
PYTHON LAB (CSE-106P)

DEPARTMENT OF APPLIED SCIENCE & HUMANITIES

DRONACHARYA COLLEGE OF ENGINEERING

KHENTAWAS, FARRUKH NAGAR, GURUGRAM (HARYANA)

LABORATORY MANUAL

B.Tech. Semester- II

PYTHON LAB

Subject code: CSE-106P

Prepared by: Checked by: Approved by:

Prof. Sukrati Chaturvedi Prof. Megha Goel Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

TABLE OF CONTENTS

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO-PO and CO-PSO Mapping

9. Course Overview

10. List of Experiments

11. DOs and DON’Ts

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Details of Conducted Experiments

16. Lab Experiments

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

Vision and Mission of the Institute

Vision:

“To impart Quality Education, to give an enviable growth to seekers of learning, to groom them

as World Class Engineers and managers competent to match the expending expectations of the

Corporate World has been ever enlarging vision extending to new horizons of Dronacharya

College of Engineering.”

Mission:

M1. To prepare students for full and ethical participation in a diverse society and encourage

lifelong learning by following the principle of ‘Shiksha evam Sahayata’ i.e. Education & Help.

M2. To impart high-quality education, knowledge and technology through rigorous academic

programs, cutting-edge research, & Industry collaborations, with a focus on producing

engineers& managers who are socially responsible, globally aware, & equipped to address

complex challenges.

M3. Educate students in the best practices of the field as well as integrate the latest research into

the academics.

M4. Provide quality learning experiences through effective classroom practices, innovative

teaching practices and opportunities for meaningful interactions between students and faculty.

M5. To devise and implement program of education in technology that are relevant to the

changing needs of society, in terms of breadth of diversity and depth of specialization.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

VISION AND MISSION OF THE DEPARTMENT

Vision

To lay a strong foundation for the first year students of the engineering discipline in the area of Applied

Sciences and Humanities with a view to make them capable of innovating and inventing engineering solutions

and also develop students as capable and responsible citizens of our nation.

Mission

• To build strong fundamental knowledge and ability for application in students and make them capable

to apply knowledge of mathematics and science to the solution of complex engineering problems.

• To impart knowledge, leading to understanding between engineering and other core areas of Applied

Sciences and Humanities.

• To provide students the basic tools of analysis, as well as the knowledge of the principles on which

engineering is based.

• To strive to inculcate the scientific temper and the spirit of enquiry in the students.

• To make students achieve a superior level in communication and presentation skills.

• To foster values and ethics and make students responsible citizens of India.

• To pursue inter-disciplinary research for the larger good of the society.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

PROGRAMME EDUCATIONAL OBJECTIVES (PEOS)

PEO1: To provide students with a sound knowledge of mathematical, scientific and engineering fundamentals

required to solve real world problems.

PEO2: To develop research oriented analytical ability among students and to prepare them for making

technical contribution to the society.

PEO3: To develop in students the ability to apply state-of-the–art tools and techniques for designing software

products to meet the needs of Industry with due consideration for environment friendly and sustainable

development.

PEO4: To prepare students with effective communication skills, professional ethics and managerial skills.

PEO5: To prepare students with the ability to upgrade their skills and knowledge for life-long learning.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyse complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the public

health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering

and IT tools including prediction and modelling to complex engineering activities with an understanding of

the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Analyse, identify and clearly define a problem for solving user needs by selecting, creating and

evaluating a computer based system through an effective project plan.

PSO2: Design, implement and evaluate processes, components and/or programs using modern techniques,

skills and tools of core Information Technologies to effectively integrate secure IT-based solutions into the

user environment.

PSO3: Develop impactful IT solutions by using research based knowledge and research methods in the fields

of integration, interface issues, security & assurance and implementation.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

UNIVERSITY SYLLABUS

1. WAP to display your biodata.

2. WAP to swap two numbers using two methods.

3. WAP to determine whether the given number is even or odd.

4. WAP to determine whether the given number is Armstrong number.

5. WAP to print Fibonacci series upto nth term.

6. WAP to take an integer input from user between 0-100 and print its name spelling in English using

list.

7. WAP to convert hexadecimal number to binary using dictionary.

8. WAP to find sum and average of tuple elements.

9. WAP to take an integer input from user. Calculate and display its factorial using recursion.

10. WAP to implement a python class with a method to print area of a triangle using heron’s formula using

inheritance.

11. WAP to create a GUI for calculator.

12. WAP to implement a person class (Name, address, phone, Id) and derive two classes class

teacher(additional TID, Course, faculty) and student Roll_no, course enrolled) from person class to

show the use of Inheritance.

13. WAP to plot histogram of the following data.

10-15 15-20 20-25 25-30 30-35

5 6 9 8 2

14. WAP to draw a box-and-whisker plot for the data set {3, 7, 8, 5, 12, 14, 21, 13, 18}.

15. WAP to draw the Line Plot and Bar chart for the following data.

Elapsed time (s) 0 1 2 3 4 5 6

Speed(m/s) 0 3 7 12 20 30 45.6

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

COURSE OUTCOMES (COs)

Upon successful completion of the course, the students will acquire:

CO1: Basic understanding of Python syntax. Learn the fundamental syntax and structure of the Python

programming language, including variables, data types, loops, conditionals and functions.

CO2: Proficiency in writing Python code. Gain the ability to write Python programs to solve simple to

moderately complex problems.

CO3: Understanding of Object Oriented Programming (OOP). OOP is a fundamental concept in Python, and

student will learn how to create classes, objects, and use inheritance to write more modular and reusable code.

CO4: Understanding of GUI concepts: Students will learn the basic concepts and principles of GUI design

and development, including user interfaces, widgets, event handling, and layout management.

CO5: Introduction to data analysis and visualisation. Students will learn techniques to analyse and visualise

data by plotting different graphs including bar graph, line plot, and box plot.

CO-PO Mapping

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 2 3 1 2 2 2 2

CO2 1 3 1 2 2 2 2

CO3 2 3 1 2 2 2 2

CO4 1 2 3 1 2 2 2 2

CO5 2 2 3 1 2 2 2 2

CO 0.2 0.6 1.6 3 1 2 2 2 2

CO-PSO Mapping

PSO1 PSO2 PSO3

CO1
 2 2

CO2
 2 2

CO3
 2 2

CO4
 2 2

CO5
 2 2

CO 2 2

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

COURSE OVERVIEW

Python lab introduces a comprehensive overview of the Python programming language, covering its syntax,

data structures, control flow, object-oriented programming, file handling, modules and libraries, data analysis

and visualization. Through practical exercises and projects, students gain proficiency in Python programming,

learn to write clean and readable code, work with external libraries, handle files and databases, and analyse

data. The course equips students with the skills and knowledge to solve real-world problems using Python.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

LIST OF EXPERIMENTS MAPPED WITH COS

S.no.
List of

Experiments

Course

Outcome
Page no.

1 WAP to display your biodata. CO1 1-2

2 WAP to swap two numbers using two methods CO1 3-5

3 WAP to determine whether the given number is even or odd CO2 6-7

4 WAP to determine whether the given number is Armstrong number CO2 8-10

5 WAP to print Fibonacci series upto nth term CO3 11-12

6
WAP to take an integer input from user between 0-100 and print its name

spelling in English using list
CO3 13-15

7 WAP to convert hexadecimal number to binary using dictionary CO3 16-18

8 WAP to find sum and average of tuple elements CO3 19-20

9
WAP to take an integer input from user. Calculate and display its factorial

using recursion
CO4 21-23

10
WAP to implement a python class with a method to print area of a triangle

using heron’s formula using inheritance
CO3 24-26

11 WAP to create a GUI for calculator CO4 27-30

12

WAP to implement a person class (Name, address, phone, Id) and derive

two classes class teacher(additional TID, Course, faculty) and student

Roll_no, course enrolled) from person class to show the use of Inheritance.

CO5 31-33

13

WAP to plot histogram of the following data.

