Asynchronous Sequential Circuits
Asynchronous Sequential Circuits.

- Asynch Seq Crts consist of a combinational circuit and delay elements connected to/from feedback loops.
- \(n \) input variables
- \(m \) output variables
- \(k \) internal states.

The delay elements can be viewed as providing short term memory for the sequential circuit.
Asynchronous Sequential Circuits

• During the design of asynchronous sequential circuits, it is more convenient to name the states by letter without making reference to their binary value.

 – Such a table is called a **Flow-Table**

 – Similar to Transition Table except uses letter/symbols rather than binary numbers
Asynchronous Sequential Circuits

An example of a flow-table can be seen below, for the system of four states with one input.

This table is called a *primitive* flow table:
- Because it has only one stable state in each row.
- Can also have a flow table with more than one stable state in the same row.
Asynchronous Sequential Circuits

For a system that has two states \(a \) and \(b \); two inputs \(x_1 \) and \(x_2 \) and one output \(Z \).

- The binary value of the output variable is indicated inside the square next to the state symbol and is separated usually by a comma.

![Flow table 2](image)
Asynchronous Sequential Circuits

From the flow-table, observe the behaviour of the circuit

If \(x_1 = 0 \), the circuit is in State \(a \)
- If \(x_1 \rightarrow 1 \) while \(x_2 = 0 \) \(\Rightarrow \) the circuit goes to state \(b \).

If \(x_1 x_2 = 11 \), the circuit may be either in state \(a \) or state \(b \).
- If in state \(a \) \(\Rightarrow \) the output is 0
- If in state \(b \) \(\Rightarrow \) the output is 1
Asynchronous Sequential Circuits

State a is maintained if the inputs change from $01 \rightarrow 11$.

Recall that in fundamental mode, two input variables cannot change simultaneously and therefore we do not allow a change of inputs from $00 \rightarrow 11$.

<table>
<thead>
<tr>
<th>X_1X_2</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$a,0$</td>
<td>$a,0$</td>
<td>$a,0$</td>
<td>$b,0$</td>
</tr>
<tr>
<td>b</td>
<td>$a,0$</td>
<td>$a,0$</td>
<td>$b,1$</td>
<td>$b,0$</td>
</tr>
</tbody>
</table>
Asynchronous Sequential Circuits

• In order to obtain circuit described by the flow table assign to each state a distinct binary value
 – assignment converts the flow table into transition table from which can derive the logic diagram.

Assign
 Binary 0 to state a
 Binary 1 to state b

This results in a transition table as follows

\[
\begin{array}{c|cccc}
 & 00 & 01 & 11 & 10 \\
\hline
 0 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 1 & 1 \\
\end{array}
\]

\[Y = x_1 \overline{x_2} + x_1 y\]
Asynchronous Sequential Circuits

- The output map is obtained directly from the output values of the flow-table.

\[
\begin{array}{c|cccc}
\text{x}_1 \times \text{x}_2 & 00 & 01 & 11 & 10 \\
\hline
\text{y} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
\end{array}
\]

\[Z = x_1 x_2 y\]

- The excitation function Y and the output function Z are thus simplified by means of the two maps.
Asynchronous Sequential Circuits

The logic diagram of the circuit is

- This example demonstrates the procedure for obtaining the logic diagram, from a given flow table.
 - This procedure is not always as simple as in this example.
 - There are several difficulties associated with the binary state assignment and with the output assigned to the unstable states.
Race conditions

• **Race Hazard**
 – A logic configuration, which leads to an unwanted generation of logic spikes due to the signals passing through different paths to the output and experiencing different delays.

• A race condition exists in an asynchronous sequential circuit when two or more binary state variables change in response to a change in an input variable.
 – When unequal delays are encountered, a race condition may cause the state variables to change in an unpredictable manner.
Race conditions

Example

If the state variables must change from 00 → 11, the difference in delays may cause the first variable to change faster than the second

– thus state variables change in sequence from 00 to 10 and then to 11.

– If the second variable changes faster than the first, the state variables will change from 00 → 01 and then to 11.
Critical and Non-Critical Race Conditions

• Thus the order by which the state variables change may not be known in advance.
 – If the final stable state that the circuit reaches does not depend on the order on which the state variables change, the race is called a non-critical race.

• If it is possible to end up in two or more different stable states depending on the order in which the state variables change. This is a critical race.
 – For proper operation, critical races must be avoided.
 – Causes the system to operate incorrectly by entering unwanted unstable states.
Race conditions

- Race hazardous conditions can be tolerated in asynchronous sequential circuits if they cause perhaps different unstable states to be entered but finally the same stable state to be reached.
 - indeed allowing non-critical race hazards can give reduced logic components.
Static Hazards

- Occur when possible for an output to undergo a momentary transition when it is expected to remain unchanged.

Static-1 hazard
- occurs when output momentarily goes to 0 when it should remain a 1.

Static-0 hazard
- occurs when output momentarily goes to 1 when it should remain a 0.
Race conditions

- **Static hazards** or **dynamic hazards** are combinational circuit hazards.
 - generally are only significant in synchronous sequential circuits.

- In contrast, a race hazard is found only in asynchronous sequential circuits
 - caused by the interaction between a primary and a secondary signal change.

- Can be eliminated by introducing delays in the circuit.
Stability Considerations

Due to feedback connections

- Care must be taken to ensure that the circuit does not become unstable.

- An unstable condition will cause the circuit to oscillate between unstable states.

- The transition table method of analysis can be useful in detecting the occurrence of instability.
Stability Considerations

Consider following example

\[Y = x_1 \cdot y \cdot x_2 = (x_1 + y)x_2 = x_1 x_2 + y x_2 \]

The transition table

<table>
<thead>
<tr>
<th>(x_1 x_2)</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Stability Considerations

- Those values of Y that are equal to y are circled and represent stable states

 - with input x_1x_2 fixed at 11
 - the values of Y and y are never the same.

