
ARTIFICIAL INTELLIGENCE LAB (LC-AI-346G)

DEPARTMENT OF CSE(AI&ML)

DRONACHARYA COLLEGE OF ENGINEERING

KHENTAWAS, FARRUKH NAGAR, GURUGRAM (HARYANA)

LABORATORY MANUAL

B.Tech. Semester- VI

ARTIFICIAL INTELLIGENCE LAB

Subject code: LC-AI-346G

Prepared by: Checked by: Approved by:

Dr Ritu Pahwa Dr Ritu Pahwa Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Table of Contents

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO- PO and CO-PSO mapping

9. Course Overview

10. List of Experiments

11. DOs and DON‟Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Lab Experiments

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Vision and Mission of the Institute

Vision:

“To impart Quality Education, to give an enviable growth to seekers of learning, to groom

them as World Class Engineers and managers competent to match the expending expectations

of the Corporate World has been ever enlarging vision extending to new horizons of

Dronacharya College of Engineering”

Mission:

M1: To prepare students for full and ethical participation in a diverse society and encourage

lifelong learning by following the principle of „Shiksha evam Sahayata‟ i.e., Education &

Help.

M2: To impart high-quality education, knowledge and technology through rigorous academic

programs, cutting-edge research, & Industry collaborations, with a focus on producing

engineers& managers who are socially responsible, globally aware, & equipped to

address complex challenges.

M3: Educate students in the best practices of the field as well as integrate the latest research

into the academics.

M4: Provide quality learning experiences through effective classroom practices, innovative

teaching practices and opportunities for meaningful interactions between students and

faculty.

M5: To devise and implement programmes of education in technology that are relevant to the

changing needs of society, in terms of breadth of diversity and depth of specialization.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Vision and Mission of the Department

Vision:

To cultivate skills and make proficient engineers cum trainers in the domain of Artificial

Intelligence & Machine Learning for exceptional contributions to the society.

Mission:

M1: To impart intense training and learning to generate knowledge through the

state-of-the-art concepts and technologies in Artificial Intelligence and

Machine Learning.

M2: To establish centres of excellence by collaborating with the leading

 industries to exhilarate innovative research and development in AIML and

 its allied technology.

M3: To inculcate regenerative self-learning abilities, team spirit, and professional

 ethics among the students for noble cause.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Programme Educational Objectives (PEOs)

PEO1- ANALYTICAL SKILLS:

Using a solid foundation in mathematical, scientific, engineering, and current

computing principles, formulate, analyse, and resolve engineering issues in real-world

domain.

PEO2- TECHNICAL SKILLS:

 Apply artificial intelligence theory and concepts to analyse the requirements, realise

technical specifications, and design engineering solutions.

PEO3- SOFT SKILLS:

Through inter-disciplinary projects and a variety of professional activities, demonstrate

technical proficiency, AI competency, and foster collaborative learning and a sense of

teamwork.

PEO4- PROFESSIONAL ETHICS:

Excel as socially responsible engineers or entrepreneurs with high moral and ethical

standards, competence, and soft skills that will enable them to contribute to societal

demands and achieve sustainable advancement in emerging computer technologies.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex

engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs

with appropriate consideration for the public health and safety, and the cultural,

societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO9: Individual and teamwork: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with

the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective

presentations, and give and receive clear instructions.

P11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one‟s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

P12: Life-long learning: Recognize the need for and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Fundamentals:

 Apply the knowledge gained pertaining to data storage, data analytics and AI

 concepts to solve real world business problems.

PSO2: Applications:

 Ability to evaluate and apply knowledge of data engineering, artificial

 intelligence, machine learning, and human cognition to real-world issues in order

 to solve potential challenges.

PSO3: Innovation:

 Ability to acquire computational knowledge and project development abilities

 using novel tools and methodologies to tackle challenges in the fields related to

 Deep Learning, Machine learning, Artificial Intelligence.

PSO4: Implications:

 Capacity to direct a team or firm that develops products and to use the

 knowledge learned to recognise actual research issues

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

University Syllabus

Lab 1: Implementation of toy problems

Lab 2: Developing agent programs for real world problems

Lab 3: Implementation of constraint satisfaction problems

Lab 4: Implementation and Analysis of DFS and BFS for an

application

Lab 5: Developing Best first search and A* Algorithm for real world

 problems

Lab 6: Implementation of minimax algorithm for an application

Lab7: Implementation of unification and resolution for real world

 problems.

Lab 8: Implementation of knowledge representation schemes - use

cases

Lab 9: Implementation of uncertain methods for an application

Lab 10: Implementation of block world problem

Lab 11: Implementation of learning algorithms for an application

Lab 12: Development of ensemble model for an application

Lab 13: Expert System case study

Lab 14: Implementation of NLP programs

Lab 15: Applying deep learning methods to solve an application.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Course Outcomes (COs)

Upon successful completion of the course, the students will be able to:

CO1: Apply various AI search algorithms (uninformed, informed, heuristic, constraint

 satisfaction,).

CO2: Understand the fundamentals of knowledge representation, inference.

