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PREFACE

Semiconductor-based technologies continue to evolve and astound us. New materials,
new structures, and new manufacturing tools have allowed novel high performance elec-
tronic and optoelectronic devices. To understand modern semiconductor devices and to
design future devices, it is important that one know the underlying physical phenomena
that are exploited for devices. This includes the properties of electrons in semiconductors
and their heterostructures and how these electrons respond to the outside world. This
book is written for a reader who is interested in not only the physics of semiconductors,
but also in how this physics can be exploited for devices.

The text addresses the following areas of semiconductor physics: i) electronic
properties of semiconductors including bandstructures, effective mass concept, donors,
acceptors, excitons, etc.; ii) techniques that allow modifications of electronic properties;
use of alloys, quantum wells, strain and polar charge are discussed; iii) electron (hole)
transport and optical properties of semiconductors and their heterostructures; and iv)
behavior of electrons in small and disordered structures. As much as possible I have
attempted to relate semiconductor physics to modern device developments.

There are a number of books on solid state and semiconductor physics that can
be used as textbooks. There are also a number of good monographs that discuss special
topics, such as mesoscopic transport, Coulomb blockade, resonant tunneling effects, etc.
However, there are few single-source texts containing “old” and “new” semiconductor
physics topics. In this book well-established “old” topics such as crystal structure, band
theory, etc., are covered, along with “new” topics, such as lower dimensional systems,
strained heterostructures, self-assembled structures, etc. All of these topics are presented
in a textbook format, not a special topics format. The book contains solved examples,
end-of-chapter problems, and a discussion of how physics relates to devices. With this
approach I hope this book fulfills an important need.

I would like to thank my wife, Teresa M. Singh, who is responsible for the art-
work and design of this book. I also want to thank my editor, Phil Meyler, who provided
me excellent and timely feedback from a number of reviewers.

Jasprit Singh



INTRODUCTION

Semiconductors and devices based on them are ubiquitous in every aspect of modern life.
From “gameboys” to personal computers, from the brains behind “nintendo” to world
wide satellite phones—semiconductors contribute to life perhaps like no other manmade
material. Silicon and semiconductor have entered the vocabulary of newscasters and
stockbrokers. Parents driving their kids cross-country are grudgingly grateful to the
“baby-sitting service” provided by ever more complex “gameboys.” Cell phones and
pagers have suddenly brought modernity to remote villages. “How exciting,” some say.
“When will it all end?” say others.

The ever expanding world of semiconductors brings new challenges and oppor-
tunities to the student of semiconductor physics and devices. Every year brings new
materials and structures into the fold of what we call semiconductors. New physical
phenomena need to be grasped as structures become ever smaller.

I.1 SURVEY OF ADVANCES IN SEMICONDUCTOR PHYSICS
In Fig. I.1 we show an overview of progress in semiconductor physics and devices, since
the initial understanding of the band theory in the 1930s. In this text we explore the
physics behind all of the features listed in this figure. Let us take a brief look at the
topics illustrated.

• Band theory: The discovery of quantum mechanics and its application to un-
derstand the properties of electrons in crystalline solids has been one of the most
important scientific theories. This is especially so when one considers the impact
of band theory on technologies such as microelectronics and optoelectronics. Band
theory and its outcome—effective mass theory—has allowed us to understand the
difference between metals, insulators, and semiconductors and how electrons re-
spond to external forces in solids. An understanding of electrons, holes, and carrier
transport eventually led to semiconductor devices such as the transistor and the
demonstration of lasing in semiconductors.

• Semiconductor Heterostructures: Initial work on semiconductors was carried
out in single material systems based on Si, Ge, GaAs, etc. It was then realized
that if semiconductors could be combined, the resulting structure would yield
very interesting properties. Semiconductors heterostructures are now widely used
in electronics and optoelectronics. Heterostructures are primarily used to confine
electrons and holes and to produce low dimensional electronic systems. These low
dimensional systems, including quantum wells, quantum wires and quantum dots
have density of states and other electronic properties that make them attractive
for many applications.
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xvi Introduction

Advances in heterostructures include strain epitaxy and self-assembled structures.
In strained epitaxy it is possible to incorporate a high degree of strain in a
thin layer. This can be exploited to alter the electronic structure of heterostruc-
tures. In self-assembled structures lateral structures are produced by using the
island growth mode or other features in growth processes. This can produce low-
dimensional systems without the need of etching and lithography.

• Polar and Magnetic Heterostructures: Since the late 1990s there has been a
strong push to fabricate heterostructures using the nitride semiconductors (InN,
GaN, and AlN). These materials have large bandgaps that can be used for blue
light emission and high power electronics. It is now known that these materials
have spontaneous polarization and a very strong piezoelectric effect. These features
can be exploited to design transistors that have high free charge densities without
doping and quantum wells with large built-in electric fields.

In addition to materials with fixed polar charge there is now an increased interest
in materials like ferroelectrics where polarization can be controlled. Some of these
materials have a large dielectric constant, a property that can be exploited for
design of gate dielectrics for very small MOSFETs. There is also interest in semi-
conductors with ferromagnetic effects for applications in spin selective devices.

• Small Structures: When semiconductor structures become very small two in-
teresting effects occur: electron waves can propagate without losing phase coher-
ence due to scattering and charging effects become significant. When electron
waves travel coherently a number of interesting characteristics are observed in the
current-voltage relations of devices. These characteristics are qualitatively differ-
ent from what is observed during incoherent transport.

An interesting effect that occurs in very small capacitors is the Coulomb blockade
effect in which the charging energy of a single electron is comparable or larger
than kBT . This effect can lead to highly nonlinear current-voltage characteristics
which can, in principle, be exploited for electronic devices.

I.2 PHYSICS BEHIND SEMICONDUCTORS
Semiconductors are mostly used for information processing applications. To understand
the physical properties of semiconductors we need to understand how electrons behave
inside semiconductors and how they respond to external stimuli. Considering the com-
plexity of the problem—up to 1022 electrons cm−3 in a complex lattice of ions —it is
remarkable that semiconductors are so well understood. Semiconductor physics is based
on a remarkably intuitive set of simplifying assumptions which often seem hard to justify
rigorously. Nevertheless, they work quite well.

The key to semiconductor physics is the band theory and its outcome—the
effective mass theory. As illustrated in Fig. I.2, one starts with a perfectly periodic
structure as an ideal representation of a semiconductor. It is assumed that the material
can be represented by a perfectly periodic arrangement of atoms. This assumption
although not correct, allows one to develop a band theory description according to
which electrons act as if they are in free space except their effective energy momentum
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Perturbation theory
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EXTERNAL STIMULUS: Electric field, magnetic field,
electromagnetic radiation

• Boltzmann equation, Monte Carlo method for transport
• Optoelectronic properties
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Figure I.2: A schematic of how our understanding of semiconductor physics proceeds.

relation is modified. This picture allows one to represent electrons near the bandedges
of semiconductors by an “effective mass.”

In real semiconductors atoms are not arranged in perfect periodic structures.
The effects of imperfections are treated perturbatively—as a correction to band theory.
Defects can localize electronic states and cause scattering between states. A semiclassical
picture is then developed where an electron travels in the material, every now and then
suffering a scattering which alters its momentum and/or energy. The scattering rate is
calculated using the Fermi golden rule (or Born approximation) if the perturbation is
small.

The final step in semiconductor physics is an understanding of how electrons

−
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respond to external stimuli such as electric field, magnetic field, electromagnetic field,
etc. A variety of techniques, such as Boltzmann transport equations and Monte Carlo
computer simulations are developed to understand the response of electrons to external
stimulus.

I.3 ROLE OF THIS BOOK
This book provides the underlying physics for the topics listed in Fig. I.1. It covers “old”
topics such as crystal structure and band theory in bulk semiconductors and “new”
topics such as bandstructure of stained heterostructures, self-assembled quantum dots,
and spin transistors. All these topics have been covered in a coherent manner so that
the reader gets a good sense of the current state of semiconductor physics.

In order to provide the reader a better feel for the theoretical derivations a
number of solved examples are sprinkled in the text. Additionally, there are end-of-
chapter problems. This book can be used to teach a course on semiconductors physics.
A rough course outline for a two semester course is shown in Table I.1. In a one semester
course some section of this text can be skipped (e.g., magnetic field effects from Chapter
11) and others can be covered in less detail (e.g., Chapter 8). If a two semester course
is taught, all of the material in the book can be used. It is important to note that this
book can also be used for special topic courses on heterostructures or optoelectronics.



I.3. Role of This Book xix

• Crystal growth; crystal structure 1 lecture

• Strained heterostructures 1 lecture

• Polar heterostructures 1 lecture

Chapter

1

• Bloch theorem, metals, semiconductors, insulators 1 lecture

• Tight binding method 1-2 lectures

• Spin-orbit effects, symmetry of states 1 lecture

• k • p method 1 lecture

• Intrinsic and extrinsic carrier densities 1 lecture

Chapter

2

• Bandstructure of alloys 1 lecture

• Bandstructure in quantum wells 2 lectures

• Strain effects in heterostructures 2 lectures

Chapter

3

• Boltzmann transport equation 1-1/2 lectures

• Averaging procedures 1/2 lecture

• Hall effect, Hall mobility 1 lecture

Chapter

4

Table I.1: Suggested set of topics for a one semester course on semiconductor physics.
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• Ionized impurity scattering 1 lecture

• Alloy, neutral impurity scattering 1 lecture

• Carrier-carrier scattering 1 lecture

Chapter

5

• Phonon dispersion and statistics 2 lectures

• Phonon scatteringã general 1 lecture

• Acoustic phonon scattering, optical phonon scattering 2 lectures

Chapter

6

• Low field mobility 1 lecture

• Monte Carlo techniques 2 lectures

• Velocity-field result discussion 1 lecture

• Transport in lower dimensions 1 lecture

Chapter

7

Optional Chapter
• Bloch oscillations 1 lecture

• Resonant tunneling 1 lecture

• Localization issues and disorder 1 lecture

• Mesoscopic systems 2 lectures

Chapter

8

Table I.2: Suggested set of topics for a one semester course on semiconductor physics (con’t.).
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• Interband transitions: Bulk and 2D 2 lectures

• Intraband transitions in quantum wells 1 lecture

• Charge injection and light emission 1 lecture

• Nonradiative processes 1 lecture

Chapter

9

• Excitonic states in 3D and lower dimensions 2 lectures

• Modulation of optical properties 2 lectures

Chapter

10
Optional Chapter

• Semiclassical theory of magnetotransport 1 lecture

• Landau levels 1 lecture

• Aharonov Bohm effect 1/2 lecture

• Magnetooptic effect 1/2 lecture

• ‘‘Spintronics’’

Chapter

11

Appendix B: Reading assignments

Table I.3: Suggested set of topics for a one semester course on semiconductor physics (con’t.).





Chapter

1

STRUCTURAL
PROPERTIES OF

SEMICONDUCTORS

1.1 INTRODUCTION

Semiconductors form the basis of most modern information processing devices. Elec-
tronic devices such as diodes, bipolar junction transistors, and field effect transistors
drive modern electronic technology. Optoelectronic devices such as laser diodes, modu-
lators, and detectors drive the optical networks. In addition to devices, semiconductor
structures have provided the stages for exploring questions of fundamental physics.
Quantum Hall effect and other phenomena associated with many-body effects and low
dimensions have been studied in semiconductor structures.

It is important to recognize that the ability to examine fundamental physics
issues and to use semiconductors in state of the art device technologies depends crit-
ically on the purity and perfection of the semiconductor crystal. Semiconductors are
often associated with clean rooms and workers clad in “bunny suits” lest the tiniest
stray particle get loose and latch onto the wafer being processed. Indeed, semiconductor
structures can operate at their potential only if they can be grown with a high de-
gree of crystallinity and if impurities and defects can be controlled. For high structural
quality it is essential that a high quality substrate be available. This requires growth
of bulk crystals which are then sliced and polished to allow epitaxial growth of thin
semiconductor regions including heterostructures.

In this chapter we start with a brief discussion of the important bulk and epi-
taxial crystal growth techniques. We then discuss the important semiconductor crystal
structures. We also discuss strained lattice structures and the strain tensor for such
crystals. Strained epitaxy and its resultant consequences are now widely exploited in
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semiconductor physics and it is important to examine how epitaxial growth causes dis-
tortions in the crystal lattice.

1.2 CRYSTAL GROWTH

1.2.1 Bulk Crystal Growth
Semiconductor technology depends critically upon the availability of high quality sub-
strates with as large a diameter as possible. Bulk crystal growth techniques are used
mainly to produce substrates on which devices are eventually fabricated. While for some
semiconductors like Si and GaAs (to some extent for InP) the bulk crystal growth tech-
niques are highly matured; for most other semiconductors it is difficult to obtain high
quality, large area substrates. Several semiconductor technologies are dependent on sub-
strates that are not ideal. For example, the nitrides GaN, AlN, InN are grown on SiC
or sapphire substrates, since there is no reliable GaN substrate. The aim of the bulk
crystal growth techniques is to produce single crystal boules with as large a diameter as
possible and with as few defects as possible. In Si the boule diameters have reached 30
cm with boule lengths approaching 100 cm. Large size substrates ensure low cost device
production.

For the growth of boules from which substrates are obtained, one starts out
with a purified form of the elements that are to make up the crystal. One important
technique that is used is the Czochralski (CZ) technique. In the Czochralski technique
shown in Fig. 1.1, the melt of the charge (i.e., the high quality polycrystalline material)
is held in a vertical crucible. The top surface of the melt is just barely above the melting
temperature. A seed crystal is then lowered into the melt and slowly withdrawn. As the
heat from the melt flows up the seed, the melt surface cools and the crystal begins
to grow. The seed is rotated about its axis to produce a roughly circular cross-section
crystal. The rotation inhibits the natural tendency of the crystal to grow along certain
orientations to produce a faceted crystal.

The CZ technique is widely employed for Si, GaAs, and InP and produces long
ingots (boules) with very good circular cross-section. For Si up to 100 kg ingots can be
obtained. In the case of GaAs and InP the CZ technique has to face problems arising
from the very high pressures of As and P at the melting temperature of the compounds.
Not only does the chamber have to withstand such pressures, also the As and P leave
the melt and condense on the sidewalls. To avoid the second problem one seals the melt
by covering it with a molten layer of a second material (e.g., boron oxide) which floats
on the surface. The technique is then referred to as liquid encapsulated Czochralski, or
the LEC technique.

A second bulk crystal growth technique involves a charge of material loaded in
a quartz container. The charge may be composed of either high quality polycrystalline
material or carefully measured quantities of elements which make up a compound crys-
tal. The container called a “boat” is heated till the charge melts and wets the seed
crystal. The seed is then used to crystallize the melt by slowly lowering the boat tem-
perature starting from the seed end. In the gradient-freeze approach the boat is pushed
into a furnace (to melt the charge) and slowly pulled out. In the Bridgeman approach,
the boat is kept stationary while the furnace temperature is temporally varied to form
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Figure 1.1: Schematic of Czochralski-style crystal grower used to produce substrate ingots.
The approach is widely used for Si, GaAs and InP.

the crystal. The approaches are schematically shown in Fig. 1.2.
The easiest approach for the boat technique is to use a horizontal boat. However,

the shape of the boule that is produced has a D-shaped form. To produce circular cross-
sections vertical configurations have now been developed for GaAs and InP.

In addition to producing high purity bulk crystals, the techniques discussed
above are also responsible for producing crystals with specified electrical properties.
This may involve high resistivity materials along with n- or p-type materials. In Si it is
difficult to produce high resistivity substrated by bulk crystal growth and resistivities are
usually <104 Ω-cm. However, in compound semiconductors carrier trapping impurities
such as chromium and iron can be used to produce material with resistivities of ∼ 108 Ω
cm. The high resistivity or semi-insulating (SI) substrates are extremely useful in device
isolation and for high speed devices. For n- or p-type doping carefully measured dopants
are added in the melt.

1.2.2 Epitaxial Crystal Growth

Once bulk crystals are grown, they are sliced into substrates or wafers about 250 µm
thick. These are polished and used for growth of epitaxial layers a few micrometers
thick. All active devices are produced on these epitaxial layers. As a result the epi-
taxial growth techniques are very important. The epitaxial growth techniques have a
very slow growth rate (as low as a monolayer per second for some techniques) which
allow one to control very accurately the dimensions in the growth direction. In fact,
in techniques like molecular beam epitaxy (MBE) and metal organic chemical vapor
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Figure 1.2: Crystal growing from the melt in a crucible: (a) solidification from one end of the
melt (horizontal Bridgeman method); (b) melting and solidification in a moving zone.

deposition (MOCVD), one can achieve monolayer (∼ 3 Å) control in the growth direc-
tion. This level of control is essential for the variety of heterostructure devices that are
being used in optoelectronics. The epitaxial techniques are also very useful for precise
doping profiles that can be achieved. In fact, it may be argued that without the ad-
vances in epitaxial techniques that have occurred over the last two decades, most of the
developments in semiconductor physics would not have occurred. Table 1.1 gives a brief
view of the various epitaxial techniques used along with some of the advantages and
disadvantages.

Liquid Phase Epitaxy (LPE)
LPE is a relatively simple epitaxial growth technique which was widely used until 1970s
when it gradually gave way to approaches such as MBE and MOCVD. It is a less ex-
pensive technique (compared to MBE or MOCVD), but it offers less control in interface
abruptness when growing heterostructures. LPE is still used for growth of crystals such
as HgCdTe for long wavelength detectors and AlGaAs for double heterostructure lasers.
As shown in Table 1.1, LPE is a close to equilibrium technique in which the substrate is
placed in a quartz or a graphite boat and covered by a liquid of the crystal to be grown
(see Fig. 1.3). The liquid may also contain dopants that are to be introduced into the
crystal. LPE is often used for alloy growth where the growth follows the equilibrium
solid-liquid phase diagram. By precise control of the liquid composition and tempera-
ture, the alloy composition can be controlled. Because LPE is a very close to equilibrium
growth technique, it is difficult to grow alloy systems which are not miscible or even
grow heterostructures with atomically abrupt interfaces. Nevertheless heterostructures
where interface is graded over 10-20 Å can be grown by LPE by sliding the boat over
successive “puddles” of different semiconductors. For many applications such interfaces
are adequate and since LPE is a relatively inexpensive growth technique, it is used in
many commercial applications.

Vapor Phase Epitaxy (VPE)
A large class of epitaxial techniques rely on delivering the components that form the
crystal from a gaseous environment. If one has molecular species in a gaseous form with
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Figure 1.3: A schematic of the LPE growth of AlGaAs and GaAs. The slider moves the sub-
strate, thus positioning itself to achieve contact with the different melts to grow heterostruc-
tures.