10-15 15-20 20-25 25-30 30-35

5 6 9 8 2

CO4 34-36

14
WAP to draw a box-and-whisker plot for the data set {3, 7, 8, 5, 12, 14, 21,

13, 18}.
CO4 37-39

15

WAP to draw the Line Plot and Bar chart for the following data.

Elapsed time (s) 0 1 2 3 4 5 6

Speed(m/s) 0 3 7 12 20 30 45.6

CO5 40-43

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

DOs and DON’Ts

DOs
1. Login-on with your username and password.

2. Log off the Computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

DON’Ts
1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

GENERAL SAFETY PRECAUTIONS

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or plastic to break the

contact. Do not touch the victim with bare hands to avoid the risk of electrifying yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the circuit off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press the chest in and out to

continue breathing function. Use mouth-to-mouth resuscitation if necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by covering it with a heavy

cloth if possible isolate the burning equipment from the other surrounding equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency : Reception

Security : Main Gate

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

GUIDELINES TO STUDENTS FOR REPORT PREPARATION

All students are required to maintain a record of the experiments conducted by them. Guidelines for its

preparation are as follows:-

1) All files must contain a title page followed by an index page. The files will not be signed by the faculty

without an entry in the index page.

2) Student’s Name, Roll number and date of conduction of experiment must be written on all pages.

3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment

(ii) Pre-experiment work (as given by the faculty)

(iii) Lab assignment questions and their solutions

(iv) Test Cases (if applicable to the course)

(v) Results/ output

Note:

1. Students must bring their lab record along with them whenever they come for the lab.

2. Students must ensure that their lab record is regularly evaluated.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

Lab Assessment Criteria
An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes are

assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as shown in

following table. Assessed performance in each experiment is used to compute CO attainment as well

as internal marks in the lab course.

Grading

Criteria

Exemplary (4)

Competent (3)

Needs

Improvement (2)

Poor (1)

AC1:

Pre-Lab written

work (this may be

assessed through

viva)

Complete procedure

with underlined

concept is properly

written

Underlined concept

is written but

procedure is

incomplete

Not able to write

concept and

procedure

Underlined concept

is not clearly

understood

AC2:

Program Writing/

Modeling

Assigned problem is

properly analyzed,

correct solution

designed,

appropriate language

constructs/ tools are

applied,

Program/solution

written is readable

Assigned problem

is properly

analyzed, correct

solution designed,

appropriate

language

constructs/ tools are

applied

Assigned problem is

properly analyzed &

correct solution

designed

Assigned problem is

properly analyzed

AC3:

Identification &

Removal of errors/

bugs

Able to identify

errors/ bugs and

remove them

Able to identify

errors/ bugs and

remove them with

little bit of

guidance

Is dependent totally

on someone for

identification of

errors/ bugs and

their removal

Unable to

understand the

reason for errors/

bugs even after they

are explicitly

pointed out

AC4:Execution &

Demonstration

All variants of input

/output are tested,

Solution is well

demonstrated and

implemented

concept is clearly

explained

All variants of

input /output are

not tested,

However, solution

is well

demonstrated and

implemented

concept is clearly

explained

Only few variants

of input /output are

tested,

Solution is well

demonstrated but

implemented

concept is not

clearly explained

Solution is not well

demonstrated and

implemented

concept is not

clearly explained

AC5:Lab Record

Assessment

All assigned

problems are well

recorded with

objective, design

constructs and

solution along with

Performance

analysis using all

variants of input and

output

More than 70 % of

the assigned

problems are well

recorded with

objective, design

contracts and

solution along with

Performance

analysis is done

with all variants of

input and output

Less than 70 % of

the assigned

problems are well

recorded with

objective, design

contracts and

solution along with

Performance

analysis is done

with all variants of

input and output

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

LAB EXPERIMENTS

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 1

LAB EXPERIMENT 1

OBJECTIVE

WAP to display your biodata.

PRE-EXPERIMENT QUESTIONS

Q1. What are different data types in python?

Q2. What is the use of print function in python?

BRIEF DISCUSSION AND EXPLANATION

To create a program that displays a person's biodata, follow these steps:

1. Define variables: Begin by defining variables to store the individual's personal information, such as their

name, age, address, and educational background.

name = "ABC"

age = 25

address = "123 Main Street, City"

education = "Bachelor's Degree in Computer Science"

2. Print the biodata: Utilize the `print()` function to showcase each piece of information on a separate line.

Combine the information with appropriate labels using string concatenation or formatted strings.

print("Name: " + name)

print("Age: " + str(age))

print("Address: " + address)

print("Education: " + education)

3. Run the program: Save the file with a `.py` extension, such as `biodata.py`, and execute it using a Python

interpreter. The program will display the person's biodata in the console.

Here's an example of how the complete program would look:

name = "ABC"

age = 25

address = "123 Main Street, City"

education = "Bachelor's Degree in Computer Science"

print("Name: " + name)

print("Age: " + str(age))

print("Address: " + address)

print("Education: " + education)

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 2

When the program is executed, it will output the person's biodata, with each piece of information on a separate

line and labelled accordingly.

OUTPUT

POST EXPERIMENT QUESTIONS

Q1. How do you define variables in python?

Q2. How do you save and compile a python file?

QUIZ WITH ANSWERS

1. What does this program do?

• This program displays the biodata of a person named "ChatGPT" (an AI language model)

including their name, age, gender, occupation, skills, education details, and interests.

2. How is the biodata stored in this program?

• The biodata is stored using variables. Each variable represents a different aspect of the

biodata, such as name, age, gender, occupation, skills, education, and interests.

3. What data types are used to store different pieces of information in the program?

• The data types used in the program include strings (for name, gender, occupation), integers

(for age, year of education), lists (for skills and interests), and dictionaries (for education

details).

4. How is the biodata displayed to the user?

• The biodata is displayed using the print() function. Each piece of information is printed with

a corresponding label to make it more readable.

5. What other information could be added to this biodata program?

• Additional information that could be added to the program includes contact details (phone

number, email address), address, work experience, projects, achievements, and references.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 3

LAB EXPERIMENT 2

OBJECTIVE

WAP to swap two numbers using two methods.

PRE-EXPERIMENT QUESTIONS
1. What are the two methods you plan to use to swap the numbers?

2. Are the numbers to be swapped integers or floating-point numbers?

BRIEF DISCUSSION AND EXPLANATION
Python program that swaps two numbers using two different methods:

Method 1: Using a temporary variable

1. Start by defining two variables, `num1` and `num2`, to store the two numbers that need to be swapped.

2. Initialize a temporary variable, `temp`, and assign it the value of `num1`.

3. Assign the value of `num2` to `num1`.

4. Finally, assign the value of `temp` to `num2`.

5. Now, the values of `num1` and `num2` have been swapped.

Method 2: Without using a temporary variable

1. Define two variables, `num1` and `num2`, to store the two numbers that need to be swapped.

2. Perform the swapping operation using arithmetic operations.

num1 = 10

num2 = 20

Method 1: Using a temporary variable

temp = num1

num1 = num2

num2 = temp

Method 2: Without using a temporary variable

num1 = num1 + num2

num2 = num1 - num2

num1 = num1 - num2

print("After swapping:")

print("num1 =", num1)

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 4

print("num2 =", num2)

In both methods, the values of ̀ num1` and ̀ num2` will be swapped. The first method uses a temporary variable

to hold the value temporarily during the swapping process. The second method performs the swapping

operation without using an extra variable, using arithmetic operations to manipulate the values.

By running this program, you will see the output displaying the swapped values of `num1` and `num2`.

OUTPUT

POST-EXPERIMENT QUESTIONS

1. What were the two methods you used to swap the numbers?

2. Did you allow user input for the numbers or were they predefined?

QUIZ WITH ANSWERS

1. What does this program do?

• This program swaps the values of two numbers using two different methods: one using a

temporary variable and the other without using a temporary variable.