CO3: Understand the fundamentals of theorem proving using AI tools.

CO4: Demonstrate working knowledge of reasoning in the presence of incomplete and/or

 uncertain information.

CO5: Apply AI techniques and technologies to solve real world business problems.

CO-PO Mapping

CO-PSO Mapping

*3-HIGH

*2-MEDIUM
*1-LOW

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 3 2 1 1 2 3 2

CO2 1 2 3 1 2 3

CO3 3 3 3 2 3 2

CO4 1 1 2 2 2 2

CO5 2 3 3 3 3 2 3 2 2 2 3

CO PSO1 PSO2 PSO3 PSO4

CO1 3 1

CO2 1 2 2

CO3 3 1

CO4 2 2 1 1

CO5 1 3 3 3

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Course Overview

Artificial Intelligence Lab Manual for is designed to meet the course and

program requirements of university B.Tech III year students of CSE(AI&ML).

The concept of the lab work is to give brief practical experience for basic lab

skills to students. It provides the space and scope for self-study so that students

can come up with new and creative ideas. The Lab manual is written on the basis

of “teach yourself pattern” and expected that students who come with proper

preparation should be able to perform the experiments without any difficulty.

The pre-requisite is having a basic working knowledge of Python. Python

is a general purpose, high-level programming language; other high-level

languages you might have heard of C++, PHP, Java and Python. Virtually all

modern programming languages make us of an Integrated Development

Environment (IDE), which allows the creation, editing, testing, and saving of

programs and modules. Python uses both processes, but because of the way

programmers interact with it, it is usually considered an interpreted language.

Practical aspects are the key to understanding and conceptual visualization of

Theoretical aspects covered in the books. Also, this course is designed to review

the concepts of Data Structure, studied in previous semester and implement the

various algorithms related to different data structures.

Students are expected to come thoroughly prepared for the lab. General

disciplines, safety guidelines and report writing are also discussed. We hope that

lab manual would be useful to students of CSE, IT, ECE and BSc branches and

author requests the readers to kindly forward their suggestions / constructive

criticism for further improvement of the work book.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

List of Experiments mapped with COs

Minimum System requirements:

 Processors: Intel Atom® processor or Intel® Core™ i3 processor.

 Disk space: 1 GB.

 Operating systems: Windows* 7 or later, macOS, and Linux.

 Python* versions: 2.7.X, 3.6.X.,3.8.X and Python (Jupyter)

Sr.

No.

Title of the Experiment CO

Covered

1. Introduction of various python libraries

used for machine learning.

CO1, CO3

2. Write a Program to implement Uninformed

Search Technique: Breadth First Search

CO1, CO3

3. Write a Program to implement Uninformed

Search Technique: Depth First Search

CO1, CO3

4. Write a Program to implement Informed

Search Technique: A* Algorithm

CO1, CO3,

CO4

5. Write a Program to implement Informed

Search Technique: AO* Algorithm

CO1, CO3

6. Write a Program to implement Local

Search Technique: Hill Climbing

Algorithm

CO1, CO3,

CO4

7. Write a Program to implement Game

Playing Algorithms: Minimax and Alpha

Beta Pruning

CO1, CO3,

CO4

8. Chatbot in Python CO2, CO4,

CO5

9. Program to Implement N-Queens Problem

using Python

CO2, CO4,

CO5

10. Program to Implement Missionaries-

Cannibals Problems using Python

CO2, CO4,

CO5

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

DOs and DON’Ts

DOs

1. Login-on with your username and password.

2. Log off the computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly

 prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

General Safety Precautions

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or plastic to

break the contact. Do not touch the victim with bare hands to avoid the risk of electrifying

yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the circuit off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press the

chest

 in and out to continue breathing function. Use mouth-to-mouth resuscitation if necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by covering

 it with a heavy cloth if possible, isolate the burning equipment from the other surrounding

 equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency: 201 (Reception)

Security: 248 (Gate No.1)

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Guidelines to students for report preparation

All students are required to maintain a record of the experiments conducted by them.

Guidelines for its preparation are as follows: -

1) All files must contain a title page followed by an index page. The files will not be signed by

 the faculty without an entry in the index page.

 2) Student‟s Name, roll number and date of conduction of experiment must be written on all

 pages.

3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment

(ii) Pre-experiment work (as given by the faculty)

(iii) Lab assignment questions and their solutions

(iv) Test Cases (if applicable to the course)

(v) Results/ output

Note:

1. Students must bring their lab record along with them whenever they come for the lab.

2. Students must ensure that their lab record is regularly evaluated.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Lab Assessment Criteria

An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes

are assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as

shown in following table. Assessed performance in each experiment is used to compute CO

attainment as well as internal marks in the lab course.