LIQUID PHASE
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grow abrupt
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growth for precise
alloy compositions
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Atomically abrupt
interfaces

Techniques can grow
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VAPOR PHASE
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+

+

+

−

−

+

−

+

+

+

−

MOCVD

MOMBE

Table 1.1: A schematic of the various epitaxial crystal growth techniques and some of their
positive and negative aspects.
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Figure 1.4: Reactors for VPE growth. The substrate temperature must be maintained uni-
formly over the area. This is achieved better by lamp heating. A pyrometer is used for temper-
ature measurement.

partial pressure P , the rate at which molecules impinge upon a substrate is given by

F =
P√

2πmkBT
∼ 3.5× 1022P (torr)√

m(g)T (K)
mol./cm2s (1.1)

where m is the molecular weight and T the cell temperature. For most crystals the
surface density of atoms is ∼ 7× 1014 cm−2. If the atoms or molecules impinging from
the vapor can be deposited on the substrate in an ordered manner, epitaxial crystal
growth can take place.

The VPE technique is used mainly for homoepitaxy and does not have the
additional apparatus present in techniques such as MOCVD for precise heteroepitaxy.
As an example of the technique, consider the VPE of Si. The Si containing reactant silane
(SiH4) or dichlorosilane (SiH2Cl2) or trichlorosilane (SiHCl3) or silicon tetrachloride
(SiCl4) is diluted in hydrogen and introduced into a reactor in which heated substrates
are placed as shown in Fig. 1.4. The silane pyrolysis to yield silicon while the chlorine
containing gases react to give SiCl2, HCl and various other silicon-hydrogen-chlorine
compounds. The reaction

2SiCl2 ⇀↽ Si + SiCl4 (1.2)

then yields Si. Since HCl is also produced in the reaction, conditions must be tailored so
that no etching of Si occurs by the HCl. Doping can be carried out by adding appropriate
hydrides (phosphine, arsine, etc.,) to the reactants.

VPE can be used for other semiconductors as well by choosing different ap-
propriate reactant gases. The reactants used are quite similar to those employed in the
MOCVD technique discussed later.

Molecular Beam Epitaxy (MBE)
MBE is capable of controlling deposition of submonolayer coverage on a substrate and
has become one of the most important epitaxial techniques. Almost every semiconductor
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Figure 1.5: A schematic of the MBE growth system.

has been grown by this technique. MBE is a high vacuum technique (∼ 10−11 torr
vacuum when fully pumped down) in which crucibles containing a variety of elemental
charges are placed in the growth chamber (Fig. 1.5). The elements contained in the
crucibles make up the components of the crystal to be grown as well as the dopants
that may be used. When a crucible is heated, atoms or molecules of the charge are
evaporated and these travel in straight lines to impinge on a heated substrate.

The growth rate in MBE is ∼1.0 monolayer per second and this slow rate
coupled with shutters placed in front of the crucibles allow one to switch the composition
of the growing crystal with monolayer control. Since no chemical reactions occur in
MBE, the growth is the simplest of all epitaxial techniques and is quite controllable.
However, since the growth involves high vacuum, leaks can be a major problem. The
growth chamber walls are usually cooled by liquid N2 to ensure high vacuum and to
prevent atoms/molecules to come off from the chamber walls.

The low background pressure in MBE allows one to use electron beams to
monitor the growing crystal. The reflection high energy electron diffraction (RHEED)
techniques relies on electron diffraction to monitor both the quality of the growing
substrate and the layer by layer growth mode.
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Metal Organic Chemical Vapor Deposition (MOCVD)
Metal organic chemical vapor deposition (MOCVD) is another important growth tech-
nique widely used for heteroepitaxy. Like MBE, it is also capable of producing monolayer
abrupt interfaces between semiconductors. A typical MOCVD system is shown in Fig.
1.6. Unlike in MBE, the gases that are used in MOCVD are not made of single elements,
but are complex molecules which contain elements like Ga or As to form the crystal.
Thus the growth depends upon the chemical reactions occurring at the heated substrate
surface. For example, in the growth of GaAs one often uses triethyl gallium and arsine
and the crystal growth depends upon the following reaction:

Ga(CH3)3 +AsH3 ⇀↽ GaAs + 3CH4 (1.3)

One advantage of the growth occurring via a chemical reaction is that one can
use lateral temperature control to carry out local area growth. Laser assisted local area
growth is also possible for some materials and can be used to produce new kinds of
device structures. Such local area growth is difficult in MBE.

There are several varieties of MOCVD reactors. In the atmospheric MOCVD
the growth chamber is essentially at atmospheric pressure. One needs a large amount of
gases for growth in this case, although one does not have the problems associated with
vacuum generation. In the low pressure MOCVD the growth chamber pressure is kept
low. The growth rate is then slower as in the MBE case.

The use of the MOCVD equipment requires very serious safety precautions. The
gases used are highly toxic and a great many safety features have to be incorporated
to avoid any deadly accidents. Safety and environmental concerns are important issues
in almost all semiconductor manufacturing since quite often one has to deal with toxic
and hazardous materials.

In addition to MBE and MOCVD one has hybrid epitaxial techniques often
called MOMBE (metal organic MBE) which try to combine the best of MBE and
MOCVD. In MBE one has to open the chamber to load the charge for the materials to
be grown while this is avoided in MOCVD where gas bottles can be easily replaced from
outside. Additionally, in MBE one has occasional spitting of material in which small
clumps of atoms are evaporated off on to the substrate. This is avoided in MOCVD and
MOMBE.

EXAMPLE 1.1 Consider the growth of GaAs by MBE. The Ga partial pressure in the
growth chamber is 10−5 Torr, and the Ga cell temperature is 900 K. Calculate the flux of Ga
atoms on the substrate. The surface density of Ga atoms on GaAs grown along (001) direction
is 6.3×1014 cm−2. Calculate the growth rate if all of the impinging atoms stick to the substrate.

The mass of Ga atoms is 70 g/mole. The flux is (from Eqn. 1.1)

F =
3.5× 1022 × 10−5

√
70× 900 = 5.27× 1014atoms/cm2

Note that the surface density of Ga atoms on GaAs is ∼ 6.3 × 1014 cm−2. Thus, if all of the

Ga atoms were to stick, the growth rate would be ∼0.8 monolayer per second. This assumes
that there is sufficient arsenic to provide As in the crystal. This is a typical growth rate for

epitaxial films. It would take nearly 10 hours to grow a 10 µm film.



1.2. Crystal Growth 9

GaAs

Mass-flow
controllers

TMGa

TMAl

H2

Growth line

AsH3

Dopant

Mass-flow
Vent line

Heated
wafer

Exhaust line

Scrubber

Exhaust

TMGa : Gallium containing organic compound
TMAl : Aluminum containing organic compound
AsH3 : Arsenic containing compound

Chemical reaction at the heated
substrate deposits GaAs or AlAs.
Mass flow controllers control the
species deposited.

Figure 1.6: Schematic diagram of an MOCVD system employing alkyds (trimethyl gallium
(TMGa) and trimethyl aluminum (TMAl) and metal hydride (arsine) material sources, with
hydrogen as a carrier gas.

1.2.3 Epitaxial Regrowth

The spectacular growth of semiconductor microelectronics owes a great deal to the
concept of the integrated circuit. The ability to fabricate transistors, resistors, inductors
and capacitors on the same wafer is critical to the low cost and high reliability we have
come to expect from microelectronics. It is natural to expect similar dividents from the
concept of the optoelectronic integrated circuit (OEIC). In the OEIC, the optoelectronic
device (the laser or detector or modulator) would be integrated on the same wafer with
an amplifier or logic gates.

One of the key issues in OEICs involves etching and regrowth. As we will see
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later, the optoelectronic devices have a structure that is usually not compatible with
the structure of an electronic device. The optimum layout then involves growing one
of the device structures epitaxially and then masking the region to be used as, say,
the optoelectronic device and etching away the epitaxial region. Next a regrowth is
done to grow the electronic device with a different structure. The process is shown
schematically in Fig. 1.7. While this process looks simple conceptually, there are serious
problems associated with etching and regrowth.

A critical issue in the epitaxial growth of a semiconductor layer is the quality of
the semiconductor-vacuum interface. This semiconductor surface must be “clean,” i.e.,
there should be no impurity layers (e.g., an oxide layer) on the surface. Even if a fraction
of a monolayer of the surface atoms have impurities bonded to them, the quality of the
epitaxial layer suffers drastically. The growth may occur to produce microcrystalline
regions separated by grain boundaries or may be amorphous in nature. In either case,
the special properties arising from the crystalline nature of the material (to be discussed
in the next chapter) are then lost.

The issue of surface cleanliness and surface reconstruction can be addressed
when one is doing a single epitaxial growth. For example, a clean wafer can be loaded
into the growth chamber and the remaining impurities on the surface can be removed by
heating the substrate. The proper reconstruction (which can be monitored by RHEED)
can be ensured by adjusting the substrate temperature and specy overpressure. Now
consider the problems associated with etching after the first epitaxial growth has oc-
curred. As the etching starts, foreign atoms or molecules are introduced on the wafer as
the semiconductor is etched. The etching process is quite damaging and as it ends, the
surface of the etched wafer is quite rough and damaged. In addition, in most growth
techniques the wafer has to be physically moved from the high purity growth chamber
to the etching system. During this transportation, the surface of the wafer may collect
some “dirt.” During the etching process this “dirt” may not be etched off and may
remain on the wafer. As a result of impurities and surface damage, when the second
epitaxial layer is grown after etching, the quality of the layer suffers.

A great deal of processing research in OEICs focusses on improving the etch-
ing/regrowth process. So far the OEICs fabricated in various laboratories have perfor-
mances barely approaching the performance of hybrid circuits. Clearly the problem of
etching/regrowth is hampering the progress in OEIC technology.

It may be noted that the etching regrowth technology is also important in
creating quantum wires and quantum dots which require lateral patterning of epitaxial
layers.

1.3 CRYSTAL STRUCTURE
Essentially all high performance semiconductor devices are based on crystalline mate-
rials. there are some devices that use low cast amorphous or polycrystalline semicon-
ductors, but their performance is quite poor. Crystals are made up of identical building
blocks, the block being an atom or a group of atoms. While in “natural” crystals the
crystalline symmetry is fixed by nature, new advances in crystal growth techniques
are allowing scientists to produce artificial crystals with modified crystalline structure.
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Figure 1.7: The importance of regrowth is clear when one examines the difference in the struc-
ture of electronic and optoelectronic devices. Etching and regrowth is essential for fabrication
of optoelectronic integrated circuits (OEIC).

These advances depend upon being able to place atomic layers with exact precision and
control during growth, leading to “superlattices”. To define the crystal structure, two
important concepts are introduced. The lattice represents a set of points in space which
form a periodic structure. Each point sees an exact similar environment. The lattice is
by itself a mathematical abstraction. A building block of atoms called the basis is then
attached to each lattice point yielding the crystal structure.

An important property of a lattice is the ability to define three vectors a1, a2,
a3, such that any lattice point R′ can be obtained from any other lattice point R by a
translation

R′ = R+m1a1 +m2a2 +m3a3 (1.4)
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where m1, m2, m3 are integers. Such a lattice is called Bravais lattice. The entire lattice
can be generated by choosing all possible combinations of the integers m1, m2, m3 .
The crystalline structure is now produced by attaching the basis to each of these lattice
points.

lattice + basis = crystal structure (1.5)

The translation vectors a1, a2, and a3 are called primitive if the volume of the cell
formed by them is the smallest possible. There is no unique way to choose the primitive
vectors. One choice is to pick

a1 to be the shortest period of the lattice
a2 to be the shortest period not parallel to a1

a3 to be the shortest period not coplanar with a1 and a2

It is possible to define more than one set of primitive vectors for a given lat-
tice, and often the choice depends upon convenience. The volume cell enclosed by the
primitive vectors is called the primitive unit cell.

Because of the periodicity of a lattice, it is useful to define the symmetry of the
structure. The symmetry is defined via a set of point group operations which involve
a set of operations applied around a point. The operations involve rotation, reflection
and inversion. The symmetry plays a very important role in the electronic properties
of the crystals. For example, the inversion symmetry is extremely important and many
physical properties of semiconductors are tied to the absence of this symmetry. As will
be clear later, in the diamond structure (Si, Ge, C, etc.), inversion symmetry is present,
while in the Zinc Blende structure (GaAs, AlAs, InAs, etc.), it is absent. Because of
this lack of inversion symmetry, these semiconductors are piezoelectric, i.e., when they
are strained an electric potential is developed across the opposite faces of the crystal. In
crystals with inversion symmetry, where the two faces are identical, this is not possible.

1.3.1 Basic Lattice Types
The various kinds of lattice structures possible in nature are described by the symmetry
group that describes their properties. Rotation is one of the important symmetry groups.
Lattices can be found which have a rotation symmetry of 2π, 2π

2 , 2π
3 , 2π

4 , 2π
6 . The rotation

symmetries are denoted by 1, 2, 3, 4, and 6. No other rotation axes exist; e.g., 2π
5 or 2π

7
are not allowed because such a structure could not fill up an infinite space.

There are 14 types of lattices in 3D. These lattice classes are defined by the
relationships between the primitive vectors a1, a2, and a3, and the angles α, β, and
γ between them. The general lattice is triclinic (α �= β �= γ, a1 �= a2 �= a3) and there
are 13 special lattices. Table 1.2 provides the basic properties of these three dimen-
sional lattices. We will focus on the cubic lattice which is the structure taken by all
semiconductors.

There are 3 kinds of cubic lattices: simple cubic, body centered cubic, and face
centered cubic.
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Number Restrictions on
of conventional cell axes

System lattices and singles
Triclinic 1 a1 �= a2 �= a3

α �= β �= γ
Monoclinic 2 a1 �= a2 �= a3

α = γ = 90o �= β
Orthorhombic 4 a1 �= a2 �= a3

α = β = γ = 90o

Tetragonal 2 a1 = a2 �= a3

α = β = γ = 90o

Cubic 3 a1 = a2 = a3

α = β = γ = 90o

Trigonal 1 a1 = a2 = a3

α = β = γ < 120o, �= 90o
Hexagonal 1 a1 = a2 �= a3

α = β = 90o

γ = 120o

Table 1.2: The 14 Bravais lattices in 3-dimensional systems and their properties.
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a

Figure 1.8: A simple cubic lattice showing the primitive vectors. The crystal is produced by
repeating the cubic cell through space.
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a3

a2
a1

Figure 1.9: The body centered cubic lattice along with a choice of primitive vectors.

Simple cubic: The simple cubic lattice shown in Fig. 1.8 is generated by the primitive
vectors

ax, ay, az (1.6)

where the x, y, z are unit vectors.

Body-centered cubic: The bcc lattice shown in Fig. 1.9 can be generated from the
simple cubic structure by placing a lattice point at the center of the cube. If x̂, ŷ, and ẑ
are three orthogonal unit vectors, then a set of primitive vectors for the body-centered
cubic lattice could be

a1 = ax̂, a2 = aŷ, a3 =
a

2
(x̂+ ŷ + ẑ) (1.7)

A more symmetric set for the bcc lattice is

a1 =
a

2
(ŷ + ẑ− x̂), a2 =

a

2
(ẑ+ x̂− ŷ), a3 =

a

2
(x̂+ ŷ − ẑ) (1.8)

Face Centered Cubic: Another equally important lattice for semiconductors is the
face-centered cubic (fcc) Bravais lattice. To construct the face-centered cubic Bravais
lattice add to the simple cubic lattice an additional point in the center of each square
face (Fig. 1.10).

A symmetric set of primitive vectors for the face-centered cubic lattice (see Fig.
1.10) is

a1 =
a

2
(ŷ + ẑ), a2 =

a

2
(ẑ + x̂), a3 =

a

2
(x̂+ ŷ) (1.9)

The face-centered cubic and body-centered cubic Bravais lattices are of great
importance, since an enormous variety of solids crystallize in these forms with an atom
(or ion) at each lattice site. Essentially all semiconductors of interest for electronics and
optoelectronics have fcc structure.
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Figure 1.10: Primitive basis vectors for the face centered cubic lattice.

1.3.2 Basic Crystal Structures
Diamond and Zinc Blende Structures
Most semiconductors of interest for electronics and optoelectronics have an underlying
fcc lattice. However, they have two atoms per basis. The coordinates of the two basis
atoms are

(000) and (
a

4
,
a

4
,
a

4
) (1.10)

Since each atom lies on its own fcc lattice, such a two atom basis structure may be
thought of as two inter-penetrating fcc lattices, one displaced from the other by a trans-
lation along a body diagonal direction (a4

a
4
a
4 ).

Figure 1.11 gives details of this important structure. If the two atoms of the
basis are identical, the structure is called diamond. Semiconductors such as Si, Ge, C,
etc., fall in this category. If the two atoms are different, the structure is called the Zinc
Blende structure. Semiconductors such as GaAs, AlAs, CdS, etc., fall in this category.
Semiconductors with diamond structure are often called elemental semiconductors, while
the Zinc Blende semiconductors are called compound semiconductors. The compound
semiconductors are also denoted by the position of the atoms in the periodic chart, e.g.,
GaAs, AlAs, InP are called III-V (three-five) semiconductors while CdS, HgTe, CdTe,
etc., are called II-VI (two-six) semiconductors.

Hexagonal Close Pack Structure The hexagonal close pack (hcp) structure is
an important lattice structure and many metals have this underlying lattice. Some
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a

Figure 1.11: The zinc blende crystal structure. The structure consists of the interpenetrating
fcc lattices, one displaced from the other by a distance ( a

4
a
4
a
4
) along the body diagonal. The

underlying Bravais lattice is fcc with a two atom basis. The positions of the two atoms is (000)
and (a

4
a
4
a
4
).

semiconductors such as BN, AlN, GaN, SiC, etc., also have this underlying lattice (with
a two-atom basis). The hcp structure is formed as shown in Fig. 1.12a. Imagine that a
close-packed layer of spheres is formed. Each sphere touches six other spheres, leaving
cavities, as shown. A second close-packed layer of spheres is placed on top of the first
one so that the second layer sphere centers are in the cavities formed by the first layer.
The third layer of close-packed spheres can now be placed so that center of the spheres
do not fall on the center of the starting spheres (left side of Fig. 1.12a) or coincide with
the centers of the starting spheres (right side of Fig. 1.12b). These two sequences, when
repeated, produce the fcc and hcp lattices.

In Fig. 1.12b we show the detailed positions of the lattice points in the hcp
lattice. The three lattice vectors are a1, a2 a3, as shown. The vector a3 is denoted by c
and the term c-axis refers to the orientation of a3. In an ideal structure, if | a |=| a1 |=|
a2 |,

c

a
=

√
8
3

(1.11)

In Table 1.3 we show the structural properties of some important materials. If two or
more semiconductors are randomly mixed to produce an alloy, the lattice constant of
the alloy is given by Vegard’s law according to which the alloy lattice constant is the
weighted mean of the lattice constants of the individual components.

1.3.3 Notation to Denote Planes and Points in a Lattice: Miller Indices
A simple scheme is used to describe lattice planes, directions and points. For a plane,
we use the following procedure:
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Figure 1.12: (a) A schematic of how the fcc and hcp lattices are formed by close packing of
spheres. (b) Arrangement of lattice points on an hcp lattice.

