Radial Basis Function (RBF) Networks
RBF network

- This is becoming an increasingly popular neural network with diverse applications and is probably the main rival to the multi-layered perceptron
- Much of the inspiration for RBF networks has come from traditional statistical pattern classification techniques
RBF network

- The basic architecture for a RBF is a 3-layer network, as shown in Fig.
- The input layer is simply a fan-out layer and does no processing.
- The second or hidden layer performs a non-linear mapping from the input space into a (usually) higher dimensional space in which the patterns become linearly separable.
input layer (fan-out)

hidden layer (weights correspond to cluster centre, output function usually Gaussian)

output layer (linear weighted sum)
Output layer

- The final layer performs a simple weighted sum with a linear output.
- If the RBF network is used for function approximation (matching a real number) then this output is fine.
- However, if pattern classification is required, then a hard-limiter or sigmoid function could be placed on the output neurons to give 0/1 output values.
Clustering

• The unique feature of the RBF network is the process performed in the hidden layer.
• The idea is that the patterns in the input space form clusters.
• If the centres of these clusters are known, then the distance from the cluster centre can be measured.
• Furthermore, this distance measure is made non-linear, so that if a pattern is in an area that is close to a cluster centre it gives a value close to 1.
Clustering

- Beyond this area, the value drops dramatically.
- The notion is that this area is radially symmetrical around the cluster centre, so that the non-linear function becomes known as the radial-basis function.
Gaussian function

- The most commonly used radial-basis function is a Gaussian function.
- In a RBF network, \(r \) is the distance from the cluster centre.
- The equation represents a Gaussian bell-shaped curve, as shown in Fig.
Distance measure

• The distance measured from the cluster centre is usually the Euclidean distance.
• For each neuron in the hidden layer, the weights represent the co-ordinates of the centre of the cluster.
• Therefore, when that neuron receives an input pattern, X, the distance is found using the following equation:
Distance measure

\[r_j = \sqrt{\sum_{i=1}^{n} (x_i - w_{ij})^2} \]
Width of hidden unit basis function

\[(\text{hidden_unit}) \varphi_{j} = \exp\left(-\frac{n}{2\sigma^2} \sum_{i=1}^{n} (x_i - w_{ij})^2 \right) \]

The variable sigma, \(\sigma \), defines the width or radius of the bell-shape and is something that has to be determined empirically. When the distance from the centre of the Gaussian reaches \(\sigma \), the output drops from 1 to 0.6.
Example

• An often quoted example which shows how the RBF network can handle a non-linearly separable function is the exclusive-or problem.
• One solution has 2 inputs, 2 hidden units and 1 output.
• The centres for the two hidden units are set at $c_1 = 0,0$ and $c_2 = 1,1$, and the value of radius σ is chosen such that $2\sigma^2 = 1$.
Example

• The inputs are x, the distances from the centres squared are r, and the outputs from the hidden units are φ.

• When all four examples of input patterns are shown to the network, the outputs of the two hidden units are shown in the following table.
<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>r_1</th>
<th>r_2</th>
<th>ϕ_1</th>
<th>ϕ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

- Next Fig. shows the position of the four input patterns using the output of the two hidden units as the axes on the graph - it can be seen that the patterns are now linearly separable.
- This is an ideal solution - the centres were chosen carefully to show this result.
- Methods generally adopted for learning in an RBF network would find it impossible to arrive at those centre values - later learning methods that are usually adopted will be described.
Training hidden layer

• The hidden layer in a RBF network has units which have weights that correspond to the vector representation of the centre of a cluster.