Grading

Criteria

Exemplary (4) Competent (3) Needs

Improvement

(2)

Poor (1)

AC1:

Pre-Lab written
work (this may
be assessed
through viva)

Complete

procedure with

underlined concept

is properly written

Underlined concept

is written but

procedure is

incomplete

Not able to write

concept and

procedure

Underlined concept

is not clearly

understood

AC2:

Program Writing/
Modeling

Unable to

understand the

reason for errors/

bugs even after they

are explicitly

pointed out

Assigned problem

is properly

analyzed, correct

solution designed,

appropriate

language

constructs/ tools are

applied

Assigned problem

is properly

analyzed & correct

solution designed

Assigned problem

is properly

analyzed

AC3:

Identification &

Removal of

errors/ bugs

Able to identify

errors/ bugs and

remove them

Able to identify

errors/ bugs and

remove them with

little bit of guidance

Is dependent totally

on someone for

identification of

errors/ bugs and

their removal

Unable to

understand the

reason for errors/

bugs even after they

are explicitly

pointed out

AC4:

Execution &

Demonstration

All variants of input

/output are tested,

Solution is well

demonstrated and

implemented

concept is clearly

explained

All variants of input

/output are not

tested, However,

solution is well

demonstrated and

implemented

concept is clearly

explained

Only few variants

of input /output are

tested,

Solution is well
demonstrated but
implemented
concept is not
clearly explained

Solution is not well

demonstrated and

implemented

concept is not

clearly explained

AC5:

Lab Record

Assessment

All assigned

problems are well

recorded with

objective, design

constructs and

solution along with

Performance
analysis using all
variants of input
and output

More than 70 % of

the assigned

problems are well

recorded with

objective, design

contracts and

solution along with

Performance
analysis is done
with all variants
of input and
output

Less than 70 % of

the assigned

problems are well

recorded with

objective, design

contracts and

solution along with

Performance
analysis is done
with all variants
of input and
output

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

LAB EXPERIMENTS

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 # PROGRAM 1: Introduction of various python libraries used for machine learning.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 2: Program to implement Uninformed Search Technique: Breadth First Search

Source Code:

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = [] # List for visited nodes.

queue = [] #Initialize a queue

def bfs(visited, graph, node): #function for BFS

 visited.append(node)

 queue.append(node)

 while queue: # Creating loop to visit each node

 m = queue.pop(0)

 print (m, end = " ")

 for neighbour in graph[m]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

Driver Code

print("Following is the Breadth-First Search")

bfs(visited, graph, '5')

Step-by-step algorithm for Breadth-First Search:

● Initialize a queue to keep track of nodes to visit.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

● Enqueue the starting node into the queue.

● Initialize a set to keep track of visited nodes, and add the starting node to the set.

● While the queue is not empty, repeat steps 5-7.

● Dequeue the first node from the queue.

● For each neighbor of the dequeued node that has not been visited yet, add it to the

visited set and enqueue it into the queue.

● If the goal node is found, return it. Otherwise, continue to step 4.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 3: Program to implement Uninformed Search Technique: Depth First Search

Source Code:

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = set() # Set to keep track of visited nodes of graph.

def dfs(visited, graph, node): #function for dfs

 if node not in visited:

 print (node)

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

Driver Code

print("Following is the Depth-First Search")

dfs(visited, graph, '5')

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Step-by-step algorithm for Depth-First Search:

● Initialize a stack to keep track of nodes to visit.

● Push the starting node into the stack.

● Initialize a set to keep track of visited nodes, and add the starting node to the set.

● While the stack is not empty, repeat steps 5-7.

● Pop the top node from the stack.

● For each neighbor of the popped node that has not been visited yet, add it to the visited

set and push it onto the stack.

● If the goal node is found, return it. Otherwise, continue to step 4.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 4: Program to implement Informed Search Technique: A* Algorithm

Source Code:

class Node():

 def __init__(self, parent=None, position=None):

 self.parent = parent

 self.position = position

 self.g = 0

 self.h = 0

 self.f = 0

 def __eq__(self, other):

 return self.position == other.position

def astar(maze, start, end):

 """Returns a list of tuples as a path from the given start to the given end in the given

maze"""

 # Create start and end node

 start_node = Node(None, start)

 start_node.g = start_node.h = start_node.f = 0

 end_node = Node(None, end)

 end_node.g = end_node.h = end_node.f = 0

 # Initialize both open and closed list

 open_list = []

 closed_list = []

 # Add the start node

 open_list.append(start_node)

 # Loop until you find the end

 while len(open_list) > 0:

 # Get the current node

 current_node = open_list[0]

 current_index = 0

 for index, item in enumerate(open_list):

 if item.f < current_node.f:

 current_node = item

 current_index = index

 # Pop current off open list, add to closed list

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 open_list.pop(current_index)

 closed_list.append(current_node)

 # Found the goal

 if current_node == end_node:

 path = []

 current = current_node

 while current is not None:

 path.append(current.position)

 current = current.parent

 return path[::-1] # Return reversed path

 # Generate children

 children = []

 for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: #

Adjacent squares

 # Get node position

 node_position = (current_node.position[0] + new_position[0],

current_node.position[1] + new_position[1])

 # Make sure within range

 if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or

node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:

 continue

 # Make sure walkable terrain

 if maze[node_position[0]][node_position[1]] != 0:

 continue

 # Create new node

 new_node = Node(current_node, node_position)