(1) Define the x, y, z axes (primitive vectors).
(2) Take the intercepts of the plane along the axes in units of lattice con-

stants.
(3) Take the reciprocal of the intercepts and reduce them to the smallest

integers.
The notation (hkl) denotes a family of parallel planes.
The notation (hkl) denotes a family of equivalent planes.

To denote directions, we use the smallest set of integers having the same ratio as the
direction cosines of the direction.

In a cubic system the Miller indices of a plane are the same as the direction
perpendicular to the plane. The notation [ ] is for a set of parallel directions; < > is
for a set of equivalent direction. Fig. 1.13 shows some examples of the use of the Miller
indices to define planes.

EXAMPLE 1.2 The lattice constant of silicon is 5.43 Å. Calculate the number of silicon
atoms in a cubic centimeter. Also calculate the number density of Ga atoms in GaAs which
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Material Structure Lattice Constant Density
( ) (gm/cm3)

C Diamond 3.5668 3.5153

Si Diamond 5.431 2.329

Ge Diamond 5.658 5.323

GaAs Zinc Blende 5.653 5.318

AlAs Zinc Blende 5.660 3.760

InAs Zinc Blende 6.058 5.667

GaN Wurtzite a = 3.175; c = 5.158 6.095

AlN Wurtzite a = 3.111; c = 4.981 3.255

SiC Zinc Blende 4.360 3.166

Cd hcp a = 2.98; c = 5.620 8.65

Cr bcc 2.88 7.19

Co hcp a = 2.51; c = 4.07 8.9

Au fcc 4.08 19.3

Fe bcc 2.87 7.86

Ag fcc 4.09 10.5

Al fcc 4.05 2.7

Cu fcc 3.61 8.96

Table 1.3: Structure, lattice constant, and density of some materials at room temperature.

has a lattice constant of 5.65 Å.

Silicon has a diamond structure which is made up of the fcc lattice with two atoms
on each lattice point. The fcc unit cube has a volume a3. The cube has eight lattice sites at the
cube edges. However, each of these points is shared with eight other cubes. In addition, there
are six lattice points on the cube face centers. Each of these points is shared by two adjacent
cubes. Thus the number of lattice points per cube of volume a3 are

N(a3) =
8

8
+
6

2
= 4

A
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ATOMS ON THE (111) PLANE

Could be either Ga or As

1 bond connecting an adjacent
plane on one side

3 bonds connecting an adjacent
plane on the other side

ATOMS ON THE (110) PLANE

Each atom has 4 bonds:
• 2 bonds in the (110) plane
• 1 bond connects each atom to
adjacent (110) planes

Cleaving adjacent planes
requires breaking 1 bond per atom

ATOMS ON THE (001) PLANE

2 bonds connect each atom to
adjacent (001) plane

Atoms are either Ga or As in a
GaAs crystal

Cleaving adjacent planes
requires breaking 2 bonds per atom

Figure 1.13: Some important planes in the cubic system along with their Miller indices. This
figure also shows how many bonds connect adjacent planes. This number determines how easy
or difficult it is to cleave the crystal along these planes.
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In silicon there are two silicon atoms per lattice point. The number density is, therefore,

NSi =
4× 2
a3

=
4× 2

(5.43× 10−8)3
= 4.997× 1022 atoms/cm3

In GaAs, there is one Ga atom and one As atom per lattice point. The Ga atom
density is, therefore,

NGa =
4

a3
=

4

(5.65× 10−8)3
= 2.22× 1022 atoms/cm3

There are an equal number of As atoms.

EXAMPLE 1.3 In semiconductor technology, a Si device on a VLSI chip represents one
of the smallest devices while a GaAs laser represents one of the larger devices. Consider a
Si device with dimensions (5 × 2 × 1) µm3 and a GaAs semiconductor laser with dimensions
(200× 10× 5) µm3. Calculate the number of atoms in each device.

From Example 1.1 the number of Si atoms in the Si transistor are

NSi = (5× 1022 atoms/cm3)(10× 10−12 cm3) = 5× 1011 atoms

The number of Ga atoms in the GaAs laser are

NGa = (2.22× 1022)(104 × 10−12) = 2.22× 1014 atoms

An equal number of As atoms are also present in the laser.

EXAMPLE 1.4 Calculate the surface density of Ga atoms on a Ga terminated (001) GaAs
surface.

In the (001) surfaces, the top atoms are either Ga or As leading to the terminology
Ga terminated (or Ga stabilized) and As terminated (or As stabilized), respectively. A square
of area a2 has four atoms on the edges of the square and one atom at the center of the square.
The atoms on the square edges are shared by a total of four squares. The total number of
atoms per square is

N(a2) =
4

4
+ 1 = 2

The surface density is then

NGa =
2

a2
=

2

(5.65× 10−8)2
= 6.26× 1014 cm−2

EXAMPLE 1.5 Calculate the height of a GaAs monolayer in the (001) direction.

In the case of GaAs, a monolayer is defined as the combination of a Ga and As atomic
layer. The monolayer distance in the (001) direction is simply

Am� =
a

2
=
5.65

2
= 2.825 Å
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Ga

As

Al

Figure 1.14: Arrangement of atoms in a (GaAs)2(AlAs)2 superlattice grown along (001) di-
rection.

1.3.4 Artificial Structures: Superlattices and Quantum Wells

It is known that electrons and optical properties can be altered by using heterostruc-
tures, i.e., combinations of more that one semiconductor. MBE or MOCVD are tech-
niques which allow monolayer (∼3 Å) control in the chemical composition of the growing
crystal. Nearly every semiconductor extending from zero bandgap (α-Sn,HgCdTe) to
large bandgap materials such as ZnSe,CdS, etc., has been grown by epitaxial techniques
such as MBE and MOCVD. Heteroepitaxial techniques allow one to grow heterostruc-
tures with atomic control, one can change the periodicity of the crystal in the growth
direction. This leads to the concept of superlattices where two (or more) semiconductors
A and B are grown alternately with thicknesses dA and dB respectively. The periodicity
of the lattice in the growth direction is then dA + dB . A (GaAs)2 (AlAs)2 superlattice
is illustrated in Fig. 1.14. It is a great testimony to the precision of the new growth
techniques that values of dA and dB as low as monolayer have been grown.

It is important to point out that the most widely used heterostructures are
not superlattices but quantum wells, in which a single layer of one semiconductor is
sandwiched between two layers of a larger bandgap material. Such structures allow
one to exploit special quantum effects that have become very useful in electronic and
optoelectronic devices.
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4

4

(2 x 4 unit cell)

(a) (b)

Top layer As atoms
Second layer Ga atoms
Third layer As atoms

Figure 1.15: The structure (a) of the unreconstructed GaAs (001) arsenic-rich surface. The
missing dimer model (b) for the GaAs (001) (2×4) surface. The As dimers are missing to create
a 4 unit periodicity along one direction and a two unit periodicity along the perpendicular
direction.

1.3.5 Surfaces: Ideal Versus Real

The crystalline and electronic properties are quite different from the properties of the
bulk material. The bulk crystal structure is decided by the internal chemical energy
of the atoms forming the crystal with a certain number of nearest neighbors, second
nearest neighbors, etc. At the surface, the number of neighbors is suddenly altered.
Thus the spatial geometries which were providing the lowest energy configuration in the
bulk may not provide the lowest energy configuration at the surface. Thus, there is a
readjustment or “reconstruction” of the surface bonds towards an energy minimizing
configuration.

An example of such a reconstruction is shown for the GaAs surface in Fig. 1.15.
The figure (a) shows an ideal (001) surface where the topmost atoms form a square
lattice. The surface atoms have two nearest neighbor bonds (Ga-As) with the layer
below, four second neighbor bonds (e.g., Ga-Ga or As-As) with the next lower layer, and
four second neighbor bonds within the same layer. In a “real” surface, the arrangement
of atoms is far more complex. We could denote the ideal surface by the symbol C(1×1),
representing the fact that the surface periodicity is one unit by one unit along the
square lattice along [110] and [1̄10]. The reconstructed surfaces that occur in nature
are generally classified as C(2×8) or C(2×4) etc., representing the increased periodicity
along the [1̄10] and [110] respectively. The C(2×4) case is shown schematically in Fig.

A

A
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1.15b, for an arsenic stabilized surface (i.e., the top monolayer is As). The As atoms
on the surface form dimers (along [1̄10] on the surface to strengthen their bonds. In
addition, rows of missing dimers cause a longer range ordering as shown to increase the
periodicity along the [110] direction to cause a C(2×4) unit cell. The surface periodicity
is directly reflected in the x-ray diffraction pattern.

A similar effect occurs for the (110) surface of GaAs. This surface has both Ga
and As atoms (the cations and anions) on the surface. A strong driving force exists
to move the surface atoms and minimize the surface energy. Reconstruction effects
also occur in silicon surfaces, where depending upon surface conditions a variety of
reconstructions are observed. Surface reconstructions are very important since often the
quality of the epitaxial crystal growth depends critically on the surface reconstruction.

EXAMPLE 1.6 Calculate the planar density of atoms on the (111) surface of Ge.
As can be seen from Fig. 1.13, we can form a triangle on the (111) surface. There are

three atoms on the tips of the triangle. These atoms are shared by six other similar triangles.
There are also 3 atoms along the edges of the triangle which are shared by two adjacent
triangles. Thus the number of atoms in the triangle are

3

6
+
3

2
= 2

The area of the triangle is
√
3a2/2. The density of Ge atoms on the surface is then 7.29 ×

1014 cm−2.

1.3.6 Interfaces
Like surfaces, interfaces are an integral part of semiconductor devices. We have already
discussed the concept of heterostructures and superlattices which involve interfaces be-
tween two semiconductors. These interfaces are usually of high quality with essentially
no broken bonds, except for dislocations in strained structures (to be discussed later).
There is, nevertheless, an interface roughness of one or two monolayers which is pro-
duced because of either non-ideal growth conditions or imprecise shutter control in the
switching of the semiconductor species. The general picture of such a rough interface is
as shown in Fig. 1.16 for epitaxially grown interfaces. The crystallinity and periodicity
in the underlying lattice is maintained, but the chemical species have some disorder
on interfacial planes. Such a disorder is quite important in many electronic and opto-
electronic devices.

One of the most important interfaces in electronics is the Si/SiO2 interface.
This interface and its quality is responsible for essentially all of the modern consumer
electronic revolution. This interface represents a situation where two materials with
very different lattice constants and crystal structures are brought together. However, in
spite of these large differences the interface quality is quite good. In Fig. 1.17 we show
a TEM cross-section of a Si/SiO2 interface. It appears that the interface has a region
of a few monolayers of amorphous or disordered Si/SiO2 region creating fluctuations
in the chemical species (and consequently in potential energy) across the interface.
This interface roughness is responsible for reducing mobility of electrons and holes in
MOS devices. It can also lead to “trap” states, which can seriously deteriorate device
performance if the interface quality is poor.
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∆ λ

AlAs (perfect crystal)

GaAs (perfect crystal)

Figure 1.16: A schematic picture of the interfaces between materials with similar lattice
constants such as GaAs/AlAs. No loss of crystalline lattice and long range order is suffered in
such interfaces. The interface is characterized by islands of height ∆ and lateral extent λ.

Finally, we have the interfaces formed between metals and semiconductors.
Structurally, these important interfaces are hardest to characterize. These interfaces
are usually produced in presence of high temperatures and involve diffusion of metal
elements along with complex chemical reactions. The “interfacial region” usually extends
over several hundred Angstroms and is a complex non-crystalline region.

1.3.7 Defects in Semiconductors
In the previous section we have discussed the properties of the perfect crystalline struc-
ture. In real semiconductors, one invariably has some defects that are introduced due
to either thermodynamic considerations or the presence of impurities during the crystal
growth process. In general, defects in crystalline semiconductors can be characterized as
i) point defects; ii) line defects; iii) planar defects and iv) volume defects. These defects
are detrimental to the performance of electronic and optoelectronic devices and are to
be avoided as much as possible. We will give a brief overview of the important defects.

Point Defects
A point defect is a highly localized defect that affects the periodicity of the crystal
only in one or a few unit cells. There are a variety of point defects, as shown in Fig.
1.18. Defects are present in any crystal and their concentration is given roughly by the
thermodynamics relation

Nd

NTot
= kd exp

(
− Ed
kBT

)
(1.12)

where Nd is the vacancy density, NTot the total site density in the crystal, Ed the defect
formation energy, kd is a dimensionless parameter with values ranging from 1 to 10 in
semiconductors, and T , the crystal growth temperature. The vacancy formation energy
is in the range of an eV for most semiconductors.

An important point defect in compound semiconductors such as GaAs is the
anti-site defect in which one of the atoms, say Ga, sits on the arsenic sublattice instead
of the Ga sublattice. Such defects (denoted by GaAs) can be a source of reduced device
performance.

Other point defects are interstitials in which an atom is sitting in a site that is
in between the lattice points as shown in Fig. 1.18, and impurity atoms which involve a
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− oxygen
− silicon

Si-O bond: 1.62
O-O bond: 2.65

SiO2

Si
Rows
of Si
atoms

a = 5.43

Si-Si bond: 2.34

Figure 1.17: The tremendous success of Si technology is due to the Si/SiO2 interface. In spite
of the very different crystal structure of Si and SiO2, the interface is extremely sharp, as shown
in the TEM picture in this figure.

wrong chemical species in the lattice. In some cases the defect may involve several sites
forming a defect complex.

Line Defects or Dislocations
In contrast to point defects, line defects (called dislocations) involve a large number of
atomic sites that can be connected by a line. Dislocations are produced if, for example,
an extra half plane of atoms are inserted (or taken out) of the crystal as shown in Fig.
1.19. Such dislocations are called edge dislocations. Dislocations can also be created if
there is a slip in the crystal so that part of the crystal bonds are broken and reconnected
with atoms after the slip.

Dislocations can be a serious problem, especially in the growth of strained
heterostructures (to be discussed later). In optoelectronic devices, dislocations can ruin
the device performance and render the device useless. Thus the control of dislocations
is of great importance.

Planar Defects and Volume Defects
Planar defects and volume defects are not important in single crystalline materials,
but can be of importance in polycrystalline materials. If, for example, silicon is grown
on a glass substrate, it is likely that polycrystalline silicon will be produced. In the
polycrystalline material, small regions of Si (∼ a few microns in diameter) are perfectly

A
A

A

A
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Vacancy

Self
interstitial

Impurity
interstitial

Substitutional

POINT DEFECTS

• Effect is localized
to a few atomic sites

Figure 1.18: A schematic showing some important point defects in a crystal.

crystalline, but are next to microcrystallites with different orientations. The interface
between these microcrystallites are called grain boundaries. Grain boundaries may be
viewed as an array of dislocations.

Volume defects can be produced if the crystal growth process is poor. The
crystal may contain regions that are amorphous or may contain voids. In most epitaxial
techniques used in modern optoelectronics, these defects are not a problem. However,
the developments of new material systems such as diamond (C) or SiC are hampered
by such defects.

EXAMPLE 1.7 Consider an equilibrium growth of a semiconductor at a temperature of
1000 K. The vacancy formation energy is 2.0 eV. Calculate the vacancy density produced if
the site density for the semiconductor is 2.5× 1022 cm−3. Assume that kd = 1.

The vacancy density is

Nvac = NTot exp
(
−Evac

kBT

)
= (2.5× 1022 cm−3) exp

(
− 2.0 eV

0.0867 eV

)
= 2.37× 1012 cm−3

This is an extremely low density and will have little effect on the properties of the

semiconductor. The defect density would be in mid 1015 cm−3 range if the growth temperature

was 1500 K. At such values, the defects can significantly affect device performance.

1.4 STRAINED HETEROSTRUCTURES
In an epitaxial process, the overlayer that is grown on the substrate could have a lattice
constant that may differ from that of the substrate. Such epitaxy is called strained
epitaxy and is one of the important emerging areas of crystal growth studies. The
motivation for strained epitaxy is two fold:
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Row of atoms
have only 3
nearest
neighbor bonds

Figure 1.19: A schematic showing the presence of a dislocation. This line defect is produced
by adding an extra half plane of atoms. At the edge of the extra plane, the atoms have a
missing bond.

i) Incorporation of built-in strain: When a lattice mismatched semiconductor
is grown on a substrate and the thickness of the overlayer is very thin (this will be
discussed in detail later), the overlayer has a built-in strain. This built-in strain has
important effects on the electronic and optoelectronic properties of the material and
can be exploited for high performance devices.

ii) Generation of a new effective substrate: We have noted that in semiconductor
technology, high quality substrates are only available for Si, GaAs and InP (sapphire and
quartz substrates are also available and used for some applications). Most semiconduc-
tors are not lattice-matched to these substrates. How can one grow these semiconductors
epitaxially? One solution that has emerged is to grow the overlayer on a mismatched
substrate. If the conditions are right, a lot of dislocations are generated and eventually
the overlayer forms its own substrate. This process allows a tremendous flexibility in
semiconductor technology. Not only can it, in principle, resolve the substrate availability
problem, it also allows the possibility of growing GaAs on Si, CdTe on GaAs, etc. Thus
different semiconductor technologies can be integrated on the same wafer.

Coherent and Incoherent Structures
Consider a case where an overlayer with lattice constant aL is grown on a substrate
with lattice constant aS . This situation is shown schematically in Fig. 1.20. The strain
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between the two materials is defined as

ε =
aS − aL

aL
(1.13)

Consider a conceptual exercise where we deposit a monolayer of the overlayer on the
substrate. If the lattice constant of the overlayer is maintained to be aL, it is easy to
see that after every 1/ε bonds between the overlayer and the substrate, either a bond
is missing or an extra bond appears as shown in Fig. 1.20b. In fact, there would be a
row of missing or extra bonds since we have a 2-dimensional plane. These defects are
the dislocations. The presence of these dislocations costs energy to the system since a
number of atoms do not have proper chemical bonding at the interface.

An alternative to the incoherent case is shown in Fig. 1.20c. Here all the atoms
at the interface of the substrate and the overlayer are properly bonded by adjusting
the in-plane lattice constant of the overlayer to that of the substrate. This causes the
overlayer to be under strain and the system has a certain amount of strain energy.
This strain energy grows as the overlayer thickness increases. In the strained epitaxy,
the choice between the state of the structure shown in Fig. 1.20b and the state shown
in Fig. 1.20c is decided by free energy minimization considerations. Theoretical and
experimental studies have focussed on these considerations for over six decades, and the
importance of these studies has grown since the advent of heteroepitaxy. The general
observations can be summarized as follows:

For small lattice mismatch (ε < 0.1), the overlayer initially grows in perfect
registry with the substrate, as shown in Fig. 1.20c. However, as noted before, the strain
energy will grow as the overlayer thickness increases. As a result, it will eventually be
favorable for the overlayer to generate dislocations. In simplistic theories this occurs at
an overlayer thickness called the critical thickness, dc, which is approximately given by

dc ∼= aS
2|ε| (1.14)

In reality, the point in growth where dislocations are generated is not so clear cut and
depends upon growth conditions, surface conditions, dislocation kinetics, etc. However,
one may use the criteria given by Eqn. 1.14 for loosely characterizing two regions of
overlayer thickness for a given lattice mismatch. Below critical thickness, the overlayer
grows without dislocations and the film is under strain. Under ideal conditions above
critical thickness, the film has a dislocation array, and after the dislocation arrays are
generated, the overlayer grows without strain with its free lattice constant.