2. How are the two numbers initially stored in the program?

• The two numbers are stored in variables num1 and num2.

3. Explain Method 1: Using a temporary variable.

• In this method, a temporary variable (temp) is used to store the value of num1. Then, the

value of num2 is assigned to num1, and finally, the value of temp (which was the original

value of num1) is assigned to num2. This effectively swaps the values of the two numbers.

4. Explain Method 2: Without using a temporary variable (using arithmetic operations).

• In this method, the values of num1 and num2 are swapped without using a temporary

variable. The new value of num1 is obtained by adding the original values of num1 and

num2. Then, the new value of num2 is obtained by subtracting the original value of num2

from the new value of num1. Finally, the new value of num1 is obtained by subtracting the

original value of num2 from the new value of num1. This achieves the swapping of values.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 5

5. Can you explain the output of the program for each method?

• The output of the program displays the values of num1 and num2 before and after swapping

using each method. The values are printed using the print() function.

6. Are there any limitations or restrictions when swapping numbers without a temporary variable?

• Swapping numbers without a temporary variable using arithmetic operations may result in

incorrect values or unexpected behavior if the numbers are large and their sum or difference

exceeds the range of the data type used. It is important to consider the data type and potential

overflow or underflow when using this method.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 6

LAB EXPERIMENT 3

OBJECTIVE

WAP to determine whether the given number is even or odd.

PRE-EXPERIMENT QUESTIONS

1. Are there any additional requirements or restrictions for the program's implementation?

2. Should the program handle any specific error cases, such as non-numeric input?

BRIEF DISCUSSION AND EXPLANATION
Python program that determines whether a given number is even or odd:

1. Start by obtaining the input from the user, either by hardcoding a number or using input() to prompt the

user for a number.

2. Use the modulus operator (%) to check if the remainder of dividing the number by 2 is equal to 0. If it is,

the number is even. Otherwise, it is odd.

3. Use an if-else statement to display the appropriate message based on the result.

Here's an example of how the complete program would look:

Obtain the input from the user

num = int(input("Enter a number: "))

Check if the number is even or odd

if num % 2 == 0:

 print(num, "is even.")

else:

 print(num, "is odd.")

In this program, the user is prompted to enter a number. The program then uses the modulus operator to check

if the number is divisible evenly by 2. If the remainder is 0, it is even, and the program displays an appropriate

message. Otherwise, it is odd, and the program displays a different message.

By running this program and entering different numbers, you can determine whether they are even or odd.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 7

OUTPUT

POST-EXPERIMENT QUESTIONS

1. How did you handle cases where the input was not a valid number?

2. Did you test the program with different input values? If so, did it produce the correct results?

QUIZ WITH ANSWERS

1. What does this program do?

• This program determines whether a given number is even or odd.

2. How is the number to be checked stored in the program?

• The number to be checked is stored in the variable num.

3. How does the program determine whether the number is even or odd?

• The program uses the modulo operator (%) to check if the remainder of num divided by 2 is

zero. If the remainder is zero, it means the number is divisible by 2 and hence even.

Otherwise, it is odd.

4. Can you explain the use of the if-else statement in the program?

• The if-else statement is used to provide different instructions based on whether the condition

num % 2 == 0 is true or false. If the condition is true, the program prints that the number is

even. Otherwise, it prints that the number is odd.

5. What would be the output of the program for the given number?

• The output of the program for the given number (24) would be: "24 is even."

6. Is there any limitation or restriction to using this program?

• This program works correctly for integer numbers. However, if the input is a floating-point

number, it may not provide the expected result. It is important to ensure that the input is of

the correct data type for accurate evaluation.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 8

LAB EXPERIMENT 4

OBJECTIVE

WAP to determine whether the given number is Armstrong number.

PRE-EXPERIMENT QUESTIONS

1. Should the program take user input for the number or should it be predefined?

2. How should the program handle non-numeric inputs or invalid inputs?

BRIEF DISCUSSION AND EXPLANATION

Python program that determines whether a given number is an Armstrong number:

1. Start by obtaining the input from the user, either by hardcoding a number or using input() to prompt the

user for a number.

2. Calculate the sum of the cubes of each digit in the number. To do this, you need to extract each digit from

the number using modulus and division operations.

3. Compare the calculated sum with the original number. If they are equal, the number is an Armstrong

number. Otherwise, it is not.

4. Use an if-else statement to display the appropriate message based on the result.

Here's an example of how the complete program would look:

python

Obtain the input from the user

num = int(input("Enter a number: "))

Calculate the sum of the cubes of each digit

temp = num

sum = 0

while temp > 0:

 digit = temp % 10

 sum += digit ** 3

 temp //= 10

Check if the number is an Armstrong number

if num == sum:

 print(num, "is an Armstrong number.")

else:

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 9

 print(num, "is not an Armstrong number.")

In this program, the user is prompted to enter a number. The program then uses a while loop to extract each

digit from the number and calculate the sum of the cubes of these digits. After that, it compares the calculated

sum with the original number to determine if it is an Armstrong number or not. Finally, it displays an

appropriate message based on the result.

By running this program and entering different numbers, you can determine whether they are Armstrong

numbers.

OUTPUT

POST-EXPERIMENT QUESTIONS

1. Did you allow user input for the number or was it predefined?

2. How did you handle cases where the input was not a valid number?

QUIZ WITH ANSWERS

1. What does this program do?

• This program determines whether a given number is an Armstrong number.

2. What is an Armstrong number?

• An Armstrong number is a number that is equal to the sum of its digits raised to the power of

the number of digits in it. For example, 153 is an Armstrong number because 1^3 + 5^3 + 3^3

= 153.

3. How is the number to be checked stored in the program?

• The number to be checked is stored in the variable num.

4. Can you explain the logic behind checking for an Armstrong number in this program?

• The program uses a while loop to extract each digit of the number. Inside the loop, it calculates

the sum of each digit raised to the power of the number of digits. If the sum is equal to the

original number, it means the number is an Armstrong number.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 10

5. What would be the output of the program for the given number?

• The output of the program for the given number (153) would be: "153 is an Armstrong

number."

6. Are there any limitations or restrictions when using this program?

• This program works correctly for positive integers. However, it does not handle negative

numbers, floating-point numbers, or numbers with leading zeros. It is important to ensure that

the input is of the correct data type and within the desired range for accurate evaluation.

Python Lab (CSE-106P)

Department of Applied Science & Humanities 2022-23

 11

LAB EXPERIMENT 5

OBJECTIVE

WAP to print Fibonacci series upto nth term.

PRE-EXPERIMENT QUESTIONS

1. Are there any specific requirements for the implementation, such as using recursion or iteration?

2. Should the program provide any error messages or prompts for user input?

BRIEF DISCUSSION AND EXPLANATION

def fibonacci(n):

 series = [0, 1] # Initialize the series with the first two terms

 if n <= 1:

 return series[:n + 1] # Return the series up to n if n is 0 or 1

 while len(series) <= n:

 next_term = series[-1] + series[-2] # Calculate the next term

 series.append(next_term) # Add the next term to the series

 return series

Prompt the user to enter the value of n

n = int(input("Enter the value of n: "))