 # Append

 children.append(new_node)

 # Loop through children

 for child in children:

 # Child is on the closed list

 for closed_child in closed_list:

 if child == closed_child:

 continue

 # Create the f, g, and h values

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 child.g = current_node.g + 1

 child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] -

end_node.position[1]) ** 2)

 child.f = child.g + child.h

 # Child is already in the open list

 for open_node in open_list:

 if child == open_node and child.g > open_node.g:

 continue

 # Add the child to the open list

 open_list.append(child)

def main():

 maze = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

 start = (0, 0)

 end = (7, 6)

 path = astar(maze, start, end)

 print(path)

if __name__ == '__main__':

 main()

// A* Search Algorithm

1. Initialize the open list

2. Initialize the closed list put the starting node on the open list (you can leave its f at zero)

3. while the open list is not empty

a) find the node with the least f on the open list, call it "q"

b) pop q off the open list

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

c) generate q's 8 successors and set their parents to q

d) for each successor

i) if successor is the goal, stop search

ii) else, compute both g and h for successor successor.g = q.g + distance

between successor and q successor.h = distance from goal to successor (This can

be done using many ways, we will discuss three heuristics- Manhattan,

Diagonal and Euclidean Heuristics) successor.f = successor.g + successor.h

iii)if a node with the same position as successor is in the OPEN list which has a

lower f than successor, skip this successor

iv) if a node with the same position as successor is in the CLOSED list which

has a lower f than successor, skip this successor otherwise, add the node to the

open list end (for loop)

 e) push q on the closed list end (while loop)

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 5: Program to implement Informed Search Technique: AO* Algorithm

Source Code:

def Cost(H, condition, weight = 1):

 cost = {}

 if 'AND' in condition:

 AND_nodes = condition['AND']

 Path_A = ' AND '.join(AND_nodes)

 PathA = sum(H[node]+weight for node in AND_nodes)

 cost[Path_A] = PathA

 if 'OR' in condition:

 OR_nodes = condition['OR']

 Path_B =' OR '.join(OR_nodes)

 PathB = min(H[node]+weight for node in OR_nodes)

 cost[Path_B] = PathB

 return cost

Update the cost

def update_cost(H, Conditions, weight=1):

 Main_nodes = list(Conditions.keys())

 Main_nodes.reverse()

 least_cost= {}

 for key in Main_nodes:

 condition = Conditions[key]

 print(key,':', Conditions[key],'>>>', Cost(H, condition, weight))

 c = Cost(H, condition, weight)

 H[key] = min(c.values())

 least_cost[key] = Cost(H, condition, weight)

 return least_cost

Print the shortest path

def shortest_path(Start,Updated_cost, H):

 Path = Start

 if Start in Updated_cost.keys():

 Min_cost = min(Updated_cost[Start].values())

 key = list(Updated_cost[Start].keys())

 values = list(Updated_cost[Start].values())

 Index = values.index(Min_cost)

 # FIND MINIMIMUM PATH KEY

 Next = key[Index].split()

 # ADD TO PATH FOR OR PATH

 if len(Next) == 1:

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 Start =Next[0]

 Path += '<--' +shortest_path(Start, Updated_cost, H)

 # ADD TO PATH FOR AND PATH

 else:

 Path +='<--('+key[Index]+') '

 Start = Next[0]

 Path += '[' +shortest_path(Start, Updated_cost, H) + ' + '

 Start = Next[-1]

 Path += shortest_path(Start, Updated_cost, H) + ']'

 return Path

H = {'A': -1, 'B': 5, 'C': 2, 'D': 4, 'E': 7, 'F': 9, 'G': 3, 'H': 0, 'I':0, 'J':0}

Conditions = {

'A': {'OR': ['B'], 'AND': ['C', 'D']},

'B': {'OR': ['E', 'F']},

'C': {'OR': ['G'], 'AND': ['H', 'I']},

'D': {'OR': ['J']}

}

weight

weight = 1

Updated cost

print('Updated Cost :')

Updated_cost = update_cost(H, Conditions, weight=1)

print('*'*75)

print('Shortest Path :\n',shortest_path('A', Updated_cost,H))

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Working of AO algorithm:

The AO* algorithm works on the formula given below :

f(n) = g(n) + h(n)

where,

● g(n): The actual cost of traversal from initial state to the current state.

● h(n): The estimated cost of traversal from the current state to the goal state.

● f(n): The actual cost of traversal from the initial state to the goal state

Step-1: Create an initial graph with a single node (start node).

Step-2: Transverse the graph following the current path, accumulating node that has not yet

been expanded or solved.

Step-3: Select any of these nodes and explore it. If it has no successors then call this value-

FUTILITY else calculate f'(n) for each of the successors.

Step-4: If f'(n)=0, then mark the node as SOLVED.

Step-5: Change the value of f'(n) for the newly created node to reflect its successors by

backpropagation.

Step-6: Whenever possible use the most promising routes, If a node is marked as SOLVED

then mark the parent node as SOLVED.