While strained epitaxy below critical thickness is an extremely powerful tool
for tailoring the optoelectronic properties of semiconductors, epitaxy beyond the critical
thickness is important to provide new effective substrates for new material growth. For
these applications the key issues center around ensuring that the dislocations generated
stay near the overlayer-substrate interface and do not propagate into the overlayer as
shown in Fig. 1.21. A great deal of work has been done to study this problem. Often
thin superlattices in which the individual layers have alternate signs of strain are grown
to “trap” or “bend” the dislocations. It is also useful to build the strain up gradually.

EXAMPLE 1.8 Estimate the critical thickness for In0.3Ga0.7As grown on a GaAs substrate.
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(a)

(b)

(c)

n bonds: substrate

n + 1 bonds: epilayer

Substrate

Overlayer

aL > aS aL < aS

Coherent Coherent

Incoherent Incoherent

n bonds: substrate

n−1 bonds: epilayer

Figure 1.20: (a) The conceptual exercise in which an overlayer with one lattice constant is
placed without distortion on a substrate with a different lattice constant. (b) Dislocations are
generated at positions where the interface bonding is lost. (c) The case is shown where the
overlayer is distorted so that no dislocation is generated.
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Dislocation Propagation:
Missing rows of atoms

"Free standing"
region with no
dislocations

Dislocations are
confined

Substrate
Substrate

Figure 1.21: Strained epitaxy above critical thickness. On the left hand side is shown a
structure in which the dislocations are confined near the overlayer-substrate interface. This
is a desirable mode of epitaxy. On the right hand side, the dislocations are penetrating the
overlayer, rendering it useless for most optoelectronic applications.

The lattice constant of an alloy is given by the Vegard’s law:

a(In0.3Ga0.7As) = 0.3aInAs + 0.7aGaAs

= 5.775 Å

The strain is

ε =
5.653− 5.775

5.653
= −0.022

The critical thickness is approximately

dc =
5.653 Å

2(0.022)
= 128 Å

This thickness is quite adequate for most devices and can be used to make useful

quantum well devices. If, on the other hand, the strain is, say, 5%, the critical thickness is

∼ 50 Å, which is too thin for most useful device applications.

Self-Assembed Structures
When a lattice mismatched structure is grown on a substrate (which for most cases
can be regarded as semi-infinite) a number of energetic and kinetic demands come into
play. There is strain energy that is created in the system if the overlayer is under strain.
This has to compete against the chemical bonding energy created by bond formation.
Additionally, in real growth surface effects and the ability of the system to reach the
free energy minimum state play an important role.

In Fig. 1.22 we show three kinds of growth mechanisms that occur when a
strained overlayer is grown on a substrate under near equlibrium conditions. In Fig. 1.22
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Figure 1.22: Growth modes in strained epitaxy. The island mode growth can be exploited to
make “self-assembled” quantum dot structures.

we have a case where the lattice mismatch is very small (ε ≤ 2%). The overlayer grows
in the monolayer by monolayer mode since this allows the maximum chemical bonding
to occur. If the lattice mismatch is increased, the growth occurs by a mode known as
the Stranski-Krastanow mode where the initial growth starts out in the monolayer by
monolayer growth, but then the overlayer grows in an island mode. The island growth
provides fewer chemical per atom for the growing layer (since the surface area is larger),
but the strain energy is minimized, since the bond lengths do not have to adjust as much
to fit the substrate. Finally, at higher lattice mismatch the growth initiates directly in
the island mode (the Volmer-Weber mode).

If heterostructures are to be grown with atomically abrupt interfaces between
two semiconductors, one should be in the layer-by-layer growth mode described schemat-
ically in Fig. 1.22. There are, however, some advantages of growing in the island mode.
By growing islands and then imbedding them by another material it is possible to grow
quasi-zero dimensional systems in which electron (holes) are confined in all threee direc-
tions. Since such quantum dots are self-organized and regime no lithography/etching/
regrowth they are very attractive for many applications. Such self-organized quantum
dots have been grown with InGaAs/GaAs, SiGe/Si, etc.

A A
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1.5 STRAIN TENSOR IN LATTICE MISMATCHED EPITAXY
In order to study the effect of strain on electronic properties of semiconductors, it is first
essential to establish the strain tensor produced by epitaxy. In Appendix A we discuss
important issues in strain and stress in materials. The reader who is unfamiliar with
these issues should go over this appendix which is the basis for the results given in this
section. As noted above, careful growth of an epitaxial layer whose lattice constant is
close, but not equal, to the lattice constant of the substrate can result in a coherent
strain. If the strain is small one can have layer-by-layer growth as shown in Fig. 1.22.
In this case the lattice constant of the epitaxial layer in the directions parallel to the
interface is forced to be equal to the lattice constant of the substrate. The lattice constant
of the epitaxial perpendicular to the substrate will be changed by the Poisson effect.
If the parallel lattice constant is forced to shrink, or a compressive strain is applied,
the perpendicular lattice constant will grow. Conversely, if the parallel lattice constant
of the epitaxial layer is forced to expand under tensile strain, the perpendicular lattice
constant will shrink. These two cases are depicted in Fig. 1.20c. This type of coherently
strained crystal is called pseudomorphic.

For layer-by-layer growth, the epitaxial semiconductor layer is biaxially strained
in the plane of the substrate, by an amount ε‖, and uniaxially strained in the perpendic-
ular direction, by an amount ε⊥. For a thick substrate, the in-plane strain of the layer is
determined from the bulk lattice constants of the substrate material, aS , and the layer
material, aL:

e‖ =
aS
aL

− 1
= ε (1.15)

Since the layer is subjected to no stress in the perpendicular direction, the perpendicular
strain, ε⊥, is simply proportional to ε‖:

ε⊥ =
−ε‖
σ

(1.16)

where the constant σ is known as Poisson’s ratio.
Noting that there is no stress in the direction of growth it can be simply shown

that for the strained layer grown on a (001) substrate (for an fcc lattice)

σ =
c11

2c12
(1.17)

εxx = ε‖
εyy = εxx

εzz =
−2c12

c11
ε‖

εxy = 0
εyz = 0
εzx = 0
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while in the case of strained layer grown on a (111) substrate

σ =
c11 + 2c12 + 4c44

2c11 + 4c12 − 4c44

εxx =
[
2
3
− 1
3

(
2c11 + 4c12 − 4c44

c11 + 2c12 + 4c44

)]
ε‖

εyy = εxx

εzz = εxx

εxy =
[−1
3

− 1
3

(
2c11 + 4c12 − 4c44

c11 + 2c12 + 4c44

)]
ε‖

εyz = εxy

εzx = εyz (1.18)

The general strain tensor for arbitrary orientation is shown in Fig. 1.23.
In general, the strained epitaxy causes a distortion of the cubic lattice and,

depending upon the growth orientation, the distortions produce a new reduced crystal
symmetry. It is important to note that for (001) growth, the strain tensor is diagonal
while for (111), and several other directions, the strain tensor has nondiagonal terms.
The nondiagonal terms can be exploited to produce built-in electric fields in certain
heterostructures as will be discussed in the next section.

An important heterostructure system involves growth of hcp lattice-based Al-
GaN or InGaN on a GaN substrate along the c-axis. In this case the strain tensor is
given by (aL is the substrate lattice constant, aS is overlayer lattice constant)

εxx = εyy =
aS
aL

− 1

εzz = −2c13

c33
εxx (1.19)

This strain is exploited to generate piezoelectric effect based interface charge as discussed
in the next section. In Table 1.4 we provide values of elastic constant of several important
semiconductors.

Strained Tensor for Self-Organized Dots
We have noted earlier that under high strain conditions we can have growth occur in the
Stranski-Krastonow mode where the initial epilayer (one or two monolayers) grows in
the layer by layer mode and then the growth occurs by the island mode. The islands that
are produced often have a pyramidal shape as shown in Fig. 1.22. In some systems the
islands have the shape of a truncated pyramid or even of a “lens.” Such “self-assembled”
dots can be used to form quantum dots where a small bandgap material is enclosed
completely by a large bandgap material. Such quantum dots have been exploited for
zero dimensional physics and devices.

The strain tensor of the self-assembled dots is different from that in a layer that
is atomically flat. In Fig. 1.24 we show the strain tensor calculated for a self-assembled
dot. The wetting layer (region A in Fig. 1.24) has the usual biaxial strain, but the
pyramidal dot has a strong hydrostatic and biaxial component. There is also a large
shear component at the edges of the pyramid.
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GENERAL STRAIN TENSOR ε|| =
aS
aL
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Figure 1.23: The general strain tensor produced when an overlayer is grown on different
substrate orientations. The strain between the two materials is ε‖.
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Material C11(N/m2) C12(N/m2) C41(N/m2)

Si 1.66 x 1011 0.64 x 1011 0.8 x 1011

Ge 1.29 x 1011 0.48 x 1011 0.67 x 1011

GaAs 1.2 x 1011 0.54 x 1011 0.59 x 1011

C 10.76 x 1011 1.25 x 1011 5.76 x 1011

Material C13(N/m2) C33(N/m2)

GaN 10.9 x 1011 35.5 x 1011

AlN 12 x 1011 39.5 x 1011

Table 1.4: Elastic constant for some fcc and hcp based semiconductors. (For Si, Ge, GaAs
see H. J. McSkimin and P. Andreatch, J. Appl. Phys., 35, 2161 (1964) and D. I. Bolef and
M. Meres, J. Appl. Phys., 31, 1010 (1960). For nitrides see J. H. Edgar, Properties of III-V
Nitrides, INSPEC, London (1994) and R. B. Schwarz, K. Khachaturyan, and E. R. Weber,
Appl. Phys. Lett., 74, 1122 (1997).)

1.6 POLAR MATERIALS AND POLARIZATION CHARGE
In compound semiconductors there is a shift of charge from one atom to another in
the basis atoms producing a negatively charged cation and a positively charged anion.
In unstrained zinc blende structures the cation and anion sublattices are arranged in
such a way that there is no net polarization in the material. On the other hand in
the wurtzite crystal (like InN, GaN, AlN) the arrangement of the cation and anion
sublattices can be such that there is a relative movement from the ideal wurtzite position
to produce a “spontaneous polarization” in the crystal which becomes very important
for heterostructures. This effect is illustrated in Fig. 1.25. Also given in Fig. 1.25 are the
values of the spontaneous polarization which is aligned along the c-axis of the crystal.

In addition to spontaneous polarization there are two other phenomena which
can lead to polarization in the material. Strain can cause a relative shift between the
cation and anion sublattices and create net polarization in the material. This is the
piezoelectric effect. Finally, in materials known as ferroelectrics, an external applied
field can cause net polarization. In Fig. 1.26 we show how the movement of rows can
cause polarization effect by looking at the structural arrangements of atoms in barium
titanate.

Polar Charge at Heterointerfaces
If there is a net movement of one sublattice against each other, a polarization field is
set up. This results in a positive and negative polar charge. Under most conditions the
polar charge on the free surfaces is neutralized by charges present in the atmosphere.
This causes depolarization of the material. If, however, a heterostructure is synthesized
and the two materials forming the structure have different values for the polarization,
there is a net polar charge (and polarization) at the interface as shown in Fig. 1.27. In
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Figure 1.24: Strain tensor in a pyramidal InAs on GaAs self-assembled quantum dot.

semiconductors this polar charge can cause a built-in electric field

F =
P

ε
(1.20)

The interface charge PA − PB and the built-in interface field (see Fig. 1.27) can be
exploited in device design since for most applications this fixed polar charge can act as
dopant.

Piezoelectric Effect
As noted above, when a structure is under strain a net polarization can arise—a phe-
nomenon called piezoelectric effect. The value of the polar charge induced by strain
depends upon the strain tensor. In Section 1.5 we have discussed the nature of the
strain tensor in strained epitaxy (i.e., in the coherent growth regime).

Nitride heterostructures have polarization charges at interfaces because of strain
related piezoelectric effect as well as from spontaneous polarization. For growth along
(0001) orientation the strain tensor for coherently strained wurtzite crystals is given by
Eqn. 1.19 in the previous section. The piezoelectric polarization is related to the strain
tensor by the following relation

Ppz = e33εzz + e31(εxx + εyy) (1.21)



1.6. Polar Materials and Polarization Charge 37

P = 0

Psp = 0

Spontaneous
polarization effects:
AlN: −0.081 C/m2

GaN: −0.029 C/m2

InN: −0.032 C/m2

NITRIDES IN WURTZITE STRUCTURES:

(a)

(b)

Figure 1.25: (a) The wurtzite crystal in the absence of any cation-anion sublattice shift. (b)
A relative shift of the cation and anion sublattices leads to a net polarization in the material.
Spontaneous polarization values for InN, GaN, and AlN are given.

Ba++ Ti4+

Displacement of
positive charges with
respect to negative
charges
ferroelectric effect

(b)

Ba++

O− −− −

Ti4+

Cube corners: Ba++

Cube face centers: O − −− −

Cube center: Ti4+

(a)

Figure 1.26: (a) The structure of a typical perovskite crystal illustrated by examining barium
titanate. (b) The ferroelectric effect is produced by a net displacement of the positive ions with
respect to the negative ions.
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Figure 1.27: A schematic showing how interface charge density can be produced at heteroin-
terfaces of two polar materials.

Piezoelectric effect is also present in zinc blende structures. However, the piezoelectric
effect only occurs when the strain tensor has off-diagonal components. The polarization
values are given by

Px = e14εyz

Py = e14εxz

Pz = e14εxy (1.22)

As can be seen from the discussion of the previous section the strain tensor is diagonal
for growth along (001) direction. As a result there is no piezoelectric effect. However for
other orientations, notably for (111) growth there is a strong piezoelectric effect.

Piezoelectric effect can be exploited to create interface charge densities as high
as 1013 cm−2 in materials. In Table 1.5 we provide the values of piezoelectric constants
for some semiconductors. In addition to the polarization induced by strain, the cation

ZINC BLENDE

Material e14 (C/m2)

AlAs − 0.23

GaAs − 0.16

GaSb − 0.13

GaP − 0.10

InAs − 0.05

InP − 0.04

WURTZITE (c-axis growth)

Material e31 (C/m2) e33 (C/m2) Psp (C/m2)

AlN − 0.6 1.46 − 0.081

GaN − 0.49 0.73 − 0.029

InN − 0.57 0.97 − 0.032

Table 1.5: Piezoelectric constants in some important semiconductors. For the nitrides the
spontaneous polarization values are also given. (Data for zinc-blende material from S. Adachi, J.
Appl. Phys. vol. 58, R1 (1985). For nitrides see E. Bernardini, V. Fiorentini, and D. Vanderbilt,
Phys. Rev. B vol. 56, R10024 (1997).)
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Figure 1.28: A schematic of the ferroelectric hysterisis loop.

and anion sublattices are spontaneously displaced with respect to each other producing
an additional polarization. For heterostructures the difference of the spontaneous po-
larization appears at the interfaces, as noted earlier. In Table 1.5 we also provide the
values of spontaneous polarization for AlN, GaN, and InN.

Ferroelectric Materials
Ferroelectric materials have the property that they can have nonzero electric dipole
moment even in the absence of an applied electric field. Moreover an external electric
field can alter the polarization of the material. In materials like the nitrides discussed
above the polarization cannot be altered once the crystal is grown, but in ferroelectrics it
is possible for the external field to physically alter the crystal and alter the polarization.

Ferroelectric crystals can be classified into two main categories: order-disorder
and displacive. In the order-disorder type, the ferroelectric effect is associated with
ordering of the dipoles in the crystal. In displacive type, there is a net displacement of
one sublattice against the other. In Fig. 1.26 we have shown how the lattice of BaTiO3

distorts to create net polarization.
Polarization in a ferroelectric material shows hysterisis as shown in Fig. 1.28.

The polarization value depends not only on the applied field, but on the history of the
material. If the field is increasing from a large negative value to a large positive value
(the forward cycle) the polarization may be described by

P+(E) = Ps tanh
(
E − E0

2δ

)
(1.23)

where

δ = Ec

[
&n

(
1 + Pr/Ps
1− Pr/Ps

)]−1

(1.24)

Here Ec is called the coercive field and is the field at which the polarization switches
sign. The quantities Pr and Ps are called the remnant and spontaneous polarization,
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MATERIAL Tc (K) Ps POLAR CHARGE

(µCcm − 2) (cm − 2)

KDP type KH2PO4 123 5.33 3.3 X 1013

KH2AsO4 96 5.0 3.1 X 1013

Perovskites BaTiO3 393 26.0 1.62 X 1014

SrTiO3 32(?) 3.0 1.87 X 1013

PbTiO3 763 >50.0 3.1 X 1014

KNbO3 712 30.0 1.87 X 1014

LiNbiO3 1470 300.0 1.87 X 1015

LiTaO3 23.3 1.45 X 1014

Table 1.6: A list of several ferroelectric materials and their properties (from Introduction to
Solid State Physics, C. Kittel, John Wiley and Sons, New York (1971).).

respectively. In the negative field loop the polarization is given by

P−(E) = −P+(−E) (1.25)

Ferroelectricity disappears above a temperature called the transition temper-
ature (or Curie temperature). In Table 1.6 we show the Curie temperature and the
spontaneous polarization values (and the charge per unit area) for several different fer-
roelectric materials. It can be seen that in materials like BaTiO3 and LiNbO3 very
large polarization values are reached. If the coercive fields are very large, fields found
in many device applications may not alter the polarization of the ferroelectric material.
The polarization may then be fixed at Ps or −Ps. The actual sign of the polarization
can be chosen by a process called “poling” in which a large electric field is used to fix
the polarization direction.

EXAMPLE 1.9 A thin film of Al0.3Ga0.7N is grown coherently on a GaN substrate. Calculate
the polar charge density and electric field at the interface.

The lattice constant of Al0.3Ga0.7N is given by Vegard’s law

aall = 0.3aAlN + 0.7aGaN = 3.111 Å

The strain tensor is
εxx = 0.006

Using the elastic constant values from Table 1.4

εzz = −0.6× 0.006 = 0.0036
The piezoelectric effect induced polar charge then becomes

Ppz = 0.0097 C/m
2
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This corresponds to a density of 6.06× 1012 cm−2 electronic charges.
In addition to the piezoelectric charge the spontaneous polarization charge is

Psp = 0.3(0.089) + 0.7(0.029)− 0.029 = 0.018 C/m2

which corresponds to a density of 1.125× 1013 cm−2 charges. The total charge (fixed) arising

at the interface is the sum of the two charges.