Print the Fibonacci series up to the nth term

print("Fibonacci Series up to", n, ":")

print(*fibonacci(n))

``` 

Discussion: 

1. The program defines a function `fibonacci` that takes an integer `n` as input and returns the Fibonacci series 

up to the nth term. 

2. The function initializes the series with the first two terms, 0 and 1. 

3. If `n` is 0 or 1, the function returns the series up to `n` directly. 

4. If `n` is greater than 1, the function uses a while loop to calculate the next terms of the series until it reaches 

the nth term. 

5. The next term is calculated by adding the last two terms in the series. 

6. The calculated next term is appended to the series. 

7. Finally, the function returns the complete Fibonacci series up to the nth term. 

8. In the main part of the program, the user is prompted to enter the value of `n`. 

9. The Fibonacci series up to the nth term is then printed using the `print` function and the `*` operator to 

unpack the series. 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     12 

 

OUTPUT 
 

  
 

POST-EXPERIMENT QUESTIONS 

1. Did you encounter any challenges during the implementation of the program? 

2. Did you consider any optimizations or performance improvements in your implementation, especially for 

large values of "n"? 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program prints the Fibonacci series up to the nth term. 

2. What is the Fibonacci series? 

• The Fibonacci series is a sequence of numbers in which each number is the sum of the two 

preceding ones. The series starts with 0 and 1. 

3. How is the number of terms in the series determined in this program? 

• The number of terms is stored in the variable n. In this program, it is set to 10, but you can 

change it to any desired value. 

4. Can you explain the logic used to print the Fibonacci series? 

• The program initializes the first two terms (first_term and second_term) as 0 and 1, 

respectively. Then, it prints the first two terms using conditional statements. After that, it enters 

a loop that starts from 2 and goes up to n-1. In each iteration, it calculates the next term by 

adding the previous two terms and prints it. The values of first_term and second_term are 

updated accordingly to generate the next terms. 

5. What would be the output of the program for the given number of terms? 

• The output of the program for n = 10 would be: "Fibonacci series up to 10 terms: 0 1 1 2 3 5 8 

13 21 34" 

6. Are there any limitations or restrictions when using this program? 

• This program works correctly for positive integers. However, it assumes a fixed number of 

terms (n) and does not handle negative numbers, floating-point numbers, or invalid inputs. It 

is important to ensure that the input is of the correct data type and within the desired range for 

accurate evaluation. 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     13 

 

LAB EXPERIMENT 6 

OBJECTIVE 

WAP to take an integer input from user between 0-100 and print its name spelling in English using list. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. Are there any constraints or validations on the range of the input integer? 

2. How should the program handle non-integer inputs or invalid inputs? 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Python program that takes an integer input from the user between 0 and 100 and prints its name spelling in 

English using two lists: 

 

1. Start by obtaining the input from the user using the input() function. Prompt the user to enter an integer 

between 0 and 100. 

 

2. Create two lists, one for the names of numbers from 0 to 19 and another for the tens digits (20, 30, 40, etc.) 

up to 100. 

 

3. Check if the entered number is within the range of 0 to 100. 

 

4. If the number is less than 20, use the first list to get the corresponding name. 

 

5. If the number is 20 or greater, use the second list to get the tens digit name and append the name from the 

first list for the units digit. 

 

6. Print the English name of the entered number. 

 

Here's an example of how the complete program would look: 

 

# Obtain the input from the user 

num = int(input("Enter a number between 0 and 100: ")) 

 

# Define the lists of English names 

units_names = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", 

               "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", 

               "eighteen", "nineteen"] 

 

tens_names = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] 

 

# Check if the number is within the valid range and print its English name 

if 0 <= num <= 100: 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     14 

 

    if num < 20: 

        print(units_names[num]) 

    else: 

        tens_digit = num // 10 

        units_digit = num % 10 

        if units_digit == 0: 

            print(tens_names[tens_digit]) 

        else: 

            print(tens_names[tens_digit] + "-" + units_names[units_digit]) 

else: 

    print("Invalid input. Please enter a number between 0 and 100.") 

 

 

In this program, the user is prompted to enter a number between 0 and 100. The program checks if the number 

is within the valid range. If the number is less than 20, it directly retrieves the corresponding name from the 

`units_names` list. If the number is 20 or greater, it calculates the tens and units digits, and then combines the 

names from the `tens_names` and `units_names` lists to form the complete English name. Finally, it prints the 

English name of the entered number. 

 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 

1. Did you consider any optimizations or improvements in your implementation? 

2. Did you test the program with different input values within the range of 0-100? If so, did it produce the 

correct name spelling in English? 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program takes an integer input from the user between 0 and 100 and prints its name 

spelling in English using a list. 

2. How is the name spelling of a number stored in the program? 

• The name spelling of each number from 0 to 100 is stored in  lists called unit_names and 

ten_names. 

3. How does the program validate the user's input? 

• After taking the input from the user, the program checks if the number is less than 0 or 

greater than 100. If it is, it displays an "Invalid input!" message. 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     15 

 

4. What would be the output of the program for a valid input? 

• If the user enters a valid input, such as 42, the output would be: "Name spelling of 42 is: 

forty-two" 

 

5. Are there any limitations or restrictions when using this program? 

• This program assumes that the user will enter a valid integer between 0 and 100. It does not 

handle non-integer inputs or numbers outside the given range. Additional error handling can 

be added to make the program more robust. 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     16 

 

LAB EXPERIMENT 7 

OBJECTIVE 

WAP to convert hexadecimal number to binary using dictionary. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What are hexadecimal numbers? 

2. How do we use a dictionary in python? 

 

BRIEF DISCUSSION AND EXPLANATION 
Python program that converts a hexadecimal number to binary using a dictionary: 

 

1. Start by obtaining the input from the user, either by hardcoding a hexadecimal number or using input() to 

prompt the user for a hexadecimal number. 

 

2. Create a dictionary that maps each hexadecimal digit to its corresponding binary representation. For 

example, {'0': '0000', '1': '0001', '2': '0010', ..., 'F': '1111'}. 

 

3. Initialize an empty string to store the binary representation. 

 

4. Iterate through each digit in the hexadecimal number. 

 

5. Use the dictionary to retrieve the binary representation of each digit and append it to the binary string. 

 

6. Print the binary representation. 

 

Here's an example of how the complete program would look: 

 

# Obtain the input from the user 

hex_num = input("Enter a hexadecimal number: ") 

 

# Define the dictionary mapping hexadecimal digits to binary representation 

hex_to_bin = { 

    '0': '0000', 

    '1': '0001', 

    '2': '0010', 

    '3': '0011', 

    '4': '0100', 

    '5': '0101', 

    '6': '0110', 

    '7': '0111', 

    '8': '1000', 

    '9': '1001', 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     17 

 

    'A': '1010', 

    'B': '1011', 

    'C': '1100', 

    'D': '1101', 

    'E': '1110', 

    'F': '1111' 

} 

 

# Initialize the binary representation 

binary = "" 

 

# Convert the hexadecimal number to binary 

for digit in hex_num: 

    binary += hex_to_bin[digit] 

 

# Print the binary representation 

print("Binary:", binary) 

 

In this program, the user is prompted to enter a hexadecimal number. The program uses a dictionary 

`hex_to_bin` to map each hexadecimal digit to its corresponding binary representation. It iterates through each 

digit in the hexadecimal number and retrieves its binary representation from the dictionary. The binary 

representations are then appended together to form the complete binary representation. Finally, the program 

prints the binary representation. 

By running this program and entering a hexadecimal number, you can convert it to binary using the dictionary 

mapping. 

 

 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 

1. How did you use dictionary for conversion? 

