Shift Registers
Shift Register Applications

- Shift Registers are an important Flip-Flop configuration with a wide range of applications, including:
 - Computer and Data Communications
 - Serial and Parallel Communications
 - Multi-bit number storage
 - Sequencing
 - Basic arithmetic such as scaling (a serial shift to the left or right will change the value of a binary number a power of 2)
 - Logical operations
Parallel versus Serial

- Serial communications: provides a binary number as a sequence of binary bits, one after another, through one data line.

- Parallel communications: provides a binary number as binary bits through multiple data lines at the same time.
Shift Registers

- Shift Registers are devices that store and move data bits in serial (to the left or the right),

- ...or in parallel,

- ...or a combination of serial and parallel.
Configuration

- In Shift Registers, the binary bits transfers (shifts) from the output of one flip-flop to the input of the next individual Flip-Flop at every clock edge.

- Once the binary bits are shifted in, the individual Flip-Flops will each retain a bit, and the whole configuration will retain a binary number.
Construction

- Shift registers are constructed from flip-flops due to their characteristics:
 - Edge-triggered devices
 - Output state retention

- Each Flip-Flop in a shift register can retain one binary bit.
 - For instance, if a 5-bit binary number needs to be stored and shifted, 5 flip-flops are required.

- Each binary bit transfer operation requires a clock edge.

- Asynchronous inputs are useful in resetting the whole configuration.
Shift Register Construction

- Shift registers are comprised of D Flip-Flops that share a common clock input.
Combinations of Data Transfer Methods

- **SISO**: Serial In, Serial Out
- **SIPO**: Serial In, Parallel Out
- **PISO**: Parallel In, Serial Out
- **PIPO**: Parallel In, Parallel Out

How many clock edges are required for each operation?
SISO Flip-Flop Shift Register

- a **Serial In Serial Out** shift register has a single input and a single output

![Diagram of SISO Flip-Flop Shift Register](image)
SIPO Flip-Flop Shift Register

- a Serial In Parallel Out shift register has a single input and access to all outputs
PISO Flip-Flop Shift Register

- a **Parallel In Serial Out** shift register requires additional gates, and the parallel input must revert to logic low.

![Diagram of PISO Flip-Flop Shift Register]
A Parallel In Parallel Out register has the simplest configuration. It represents a memory device.
Universal Shift Registers

- Universal Shift Registers can be configured to operate in a variety of modes. For instance, they can be configured to have either Serial or Parallel Input/Output.

- Internally use steering gates to determine:
 - Serial input/output direction
 - Parallel input (load)
 - Hold

- Refer to the manufacturer specification sheets for more information.
Universal Shift Registers

- Look up the 74LS194 and describe its function by looking at the schematic. Fill in the table.

<table>
<thead>
<tr>
<th>S0</th>
<th>S1</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

In-class exercise
Application: Parallel transferring the contents of a Register to another register.

Describe where this circuit combination may be used.
JK Shift Registers

J-K Shift registers are seldom used, as two inputs (J,K) are required to load the first flip-flop (note all others receive only set or reset inputs).
Ring Counter

- A ring counter takes the serial output of the last Flip-Flop of a shift register and provides it to the serial input of the first Flip-Flop.

- Ring Counters are also known as re-circulating shift registers.

- The display characteristics will be familiar...
Ring Counter

In Class: Build a ring counter using electronics simulation tools
Self-Starting or Load on Power-up

- There are several ways of loading values into a ring counter on power-up:
 - RC circuit
 - Logic detection (similar to truncating a counter)
Johnson Counter

- A Johnson Counter re-circulates the last flip-flop Q (inverted) output back to the input of the first Flip-Flop. It doesn’t require an initialization value, and will provide a predictable output state sequence.
Re-Circulating Counters

A **4-bit** Johnson counter has a **modulus** of **8**, meaning there are 8 unique output states.

<table>
<thead>
<tr>
<th>Johnson Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>1100</td>
</tr>
<tr>
<td>1110</td>
</tr>
<tr>
<td>1111</td>
</tr>
<tr>
<td>0111</td>
</tr>
<tr>
<td>0011</td>
</tr>
<tr>
<td>0001</td>
</tr>
</tbody>
</table>

8 unique states
A State Diagram is used to describe the sequence of output states of a circuit.
The state diagram for the previous Johnson counter looks like this:
State Recognition

- One application of registers is to recognize a specific binary number. Sequences of bits are loaded in series into a register. External detection gates will identify if the value matches a predetermined value:

What value will this circuit detect?
Will this work with a Johnson counter?
Comparison of two values

- Values stored in shift registers can be compared by using the following circuit:

What is the output be if both binary inputs are the same?