1.7 TECHNOLOGY CHALLENGES
Compared to metal technology and insulator technology (swords and glasses were made
thousands of years ago), semiconductor technology is relatively new. The reason is very
simple from a technology point of view—semiconductors need to be extremely “pure”
if they are to be useful. Defect densities of a percent may have minimal effect on metals
and insulators, but will ruin a semiconductor device. For most high performance devices,
defect densities of less than 1015 cm−3 are needed (i.e., less than one part in 100 million).
Apart from demands on purity of crystal growth chambers and starting materials this
places an enormous demand on substrates.

Currently semiconductor substrate technology is available (i.e., bulk crystals
can be grown in sufficient size/purity) for a handful of materials. These include Si,
GaAs, InP, and Ge, which are widely available and SiC, Al2O3, and GaSb, etc., which
are available only in small pieces (a few square centimeters) and are very expensive.
Since most semiconductors do not have a substrate available from either bulk crystal
growth or another lattice matched substrate, this severely restricts the use of a wide
range of semiconductors. In Fig. 1.29 we show an overview of some important substrates.

The key challenge facing the development of new technologies (e.g., InAs, GaN,
InSb...) is the availability of substrates that can be used without a large dislocation
density propagating through the structure. An approach that is widely being studied
is based on starting with substrate A, then growing a thick buffer of material B to
create a new effective substrate. As shown in Fig. 1.29 the challenge is to contain the
dislocations within the buffer region. The buffer region can be material B for which
the substrate is needed and may also contain an intermediate material that helps in
“trapping” dislocations.

1.8 PROBLEMS
Sections 1.2–1.3
1.1 Consider the (001) MBE growth of GaAs by MBE. Assuming that the sticking
coefficient of Ga is unity, calculate the Ga partial pressure needed if the growth rate
has to be 1 µm/hr. The temperature of the Ga cell is 1000 K.
1.2 In the growth of GaAs/AlAs structures in a particular MBE system, the background
pressure of Ga when the Ga shutter is off is 10−7 Torr. If the growth rate of AlAs is
1 µm/hr, what fraction of Ga atoms are incorporated in the AlAs region? The Ga cell
is at 1000 K.
1.3 A 5.0 µm Si epitaxial layer is to be grown. The Si flux is 1014 cm−2 s−1. How long
will it take to grow the film if the sticking coefficient is 0.95?
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SILICON

• Available in up to 30 cm diameter
• Quite inexpensive and high quality
• Can be obtained n-type, p-type, or
with high resistivity
• Used for Si and SiGe technologies
• Intense reserach to develop Si-
based ‘‘pseudo-substrates’’ for GaAs,
InP, CdTe...technologies

GaAs
• Available in up to 12 cm diameter
• High quality, more expensive than
Si, but affordable
• Used for GaAs and AlGaAs, and
strained InGaAs technologies
• Can be used for electronic and
optoelectronic applications

InP
• 10 cm diameter available, but
expensive
• InP and InGaAsP technologies
can be grown
• Very important for optoelectronics
and high performance electronics

SiC
• Small, very expensive substrates
• Very important for high power,
large gap technologies
• Used for nitride technology

CHALLENGES

• Develop psuedo-substrates to satisfy
demands from different semiconductors
and their heterostructures

Substrate B

Buffer B

Substrate A

Figure 1.29: A brief overview of important substrates available in semiconductor technology.

1.4 a) Find the angles between the tetrahedral bonds of a diamond lattice.
b) What are the direction cosines of the (111) oriented nearest neighbor bond along the
x,y,z axes.
1.5 Consider a semiconductor with the zinc blende structure (such as GaAs).
a) Show that the (100) plane is made up of either cation or anion type atoms.
b) Draw the positions of the atoms on a (110) plane assuming no surface reconstruction.
c) Show that there are two types of (111) surfaces: one where the surface atoms are
bonded to three other atoms in the crystal, and another where the surface atoms are
bonded to only one. These two types of surfaces area called the A and B surfaces,
respectively.
1.6 Suppose that identical solid spheres are placed in space so that their centers lie
on the atomic points of a crystal and the spheres on the neighboring sites touch each
other. Assuming that the spheres have unit density, show that density of such spheres
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is the following for the various crystal structures:

fcc :
√
2π/6 = 0.74

bcc :
√
3π/8 = 0.68

sc : π/6 = 0.52

diamond :
√
3π/16 = 0.34

1.7 Calculate the number of cells per unit volume in GaAs (a = 5.65 Å). Si has a
4% larger lattice constant. What is the unit cell density for Si? What is the number of
atoms per unit volume in each case?
1.8 A Si wafer is nominally oriented along the (001) direction, but is found to be cut
2◦ off, towards the (110) axis. This off axis cut produces “steps” on the surface which
are 2 monolayers high. What is the lateral spacing between the steps of the 2◦ off-axis
wafer?
1.9 Conduct a literature search to find out what the lattice mismatch is between GaAs
and AlAs at 300 K and 800 K. Calculate the mismatch between GaAs and Si at the
same temperatures.
1.10 In high purity Si crystals, defect densities can be reduced to levels of 1013 cm−3.
On an average, what is the spacing between defects in such crystals? In heavily doped
Si, the dopant density can approach 1019 cm−3. What is the spacing between defects
for such heavily doped semiconductors?
1.11 A GaAs crystal which is nominally along (001) direction is cut at an angle θ off
towards (110) axis. This produces one monolayer high steps. If the step size is to be no
more than 100 Å, calculate θ.
1.12 Assume that a Ga-As bond in GaAs has a bond energy of 1.0 eV. Calculate the
energy needed to cleave GaAs in the (001) and (110) planes.
1.13 Consider a hcp structure shown in Fig. 1.12. Prove the relation given by c/a =√
8/3 = 1.633.

1.14 A HgCdTe alloy is to be grown with 10% Hg. The sticking coefficient of Hg is
10−2 and that of Cd is 1.0. Te is present in excess and does not limit the growth of the
crystal. Calculate the Hg and Cd fluxes and partial pressures needed to grow the film
at a rate of 1.0 µm/hour.
1.15 A serious problem in the growth of a heterostructure made from two semiconduc-
tors is due to the difficulty in finding a temperature at which both semiconductors can
grow with high quality. Consider the growth of HgTe and CdTe which is usually grown
at ∼ 600 K. Assume that the defect formation energy in HgTe is 1.0 eV and in CdTe
is 2.0 eV. Calculate the density of defects in the heterostructure with equal HgTe and
CdTe. Assume that the constant Kd in Eqn. 1.12 is unity.
1.16 Calculate the defect density in GaAs grown by LPE at 1000 K. The defect for-
mation energy is 2.0 eV. Assume that Kd in Eqn. 1.12 is unity.
1.17 Why are entropy considerations unimportant in dislocation generation?

Sections 1.4–1.5
1.18 A coherently strained quantum well laser has to made from InxGa1−xAs on a
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GaAs substrate. If the minimum thickness of the region is 50 Å, calculate the maximum
composition of In that can be tolerated. Assume that the lattice constant of the alloy
can be linearly interpolated from its components.
1.19 Assume that in a semiconductor alloy, the lattice constant scales as a linear
weighted average. Find the composition of the InxGa1−xAs alloy that lattice matches
with an InP substrate.
1.20 Calculate the critical thickness for the growth of AlAs on a GaAs substrate.
1.21 A diamond (C) crystal is compressed by hydrostatic pressure so that its lattice
constant decreases by 0.1%. Calculate the strain energy per cm3 in the distorted crystal.
See Appendix A for the relevant strain energy expression.
1.22 A 100 Å In0.2Ga0.8As film is grown on a GaAs substrate. The film is coherent.
Calculate the strain energy per cm2 in the film.
1.23 Consider a coherently grown film of Si0.8Ge0.2 grown on a Si substrate. Calculate
the thickness of the film at which the strain energy density (eV cm−2) becomes equal
to the energy density arising from a square array of dislocations in the film.

Assume that the dislocations are on a planar square grid with one broken bond
per spacing of a/ε where a is the film lattice constant and ε is the strain. The energy
per broken bond is 1.0 eV.

Section 1.6
1.24 A coherent film of In0.25Ga0.75As is grown on a (111) GaAs substrate. Calculate
the fixed charge at the GaAs/In0.25Ga0.75As interface. Also calculate the electric field
produced across the interface by this charge. Assume that the relative dielectric con-
stant is 12.0.
1.25 Consider a In0.1Ga0.9N/GaN interface matched to a GaN substrate. The structure
is produced by c-axis growth. Calculate the polarization charge produced by sponta-
neous polarization and by the piezoelectric effect.
1.26 For a particular application it is required that an interface charge of 3×1013 cm−2

(in units of electron charge) be produced at a AlxGa1−xN/GaN structure. The structure
is grown on x-axis GaN and is coherent. Calculate the Al composition needed.
1.27 In barium titanate the observed saturation polarization is 2.6× 10−5 Ccm−2. Es-
timate the relative displacement of positive and negative ions in the crystal that would
lead to such a polarization. The volume of a unit cell is 6.4× 10−23 cm3.
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2

SEMICONDUCTOR
BANDSTRUCTURE

2.1 INTRODUCTION
The properties of electrons inside semiconductors are described by the solution of the
Schrödinger equation appropriate for the crystal. The solutions provide us the band-
structure or the electronic spectrum for electrons. The problem of finding the electronic
spectrum is an enormously complicated one. Solids have a large number of closely spaced
atoms providing the electrons a very complex potential energy profile. Additionally
electrons interact with each other and in a real solid atoms are vibrating causing time
dependent variations in the potential energy. To simplify the problem the potential
fluctuations created by atomic vibrations (lattice vibrations) and scattering of electrons
from other electrons are removed from the problem and treated later on via perturbation
theory. These perturbations cause scattering of electrons from one state to another.

The problem of bandstructure becomes greatly simplified if we are dealing with
crystalline materials. An electron in a rigid crystal structure sees a periodic background
potential. As a result the wavefunctions for the electron satisfy Bloch’s theorem as
discussed in the next section.

There are two main categories of realistic bandstructure calculation for semi-
conductors:

1. Methods which describe the entire valence and conduction bands.

2. Methods which describe near bandedge bandstructures.

The techniques in the second category are simpler and considerably more accurate if one
is interested only in phenomena near the bandedges. Techniques such as the tight binding
method, the pseudopotential method, and the orthogonalized plane wave methods fall
in the first category. On the other hand, perturbative techniques (the so called k · p
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methods) fall in the second category. We will develop the tight binding method and the
k ·p method in some detail, since both of these techniques are widely used for describing
real semiconductors and their heterostructures.

Before starting our discussion of electronic bandstructure we will summarize
some important features of electrons in crystalline materials. We will discuss Bloch
theorem which tells us about electron wavefunctions in a crystal and basic differences
between metals, semiconductors, and insulators.

2.2 BLOCH THEOREM AND CRYSTAL MOMENTUM
To understand the electronic properties of a material we need to know what the electron
wavefunctions and energies are inside a solid. We are only interested in crystalline
materials here. The description of electrons in a periodic material has to be via the
Schrödinger equation [−h̄2

2m0
∇2 + U(r)

]
ψ(r) = Eψ(r) (2.1)

where U(r) is the background potential seen by the electrons. Due to the crystalline
nature of the material, the potential U(r) has the same periodicity, R, as the lattice

U(r) = U(r+R) (2.2)

If the background potential is zero, the electronic function in a volume V is

ψ(r) =
eik·r√
V

and the electron momentum and energy are

p = h̄k

E =
h̄2k2

2m0

The wavefunction is spread in the entire sample and has equal probability (ψ∗ψ) at
every point in space.

Let us examine the periodic crystal. We expect the electron probability to be
same in all unit cells of the crystal because each cell is identical. If the potential was
random, this would not be the case, as shown schematically in Fig. 2.1a. If R is a
periodic vector of the lattice we expect

|ψ(r)|2 = |ψ(r+R)|2

If this equality is not solid we would be able to distinguish one unit cell from another.
Note that the wavefunction itself is not periodic, it is the probability that is periodic. The
wavefunction has to be of a special form described by Bloch’s theorem. Bloch’s theorem
states that the eigenfunctions of the Schrödinger equation for a periodic potential are
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(a)

NON-PERIODIC POTENTIAL

U(r)

r

r

|ψ(r)|2

PERIODIC POTENTIAL

U(r)

(b)
|ψ|2 has the same periodicity as the potential

ψ(r) = u(r)eik·r

r

r

|ψ(r)|2

Figure 2.1: (a) Potential and electron probability value of a typical electronic wavefunction
in a random material. (b) The effect of a periodic background potential on an electronic wave-
function. In the case of the periodic potential, |ψ|2 has the same spatial periodicity as the
potential. This puts a special constraint on ψ(r) according to Bloch’s theorem.
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the product of a plane wave eik·r and a function uk(r), which has the same periodicity
as the periodic potential. Thus

ψk(r) = eik·ruk(r) (2.3)

is the form of the electronic function. The periodic part uk(r) has the same periodicity
as the crystal; i.e.,

uk(r) = uk(r+R) (2.4)

The wavefunction has the property

ψk(r+R) = eik·(r+R)uk(r+R) = eik·ruk(r)e
ik·R

= eik·Rψk(r) (2.5)

In Fig. 2.1b we show a typical wavefunction. The vector k used above is called k-vector
and plays an important role in the electronic properties of crystals.

2.2.1 Significance of the k-vector

An important implication of the Bloch theorem is that in the perfectly periodic back-
ground potential that the crystal presents, the electron propagates without scattering.
The electronic state (∼ exp(ik·r)) is an extended wave which occupies the entire crystal.
We need to derive an equation of motion for the electrons which tells us how electrons
will respond to external forces. If Fext represents an external force applied on the elec-
tron and Fint represents the internal force due to atoms in the crystal we may write
Newton’s equation as

dp
dt
= Fext + Fint (2.6)

However this equaiton is quite useless for a meaningful description of the electron be-
cause it includes the internal forces on the electron. We need a description which does
not include the evaluation of the internal forces. We will now give a simple derivation
for such an equation of motion. The equation of motion also provides a conceptual
understanding of the vector k that has been introduced by the Bloch theorem.

Using the time-dependent Schrödinger equation the general solution for elec-
trons is

ψR(r, t) = uk(r)ei(k·r−ωt) (2.7)

where the electron energy E is related to the frequency ω by

E = h̄ω (2.8)

The Bloch function is a plane wave which extends over all crystalline space. To define a
localized electron we examine a wavepacket made up of wavefunctions near a particular
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k-value. We can define the group velocity of this wavepacket as

vg =
dω

dk

v =
1
h̄

dE

dk

=
1
h̄
∇kE(k) (2.9)

If we have an electric field F present, the work done on the electron during a time
interval δt is

δE = −eF · vgδt

We may also write, in general,

δE =
(
dE

dk

)
δk

= h̄vg · δk

Comparing the two equations for δE, we get

δk = −eF
h̄

δt

giving us the relation

h̄
dk
dt
= −eF (2.10)

Since −eF is the external force on the electron, we can generalize this equation and
write

h̄dk
dt

= Fext (2.11)

Eqn. 2.11 looks identical to Newton’s second law of motion;

dp
dt
= Fext

in free space if we associate the quantity h̄k with the momentum of the electron in the
crystal. The term h̄k responds to the external forces as if it is the momentum of the
electron, although, as can be seen by comparing the true Newtons equation of motion, it
is clear that h̄k contains the effects of the internal crystal potentials and is therefore not
the true electron momentum. The quantity h̄k is called the crystal momentum. Once
the E versus k relation is established, we can, for all practical purposes, forget about
the background potential U(r) and treat the electrons as if they are free and obey the
effective Newtons equation of motion. This physical picture is summarized in Fig. 2.2.



2.3. Metals, Insulators, and Semiconductors 51

−

+ + + +

+ + + +

+ + + +

Electron in a periodic potential

Bloch theorem: ψ = ukeik·r

Equation of motion hdk
dt

= Fext

Electron behaves as if it is in free space, but
with a different energy-effective momentum
relation

Figure 2.2: A physical description of electrons in a periodic potential. As shown the electrons
can be treated as if they are in free space except that their energy-momentum relation is
modified because of the potential.

2.3 METALS, INSULATORS, AND SEMICONDUCTORS

We know from atomic physics that bound electrons have discrete energy levels separated
by forbidden energy regions. In solids the discrete levels broaden to form allowed bands
which are separated by bandgaps. Once one knows the electronic spectra the important
question is: Which of these allowed states are occupied by electrons and which are
unoccupied? Two important situations arise when we examine the electron occupation
of allowed bands: In one case we have a situation where an allowed band is completely
filled with electrons, while the next allowed band is separated in energy by a gap Eg
and is completely empty at 0 K. In a second case, the highest occupied band is only
half full (or partially full). These cases are shown in Fig. 2.3.

At this point a very important concept needs to be introduced. When an al-
lowed band is completely filled with electrons, the electrons in the band cannot conduct
any current. This important concept is central to the special properties of metals and
insulators. Being fermions the electrons cannot carry any net current in a filled band
since an electron can only move into an empty state. One can imagine a net cancellation
of the motion of electrons moving one way and those moving the other. Because of this
effect, when we have a material in which a band is completely filled, while the next
allowed band is separated in energy and empty, the material has, in principle, infinite
resistivity and is called an insulator or a semiconductor. The material in which a band
is only half full with electrons has a very low resistivity and is a metal.
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Figure 2.3: A schematic description of electron occupation of the bands in a metal and semi-
conductor (or insulator). In a metal, the highest occupied band at 0 K is partially filled with
electrons. Also shown is the metal work function. In a semiconductor at 0 K, the highest oc-
cupied band is completely filled with electrons and the next band is completely empty. The
separation between the two bands is the bandgap Eg. The electron affinity and work function
are also shown.

The band that is normally filled with electrons at 0 K in semiconductors is
called the valence band, while the upper unfilled band is called the conduction band.
The energy difference between the vacuum level and the highest occupied electronic
state in a metal is called the metal work function. The energy between the vacuum level
and the bottom of the conduction band is called the electron affinity. This is shown
schematically in Fig. 2.3.

Metals have a very high conductivity because of the very large number of elec-
trons that can participate in current transport. It is, however, difficult to alter the
conductivity of metals in any simple manner as a result of this. On the other hand,
semiconductors have zero conductivity at 0 K and quite low conductivity at finite tem-
peratures, but it is possible to alter their conductivity by orders of magnitude. This is
the key reason why semiconductors can be used for active devices.