2. Did you test program for multi digit hexadecimal number? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program converts a hexadecimal number to binary using a dictionary. 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     18 

 

2. How is the hexadecimal-to-binary conversion implemented in the program? 

• The program uses a dictionary called hex_to_bin to map each hexadecimal digit to its binary 

equivalent. It then iterates through each digit of the input hexadecimal number, looks up its 

binary representation in the dictionary, and appends it to a string variable called binary_num. 

3. How is the input obtained from the user? 

• The input hexadecimal number is obtained from the user using the input() function. 

4. What is the purpose of the if statement in the program? 

• The if statement checks if each digit of the hexadecimal number exists in the hex_to_bin 

dictionary. If it does, the corresponding binary representation is appended to binary_num. If 

a digit is not found in the dictionary, it prints an error message and breaks out of the loop. 

5. Can you explain the output of the program for a valid input? 

• If the user enters a valid hexadecimal number, such as "1A4", the output would be: "Binary: 

000110100100" 

6. What happens if the user enters an invalid hexadecimal digit? 

• If the user enters an invalid hexadecimal digit, such as "G" or "z", the program prints an error 

message stating that it is an invalid digit. 

7. Are there any limitations or restrictions when using this program? 

• This program assumes that the user will enter a valid hexadecimal number. It does not handle 

non-hexadecimal characters or provide error correction. Additional error handling can be added 

to make the program more robust. 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     19 

 

LAB EXPERIMENT 8 

OBJECTIVE 

WAP to find sum and average of tuple elements. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What is tuple in python? 

2. How to work with for loop in python? 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Python program that finds the sum and average of tuple elements: 

 

1. Start by defining a tuple containing the elements for which you want to calculate the sum and average. 

 

2. Initialize variables for the sum and count. Set the sum variable to 0 and the count variable to the length of 

the tuple. 

 

3. Iterate through each element in the tuple using a for loop. 

 

4. Add each element to the sum variable. 

 

5. Calculate the average by dividing the sum by the count. 

 

6. Print the sum and average. 

 

Here's an example of how the complete program would look: 

 

# Define the tuple 

numbers = (10, 20, 30, 40, 50) 

 

# Calculate the sum 

sum = 0 

for num in numbers: 

    sum += num 

 

# Calculate the average 

count = len(numbers) 

average = sum / count 

 

# Print the sum and average 

print("Sum:", sum) 

print("Average:", average) 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     20 

 

 

 

In this program, the tuple ̀ numbers` contains the elements for which we want to calculate the sum and average. 

The program iterates through each element in the tuple, adding them to the sum variable. Then, it calculates 

the average by dividing the sum by the count, which is the length of the tuple. Finally, it prints the sum and 

average. 

 

By running this program with different tuples, you can find the sum and average of their elements. 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 
1. Are tuple elements pre-defined or user input? 

2. How should the program handle non-integer inputs or invalid inputs? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program finds the sum and average of elements in a tuple. 

2. How are the tuple elements stored in the program? 

• The tuple elements are stored in the variable numbers. 

3. Can you explain how the sum of the tuple elements is calculated? 

• The sum() function is used to calculate the sum of the elements in the numbers tuple. It takes 

the tuple as an argument and returns the sum of all the elements. 

4. How is the average of the tuple elements calculated? 

• The average is calculated by dividing the sum of the tuple elements by the number of elements 

in the tuple. The length of the tuple is obtained using the len() function. 

5. What would be the output of the program for the given tuple? 

• For the given tuple (10, 20, 30, 40, 50), the output would be: 

Sum of elements: 150 Average of elements: 30.0  

6. Are there any limitations or restrictions when using this program? 

• This program assumes that the elements in the tuple are numeric. It does not handle non-

numeric elements or check for empty tuples. Additional error handling can be added to make 

the program more robust. 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     21 

 

LAB EXPERIMENT 9 

OBJECTIVE 

WAP to take an integer input from user. Calculate and display its factorial using recursion. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. How to define a function in python? 

2. What is the use of a recursive function? 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Python program that takes an integer input from the user, calculates its factorial using recursion, and displays 

the result: 

 

1. Start by obtaining the input from the user using the input() function. Prompt the user to enter an integer for 

which you want to calculate the factorial. 

 

2. Define a recursive function called `factorial` that takes an integer parameter. This function will be 

responsible for calculating the factorial. 

 

3. In the `factorial` function, add a base case to handle the termination condition. If the input number is 0 or 

1, return 1, as the factorial of 0 and 1 is 1. 

 

4. If the input number is greater than 1, call the `factorial` function recursively with the argument as `n-1` and 

multiply the result with `n`. 

 

5. In the main part of the program, convert the user input to an integer and call the `factorial` function with 

the input number as the argument. 

 

6. Print the factorial result. 

 

Here's an example of how the complete program would look: 

 

# Define the recursive function to calculate factorial 

def factorial(n): 

    if n == 0 or n == 1: 

        return 1 

    else: 

        return n * factorial(n - 1) 

 

# Obtain the input from the user 

num = int(input("Enter an integer: ")) 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     22 

 

# Calculate the factorial using recursion 

result = factorial(num) 

 

# Print the factorial 

print("Factorial of", num, "is", result) 

 

In this program, the user is prompted to enter an integer for which the factorial will be calculated. The 

`factorial` function is defined to calculate the factorial using recursion. It checks for the base case where the 

input number is 0 or 1 and returns 1. For numbers greater than 1, it calls itself recursively with `n-1` as the 

argument and multiplies the result with `n`. Finally, the factorial result is printed. 

 

By running this program and entering different integers, you can calculate and display their factorial using 

recursion. 

 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 
 

1. How did you implement the program to calculate the factorial using recursion? 

2. Did you consider any optimizations or improvements in your recursive implementation? 

 

QUIZ WITH ANSWERS 

 

1. What does this program do? 

• This program takes an integer input from the user and calculates its factorial using recursion. 

2. What is factorial? 

• Factorial of a non-negative integer n is the product of all positive integers from 1 to n. It is 

denoted by n!. For example, factorial of 5 (5!) is equal to 5 x 4 x 3 x 2 x 1 = 120. 

3. How is recursion used to calculate the factorial in this program? 

• The factorial() function is defined to calculate the factorial of a number. It uses recursion by 

calling itself with a smaller value (n - 1) until it reaches the base case, which is when n becomes 

0. In the base case, it returns 1. For other values of n, it returns n multiplied by the factorial of 

n - 1. 

4. Can you explain the output of the program for a valid input? 

• If the user enters a valid positive integer, such as 5, the output would be: "Factorial of 5 is: 

120" 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     23 

 

5. What happens if the user enters a negative number? 

• If the user enters a negative number, the program displays an error message stating that the 

factorial is not defined for negative numbers. 

6. Are there any limitations or restrictions when using this program? 

• This program assumes that the user will enter a valid integer. It does not handle non-integer 

inputs or numbers outside the valid range. Additional error handling can be added to make the 

program more robust. 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     24 

 

LAB EXPERIMENT 10 

OBJECTIVE 

WAP to implement a python class with a method to print area of a triangle using heron’s formula using 

inheritance. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What do you understand by OOPs concept? 

2. What are different OOPs properties? 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Python program that implements a class with a method to print the area of a triangle using Heron's formula 

using inheritance: 

 

1. Start by creating a parent class called `Shape` that will serve as the base class for other shapes. In this case, 

we will focus on triangles. 

 

2. Inside the `Shape` class, define an `__init__` method to initialize the necessary attributes of a triangle, such 