• These weights are found either using a traditional clustering algorithm such as the \(k\)-means algorithm, or adaptively using essentially the Kohonen algorithm.
Training hidden layer

• In either case, the training is unsupervised but the number of clusters that you expect, \(k \), is set in advance. The algorithms then find the best fit to these clusters.
• The \(k \)-means algorithm will be briefly outlined.
• Initially \(k \) points in the pattern space are randomly set.
Training hidden layer

- Then for each item of data in the training set, the distances are found from all of the k centres.
- The closest centre is chosen for each item of data - this is the initial classification, so all items of data will be assigned a class from 1 to k.
- Then, for all data which has been found to be class 1, the average or mean values are found for each of co-ordinates.
Training hidden layer

• These become the new values for the centre corresponding to class 1.
• Repeated for all data found to be in class 2, then class 3 and so on until class k is dealt with - we now have k new centres.
• Process of measuring the distance between the centres and each item of data and re-classifying the data is repeated until there is no further change – i.e. the sum of the distances monitored and training halts when the total distance no longer falls.
Adaptive k-means

• The alternative is to use an adaptive k -means algorithm which similar to Kohonen learning.

• Input patterns are presented to all of the cluster centres one at a time, and the cluster centres adjusted after each one. The cluster centre that is nearest to the input data wins, and is shifted slightly towards the new data.

• This has the advantage that you don’t have to store all of the training data so can be done on-line.
Finding radius of Gaussians

• Having found the cluster centres using one or other of these methods, the next step is determining the radius of the Gaussian curves.
• This is usually done using the P-nearest neighbour algorithm.
• A number P is chosen, and for each centre, the P nearest centres are found.
Finding radius of Gaussians

• The root-mean squared distance between the current cluster centre and its P nearest neighbours is calculated, and this is the value chosen for σ.

• So, if the current cluster centre is c_j, the value is:

$$\sigma_j = \sqrt{\frac{1}{P} \sum_{i=1}^{P} (c_k - c_i)^2}$$
Finding radius of Gaussians

- A typical value for P is 2, in which case σ is set to be the average distance from the two nearest neighbouring cluster centres.
XOR example

- Using this method XOR function can be implemented using a minimum of 4 hidden units.
- If more than four units are used, the additional units duplicate the centres and therefore do not contribute any further discrimination to the network.
- So, assuming four neurons in the hidden layer, each unit is centred on one of the four input patterns, namely 00, 01, 10 and 11.
• The P-nearest neighbour algorithm with P set to 2 is used to find the size if the radii.
• In each of the neurons, the distances to the other three neurons is 1, 1 and 1.414, so the two nearest cluster centres are at a distance of 1.
• Using the mean squared distance as the radii gives each neuron a radius of 1.
• Using these values for the centres and radius, if each of the four input patterns is presented to the network, the output of the hidden layer would be:
<table>
<thead>
<tr>
<th>input</th>
<th>neuron 1</th>
<th>neuron 2</th>
<th>neuron 3</th>
<th>neuron 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>01</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>0.6</td>
<td>1.0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Training output layer

- Having trained the hidden layer with some unsupervised learning, the final step is to train the output layer using a standard gradient descent technique such as the Least Mean Squares algorithm.

- In the example of the exclusive-or function given above a suitable set of weights would be $+1, -1, -1$ and $+1$. With these weights the value of net and the output is:
<table>
<thead>
<tr>
<th></th>
<th>neuron 1</th>
<th>neuron 2</th>
<th>neuron 3</th>
<th>neuron 4</th>
<th>net</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0.6</td>
<td>0.4</td>
<td>1.0</td>
<td>0.6</td>
<td>−0.2</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>1.0</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0.6</td>
<td>1.0</td>
<td>0.4</td>
<td>0.6</td>
<td>−0.2</td>
<td>0</td>
</tr>
</tbody>
</table>
Advantages/Disadvantages

- RBF trains faster than a MLP
- Another advantage that is claimed is that the hidden layer is easier to interpret than the hidden layer in an MLP.
- Although the RBF is quick to train, when training is finished and it is being used it is slower than a MLP, so where speed is a factor a MLP may be more appropriate.
Summary

• Statistical feed-forward networks such as the RBF network have become very popular, and are serious rivals to the MLP.
• Essentially well tried statistical techniques being presented as neural networks.
• Learning mechanisms in statistical neural networks are not biologically plausible – so have not been taken up by those researchers who insist on biological analogies.