As noted, semiconductors are defined as materials in which the valence band is
full of electrons and the conduction band is empty at 0 K. At finite temperatures some
of the electrons leave the valence band and occupy the conduction band. The valence
band is then left with some unoccupied states. Let us consider the situation as shown
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Figure 2.4: Illustration of the wavevector of the missing electron ke. The wavevector is −ke,
which is associated with the hole.

in Fig. 2.4, where an electron with momentum ke is missing from the valence band.
When all of the valence band states are occupied, the sum over all wavevector

states is zero; i.e., ∑
ki = 0 =

∑
ki �=ke

ki + ke (2.12)

This result is just an indication that there are as many positive k states occupied
as there are negative ones. Now in the situation where the electron at wavevector ke is
missing, the total wavevector is ∑

ki �=ke

ki = −ke (2.13)

The missing state is called a hole and the wavevector of the system −ke is attributed
to it. It is important to note that the electron is missing from the state ke and the
momentum associated with the hole is at −ke. The position of the hole is depicted as
that of the missing electron. But in reality the hole wavevector kh is −ke, as shown in
Fig. 2.4.

kh = −ke (2.14)

Note that the hole is a representation for the valence band with a missing electron. As
discussed earlier, if the electron is not missing the valence band electrons cannot carry
any current. However, if an electron is missing the current flow is allowed. If an electric
field is applied, all the electrons move in the direction opposite to the electric field. This
results in the unoccupied state moving in the field direction. The hole thus responds as
if it has a positive charge. It therefore responds to external electric and magnetic fields
F and B, respectively, according to the equation of motion

h̄
dkh
dt

= e [F+ vh ×B] (2.15)

where h̄kh and vh are the momentum and velocity of the hole.
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Thus the equation of motion of holes is that of particles with a positive charge
e. The mass of the hole has a positive value, although the electron mass in its valence
band is negative. When we discuss the conduction band properties of semiconductors
or insulators we refer to electrons, but when we discuss the valence band properties, we
refer to holes. This is because in the valence band only the missing electrons or holes
lead to charge transport and current flow.

2.4 TIGHT BINDING METHOD
Before examining the various semiconductors it is extremely useful to examine the
atomic structure of some of the elements which make up the various semiconductors.

IV Semiconductors
C 1s2 2s22p2︸ ︷︷ ︸
Si 1s22s22p6 3s23p2︸ ︷︷ ︸
Ge 1s22s22p63s23p63d10 4s24p2︸ ︷︷ ︸
III–V Semiconductors
Ga 1s22s22p63s23p63d10 4s24p1︸ ︷︷ ︸
As 1s22s22p63s23p63d10 4s24p3︸ ︷︷ ︸

A very important conclusion can be drawn about the elements making up the
semiconductors: The outermost valence electrons are made up of electrons in either the
s-type or p-type orbitals. While this conclusion is strictly true for the elements in the
atomic form, it turns out that even in the crystalline semiconductors the electrons in
the valence and conductor band retain this s- or p-type character, even though they are
“free” Bloch electrons. It is extremely important to appreciate this simple feature since
it plays a key role in optical and transport processes in semiconductors.

We will now discuss several techniques for obtaining bandstructure of materials.
As noted in the introduction there are methods which describe the entire bandstruc-
ture reasonably well and methods that are valid over a narrow energy range. The first
technique we will discuss is the tight binding method.

The tight binding method (TBM) is an empirical technique, i.e., experimental
inputs are used to fit the bandstructure. TBM uses atomic functions as a basis set
for the Bloch functions. The periodic part of the Bloch function is represented by some
combination of the atomic orbitals centered at the lattice points. If φn(r−R) represents
such an orbital centered at R, we could write a Bloch function of the form:

ψk(r) =
∑
Rn

φn(r−R) exp(ik ·Rn) (2.16)

The periodic part of the Bloch function is expanded in terms of the atomic-like
orbitals of the atoms of the unit cell (index n in the summation).

As noted earlier, the elements making up all the semiconductors of interest have
the valence electrons described by s- or p-type atomic orbitals. The core electrons are
usually not of interest. As the atoms of the elements making up the semiconductors are
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Figure 2.5: Atomic levels spreading into bands as the atoms come together. When the atoms
are far apart, the electron levels are discrete and N -fold degenerate (N is the number of atoms).
As the atoms are brought closer, the discrete levels form bands.

brought together to form the crystal, the electronic states are perturbed by the presence
of neighboring atoms and discrete states broaden to form bands as shown in Fig. 2.5.
While the original atomic functions describing the valence electrons are, of course, no
longer eigenstates of the problem, they can be used as a good approximate set of basis
states to describe the “crystalline” electrons. This is the motivation for the tight binding
method. We develop a simple mathematical description for the tight binding method
and then discuss some details of the application of the method to real semiconductors.

We assume the solution of the atomic problem

Hatψn = Enψn (2.17)

is already known for the atoms forming the crystalline material. This solution leads to
the description of the electronic structure of the various atoms. One could construct a
Bloch state given by

ψk(r) =
∑
n,R

eik·Rψn(r−R) (2.18)

but this state does not describe the new problem of the crystalline material where now
we have

Hcryst = Hat +∆U(r) (2.19)

where ∆U(r) is the additional perturbation coming in, due to the interaction of neigh-
boring atoms as shown in Fig. 2.6.

The new wavefunctions are now chosen as the more general wavefunction (they
must, of course, satisfy Bloch’s Theorem):

Ψk(r) =
∑
R

eik·Rφ(r−R) (2.20)
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H = Hat

+

+ + + +

H = Hat + U(r) = Hcryst∆

Figure 2.6: The effect of the neighboring atoms in a crystal is to alter the potential an electron
experiences from that of an atomic potential (top figure) by an additional potential ∆U(r).

where φ(r) are not the atomic functions, but can be constructed out of the atomic
functions. Expanding φ(r) in terms of the atomic eigenfunctions ψn(r) we have

φ(r) =
N∑
n=1

bnψn(r) (2.21)

In the tight binding method, we will only include a finite number, N , of orbitals
in terms of which φ(r) is described. The Schrödinger equation now involves the unknown
coefficients bn of Eqn. 2.21 and to solve for them we first derive a set of N–coupled
equations, by using the orthonormal properties of the basis set ψn. The Schrödinger
equation is now

HΨk = E(k)Ψk (2.22)

Using Eqns. 2.20 and 2.21 for the eigenfunction Ψk in Eqn. 2.22 and multiplying
by ψ∗

m(r) and integrating over space we get:∫
d3r ψ∗

m(r)
{
[Hat +∆U(r)]

∑
R,n bn eik·R ψn(r−R)

−E(k)
∑

R,n bn eik·R ψn(r−R)
}
= 0

(2.23)

Since the atomic functions are orthogonal, we have∫
d3r ψ∗

m(r) ψn(r) = δmn (2.24)

However, the atomic functions centered at different sites are not orthogonal, i.e.,∫
d3r ψ∗

m(r) ψn(r−R) �= δmn for R �= 0 (2.25)
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In the summation over lattice vectors we separate the terms with R = 0 and R �= 0 to
get,

(E(k)− Em)bm
= −(E(k)− Em)

∑N
n=1

(∑
R�=0

∫
ψ∗
m(r) ψn(r−R) eik·R d3r

)
bn

+
∑N

n=1

(∫
ψ∗
m(r) ∆U(r) ψn(r) d3r

)
bn

+
∑N

n=1

(∑
R�=0

∫
ψ∗
m(r) ∆U(r) ψn(r−R) eik·R d3r

)
bn

(2.26)

Note that we have used the equality∫
ψ∗
m(r) Hat ψn(r) d3r = Em δmn (2.27)

It may be pointed out that the atomic energies Em may not correspond to the
isolated atomic energies. This is due to the modifications arising from the neighboring
atoms. As we will discuss later, the Em are retained as fitting parameters. In tight
binding methods, we also make the following approximation:∫

ψ∗
m(r) ψn(r−R) eik·R d3r ≈ 0 (2.28)

This approximation assumes that there is negligible overlap between neighboring atomic
functions, i.e, the atomic functions are tightly bound to the atoms.

The quantity∫
ψ∗
m(r) H ψn(r) d3r = Em +

∫
ψ∗
m(r) ∆U(r) ψm(r) d3r (2.29)

is called the on-site matrix element. For most potentials, the on-site integral:∫
ψ∗
m(r) ∆U(r) ψn(r) d3r vanishes for m �= n. (2.30)

The secular equation () for the eigenvalues E(k) and eigenfunctions (whose
coefficients are the bm) is an N ×N coupled set of equations whose solution is derived
from an N ×N secular equation. For each value of k, there will be N solutions, which
will provide the E vs. k relation or the bandstructure. It is illustrative to examine a
simple s-band problem to develop an understanding of the method.

2.4.1 Bandstructure Arising From a Single Atomic s-Level

In semiconductors we have two atoms per basis and for each atom we need to include at
least the outer shell s, px, py, pz functions. Thus the secular equation for tight binding
becomes quite difficult to solve. To get some physical insight into the problem we will
solve a simple problem of one atom basis with only an s-function. Since there is only
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one atomic level, the coefficients {bm} are zero except for the s-level where bs = 1. A
single equation results in this case. Eqn. 2.26 becomes

E(k)− Es = −(E(k)− Es)
∑
R �=0

∫
ψ∗
s (r) ψs(r−R) eik·R d3r

+
∫

ψ∗
s (r) ∆U(r) ψs(r) d3r

+
∑
R�=0

∫
ψ∗
s (r) ∆U(r) ψs(r−R) eik·R d3r (2.31)

Let us choose the following symbols for the integrals

α(R) =
∫

ψ∗
s (r) ψs(r−R) d3r

βs = −
∫

ψ∗
s (r) ∆U(r) ψs(r) d3r

γ(R) = −
∫

ψ∗
s (r) ∆U(r) ψs(r−R) d3r (2.32)

As discussed before, in the tight binding method we choose α(R) = 0. This gives us

E(k) = Es − βs −
∑
R

γ(R) eik·R (2.33)

The off-site integrals γ(R) drop rapidly as the separation R increases. We will
consider the case where we only have nearest neighbor interaction and all other off-site
integrals are zero. Also, note that because of symmetry γ(−R) = γ(R). Let us solve
the problem for the fcc lattice. The twelve nearest neighbors for an fcc point are at:

a

2
(±1,±1, 0); a

2
(±1, 0,±1); a

2
(0,±1,±1) (2.34)

The energy equation then becomes

E(k) = Es − βs − γ
[
ei(kx+ky)a/2 + ei(kx−ky)a/2

+ ei(−kx+ky)a/2 + ei(kx−ky)a/2 + . . .
]

= Es − βs − 4γ
[
cos

kxa

2
cos

kya

2

+ cos
kya

2
cos

kza

2
+ cos

kza

2
cos

kxa

2

]
(2.35)

We will now examine this band in the first Brillouin zone of the fcc lattice. In
Fig. 2.7 the Brillouin zone for the fcc structure is shown along with some of the high
symmetry points and directions. We can see from Fig. 2.7 that there are six equivalent
X-points and eight equivalent L-points.

If we examine the energy along various symmetry directions, we get (from Eqn.
2.35) the bandstructure:
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Figure 2.7: Brillouin zone and high symmetry points for the fcc lattice which forms the
underlying Bravais lattice for diamond and zinc–blende structures.

Along ΓX kx = 2πα/a 0 ≤ α ≤ 1
ky = kz = 0
E(k) = Es − βs − 4γ(1 + 2 cosπα)

Along ΓL kx = ky = kz = 2πα/a 0 ≤ α ≤ 1/2
E(k) = Es − βs − 12γ cos2 πα)

Along ΓK kx = ky = 2πα/a 0 ≤ α ≤ 3/4
kz = 0
E(k) = Es − βs − 4γ(cos2 πα+ 2 cosπα)

Bandstructure, i.e., the E vs. k relationship, is typically plotted in a form shown
in Fig. 2.8. The result shown is for γ = 1.0 eV and Es+β = 0. We see that the bandwidth
of the allowed band is 16 γ. The stronger the overlap integral the wider the width of the
allowed band. It is illustrative to examine the bandstructure near the γ point, where ka
is small.

Putting k2
x = k2

y = k2
z = k2/3, we have (ka � 1)

E(k) = Es − βs − 12γ + γk2a2 (2.36)

Comparing with the free electron problem solution

E(p) = E0 +
p2

2m
(2.37)

we write

E(k) = Es − βs − 12γ + h̄2k2

2m∗ (2.38)

where we have defined an effective mass given by

m∗ =
h̄2

2γa2
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Figure 2.8: Bandstructure of the s-band model with parameters chosen as shown.

γ =
∆W

16
(2.39)

If we choose γ = 1.0 eV and a = 4 Å we find that m∗ ≈ 0.2m0. Thus, in this simple
model the effective mass is determined by the parameters γ and a.

Note that the effective mass is positive at the bottom of the band, but has a
negative value at the top of the band. It is important to note that a negative effective
mass does not violate any physical principle. It simply means that the electron responds
as if it has a negative mass, i.e., its energy decreases when a force is applied to it.

2.4.2 Bandstructure of Semiconductors
In 1954 Koster and Slater published their paper of the tight binding method for band-
structure of materials like Si. This paper (Physical Review, volume 94, 1498, 1954) is an
excellent reference on TBM. We will now discuss the TBM as applied to semiconductors.
As we have discussed earlier, the atomic functions required to describe the outermost
electrons in semiconductors are the s, px, py, and pz type. It is possible to improve the
technique by adding additional atomic levels. Since there are two atoms per basis in a
semiconductor, we require eight functions to describe the central cell part of the Bloch
functions. We choose a state of the form

Ψ(k, r) =
∑
Ri

4∑
m=1

2∑
j=1

Cmj(k) φmj(r− rj −Ri)eik·Ri (2.40)

where the sum Ri is over unit cells, m are the different atomic functions φmj being used
in the basis, and j are the atoms in each unit cell.
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As described for the s-band case above we now cast the Schrödiner equation in
the form of a secular determinant:∣∣∣< φm′ j′ |H − E|Ψ(k) >

∣∣∣ = 0 (2.41)

Here, H is the crystal Hamiltonian.
In principle, one can calculate the matrix elements in the secular determinant,

Eqn. 2.41, from the first principles, by determining the crystal potential. This can be very
difficult, however, because of the complexity of the problem. Slater and Koster were the
first to advocate the use of the tight binding method as an empirical technique, instead of
an ab initio technique. Measured or accurately calculated levels in the bandstructure can
be used to fit the matrix elements. Once the elements are known the entire bandstructure
is known.

In TBM using the sp3 basis for zinc–blende crystals, there will be eight basis
functions, an s and three p orbitals, px, py, and pz, for each of the two atoms within
the Wigner–Seitz cell. This approximation assumes that there is spin degeneracy in the
bandstructure of the crystal. If the effects of the breaking of spin degeneracy are being
considered, one would need a basis which includes the spin–up and spin–down variants
of each orbital. That is, both spin–up and spin–down (i.e., s → s ↑ and s ↓, etc.)
orbitals for each atom in the Wigner–Seitz cell would need to be included in the basis.
This results in a requirement of a sixteen function basis for zinc–blende semiconductors.

As discussed in the s-band case, there are a number of on–site and off–site
overlap integrals that are retained as fitting parameters. The number of these parameters
can reach 20 or more if the nearest and second nearest neighbor interactions are included.
To write the matrix elements of the secular equation it is necessary to keep in mind
the vectorial nature of the p-functions (i.e., a positive and negative lobe). The reader is
urged to examine Koster and Slater’s paper (referenced above) to see how each matrix
element is set up.

The secular equation for real semiconductors is usually difficult to solve analyt-
ically. Matrix solving libraries are available to solve such eigenvalue problems. However,
at certain high symmetry points (e.g., Γ-point, X-point, and L-point for the fcc lattice)
it is possible to obtain analytical results.

As noted earlier TBM is usually used as an empirical fitting model. Experi-
ments provide results on the relative positions of various high symmetry points. The
overlap integrals are then adjusted to fit these measured points. Once a reasonable set
of parameters is obtained the entire bandstructure can be plotted out. Several papers in
the literature have provided sets of TBM parameters (e.g., see Talwar and Ting (1982).)

In Fig. 2.9 we show a typical TBM result calculated for GaAs. It is found that
the bandedges for GaAs occur at the Γ point. The bottom of the conduction band is
made from solely s-type states while the top of the valence band is made from only
p-type states. Care has been taken to fit the bandgap and other high symmetry points
in the Brillouin zone. However, it is known that the bandstructure of GaAs is quite
different from this calculation especially at the top of the valence band. According to the
tight binding method, the top of the valence band is 3-fold degenerate, corresponding
to the degeneracy of (px, py, pz). This degeneracy is 6-fold if spin is included. It is
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Figure 2.9: Calculated tight-binding bandstructure for GaAs without the effects of spin-orbit
coupling. The method is not capable of giving an accurate valence bandedge description without
the inclusion of spin-orbit coupling.

well known that in semiconductors, the top of the valence band is 2-fold (4-fold with
spin) degenerate with another band (a 2-fold degenerate band) at a small energy below
the valence bandedge. These effects can be incorporated only if relativistic effects are
included in the problem. These effects are called the spin–orbit coupling.

2.5 SPIN–ORBIT COUPLING
In essentially all semiconductors it is found that the top of the valence band is made
from primarily p-type states. As a result unless spin effects are included in bandstructure
calculations, the description of the valence band is inaccurate. The spin provides the
electron with a means to interact with the magnetic field produced through its orbital
motion. An electron in the p-state has an orbital angular momentum of h̄. Thus there
is a strong interaction of the spin with the orbital motion of the electron. As noted
above, the top of the valence bandedge states are primarily p-type. Thus the spin–orbit
coupling has a strong effect there. While it is possible to calculate spin–orbit coupling in
isolated atoms, it is difficult to do so in crystals. Thus, a general form of the interaction
is assumed with a fitting parameter which is adjusted to experimentally observed effects.
In most materials, the spin–orbit interaction is quite small and one adds its effect in a
perturbative approach.

If we add the spin–orbit interaction energy to the previously discussed tight
binding Hamiltonian, we have

H = Htb +Hso (2.42)

The matrix elements arising from the spin–orbit component of the Hamiltonian can
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couple states of different spin. To calculate these terms, the spin–orbit interaction is
written as

Hso = λL · S (2.43)

Here, L represents the operator for orbital angular momentum, S is the operator for
spin angular momentum, and we can treat λ as a constant. The addition of the spin and
orbital angular momentum is the total angular momentum, J , which can be expressed
in the following form

J2 = (L+ S)2

= L2 + S2 + 2L · S (2.44)

thus

< L · S > =
1
2
< J2 −L2 − S2 >

=
h̄2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (2.45)

Here, j, l, and s are the quantum numbers for the operators J , L, and S respectively.
This gives a straightforward technique for evaluating the spin–orbit interaction energy,
but it is only applicable to pure angular momentum states, that is, one needs to know
the total angular momentum of the states to which Eqn. 2.45 is applied. States like px ↑
are mixed states, that is they are made up of a combination of pure states. To determine
the spin–orbit interaction energy, the basis must first be decomposed into states of pure
angular momentum.

