fault=0,min,no_frames;

void replace(int z)

{

for(i=0;i<n;i++)

{

flag=1,;
for(j=0;j<no_frames;j++)
if(refer[i]l==page_frame][j][0])
{

m=j;

flag=0;

}

if(flag)

{

fault++;

min=32000;
for(j=0;j<no_frames;j++)
if(page_framelj][1]<min)

{

min=page_frame[j][1];

k=j;

}
page_framel[k][O]=refer]i];
page_framel[k][1F++count;
for(j=0;j<no_frames;j++)
printf("%d",page_framel[j][0]);

printf("\n");

}

else

{

printf("no page fauln");
if(z==2)
page_frame[m][1]=++count;
}

printf("number of page fault is: %", fault);
}

int main()

{

printf("\nEnter the number of referente
scanf("%d",&n);

printf("\nEnter the number of frames:");
scanf("%d",&no_frames);
printf("\nEnter the reference string:");

for(i=0;i<n;i++)
scanf("%d",&refer([i]);
printf("\tWtFIFO ALGORITHM \n");
for(i=0;i<no_frames;i++)

{

page_frame[i][0]=1;
page_fameJi][1]=count;
}

replace(1);

fault=0;

count=0;

printf("\t\t\tLRU ALGORITHM \n");
for(i=0;i<no_frames;i++)
{

page_frame[i][0]=1;
page_frame[i][1]=count;

}

replace(2);
return O;
getch();

}

SAMPLE INPUT AND OUTPUT:

Enter the number of reference:10
Enter the number of frames:3
Enter the reference string:7012030426
FIFO ALGORITHM

7-1-1

70-1

701

201

no page fault

231

230

430

420

426

number of page fault is:9
LRU ALGORITHM

7-1-1

70-1

701

201

no page fault

203

no page falt

403

402

462

number of page fault is:8

PRACTICAL 12

AIM: Write a shell program to perform operations using CASE statement such as addition,
subtraction, multiplication and division.

PROGRAM:

echo nl n2
readnl n2
echo a=add
echo b=sub
echo c=mul
echo d=div
echo ch
read ch
case $chin
a) let z=$n1+$n2
echo add=%z
b) let z=ntn2
echo sub=%$z
c) let z=$n1*$n2
echo mul=%$z
d) let z=$n1/$n2
echo div=%$z
*)
echo invalid option

Esac

OUTPUT

nln2
3 4
a=add
b=sub
c=mu
d=div
ch

add=7

PRACTICAL 13
AIM: Write a shell program to find largest of three numbers.
PROGRAM:

echo enterl

read nl

echo enter2

read n2

echo enter3

read n3

if[$nl-gt $n2]&&[$n1-gt $n3]
then echo $nl is larger
elif[$n2-gt $n1]&&[$n2-gt $n3]
then echo $n2 is larger

else echo $n3 is larger

fi

nl n2 n3
12 36 48
48 is larger

OUTPUT

PRACTICAL 14
AIM: Write a shell program to find average of two numbers.
PROGRAM:

echo Enter the®inumber

read a

echo Enter the" number

read b

c=0expr $a+$bod

d=$c/2

echo The average of two numbers is $d

OuUTPUT

Enter the I number

6

Enter the % number

4

The average of two numbers is 5