as its three sides. 

 

3. Implement a method called `calculate_area` within the `Shape` class. This method will use Heron's formula 

to calculate the area of the triangle. Heron's formula states that the area of a triangle with sides `a`, `b`, and 

`c` is given by the formula: `sqrt(s * (s - a) * (s - b) * (s - c))`, where `s` is the semi-perimeter of the triangle. 

 

4. Create a child class called `Triangle` that inherits from the `Shape` class. 

 

5. In the `Triangle` class, override the `calculate_area` method to implement the specific logic for calculating 

the area of a triangle. 

 

6. Create an instance of the `Triangle` class and provide the necessary side lengths as arguments to the 

constructor. 

 

7. Call the `calculate_area` method on the instance to print the area of the triangle. 

 

Here's an example of how the complete program would look: 

 

import math 

 

class Shape: 

    def __init__(self, side1, side2, side3): 

        self.side1 = side1 

        self.side2 = side2 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     25 

 

        self.side3 = side3 

 

    def calculate_area(self): 

        raise NotImplementedError("Subclass must implement calculate_area method") 

 

class Triangle(Shape): 

    def calculate_area(self): 

        # Calculate the semi-perimeter 

        s = (self.side1 + self.side2 + self.side3) / 2 

 

        # Calculate the area using Heron's formula 

        area = math.sqrt(s * (s - self.side1) * (s - self.side2) * (s - self.side3)) 

 

        return area 

 

# Create an instance of the Triangle class 

triangle = Triangle(5, 12, 13) 

 

# Calculate and print the area of the triangle 

area = triangle.calculate_area() 

print("Area of the triangle:", area) 

 

 

In this program, we define a parent class `Shape` that contains an `__init__` method to initialize the sides of 

a triangle and a `calculate_area` method. The `calculate_area` method is marked as `NotImplementedError` 

since it will be overridden in the child class. 

 

We then create a child class `Triangle` that inherits from the `Shape` class. Inside the `Triangle` class, we 

implement the `calculate_area` method to calculate the area of a triangle using Heron's formula. 

 

Finally, we create an instance of the `Triangle` class, passing the side lengths as arguments. We call the 

`calculate_area` method on the instance to calculate the area of the triangle, which is then printed. 

 

By running this program, you can implement a class with a method to print the area of a triangle using Heron's 

formula using inheritance. 

 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     26 

 

1. How did you implement the Python class with the method to calculate and print the area of a triangle using 

Heron's formula? 

2. How did you handle cases where the triangle's side lengths were not valid or where they formed an invalid 

triangle? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program implements a Python class with a method to calculate and print the area of a 

triangle using Heron's formula. It also demonstrates inheritance by creating a subclass that 

inherits the calculation method and adds a printing method. 

2. What is Heron's formula? 

• Heron's formula is used to calculate the area of a triangle given the lengths of its three sides. 

It states that the area is equal to the square root of the semi-perimeter multiplied by the 

difference between the semi-perimeter and each side length. 

3. How is the Triangle class defined? 

• The Triangle class is defined with an __init__ method to initialize the side lengths, and a 

calculate_area method to calculate the area using Heron's formula. 

4. What is the purpose of the PrintableTriangle class? 

• The PrintableTriangle class is a subclass of Triangle. It inherits the calculation method from 

the Triangle class and adds a print_area method to print the calculated area. 

5. How does the print_area method calculate and print the area? 

• The print_area method calls the calculate_area method to calculate the area of the triangle. 

It then prints the calculated area using the print() function. 

6. What would be the output of the program for the given side lengths? 

• For the given side lengths (5, 6, 7), the output would be: "Area of the Triangle: 

14.696938456699069" 

7. Can you explain the concept of inheritance demonstrated in this program? 

• Inheritance is demonstrated by creating the PrintableTriangle class as a subclass of Triangle. 

PrintableTriangle inherits the calculate_area method from the Triangle class, which means it 

can use the inherited method to perform the calculation without redefining it. 

 

 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     27 

 

LAB EXPERIMENT 11 

OBJECTIVE 

WAP to create a GUI for calculator. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What are the necessary modules to create a GUI? 

2. What is the use of Tkinter module in python? 

 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Creating a GUI for a calculator involves using a GUI library such as Tkinter in Python. Here's a brief 

discussion on how you can create a GUI for a calculator: 

 

1. Import the necessary modules, including the Tkinter module for GUI functionality. 

 

2. Create an instance of the Tkinter class to represent the main window of the calculator. 

 

3. Design the layout of the calculator by placing buttons and display widgets appropriately. You can use 

Tkinter's grid or pack layout managers to arrange the elements. 

 

4. Define functions for the calculator operations, such as addition, subtraction, multiplication, and division. 

 

5. Connect the functions to the buttons so that when a button is clicked, the corresponding operation is 

performed. 

 

6. Implement a display widget to show the numbers and results. 

 

7. Run the Tkinter event loop, which waits for user input and handles events such as button clicks. 

 

Here's an example of how the complete program might look: 

 

 

import tkinter as tk 

 

def calculate(): 

    """Performs the calculation and updates the display""" 

    expression = display.get() 

    try: 

        result = eval(expression) 

        display.delete(0, tk.END) 

        display.insert(tk.END, str(result)) 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     28 

 

    except: 

        display.delete(0, tk.END) 

        display.insert(tk.END, "Error") 

 

def append_to_display(value): 

    """Appends the clicked value to the display""" 

    display.insert(tk.END, value) 

 

def clear_display(): 

    """Clears the display""" 

    display.delete(0, tk.END) 

 

# Create the main window 

window = tk.Tk() 

window.title("Calculator") 

 

# Create the display widget 

display = tk.Entry(window, width=30, font=("Arial", 16), justify="right") 

display.grid(row=0, column=0, columnspan=4, padx=10, pady=10) 

 

# Create number buttons 

for i in range(1, 10): 

    button = tk.Button(window, text=str(i), width=7, height=3, font=("Arial", 14), 

                       command=lambda i=i: append_to_display(str(i))) 

    button.grid(row=(9-i)//3 + 1, column=(i-1) % 3, padx=5, pady=5) 

 

# Create operation buttons 

operations = ['+', '-', '*', '/'] 

row = 1 

col = 3 

for operation in operations: 

    button = tk.Button(window, text=operation, width=7, height=3, font=("Arial", 14), 

                       command=lambda operation=operation: append_to_display(operation)) 

    button.grid(row=row, column=col, padx=5, pady=5) 

    row += 1 

 

# Create other buttons 

button_clear = tk.Button(window, text="C", width=7, height=3, font=("Arial", 14), command=clear_display) 

button_clear.grid(row=4, column=0, padx=5, pady=5) 

 

button_zero = tk.Button(window, text="0", width=7, height=3, font=("Arial", 14), 

                        command=lambda: append_to_display("0")) 

button_zero.grid(row=4, column=1, padx=5, pady=5) 

 

button_equal = tk.Button(window, text="=", width=7, height=3, font=("Arial", 14), command=calculate) 

button_equal.grid(row=4, column=2, padx=5, pady=5) 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     29 

 

 

# Run the main event loop 

window.mainloop() 

 

 

In this program, we create a simple calculator GUI using Tkinter. The calculator consists of number buttons, 

operation buttons, a clear button, a zero button, and an equal button. The display is implemented using a 

Tkinter 

 

 entry widget. Each button is connected to a corresponding function that performs the desired operation. The 

`calculate()` function evaluates the expression and updates the display accordingly. The ̀ append_to_display()` 

function appends the clicked value to the display, and the `clear_display()` function clears the display. 

 

By running this program, you can create a GUI calculator that allows users to perform calculations 

interactively. 

 

 

OUTPUT 
 

 
 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     30 

 

POST-EXPERIMENT QUESTIONS 

1. How did you implement the GUI for the calculator? Which library or framework did you use? 

2. What functionalities did you include in the calculator GUI? Did it support basic arithmetic operations? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program creates a GUI for a simple calculator using the Tkinter framework in Python. 

2. What is Tkinter? 

• Tkinter is a standard GUI framework for Python. It provides classes and functions to create 

and manipulate GUI components like windows, buttons, labels, and entry fields. 