In this section we will examine the effect of spin–orbit interaction in some detail.
The reason for such a detailed examination is that later we will see that strain spittings
(e.g., in strained quantum wells) and optical selection rules are intimately tied to spin–
orbit coupling effects. To evaluate the effect of spin–orbit terms we need px, py, pz states
in terms of pure angular momentum, φ1,1, φ1,−1, φ1,0. The relationship is

px =
1√
2
(−φ1,1 + φ1,−1)

py =
i√
2
(φ1,1 + φ1,−1)

pz = φ1,0 (2.46)

The φij are eigenfunctions of L2 and Lz with respective quantum numbers l = i and
lz = j (e.g. L2φ1,−1 = h̄2(1)(1 + 1)φ1,−1 = 2h̄2φ1,−1 and Lzφ1,−1 = −1h̄φ1,−1).

φ1,±1 ≡ Y1,±1(θ, ϕ) = ∓
√

3
8π sin θe

±iϕ

φ1,0 ≡ Y1,0(θ, ϕ) =
√

3
4π cos θ

(2.47)

By using a natural extension of these equations, similar definitions for the spin–up and
spin–down p-states can be made as exemplified by

px ↑= 1√
2
(−φ1,1 + φ1,−1) ↑ (2.48)
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This formulation, however, is still in terms of mixed states. To decompose these mixed
states into states of pure angular momentum, we must perform the addition of the spin
and the orbital angular momentum to obtain the total angular momentum states. Ap-
plying the standard Clebsch–Gordan technique for the addition of angular momentum
to the φ states plus the spin states yields the following six equations:

Φ3/2,3/2 = φ1,1 ↑
=

−1√
2
(px + ipy) ↑

Φ3/2,1/2 =
1√
3
φ1,1 ↓ +

√
2√
3
φ1,0 ↑

=
−1√
6
[(px + ipy) ↓ −2pz ↑]

Φ3/2,−1/2 =
√
2√
3
φ1,0 ↓ + 1√

3
φ1,−1 ↑

=
1√
6
[(px − ipy) ↑ +2pz ↓]

Φ3/2,−3/2 = φ1,−1 ↓
=

1√
2
(px − ipy) ↓

Φ1/2,1/2 =
−1√
3
φ1,0 ↑ +

√
2√
3
φ1,1 ↓

=
−1√
3
[(px + ipy) ↓ +pz ↑]

Φ1/2,−1/2 =
−√

2√
3

φ1,−1 ↑ + 1√
3
φ1,0 ↓

=
−1√
3
[(px − ipy) ↑ −pz ↓] (2.49)

These six equations must be inverted to find the states like φ1,0 ↑ in terms of
the total angular momentum states. Once this is done, we can substitute back into the
definitions for the basis states, exemplified by Eqn. 2.46, to get them in terms of the
total angular momentum states. This procedure results in the following six equations:

px ↑ =
1√
2

[
−Φ3/2,3/2 +

1√
3
Φ3/2,−1/2 −

√
2√
3
Φ1/2,−1/2

]

px ↓ =
1√
2

[
− 1√

3
Φ3/2,1/2 −

√
2√
3
Φ1/2,1/2 +Φ3/2,−3/2

]

py ↑ =
i√
2

[
Φ3/2,3/2 +

1√
3
Φ3/2,−1/2 −

√
2√
3
Φ1/2,−1/2

]
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py ↓ =
i√
2

[
1√
3
Φ3/2,1/2 +

√
2√
3
Φ1/2,1/2 +Φ3/2,−3/2

]

pz ↑ =
√
2√
3
Φ3/2,1/2 − 1√

3
Φ1/2,1/2

pz ↓ =
√
2√
3
Φ3/2,−1/2 +

1√
3
Φ1/2,−1/2 (2.50)

The phases used in the above expressions of Φj,mj in terms of px ↑, . . . , pz ↓,
result from the use of the standard phase conventions in the derivation of the Clebsch–
Gordan coefficients. However, the overall phase of a state is arbitrary and has no effect
on the physical predictions. This admits the possiblity of other phase conventions for
the expressions of Φj,mj

in terms of px ↑, . . . , pz ↓. One such convention which is in
widespread use is that used by Luttinger and Kohn (1955):

ΦLK
3/2,3/2 = −ΦCG

3/2,3/2

=
1√
2
(px + ipy) ↑

ΦLK
3/2,1/2 = −iΦCG

3/2,1/2

=
i√
6
[(px + ipy) ↓ −2pz ↑]

ΦLK
3/2,−1/2 = ΦCG

3/2,−1/2

=
1√
6
[(px − ipy) ↑ +2pz ↓]

ΦLK
3/2,−3/2 = iΦCG

3/2,−3/2

=
i√
2
(px − ipy) ↓

ΦLK
1/2,1/2 = −ΦCG

1/2,1/2

=
1√
3
[(px + ipy) ↓ +pz ↑]

ΦLK
1/2,−1/2 = iΦCG

1/2,−1/2

=
−i√
3
[(px − ipy) ↑ −pz ↓] (2.51)

where the superscript LK identifies the states with the Luttinger–Kohn phase and the
superscript CG identifies the states with the standard Clebsch–Gordan phase.

With these decompositions, the evaluation of terms like 〈px ↑ |Hso|py ↓〉 be-
comes straightforward. From Eqns. 2.43 and 2.45, we can write the spin–orbit Hamilto-
nian as:

Hso =
λh̄2

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (2.52)

For p-type electron orbitals, l = 1 and s = 1/2. j is given by the first index of Φ
in the decompositions of the states, Eqn. 2.49. Because the pure states are orthogonal,
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Semiconductor ∆ (eV)
Si 0.044
Ge 0.29
GaAs 0.35
InAs 0.41
InSb 0.82
InP 0.14
GaP 0.094

Table 2.1: Spin–orbit splitting for different semiconductors.

many of the terms will be zero. Evaluation of all possible terms gives nonzero results
only in the following cases:

〈px ↑ |Hso|py ↑〉 = −i
∆
3

〈px ↑ |Hso|pz ↓〉 =
∆
3

〈py ↑ |Hso|pz ↓〉 = −i
∆
3

〈px ↓ |Hso|py ↓〉 = i
∆
3

〈px ↓ |Hso|pz ↑〉 = −∆
3

〈py ↓ |Hso|pz ↑〉 = −i
∆
3

(2.53)

as well as the cases which are reflections about the diagonal of these terms which are
the conjugates of the values given. The parameter ∆ is the spin–orbit splitting ∆ =
∆so = 3λh̄2/2. The values of ∆so for several semiconductors is listed in Table 2.1.

If the spin–orbit effects are included in the bandstructure, the top of the valence
band loses part of its degeneracy shown earlier in Fig. 2.10.

The effect is easier to demonstrate in the total angular momentum basis instead
of the px, py, pz basis. In the total angular momentum basis, the p-states (with spin)
can be written as the six states (already discussed) |j,m〉 where j andm take the values:
|3/2,+3/2〉; |3/2,−3/2〉; |3/2,+1/2〉; |3/2,−1/2〉; |1/2,+1/2〉; |1/2,−1/2〉. As can be
seen from the equations for the spin–orbit perturbation, there is a splitting between
the j = 3/2 states and the j = 1/2 states. This splitting in energy is simply ∆so. The
general valence bandedge of semiconductors then has a form shown in Fig. 2.10.

One has a doubly degenerate state (4-fold with spin) at the zone center and a
split-off state (2-fold degenerate with spin). The degenerate states at the zone center
have different curvatures and are called the light hole (LH) and the heavy hole (HH)
state. Fig. 2.11 shows the bandstructure of GaAs with spin–orbit coupling. Contrast
this to Fig. 2.9, where the spin–orbit coupling was ignored. Before ending this section
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k

|3/2, +3/2

|3/2, +1/2

|1/2, +1/2

E

Figure 2.10: The general form of the valence bandstructure after including the effects of spin–
orbit coupling. The states are described by pure angular momentum states only at k =0. The
splitting between the j = 3/2 and j = 1/2 states is ∆.
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Figure 2.11: Calculated tight–binding bandstructure for GaAs after including spin–orbit cou-
pling. The light-hole heavy-hole split-off band degeneracy is removed.
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it is important, once more, to emphasize that spin–orbit coupling plays a key role in
understanding strained structures and optical selection rules.

2.5.1 Symmetry of Bandedge States
In this section we will discuss the properties of electron near the conduction and valence
bandedges. Bandedges play a dominant role in semiconductor physics and devices, since
electrons and holes occupy states near bandedges.

It is useful to distinguish the conduction bandedge states for the direct bandgap
materials such as GaAs and InAs, from the indirect bandgap materials such as Si and Ge.
In direct gap semiconductors, the conduction band minima states occur at the Γ-point
and have a central cell periodic part which is spherically symmetric. It is described
as being made up of s-type states at the bandedge. Of course, as one examines the
states away from the edge, there is an increasing p-type contribution that is mixed in
the eigenfunction. Because of this predominant s-type nature of the wavefunction, very
important selection rules for optical transitions arise. This will be discussed in detail
later.

For indirect bandgap materials such as Si (with conduction bandedge near the
X-point and a 6-fold degeneracy) and Ge (with an edge at the L-point) there is a strong
anisotropy of the wavefunction. The anisotropy is described by appropriate combinations
of the s, px, py, and pz type functions. In Fig. 2.12 we show schematically the nature
of the bandedge states.

The character of the valence bandedge states of most semiconductors is quite
similar. The central cell part of the wavefunction is primarily p-type. This makes the
spin–orbit interaction very important. In absence of this interaction, the top of the
valence band is 3-fold degenerate (6-fold if spin degeneracy is included). However, in
presence of the spin–orbit coupling, the degeneracy is lifted as shown in Fig. 2.12 leaving
a 4-fold degeneracy and a 2-fold degeneracy. The 4-fold degenerate (at the top of the
valence band) state consists of two heavy hole (HH) and two light hole (LH) bands while
the other 2-fold bands are the split-off bands. Since optical transitions depend critically
upon the nature of the hole states, it is useful to describe these states in terms of angular
momentum states φl,m (l = total angular momentum, m = projection of the angular
momentum along the z-axis) and spin state (↑= +1/2, ↓= −1/2). The relationship
between the total angular momentum states and the orbital angular momentum states
has been discussed earlier and is the following.
Heavy hole states:

Φ3/2,3/2 =
−1√
2
(|px〉+ i|py〉) ↑

Φ3/2,−3/2 =
1√
2
(|px〉 − i|py〉) ↓ (2.54)

Light hole states:

Φ3/2,1/2 =
−1√
6
[(|px〉+ i|py〉) ↓ −2|pz >↑]
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Figure 2.12: Schematic of the valence band, direct bandgap and indirect bandgap conduction
bands. The conduction band of the direct gap semiconductor is shown in the solid line while
the conduction band of the indirect semiconductor is shown in the dashed line.
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Φ3/2,−1/2 =
1√
6
[(|px〉 − i|py〉) ↑ +2|pz〉 ↓] (2.55)

Split–off hole states:

Φ1/2,1/2 =
−1√
3
[(|px〉+ i|py〉) ↓ +|pz〉 ↑]

Φ1/2,−1/2 =
−1√
3
[(|px〉 − i|py〉) ↑ +|pz〉 ↓] (2.56)

This description of the hole states in terms of the total angular momentum states is
extremely useful in calculating the optical properties of semiconductors. It is also useful
to remember that the pure description of the hole states is strictly valid only at k = 0
(center of the Brillouin zone) since at k �= 0 the HH and LH states mix strongly.

2.6 ORTHOGONALIZED PLANE WAVE METHOD
We know from quantum mechanics that we can solve the Schrödinger equation by ex-
panding the eigenfunction in terms of a complete basis function and developing a matrix
eigenvalue equation. In the tight binding method we have used the atomic functions as
a basis set to describe the bandstructure. It is also possible to use a plane wave basis to
do so. The plane wave basis is an attractive basis but has difficulty because too many
plane waves are needed to describe the problem adequately. To express the Schrödinger
equation in plane wave basis we need to use the reciprocal lattices vectors to expand
the periodic potential.

The reciprocal lattice vectors G have the property that if R represent the
general lattice vector then

eiG·R = 1 (2.57)

and the potential is periodic in R, i.e.,

U(r +R) = U(r)

The periodic potential can, in general, be written as

V (r) =
∑
G

VGeiG·r (2.58)

If the potential is short-ranged, a large number of reciprocal lattice vectors are required
to describe it. This makes the size of the secular equation to be solved correspondingly
large. The orthogonalized plane wave (OPW) method is an approach to avoid having to
deal with a very large number of plane wave states. The basic idea is that the valence
and conduction band states are orthogonal to the core states of the crystal and this fact
should be utilized in the selection of the plane waves. This simple imposition greatly
simplifies the problem.

The general form of the Bloch function in k-space is

Ψ(k, r) =
∑
m

Cm(k) ei(k+Gm)·r (2.59)
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In general one should include a normalization factor 1/
√
Nr0 where N is the

number of unit cells, and r0 is the volume of the unit cell. The secular equation to be
solved has the form ∥∥∥〈φk,m|H − E|φk,n〉

∥∥∥ = 0 (2.60)

where φk,n, φk,m are the plane waves

φk,m =
1√
Nr0

ei(k+Gm)·r (2.61)

Instead of working with the general plane wave basis set, one uses the fact that
the core states are known and the conduction and valence band states are orthogonal
to them. To incorporate this property, one defines the orthogonal states

χk,m = φk,m −
∑
c

〈
ψc|φk,m

〉
ψc

where ψc are the core states. The Bloch functions are now expanded in the orthogonal-
ized states χ and one gets a secular equation∥∥∥< χk,m |H − E| χk,n >

∥∥∥ = 0 (2.62)

This matrix equation only gives the eigenvalues corresponding to the valence
and conduction bands, since the core states have been eliminated from the basis being
used. This allows for easier convergence of the problem. To be able to solve the problem
one needs three ingredients:

1. the form of the background atomic potentials which is then written as a Fourier
series;

2. the form of the core states so that the orthogonal states can be determined. Usually
the isolated atomic core states are used since the presence of other neighboring
atoms is not expected to alter the core states;

3. the crystal structure which is, of course, known.

Once all this information is there, the solution of the problem is straightforward. Of
course, detailed knowledge of the atomic potential in the crystal is difficult to obtain
and one may have to resort to consulting the experimental results for high symmetry
points and develop an approach similar to the tight-binding method where the matrix
elements are adjusted to obtain good fits with some known points in the bandstructure.

2.7 PSEUDOPOTENTIAL METHOD
The pseudopotential is a powerful technique to solve for bandstructures of semicon-
ductors and is often used as a benchmark for comparison of other techniques. We will
describe the spirit of the method without going into its details. Like the orthogonal
plane wave method, the pseudopotential method makes use of the information that the
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valence and conduction band states are orthogonal to the core states. However, this
information is not just used in the construction of the Bloch states, but is included in
an ingenious manner in the Hamiltonian itself. Thus the background periodic poten-
tial is replaced by a new “pseudopotential,” which is obtained by subtracting out the
effects of the core levels. The pseudopotential then has a smooth spatial dependence
and yet includes all the relevant information to give the valence and conduction band
bandstructure. The following formal equations define the procedure. The Schrödinger
equation for the valence or conduction band states is[

p2

2m
+ V (r)

]
Ψv(k, r) = EvΨv(k, r) (2.63)

with the orthogonality condition
〈Ψc|Ψv〉 = 0

where Ψc are the core states. This condition is explicitly incorporated into the definition
of the valence band states by defining new states φv(k, r) where

Ψv(k, r) = φv(k, r)−
∑
c

〈Ψc|φv〉Ψc (2.64)

The equation for φv(k, r) then becomes[
p2

2m
+ V (r)

]
φv(k, r)−

∑
c

[Ev(k)− Ec] 〈Ψc|φv〉Ψc = Ev(k) φv(k, r)

where Ec are the known core level energies. The Schrödinger equation for φv(k, r) has the
same eigenvalues as the original equation for Ψv(k, r) together with the orthogonality
condition, but with a new background potential. The original potential V (r) is replaced
by the operator

V (r)Ψv(k, r)⇒
[
V (r) φv(k, r) +

∑
c

[Ev(k)− Ec] 〈Ψc|φv〉Ψc
]
= Vp (2.65)

The new potential operator which involves subtraction of the core energies
weighted with φv(k, r) from the eigenvalues Ev(k) is called the pseudopotential. Of
course, there is no simplification as yet since the new equation is as difficult to solve
as the starting equation. The pseudopotential Vp is a nonlocal eigenvalue dependent
operator.

The problem is simplified due to the realization that the pseudopotential is
much smoother as shown schematically in Fig. 2.13 than the original starting potential
since the term −Ec 〈Ψc|φv〉 is a position dependent term which subtracts the strong
core effects near the atomic sites leaving the potential in the regions between atoms
unchanged.

The pseudopotential is thus equivalent to a constant potential plus a weak
background potential as far as the valence and conduction band states are concerned.
The solution can then be expanded in terms of plane waves. Usually a few dozen plane
wave states are found to be adequate for convergence.



2.7. Pseudopotential Method 73

Subtraction of ‘‘core’’contribution

V(r) (a)

r

Subtraction of constant background
perturbation potential

Vp(r) (b)

r

Vpert(r)

r

Figure 2.13: Schematic steps in the application of the pseudopotential formalism. The true
potential V (r) along with the orthogonality condition (a) is rewritten in terms of a pseu-
dopotential (b) which is much smoother. The problem can then be solved perturbatively by
separating the [p2/(2m) + V (0)] term in the Hamiltonian.
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2.8 k · p METHOD
The k · p model has become one of the most widely used bandstructure models for
describing not only 3–dimensional semiconductors, but lower dimensional systems such
as a quantum wells, wires, and dots. It is quite accurate near the bandedges. In the
k · p method, one starts with the known form of the bandstructure problem at the
bandedges and using perturbation theory attempts to describe the bands away from
the high symmetry points. Since for the central cell functions, we only expand around
the high symmetry points in terms of known functions, the problem is considerably
simplified, often leading to analytical results.