 - if $y=0$ then $Y=1$
 - transition to 2nd row of table with $y=1$ and $Y=0$.
 - This then causes a transition back to the 1st row, with the result that the state variable alternates between 0 and 1 indefinitely as long as the input is 11.
Stability Considerations

The instability condition can be detected directly from the logic diagram.

Let $x_1=1$ and $x_2=1$ and $y=1$.

- Output of the NAND gate = 0
- Output of the AND gate = 0 \Rightarrow $Y = 0$, with the result that $Y \neq y$.

Now if $y=0$,

- Output of the NAND gate = 1
- Output of the AND gate = 1 \Rightarrow $Y = 1$ with the result that $Y \neq y$.
Stability Considerations

• If it is assumed that each gate has a propagation delay of 5 nseconds (including tracks on PCB),
 ⇒ Find that $Y = 0$ for 10 nseconds
 ⇒ Also $Y = 1$ for the next 10 nseconds.

• This will result in a square wave waveform with a period of 20 nseconds.
 ⇒ Frequency of oscillation is 50MHz.

• Unless designing a square wave generator, the instability that may occur in asynchronous sequential circuits is undesirable and must be avoided.
Design Example

- Consider a circuit of one input and one output.
- A series of pulses is applied to the input and every alternate pulse is to be passed to the output.
 - Note the pulse duration and separation are variable.
A Moore model state diagram for this circuit can be designed.

- Moore models are often used for asynchronous sequential circuits because a stable state is clearly identified in the Moore model by a “return” path around the state.
- A transition from a stable state will only occur when the input changes from the return value.

Moore Model Diagram:

- States: 1/0, 2/0, 3/0, 4/1
- Outputs: 1/0
- Transitions:
 - From 1/0: 1 → 2/0, 0 → 3/0
 - From 2/0: 1 → 1/0, 0 → 3/0
 - From 3/0: 1 → 3/0, 0 → 4/1
 - From 4/1: 1 → 4/1, 0 → 1/0
The next step is to draw the state table giving the information in tabular form. i.e. the primitive flow table.

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Flow Table

• Stable states are again indicated by circles around the stable state numbers in the Next State columns
 – 1, 2, 3, 4
 – Circled state will be the same as the number in the present state column.

• Output tries to attain to the stable state

• Primitive flow table should then be minimised where possible
 – no minimisation in this example.

• Secondary variables are now assigned.

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Assigning Secondary Variables

- Care must be taken not to make an assignment, which results in more than one variable change between states.

- Use a **transition table/map** which has states chosen for each square on the map.

- Transitions from one state to another are marked on the map and if any show a diagonal path across two variable changes, a new assignment must be made.
Assigning Secondary Variables

The assigned flow table can then be written by inspection.

<table>
<thead>
<tr>
<th>Present State $y_1 y_2$</th>
<th>Next 0</th>
<th>State $Y_1 Y_2$</th>
<th>Output Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>00</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Swapping state assignments for 1 and 2 would result in an unsatisfactory map.
Circuit Implementation

- Two principal implementations possible
 1. Purely combinational logic gates
 2. Combinational logic gates with asynchronous RS flip flops.

- Historically, asynchronous sequential circuits were known and used before synchronous sequential circuits were developed
 - First practical digital systems were constructed with delays which were more adaptable to asynchronous type operations
 - For this reason, the traditional method of asynchronous sequential circuit configuration has been with components that are connected to form one or more feedback loops.
Circuit Implementation

- As electronic digital circuits were developed, it was realised that the flip-flop could be used as the memory element.
 - Use of RS-latch in asynchronous sequential circuits produces a more orderly pattern, which may result in a reduction of the circuit complexity.
 - An added advantage is that the circuit resembles the synchronous circuit in having distinct memory elements that store and specify the internal states.

- The RS-flip flop design approach assigns one flip-flop for each secondary variable.
 - The inputs to these flip-flops are determined by the required change of y to Y.
Circuit Implementation with RS Flipflops

• Using the following table

<table>
<thead>
<tr>
<th>Required Change Q_t</th>
<th>Output To Q_{t+1}</th>
<th>Flip-flop S</th>
<th>Inputs R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

⇒ Obtain one function for each flip-flop input as shown below.
Circuit Implementation

\[S_2 = y_1 \bar{x} \]

\[R_2 = \bar{y}_1 \bar{x} \]

\[S_1 = \bar{y}_2 x \]

\[R_1 = y_2 x \]
Circuit Implementation

The final circuit is

\[y_1 y_2 \rightarrow Z \]

\[y_1 \overline{x} \rightarrow \overline{Y}_2(y_2) \]

\[\overline{y}_1 x \rightarrow Y_2(\overline{y}_2) \]

\[\overline{y}_2 x \rightarrow \overline{Y}_1(y_1) \]

\[y_2 \overline{x} \rightarrow Y_1(y_1) \]
Circuit Implementation

• A particular advantage of the RS flip-flop method is that it is not necessary to correct for static hazards

 – As all the prime implicants are present in both the set and reset functions, which will be the case in all problems.

 – Hence the RS flip-flop method often requires less components.
Circuit Implementation

- In the RS flip-flop method, both true and complemented y outputs are available for feedback to the flip-flop inputs.

 - If the set and reset function of the flip-flop includes true and complemented variables, it is possible that both Set and Reset are a 1 together during a transition, causing both the y and output to be 0.

- This might cause a critical race hazard, though this is unlikely with two-level circuits. The inverse y and output can be generated using a separate gate if necessary.
Summary

• Asynchronous circuits very useful for many applications

 – Care must be taken in their design.