Step-7: If the starting node is SOLVED or value is greater than FUTILITY then stop else repeat

from Step-2.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 6: Program to implement Local Search Technique: Hill Climbing Algorithm

Source Code:

import random

def randomSolution(tsp):

 cities = list(range(len(tsp)))

 solution = []

 for i in range(len(tsp)):

 randomCity = cities[random.randint(0, len(cities) - 1)]

 solution.append(randomCity)

 cities.remove(randomCity)

 return solution

def routeLength(tsp, solution):

 routeLength = 0

 for i in range(len(solution)):

 routeLength += tsp[solution[i - 1]][solution[i]]

 return routeLength

def getNeighbours(solution):

 neighbours = []

 for i in range(len(solution)):

 for j in range(i + 1, len(solution)):

 neighbour = solution.copy()

 neighbour[i] = solution[j]

 neighbour[j] = solution[i]

 neighbours.append(neighbour)

 return neighbours

def getBestNeighbour(tsp, neighbours):

 bestRouteLength = routeLength(tsp, neighbours[0])

 bestNeighbour = neighbours[0]

 for neighbour in neighbours:

 currentRouteLength = routeLength(tsp, neighbour)

 if currentRouteLength < bestRouteLength:

 bestRouteLength = currentRouteLength

 bestNeighbour = neighbour

 return bestNeighbour, bestRouteLength

def hillClimbing(tsp):

 currentSolution = randomSolution(tsp)

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 currentRouteLength = routeLength(tsp, currentSolution)

 neighbours = getNeighbours(currentSolution)

 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 while bestNeighbourRouteLength < currentRouteLength:

 currentSolution = bestNeighbour

 currentRouteLength = bestNeighbourRouteLength

 neighbours = getNeighbours(currentSolution)

 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 return currentSolution, currentRouteLength

def main():

 tsp = [

 [0, 400, 500, 300],

 [400, 0, 300, 500],

 [500, 300, 0, 400],

 [300, 500, 400, 0]

]

 print(hillClimbing(tsp))

if __name__ == "__main__":

 main()

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Algorithm for Simple Hill Climbing:

Step 1: Evaluate the initial state, if it is goal state then return success and Stop.

Step 2: Loop Until a solution is found or there is no new operator left to apply.

Step 3: Select and apply an operator to the current state.

Step 4: Check new state:

If it is goal state, then return success and quit.

Else if it is better than the current state then assign new state as a current state.

Else if not better than the current state, then return to step2.

Step 5: Exit.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 7: Program to implement Game Playing Algorithms: Minimax and Alpha Beta

 Pruning

Source Code

a) MiniMAx Algorithm

import math

def minimax (curDepth, nodeIndex,

 maxTurn, scores,

 targetDepth):

 # base case : targetDepth reached

 if (curDepth == targetDepth):

 return scores[nodeIndex]

 if (maxTurn):

 return max(minimax(curDepth + 1, nodeIndex * 2,

 False, scores, targetDepth),

 minimax(curDepth + 1, nodeIndex * 2 + 1,

 False, scores, targetDepth))

 else:

 return min(minimax(curDepth + 1, nodeIndex * 2,

 True, scores, targetDepth),

 minimax(curDepth + 1, nodeIndex * 2 + 1,

 True, scores, targetDepth))

Driver code

scores = [3, 5, 2, 9, 12, 5, 23, 23]

treeDepth = math.log(len(scores), 2)

print("The optimal value is : ", end = "")

print(minimax(0, 0, True, scores, treeDepth))

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Algorithm:

1. Construct the complete game tree

2. Evaluate scores for leaves using the evaluation function

3. Back-up scores from leaves to root, considering the player type:

4. For max player, select the child with the maximum score

5. For min player, select the child with the minimum score

6. At the root node, choose the node with max value and perform the corresponding move

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Source Code

b) Alpha Beta Pruning Algorithm

Initial values of Alpha and Beta

MAX, MIN = 1000, -1000

Returns optimal value for current player

#(Initially called for root and maximizer)

def minimax(depth, nodeIndex, maximizingPlayer,

 values, alpha, beta):

 # Terminating condition. i.e

 # leaf node is reached

 if depth == 3:

 return values[nodeIndex]

 if maximizingPlayer:

 best = MIN

 # Recur for left and right children

 for i in range(0, 2):

 val = minimax(depth + 1, nodeIndex * 2 + i,

 False, values, alpha, beta)

 best = max(best, val)

 alpha = max(alpha, best)

 # Alpha Beta Pruning

 if beta <= alpha:

 break

 return best

 else:

 best = MAX

 # Recur for left and

 # right children

 for i in range(0, 2):

 val = minimax(depth + 1, nodeIndex * 2 + i,

 True, values, alpha, beta)

 best = min(best, val)

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

 beta = min(beta, best)

 # Alpha Beta Pruning

 if beta <= alpha:

 break

 return best

Driver Code

if __name__ == "__main__":

 values = [3, 5, 6, 9, 1, 2, 0, -1]

 print("The optimal value is :", minimax(0, 0, True, values, MIN, MAX))

Algorithm:

1. Define the initial values for alpha and beta as negative and positive infinity,

respectively.