3. How does the program handle button clicks? 

• The program defines a function button_click that is called when a button is clicked. It 

retrieves the text of the clicked button, evaluates the expression if it is the "=" button, clears 

the entry field if it is the "C" button, or appends the clicked button's text to the entry field. 

4. How is the GUI layout structured? 

• The GUI layout is organized using the grid layout manager. The entry field occupies the top 

row, and the buttons are arranged in a grid below it. 

5. What happens when the "=" button is clicked? 

• When the "=" button is clicked, the program attempts to evaluate the expression entered in 

the entry field using the eval function. If the evaluation is successful, the result is displayed in 

the entry field. Otherwise, an error message is displayed. 

6. Can you explain the purpose of the bind method in button creation? 

• The bind method is used to bind the click event ("<Button-1>") to the button_click function. 

This ensures that the function is called whenever the button is clicked. 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     31 

 

LAB EXPERIMENT 12 

OBJECTIVE 

WAP to implement a person class (Name, address, phone, Id) and derive two classes class 

teacher(additional TID, Course, faculty) and student  Roll_no, course enrolled) from person class to show 

the use of Inheritance. 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What do you understand by OOPs concept? 

2. What are different OOPs properties? 

 

 

BRIEF DISCUSSION AND EXPLANATION 
 

Python program that implements a `Person` class with attributes for name, address, phone, and ID, and then 

derives two classes `Teacher` and `Student` from the `Person` class to demonstrate inheritance: 

 

1. Start by creating the `Person` class with the attributes `name`, `address`, `phone`, and `ID`. Provide an 

`__init__` method to initialize these attributes. 

 

2. Create the `Teacher` class as a subclass of `Person`. Inherit the attributes and methods of the `Person` class 

using the `super()` function. 

 

3. Add additional attributes specific to the ̀ Teacher` class, such as ̀ TID` (Teacher ID), ̀ course`, and `faculty`. 

Define an `__init__` method in the `Teacher` class to initialize these attributes and call the `super()` method 

to initialize the attributes inherited from the `Person` class. 

 

4. Create the `Student` class as another subclass of `Person`. Inherit the attributes and methods of the `Person` 

class using the `super()` function. 

 

5. Add additional attributes specific to the `Student` class, such as `roll_no` and `course_enrolled`. Define an 

`__init__` method in the `Student` class to initialize these attributes and call the `super()` method to initialize 

the attributes inherited from the `Person` class. 

 

Here's an example of how the complete program would look: 

 

class Person: 

    def __init__(self, name, address, phone, ID): 

        self.name = name 

        self.address = address 

        self.phone = phone 

        self.ID = ID 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     32 

 

class Teacher(Person): 

    def __init__(self, name, address, phone, ID, TID, course, faculty): 

        super().__init__(name, address, phone, ID) 

        self.TID = TID 

        self.course = course 

        self.faculty = faculty 

 

class Student(Person): 

    def __init__(self, name, address, phone, ID, roll_no, course_enrolled): 

        super().__init__(name, address, phone, ID) 

        self.roll_no = roll_no 

        self.course_enrolled = course_enrolled 

 

# Create instances of Teacher and Student 

teacher = Teacher("John Doe", "123 Main St", "1234567890", "P001", "T001", "Math", "Science") 

student = Student("Jane Smith", "456 Elm St", "9876543210", "S001", "R001", "Computer Science") 

 

# Access attributes of Teacher 

print("Teacher Name:", teacher.name) 

print("Teacher Address:", teacher.address) 

print("Teacher Phone:", teacher.phone) 

print("Teacher ID:", teacher.ID) 

print("Teacher TID:", teacher.TID) 

print("Teacher Course:", teacher.course) 

print("Teacher Faculty:", teacher.faculty) 

 

# Access attributes of Student 

print("Student Name:", student.name) 

print("Student Address:", student.address) 

print("Student Phone:", student.phone) 

print("Student ID:", student.ID) 

print("Student Roll No:", student.roll_no) 

print("Student Course Enrolled:", student.course_enrolled) 

 

In this program, we define a `Person` class that represents a person with attributes for name, address, phone, 

and ID. The `Teacher` class is created as a subclass of `Person` and adds additional attributes for TID, course, 

and faculty. The `Student` class is also a subclass of `Person` and includes additional attributes for roll_no 

and course_enrolled. 

 

We create instances of the `Teacher` and `Student` classes and access their attributes to demonstrate how the 

inherited attributes and subclass-specific attributes work. 

 

By running this program, you can implement a person class and derive two classes, `Teacher` and `Student`, 

from the `Person` class to showcase the use of inheritance. 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     33 

 

POST-EXPERIMENT QUESTIONS 

1. How did you implement the person class with the attributes Name, address, phone, and Id? 

2. How did you use inheritance to derive the teacher and student classes from the person class? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program demonstrates the use of inheritance by implementing a Person class and deriving 

two classes, Teacher and Student, from it. 

2. What is inheritance? 

• Inheritance is a mechanism in object-oriented programming where a class inherits the 

properties and methods of another class. The derived class (subclass) can extend or modify the 

behavior of the base class (superclass). 

3. How is inheritance used in this program? 

• The Teacher and Student classes are derived from the Person class using inheritance. They 

inherit the attributes (name, address, phone, ID) and methods of the Person class, allowing 

them to reuse and extend its functionality. 

4. What is the purpose of the super().__init__() call in the derived classes' __init__ methods? 

• The super().__init__() call is used to invoke the constructor of the base class (Person) in the 

derived classes (Teacher and Student). It ensures that the attributes inherited from the base 

class are initialized correctly. 

5. How are objects created for Teacher and Student classes? 

• Objects for the Teacher and Student classes are created by calling their respective constructors 

and providing the required parameters for the base class (Person) as well as the additional 

attributes specific to each class. 

6. What is the output of the program? 

• The program outputs the details of a Teacher object and a Student object, including their name, 

address, phone, ID, and additional attributes specific to each class. 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     34 

 

LAB EXPERIMENT 13 

OBJECTIVE 

WAP to plot histogram of the following data. 

10-15 15-20 20-25 25-30 30-35 

5 6 9 8 2 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What is matplotlib module? 

2. What function is used to plot histogram? 

 

BRIEF DISCUSSION AND EXPLANATION 
 

To plot a histogram of the given data, you can use a Python library such as Matplotlib. Here's a brief discussion 

on how you can create a program to plot the histogram: 

 

1. Import the necessary modules, including Matplotlib's pyplot module. 

 

2. Create two lists: one for the data range labels (`labels`) and another for the corresponding frequencies 

(`data`). 

 

3. Use the `bar` function from Matplotlib to create the histogram. Provide the `labels` and `data` lists as the x 

and y values respectively. 

 

4. Customize the histogram by adding labels to the x-axis, y-axis, and title. 

 

5. Show the plot using the `show` function. 

 

Here's an example of how the complete program might look: 

 

import matplotlib.pyplot as plt 

 

# Define the data 

labels = ['10-15', '15-20', '20-25', '25-30', '30-35'] 

data = [5, 6, 9, 8, 2] 

 

# Create the histogram 

plt.bar(labels, data) 

 

# Add labels and title 

plt.xlabel('Range') 

plt.ylabel('Frequency') 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     35 

 

plt.title('Histogram of Data') 

 

# Show the plot 

plt.show() 

 

In this program, we define the `labels` list to represent the data ranges and the `data` list to represent the 

corresponding frequencies. 

 

We use the `bar` function from Matplotlib to create the histogram. The `labels` and `data` lists are provided 

as the x and y values, respectively. 

 

We then customize the histogram by adding labels to the x-axis (`xlabel`), y-axis (`ylabel`), and title (`title`). 

 

Finally, we use the `show` function to display the plot. 

 

By running this program, you can plot a histogram of the given data using Matplotlib. 

 

OUTPUT 
 

 
 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     36 

 

 

POST-EXPERIMENT QUESTIONS 

1. How did you implement the program to plot a histogram of the given data? 

2. Which library or tool did you use to plot the histogram? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program plots a histogram of the given data using the matplotlib library in Python. 

2. What is a histogram? 

• A histogram is a graphical representation of the distribution of numerical data. It consists of a 