2. Begin the recursive search through the tree, starting at the root node.

3. If the current node is a leaf node, evaluate its value and return it.

4. If the current node is a maximizing node, then set alpha to the maximum of alpha and

the value returned from its child node.

5. If alpha is greater than or equal to beta, then prune the remaining child nodes and return

alpha.

6. If the current node is a minimizing node, then set beta to the minimum of beta and the

value returned from its child node.

7. If beta is less than or equal to alpha, then prune the remaining child nodes and return

beta.

8. Recurse to the next level of the tree, continuing with steps 3 to 7 until the entire tree has

been searched.

9. Return the final value of alpha or beta depending on whether the root node is a

maximizing or minimizing node.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 8: Chatbot in Python

1. $ pip install chatterbot

2. $ pip install chatterbot_corpus

3. $ pip install git+git://github.com/gunthercox/ChatterBot.git@master

4. $ pip install --upgrade chatterbot_corpus

5. $ pip install --upgrade chatterbot

6. # importing the required modules

7. from chatterbot import ChatBot

8. from chatterbot.trainers import ListTrainer

9. # creating a chatbot

10. myBot = ChatBot(

11. name = 'Siya',

12. read_only = True,

13. logic_adapters = [

14. 'chatterbot.logic.MathematicalEvaluation',

15. 'chatterbot.logic.BestMatch'

16.]

17.)

18. # training the chatbot

19. small_convo = [

20. 'Hi there!',

21. 'Hi',

22. 'How do you do?',

23. 'How are you?',

24. 'I\'m cool.',

25. 'Always cool.',

26. 'I\'m Okay',

27. 'Glad to hear that.',

28. 'I\'m fine',

29. 'I feel awesome',

30. 'Excellent, glad to hear that.',

31. 'Not so good',

32. 'Sorry to hear that.',

33. 'What\'s your name?',

34. ' I\'m Sakura. Ask me a math question, please.'

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

35.]

36. math_convo_1 = [

37. 'Pythagorean theorem',

38. 'a squared plus b squared equals c squared.'

39.]

40.

41. math_convo_2 = [

42. 'Law of Cosines',

43. 'c**2 = a**2 + b**2 - 2*a*b*cos(gamma)'

44.]

File: my_chatbot.py

1. # using the ListTrainer class

2. list_trainee = ListTrainer(myBot)

3. for i in (small_convo, math_convo_1, math_convo_2):

4. list_trainee.train(i)

OUTPUT:

starting a conversation

>>> print(myBot.get_response("Hi, there!"))

Hi

>>> print(myBot.get_response("What's your name?"))

I'm SIYA. Ask me a math question, please.

>>> print(myBot.get_response("Do you know Pythagorean theorem"))

a squared plus b squared equals c squared.

>>> print(myBot.get_response("Tell me the formula of law of cosines"))

c**2 = a**2 + b**2 - 2*a*b*cos(gamma)

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 9: Program to Implement N-Queens Problem using Python

Python program to solve N Queen

Problem using backtracking

global N

N = 4

def printSolution(board):

for i in range(N):

for j in range(N):

print board[i][j],

print

A utility function to check if a queen can

be placed on board[row][col]. Note that this

function is called when "col" queens are

already placed in columns from 0 to col -1.

So we need to check only left side for

attacking queens

def isSafe(board, row, col):

Check this row on left side

for i in range(col):

if board[row][i] == 1:

return False

Check upper diagonal on left side

for i, j in zip(range(row, -1, -1), range(col, -1, -1)):

if board[i][j] == 1:

return False

Check lower diagonal on left side

for i, j in zip(range(row, N, 1), range(col, -1, -1)):

if board[i][j] == 1:

return False

return True

def solveNQUtil(board, col):

base case: If all queens are placed

then return true

if col >= N:

return True

Consider this column and try placing

this queen in all rows one by one

for i in range(N):

if isSafe(board, i, col):

Place this queen in board[i][col]

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

recur to place rest of the queens

if solveNQUtil(board, col + 1) == True:

return True

If placing queen in board[i][col

doesn't lead to a solution, then

queen from board[i][col]

board[i][col] = 0

if the queen can not be placed in any row in

this colum col then return false

return False

This function solves the N Queen problem using

Backtracking. It mainly uses solveNQUtil() to

solve the problem. It returns false if queens

cannot be placed, otherwise return true and

placement of queens in the form of 1s.

note that there may be more than one

solutions, this function prints one of the

feasible solutions.

def solveNQ():

board = [[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]

]

if solveNQUtil(board, 0) == False:

print "Solution does not exist"

return False

printSolution(board)

return True

driver program to test above function

solveNQ()

Output:

0 0 1 0

1 0 0 0

0 0 0 1
0 1 0 0

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

PROGRAM 10: Program to Implement Missionaries-Cannibals Problems using Python

'' mclib.py '''

class MCState:

MC is missionaries and cannibals

def __init__(self, state_vars, num_moves=0, parent=None):

self.state_vars = state_vars

self.num_moves = num_moves

self.parent = parent

decorator

@classmethod

def root(cls):

return cls((3,3,1))

def get_possible_moves(self):

''' return all possible moves in the game as tuples

possible moves:

1 or 2 mis

1 or 2 cannibals

1 mis, 1 can

'''

moves = [(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)]

return moves

def is_legal(self):

missionaries = self.state_vars[0]

cannibals = self.state_vars[1]

could have done tuple unpacking too:

missionaries, cannibals, boat = self.state_vars

if missionaries < 0 or missionaries > 3:

return False
elif cannibals < 0 or cannibals > 3:

return False

return True
alternate

if 0 <= missionaries <= 3 and 0 <= cannibals <= 3

return True

def is_solution(self):

if self.state_vars == (0,0,0):

return True

return False
def is_failure(self):

missionaries = self.state_vars[0]

cannibals = self.state_vars[1]
boat = self.state_vars[2]

could have done tuple unpacking too:

missionaries, cannibals, boat = self.state_vars

missionaries on right side AND more cannibals than missionaries

if missionaries > 0 and missionaries < cannibals:

return True
to make this easier to understand, I will create temporary variables

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

but we could just substitute the math and skip the variables

missionaries_on_left = 3 - missionaries

cannibals_on_left = 3 - cannibals

if missionaries_on_left > 0 and missionaries_on_left < cannibals_on_left:

return True
if you replace the math in, you get:

#if 3 - missionaries > 0 and 3 - missionaires < 3 - cannaibals

which leads to:

#if missionaries < 3 and cannibals < missionaries:

if we make it here, we aren't in a failed state!

return False
def get_next_states(self):

using possible move, get next states

moves = self.get_possible_moves()

all_states = list()

mis_right, can_right, raft_right = self.state_vars

if raft is on right, subtract move from these numbers

if raft is on left, add these move numbers to these numbers

for move in moves:

change_mis, change_can = move

if raft_right == 1: ## mis_right = 3; can_right = 3, raft_right = 1

new_state_vars = (mis_right-change_mis, can_right-change_can, 0)

else:

new_state_vars = (mis_right+change_mis, can_right+change_can, 1)

notice the number of moves is increasing by 1

also notice we are passing self to our child.

new_state = MCState(new_state_vars, self.num_moves+1, self)

if new_state.is_legal():

all_states.append(new_state)

return all_states

def __str__(self):

return "MCState[{}]".format(self.state_vars)

def __repr__(self):
return str(self)

def search(dfs=True):

this is the stack/queue that we used before

from collections import deque

create the root state

root = MCState.root()

we use the stack/queue for keeping track of where to search next

to_search = deque()

use a set to keep track fo where we've been

seen_states = set()

use a list to keep track of the solutions that have been seen

solutions = list()

start the search with the root

to_search.append(root)

safety variable for infinite loops!

loop_count = 0

max_loop = 10000

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

while the stack/queue still has items

while len(to_search) > 0:

loop_count += 1

if loop_count > max_loop:

print(len(to_search))

print("Escaping this super long loop!")

break
get the next item

current_state = to_search.pop()

look at the current state's children

this uses the rule for actions and moves to create next states

it is also removing all illegal states

next_states = current_state.get_next_states()

next_states is a list, so iterate through it

for possible_next_state in next_states[::-1]:

to see if we've been here before, we look at the state variables
possible_state_vars = possible_next_state.state_vars

we use the set and the "not in" boolean comparison

if possible_state_vars not in seen_states:

if possible_next_state.is_failure():

#print("Failure!")

continue
elif possible_next_state.is_solution():

Save it into our solutions list

solutions.append(possible_next_state)

#print("Solution!")

continue
the state variables haven't been seen yet

so we add the state itself into the searching stack/queue

IMPORTANT

which side we append on changes how the search works

why is this?

if dfs:

to_search.append(possible_next_state)

else:

to_search.appendleft(possible_next_state)

now that we have "seen" the state, we add the state vars to the set.

this means next time when we do the "not in", that will return False

because it IS in

#seen_states.add(possible_state_vars)

seen_states.add(possible_state_vars)

finally, we reach this line when the stack/queue is empty (len(to_searching==))

print("Found {} solutions".format(len(solutions)))

return solutions

sol_dfs = search(True)

sol_bfs = search(False)

current_state = sol_dfs[0]

while current_state:

print(current_state)

current_state = current_state.parent

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

print("--")

current_state = sol_dfs[1]

while current_state:

print(current_state)

current_state = current_state.parent

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

print("--")

current_state = sol_bfs[0]

while current_state:

print(current_state)

current_state = current_state.parent

print("--")

current_state = sol_bfs[1]

while current_state:

print(current_state)

current_state = current_state.parent

Found 2 solutions

Found 2 solutions

MCState[(0, 0, 0)]

MCState[(1, 1, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(3, 1, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(0, 2, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(3, 1, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(0, 2, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

MCState[(3, 2, 1)]

MCState[(2, 2, 0)]

MCState[(3, 3, 1)]

--

MCState[(0, 0, 0)]