set of bars, where the width of each bar represents a range of values and the height represents 

the frequency or count of data points within that range. 

3. How is the data stored in the program? 

• The data is stored in two lists: which contains the range labels, and  the corresponding counts 

or frequencies. 

4. How is the histogram plotted using matplotlib? 

• The plt.bar() function from the matplotlib library is used to create a bar plot. It takes the data 

range as the x-axis values and the data counts as the corresponding y-axis values. 

5. What labels and title are added to the plot? 

• The plt.xlabel(), plt.ylabel(), and plt.title() functions are used to add labels to the x-axis, y-

axis, and title of the plot, respectively. 

6. What would be the output of the program for the given data? 

• The program would display a histogram with bars representing the data ranges (10-15, 15-20, 

20-25, 25-30, 30-35) on the x-axis and the corresponding counts (5, 6, 9, 8, 2) on the y-axis. 

 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     37 

 

LAB EXPERIMENT 14 

OBJECTIVE 

WAP to draw a box-and-whisker plot for the data set {3, 7, 8, 5, 12, 14, 21, 13, 18}. 

 

PRE-EXPERIMENT QUESTIONS 
1. What is matplotlib module? 

2. What function is used to draw box-and-whisker plot? 

 

 

BRIEF DISCUSSION AND EXPLANATION 
 

To draw a box-and-whisker plot for the given data set {3, 7, 8, 5, 12, 14, 21, 13, 18}, you can use a Python 

library such as Matplotlib. Here's a brief discussion on how you can create a program to draw the box-and-

whisker plot: 

 

1. Import the necessary modules, including Matplotlib's pyplot module. 

 

2. Create a list to represent the data set. 

 

3. Use the `boxplot` function from Matplotlib to create the box-and-whisker plot. Provide the data set as the 

input. 

 

4. Customize the plot if desired by adding labels to the x-axis, y-axis, and title. 

 

5. Show the plot using the `show` function. 

 

Here's an example of how the complete program might look: 

 

import matplotlib.pyplot as plt 

 

# Define the data set 

data = [3, 7, 8, 5, 12, 14, 21, 13, 18] 

 

# Create the box-and-whisker plot 

plt.boxplot(data) 

 

# Add labels and title 

plt.xlabel('Data Set') 

plt.ylabel('Values') 

plt.title('Box-and-Whisker Plot') 

 

# Show the plot 

plt.show() 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     38 

 

 

In this program, we define the `data` list to represent the data set. 

 

We use the `boxplot` function from Matplotlib to create the box-and-whisker plot. The `data` list is provided 

as the input. 

 

We then customize the plot by adding labels to the x-axis (`xlabel`), y-axis (`ylabel`), and title (`title`). 

 

Finally, we use the `show` function to display the plot. 

 

By running this program, you can draw a box-and-whisker plot for the given data set using Matplotlib. 

 

 

OUTPUT 
 

 
 

POST-EXPERIMENT QUESTIONS 

1. How did you implement the program to draw a box-and-whisker plot of the given data? 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     39 

 

2. Which library or tool did you use to plot the box-and-whisker plot? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program draws a box-and-whisker plot for the given data set using the matplotlib library 

in Python. 

2. What is a box-and-whisker plot? 

• A box-and-whisker plot is a graphical representation of the distribution of numerical data. It 

displays a summary of the data's minimum, maximum, median, and quartiles in a visually 

concise way. 

3. How is the data stored in the program? 

• The data is stored in a list called data. 

4. How is the box-and-whisker plot created using matplotlib? 

• The plt.boxplot() function from the matplotlib library is used to create a box-and-whisker plot. 

It takes the data as an argument and automatically calculates and displays the minimum, 

maximum, median, and quartiles. 

5. What title is added to the plot? 

• The plt.title() function is used to add a title to the plot. In this case, the title is "Box-and-

Whisker Plot". 

6. What would be the output of the program for the given data set? 

• The program would display a box-and-whisker plot showing the minimum, maximum, median, 

and quartiles of the given data set: {3, 7, 8, 5, 12, 14, 21, 13, 18}. 

  



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     40 

 

LAB EXPERIMENT 15 

OBJECTIVE 

WAP to draw the Line Plot and Bar chart for the following data. 

 

Elapsed time (s) 0 1 2 3 4 5 6 

Speed(m/s) 0 3 7 12 20 30 45.6 

 

 

PRE-EXPERIMENT QUESTIONS 
 

1. What is matplotlib module? 

2. What function is used to draw line plot and bar chart? 

 

 

BRIEF DISCUSSION AND EXPLANATION 
 

To draw a line plot and a bar chart for the given data, Python library such as Matplotlib can be used. Here's a 

brief discussion on how one can create a program to plot both the line plot and the bar chart: 

 

1. Import the necessary modules, including Matplotlib's pyplot module. 

 

2. Create two lists: one for the elapsed time values (`time`) and another for the corresponding speed values 

(`speed`). 

 

3. Use the `plot` function from Matplotlib to create the line plot. Provide the `time` and `speed` lists as the x 

and y values, respectively. 

 

4. Use the `bar` function from Matplotlib to create the bar chart. Provide the `time` and `speed` lists as the x 

and y values, respectively. 

 

5. Customize the plots by adding labels to the x-axis, y-axis, and title. 

 

6. Show the plots using the `show` function. 

 

Here's an example of how the complete program might look: 

 

import matplotlib.pyplot as plt 

 

# Define the data 

time = [0, 1, 2, 3, 4, 5, 6] 

speed = [0, 3, 7, 12, 20, 30, 45.6] 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     41 

 

 

# Create the line plot 

plt.plot(time, speed) 

 

# Add labels and title to the line plot 

plt.xlabel('Elapsed time (s)') 

plt.ylabel('Speed (m/s)') 

plt.title('Line Plot') 

 

# Show the line plot 

plt.show() 

 

# Create the bar chart 

plt.bar(time, speed) 

 

# Add labels and title to the bar chart 

plt.xlabel('Elapsed time (s)') 

plt.ylabel('Speed (m/s)') 

plt.title('Bar Chart') 

 

# Show the bar chart 

plt.show() 

 

 

In this program, we define the `time` list to represent the elapsed time values and the `speed` list to represent 

the corresponding speed values. 

 

We use the `plot` function from Matplotlib to create the line plot. The `time` and `speed` lists are provided as 

the x and y values, respectively. 

 

We customize the line plot by adding labels to the x-axis (`xlabel`), y-axis (`ylabel`), and title (`title`). 

 

We then use the `bar` function from Matplotlib to create the bar chart. Again, the `time` and `speed` lists are 

provided as the x and y values, respectively. 

 

We customize the bar chart by adding labels to the x-axis, y-axis, and title. 

 

Finally, we use the `show` function to display both the line plot and the bar chart. 

 

By running this program, you can draw a line plot and a bar chart for the given data using Matplotlib. 

 

 

 

 

 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     42 

 

 

 

OUTPUT 
 

 

 
 

 
 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     43 

 

POST-EXPERIMENT QUESTIONS 
 

1. How did you implement the program to draw line plot and bar chart of the given data? 

2. Which library or tool did you use to draw line plot and bar chart? 

 

QUIZ WITH ANSWERS 

1. What does this program do? 

• This program draws a line plot and a bar chart for the given data using the matplotlib library in 

Python. 

2. What is a line plot? 

• A line plot is a graphical representation of data points connected by straight line segments. It 

shows the trend or progression of a variable over time or other ordered categories. 

3. How is the line plot created using matplotlib? 

• The plt.plot() function from the matplotlib library is used to create a line plot. It takes the x-

axis values (years) and the corresponding y-axis values (sales) as arguments. Additional 

parameters like marker style, linestyle, and color can be specified to customize the plot. 

4. What is a bar chart? 

• A bar chart is a graphical representation of categorical data using rectangular bars of varying 

heights. It shows the distribution or comparison of different categories. 

5. How is the bar chart created using matplotlib? 

• The plt.bar() function from the matplotlib library is used to create a bar chart. It takes the x-

axis values (years) and the corresponding y-axis values (sales) as arguments. Additional 

parameters like color can be specified to customize the chart. 

6. What labels and titles are added to the plots? 

• The plt.xlabel(), plt.ylabel(), and plt.title() functions are used to add labels to the x-axis, y-

axis, and title of each plot, respectively. 

7. What would be the output of the program for the given data? 

• The program would display a line plot showing the sales trend over the years and a bar chart 

showing the distribution of sales for each year based on the given data. 

 



Python Lab (CSE-106P) 
 

 
  

 
Department of Applied Science & Humanities    2022-23 

     44 

 

 

 

 

 

 

 

 

 

 

 

 

This lab manual has been updated by 

 

 

Prof. Sukrati Chaturvedi 

(Sukrati.chaturvedi@ggnindia.dronacharya.info) 

 
Crosschecked By 

HOD Applied Sciences and Humanities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please spare some time to provide your valuable feedback. 

 

mailto:Sukrati.chaturvedi@ggnindia.dronacharya.info