MCState[(1, 1, 1)]

MCState[(0, 1, 0)]

MCState[(0, 3, 1)]

MCState[(0, 2, 0)]

MCState[(2, 2, 1)]

MCState[(1, 1, 0)]

MCState[(3, 1, 1)]

MCState[(3, 0, 0)]

MCState[(3, 2, 1)]

MCState[(2, 2, 0)]

MCState[(3, 3, 1)]

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

VIVA Questions in Artificial Intelligence

1. Give some real-world applications of AI

Ans: There are various real-world applications of AI, and some of them are given below:

o Google Search Engine: When we start writing something on the google search engine,

we immediately get the relevant recommendations from google, and this is because of

different AI technologies.

o Ridesharing Applications: Different ride-sharing applications such as Uber uses AI

and machine learning to determine the type of ride, minimize the time once the car is

hailed by the user, price of the ride, etc.

o Spam Filters in Email: The AI is also used for email spam filtering so that you can get

the important and relevant emails only in your inbox. As per the studies, Gmail

successfully filters 99.9% of spam mails.

o Social Networking: Different social networking sites such as Facebook, Instagram,

Pinterest, etc., use the AI technology for different purposes such as face recognition and

friend suggestions, when you upload a photograph on Facebook, understanding the

contextual meaning of an emoji in Instagram, and so on.

o Product recommendations: When we search for a product on Amazon, we get the

recommendation for similar products, and this is because of different ML algorithms.

Similarly, on Netflix, we get personalized recommendations for movies and web series.

2. What are the types of AI?

Ans: Artificial intelligence can be divided into different types on the basis of capabilities and

 functionalities.

 Based on Capabilities:

o Weak AI or Narrow AI: Weak AI is capable of performing some dedicated tasks with

intelligence. Siri is an example of Weak AI.

o General AI: The intelligent machines that can perform any intellectual task with

efficiency as a human.

o Strong AI: It is the hypothetical concept that involves the machine that will be better

than humans and will surpass human intelligence.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

3. How Artificial intelligence, Machine Learning, and Deep Learning differ from

each other?

 Ans: The difference between AI, ML, and Deep Learning is given in the below table:

Artificial

Intelligence

Machine

Learning

Deep Learning

The term Artificial

intelligence was first

coined in the year 1956

by John McCarthy.

The term ML was

first coined in the

year 1959 by Arthur

Samuel.

The term DL was first coined

in the year 2000 Igor

Aizenberg.

It is a technology that is

used to create intelligent

machines that can mimic

human behavior.

It is a subset of AI

that learns from past

data and

experiences.

It is the subset of machine

learning and AI that is

inspired by the human brain

cells, called neurons, and

imitates the working of the

human brain.

AI completely deals with

structured, semi-

structured data.

ML deals with

structured and semi-

structured data.

Deep learning deals with

structured and unstructured

data.

It requires a huge amount

of data to work.

It can work with less

amount of data

compared to deep

learning and AI.

It requires a huge amount of

the data compared to the ML.

The goal of AI is to

enable the machine to

think without any human

intervention.

The goal of ML is to

enable the machine

to learn from past

experiences.

The goal of deep learning is

to solve the complex

problems as the human brain

does, using various

algorithms.

4. What are the different domains/Subsets of AI?

AI covers lots of domains or subsets, and some main domains are given below:

o Machine Learning

o Deep Learning

o Neural Network

o Expert System

o Fuzzy Logic

o Natural Language Processing

o Robotics

o Speech Recognition

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

5. Domains

6. Which programming language is used for AI?

 Below are the top five programming languages that are widely used for the development of

 Artificial Intelligence:

o Python

o Java

o Lisp

o R

o Prolog

 Among the above five languages, Python is the most used language for AI development due to its

 simplicity and availability of lots of libraries, such as Numpy, Pandas, etc.

7. What is the intelligent agent in AI, and where are they used?

Ans:

 The intelligent agent can be any autonomous entity that perceives its environment through the

 sensors and act on it using the actuators for achieving its goal.

o These Intelligent agents in AI are used in the following applications:

o Information Access and Navigations such as Search Engine

o Repetitive Activities

o Domain Experts

o Chatbots, etc.

8. Which assessment is used to test the intelligence of the machine?

Turing Test.

Artificial Intelligent Lab (LC-AI-346G)

Department of CSE(AI&ML) 2022-23

9. Tell one technique to avoid overfitting in neural networks?

 Dropout Technique: The dropout technique is one of the popular techniques to avoid

overfitting

 in the neural network models. It is the regularization technique, in which the randomly selected

 neurons are dropped during training.

10. What are the different components of the Expert System?

 An expert system mainly contains three components:

a. User Interface: It enables a user to interact or communicate with the expert system to find the

 solution for a problem.

b. Inference Engine: It is called the main processing unit or brain of the expert system. It applies

different inference rules to the knowledge base to draw a conclusion from it. The system

extracts the information from the KB with the help of an inference engine.

c. Knowledge Base: The knowledge base is a type of storage area that stores the domain-specific

and high-quality knowledge.