Let us consider a semiconductor with a bandedge at k0. We assume that the
eigenvalues and Bloch functions are known for the bandedge; i.e., the equation[

p2

2m0
+ V (r)

]
ψn(k0, r) = En(k0) ψn(k0, r) (2.66)

is known. In most applications k0 is the Γ-point (= [000]) in the Brillouin zone. We can
expand the general solutions away from the known k = k0 solutions in the basis set
exp[i(k− k0) · r]. Thus we may write

ψ(k, r) =
∑
n

bn(k) ψn(k0, r) ei(k−k0)·r (2.67)

where bn are the expansion coefficients, that are to be determined. This general approach
is shown in Fig. 2.14. The secular equation has the usual form, formally represented by∥∥∥〈ei(k−k0)·rψn′ (k0, r)|H − E|ei(k−k0)·rψn(k0, r)〉

∥∥∥ = 0 (2.68)

A simple expansion allows us to rewrite this equation for just the central cell part of
the Bloch states. Remembering that p = −ih̄∇ and

∇
(
ei(k−k0)·rψn

)
= ei(k−k0)·r (∇+ i(k− k0))ψn

[
p2

2m0
+ V (r)

]
ei(k−k0)·rψn(k0, r)

= ei(k−k0)·r
[{p+ h̄(k− k0)}2

2m0
+ V (r)

]
ψn(k0, r)

= ei(k−k0)·r
[

h̄2

2m0
(k− k0)2 +

h̄

m0
(k− k0) · p+ En(k0)

]
ψn(k0, r) (2.69)

The eigenvalue determinant then becomes∥∥∥∥
〈[

h̄2

2m0
(k− k0)2 + En(k0)− E

]
δn′n +

h̄

m0
(k− k0) · P n′n(k0)

〉∥∥∥∥ = 0 (2.70)
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E7(k0), Eg(k0); ψ7(k0,r), ψg(k0,r)

E6(k0); ψ6(k0,r0)

ψ(k−k0,r) = bn(k)ψn(k0)ei(k−k )·r0

E5(k0); ψ5(k0,r)

E3(k0), E4(k0); ψ3(k0,r0), ψ4(k0,r)

E2(k0); ψ2(k0,r)

E1(k0); ψ1(k0,r)

k = k0
k

E

Σ
n

Wavefunctions and energy
levels known at k = k0

Figure 2.14: A schematic of the basis of the k · p method. The states away from k0 are
expanded in terms of the known k = k0 states.

where P n′n is the momentum matrix element between the different bandedge states

P n′n =
∫

ψ∗
n′ (k0, r) p ψn(k0, r) d3r (2.71)

If the momentum matrix elements are known, the eigenvalue problem can be
easily solved for E(k0) and bn(k). The integral in Eqn. 2.71 is nonzero only for certain
symmetries of ψn′ (k0, r) and ψn(k0, r). It is this reduction in the number of independent
parameters, together with the fact that near a particular energy En(k0), only bands
which have the energy difference En′ (k0)−En(k0) small (as we see later in Eqns. 2.75
and 2.76), will contribute significantly, that makes the k·pmethod so attractive. Usually
the matrix elements P n′n are used as fitting parameters and adjusted to fit measured
quantities such as carrier masses, etc.

Consider, for example, the k · p description of the nondegenerate bands (e.g.,
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conduction bandedge or the split-off band in the valence band for the case of large spin–
orbit coupling). In this case one can use the perturbation theory to obtain the energy
and wavefunctions away from k0. For simplicity, let us assume k0 = 0. The Schrödinger
equation for the perturbation Hamiltonian is simply

(H0 +H1 +H2)unk = E
nk u

nk (2.72)

where

H0 =
p2

2m0
+ V (r)

H1 =
h̄

m
k · p

H2 =
h̄2k2

2m0

In the perturbation approach, H1 is a first order term in k, and H2 is a second
order term. The unk are the central cell part of the Bloch functions ψn(k). To zero
order, we then have

unk = un0

E
nk = En(0) (2.73)

To first order we have

unk = un0 +
h̄

m0

∑
n′ �=n

k · 〈n0|p|n0〉
En(0)− En′ (0)

un0

E
nk = En(0) +

h̄

m0
k · 〈n0|p|n0〉 (2.74)

If the states |n0〉 or un0 have inversion symmetry, the first order matrix element
is zero because p has an odd parity. This would occur in crystals with inversion symmetry
(e.g., Si, Ge, and C). For crystals lacking inversion symmetry, the functions |n0 > may
not have a well-defined parity leading a small correction to energy proportional to k.
This correction is usually very small and leads to a small band warping, i.e., the energy
is not an extrema at the high symmetry point.

To second order, the energy becomes

En(k) = En(0) +
h̄2k2

2m0
+

h̄2

m2
0

∑
n′ �=n

|k · 〈n′
0|p|n0〉|2

En(0)− En′ (0)
(2.75)

This equation can be expressed in terms of an effective mass m∗

En(k) = En(0) +
∑
i,j

h̄2

m∗
i,j

ki · kj
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where

m0

m∗
i,j

= δi,j +
2
m0

∑
n′ �=n

〈n0|pi|n′
0〉〈n′

0|pj |n0〉
En(0)− En′ (0)

(2.76)

This equation is valid for the conduction bandedge and the split–off bands. For
the conduction band, retaining only the valence bandedge bands in the summation, we
get

Ec(k) = Ec(0) +
h̄2k2

2m∗
c

(2.77)

with

1
m∗
c

=
1
m0

+
2p2
cv

m2
0

1
3

(
2

EgΓ
+

1
EgΓ +∆

)

where EgΓ is the gap at the zone center and ∆ is the HH–SO band separation. The
momentum matrix element is 〈σ|Px|px〉 (σ is the s–function at the conduction bandedge
and px is the p-function at the valence bandedge). For the SO band we have

Eso = −∆− h̄2k2

2m∗
so

1
m∗
so

=
−1
m0

+
2p2
cv

3m2(EgΓ +∆)
(2.78)

Notice that in this simple model the SO band mass we have no contribution
from the HH, LH bands in this simple treatment since the momentum matrix elements
are zero, by symmetry.

According to Eqn. 2.76 we see that for the conduction band (for direct gap
semiconductors) as the bandgap decreases, the carrier effective mass also decreases.
This result holds quite well as can be seen by examining the effective masses of a range
of semiconductors as shown in Fig. 2.15.

We have seen that at the top of the valence band we have the HH,LH degen-
eracy. As we move away from k = 0 there is a strong interaction between these states
which causes a splitting between the two bands. The split–off band also can have an
effect on the valence band states, since it is close to these HH,LH bands. If one ignores
the effects of the conduction band in the determinant equation, one then gets a 6 × 6
eigenvalue secular equation. Symmetry considerations are then used to select the form
and nonzero matrix elements of this matrix equation. A treatment which has proven
very valuable is due to Kohn and Luttinger. The matrix equation, with the Luttinger
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Figure 2.15: Electron effective mass, m∗ as a function of the lowest–direct gap Eg for various
III–V compounds.

and Kohn phases, is of the form:

j: 3/2 3/2 3/2 3/2 1/2 1/2

mj : 3/2 1/2 −1/2 −3/2 1/2 −1/2

H = −




Hhh b c 0 ib/
√
2 −i√2c

b∗ Hlh 0 c −iq i
√
3b/

√
2

c∗ 0 Hlh −b −i√3b∗/√2 −iq
0 c∗ −b∗ Hhh −i√2c∗ −ib∗/√2

−ib∗/√2 iq i
√
3b/

√
2 i

√
2c Hso 0

i
√
2c∗ −i√3b∗/√2 iq ib/

√
2 0 Hso




(2.79)

The elements in the Hamiltonian are given by

Hhh =
h̄2

2m0

[
(γ1 + γ2)

(
k2
x + k2

y

)
+ (γ1 − 2γ2) k2

z

]
Hlh =

h̄2

2m0

[
(γ1 − γ2)

(
k2
x + k2

y

)
+ (γ1 + 2γ2) k2

z

]
Hso = (Hhh +Hlh)/2 + ∆0

b =
−√

3ih̄2

m0
γ3 (kx − iky) kz
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c =
√
3h̄2

2m0

[
γ2

(
k2
x − k2

y

)− 2iγ3kxky
]

q = (Hhh −Hlh)/
√
2 (2.80)

In most semiconductors with large spin–orbit coupling, the 6×6 matrix equation
can be separated into a 4× 4 and a 2× 2 equation. The appropriate equation defining
the HH and LH states is then

−




Hhh b c 0
b∗ Hlh 0 c
c∗ 0 Hlh −b
0 c∗ −b∗ Hhh






Φ(3/2,3/2)

Φ(3/2,1/2)

Φ(3/2,−1/2)

Φ(3/2,−3/2)


 = E




Φ(3/2,3/2)

Φ(3/2,1/2)

Φ(3/2,−1/2)

Φ(3/2,−3/2)


 (2.81)

where the coefficients Hhh, Hlh, c, b are the same as above and γ1, γ2 and γ3 are the
Kohn–Luttinger parameters. These can be obtained by fitting experimentally obtained
hole masses. It may be noted that the 4×4 matrix equation can be reduced to two 2×2
matrix equations (Broido and Sham, 1985), and the E vs. k relations can be solved
analytically. The 2× 2 matrix is∣∣∣∣ Hhh |b| − i|c|

(|b| − i|c|)∗ Hlh

∣∣∣∣ψ = Eψ (2.82)

where ψ is a 1× 2 vector.
Let us examine the momentum matrix element pcv, in terms of which, the

conduction band masses are expressed in the k·p formalism. We note that the conduction
bandedge state for direct gap semiconductors has an s-type symmetry, and is denoted
by |+ σ〉 (spin up) and | − σ〉 (spin down).

The matrix elements of interest are of the form 〈r|P |σ〉; r = x, y, z. From parity
considerations 〈x|Px|σ〉 = 〈y|Py|σ〉 = 〈z|Pz|σ〉 are the only nonzero matrix elements
while the rest of the elements are zero.

The nonvanishing matrix elements are

〈±3/2|Px| ± σ〉 =
1√
2
〈x|Px|σ〉

〈±1/2|Px| ∓ σ〉 =
1√
6
〈x|Px|σ〉

〈±3/2|Pz| ± σ〉 =
2√
6
〈x|Px|σ〉 (2.83)

We define a quantity

Ep =
2
m0

|〈x|Px|σ〉|2

=
2
m0

p2
cv (2.84)

The following are the values of Ep for various semiconductors in (eV) (Lawaetz, 1971).
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Devices Region of Bandstructure of Importance
Measured from Bandedge

• Transistors ∼ 2kBT (∼ 50 meV at T = 300 K)
(Source Gate)
Low Field Region
• Transistors ∼ 0.5 eV
High Field Region
(Gate-Drain Region)
• Power Transistors ∼ Egap ∼ 1.0 eV
Avalanche Detectors and
Other Devices Involving
Breakdown
• Lasers ∼ 2− 3kBT (∼ 50− 75 meV at T = 300 K)
• Detectors Variable, depending upon

photon wavelength

Table 2.2: Various electronic and optoelectronic devices and the range of bandstructure that
is important for their performance.

GaAs 25.7
InP 20.4
InAs 22.2
CdTe 20.7

It is interesting to note that the matrix element is nearly the same for all semiconductors.

2.9 SELECTED BANDSTRUCTURES
We will now examine special features of some semiconductors. Of particular interest are
the bandedge properties since they dominate the transport and optical properties. In
this context, it is important to appreciate the range of energies away from the band-
edges which control various physical properties of devices. These energies are shown in
Table 2.2 for various kinds of electronic and optical devices. As can be seen, the region
of interest varies depending upon the kind of devices one is interested in. Bandedge
properties are often captured by density of states (number of allowed states per unit
volume per energy interval). This concept is reviewed in Appendix C.

Silicon
Silicon forms the backbone of modern electronics industry. The bandstructure of silicon
is shown in Fig. 2.16 and, as can be seen, it has an indirect bandgap. This fact greatly
limits the applications of Si in optical devices, particularly for light emitting devices.
The bottom of the conduction band in Si is at point (∼ (2π/a)(0.85, 0.0) i.e., close
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Figure 2.16: (a) Bandstructure of Si. (b) Constant energy ellipsoids for Si conduction band.
There are six equivalent valley in Si at the bandedge.

to the X-point. There are six degenerate X-points and consequently six conduction
bandedge valleys. The central cell part of the Bloch functions near the bandedge is a
strong mixture of s and px functions along the x-axis (the longitudinal axis) and py and
pz along the transverse direction from the bandedge. The near bandedge bandstructure
can be represented by ellipsoids of energy with simple E vs. k relations of the form (for
examples for the [100] valley)

E(k) =
h̄2k2

x

2m∗
l

+
h̄2
(
k2
y + k2

z

)
2m∗

t

(2.85)

where we have two masses, the longitudinal and transverse. The constant energy surfaces
of Si are ellipsoids according to Eqn. 2.85. The six surfaces are shown in Fig. 2.16.

The longitudinal electron mass m∗
l is approximately 0.98 m0, while the trans-

verse mass is approximately 0.19 m0.
The next valley in the conduction band is the L-point valley, which is about

1.1 eV above the bandedge. Above this is the Γ-point edge. The direct bandgap of Si
is ∼ 3.4 eV. This direct gap is quite important for optical transitions since, as we shall
see later, the absorption coefficient for photons above this energy is very strong. It is
important to note that due to the 6-fold degeneracy of the conduction bandedge, the
electron transport in Si is quite poor. This is because of the very large density of states
near the bandedge leading to a high scattering rate.

The top of the valence band has the typical features seen in all semiconductor
valence bands. One has the HH, LH degeneracy at the zone edge. The split-off (SO)
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band valleys are at the L-point.

band is also very close for Si since the split-off energy is only 44 meV. This is one of the
smallest split off energies of any semiconductors.

GaAs
The near bandedge bandstructure of GaAs is shown in Fig. 2.17. The bandgap is direct,
which is the chief attraction of GaAs. The direct bandgap ensures excellent optical
properties of GaAs as well as superior electron transport in the conduction band. The
bandstructure can be represented by the relation

E =
h̄2k2

2m∗ (2.86)

with m∗ = 0.067m0. A better relationship is the nonparabolic approximation

E(1 + αE) =
h̄2k2

2m∗ (2.87)

with α = 0.67 eV−1.
For high electric field transport, it is important to note that the valleys above Γ

point are the L-valleys. There are eight L-points, but since half of them are connected
by a reciprocal lattice vector, there are four valleys. The separation ∆EΓL between the
Γ and L minima is 0.29 eV. The L valley has a much larger effective mass than the
Γ valley. For GaAs, m∗

L ∼ 0.25m0. This difference in masses is extremely important
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Figure 2.18: (a) Bandstructure of Ge. Like Si, Ge is an indirect semiconductor. The bottom of
the conduction band occurs at the L-point. The hole properties of Ge are the best of any semi-
conductor with extremely low hole masses. (b) Bandstructure of AlAs. AlAs is an important
III-V semiconductor because of its excellent lattice constant, matching GaAs. The material has
indirect bandgap and is usually used in AlGaAs alloy for barrier materials in GaAs/AlGaAs
heterostructures.

for high electric field transport and leads to negative differential resistance. Above the
L-point in energy is the X-valley with ∆EΓL ∼ 0.58 eV. The mass of the electron
in the X-valley is also quite large (m∗

X ∼ 0.6m0). At high electric fields, electrons
populate both the L and X valleys in addition to the Γ-valley, making these regions of
bandstructure quite important.

The valence band of GaAs has the standard HH, LH, and SO bands. Due to
the large spin–orbit splitting, for most purposes, the SO band does not play any role in
electronic or optoelectronic properties.

The Kohn-Luttinger parameters for GaAs are

γ1 = 6.85
γ2 = 2.1
γ3 = 2.9

leading to the density of states hole masses of m∗
HH = 0.45m0; m∗

LH = 0.08m0. As
discussed in the case of Si, the effective masses and E vs. k relation for holes is highly
anisotropic.

The bandstructures of Ge and AlAs, two other important semiconductors are
shown in Fig. 2.18, along with brief comments about their important properties.
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InN, GaN, and AlN
The III–V nitride family of GaN, InN, and AlN have become quite important due to
progress in the ability to grow the semiconductor. The nitrides and their combinations,
which have a wurtzite structure can provide bandgaps ranging from ∼1.0 eV to over
6.0 eV. This large range is very useful for short wavelength light emitters (for blue light
emission and for high resolution reading/writing applications in optoelectronics) and
high power electronics. In Fig. 2.19 we show the bandstructure of InN, GaN, and AlN
near the bandedges. Also shown is the Brillouin zone and the notations used for the
high symmetry points.

It should be noted that it is difficult to obtain the bandgap of InN, since it is
difficult to grow thick defect free layers due to substrate non-availability. It was thought
(prior to ∼2001) that the bandgap of InN was 1.9 eV. However, recent results have
shown a bandgap closer to 0.9 eV.

Also important to note is that the bandgap of semiconductors generally de-
creases as temperature increases. The bandgap of GaAs, for example, is 1.51 eV at
T = 0K and 1.43 eV at room temperature. These changes have very important conse-
quences for both electronic and optoelectronic devices. The temperature variation alters
the laser frequency in solid state lasers, and alters the response of modulators and de-
tectors. It also has effects on intrinsic carrier concentration in semiconductors. In Table
2.3 we show the temperature dependence of bandgaps of several semiconductors.

2.10 MOBILE CARRIERS: INTRINSIC CARRIERS
From our brief discussion of metals and semiconductors in Section 2.3, we see that in
a metal, current flows because of the electrons present in the highest (partially) filled
band. This is shown schematically in Fig. 2.20a. The density of such electrons is very
high (∼ 1023 cm−3). In a semiconductor, on the other hand, no current flows if the
valence band is filled with electrons and the conduction band is empty of electrons.
However, if somehow empty states or holes are created in the valence band by removing
electrons, current can flow through the holes. Similarly, if electrons are placed in the
conduction band, these electrons can carry current. This is shown schematically in Fig.
2.20b. If the density of electrons in the conduction band is n and that of holes in the
valence band is p, the total mobile carrier density is n+ p.

In Appendix B we discuss the density of states of electrons near bandedges. The
density of state N(E) is a very important concept and gives us the number of allowed
electronic states per unit volume per energy (units: cm−3 eV−1). For 3–dimensional
systems the density of states has the form

N(E) =
√
2 (m∗

dos)
3/2 (E − Ec)

1/2

π2h̄3 (2.88)

where m∗
dos is the density of states mass and Ec is the conduction bandedge. A similar

expression exists for the valence band except the energy term is replaced by (Ev − E)1/2

and the density of states exist below the valence bandedge Ev. In Fig. 2.21 we show a
schematic view of the density of states.
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Experimental
Bandgap
EG (eV)

Type of Temperature Dependence
Compound Bandgap 0 K 300 K of Bandgap EG(T ) (eV)
AlP Indirect 2.52 2.45 2.52 – 3.18 ×10−4T 2/(T + 588)
AlAs Indirect 2.239 2.163 2.239 – 6.0 ×10−4T 2/(T + 408)
AlSb Indirect 1.687 1.58 1.687 – 4.97 ×10−4T 2/(T + 213)
GaP Indirect 2.338 2.261 2.338 – 5.771 ×10−4T 2/(T + 372)
GaAs Direct 1.519 1.424 1.519 – 5.405 ×10−4T 2/(T + 204)
GaSb Direct 0.810 0.726 0.810 – 3.78 ×10−4T 2/(T + 94)
InP Direct 1.421 1.351 1.421 – 3.63 ×10−4T 2/(T + 162)
InAs Direct 0.420 0.360 0.420 – 2.50 ×10−4T 2/(T + 75)
InSb Direct 0.236 0.172 0.236 – 2.99 ×10−4T 2/(T + 140)

Table 2.3: Bandgaps of binary III–V compounds. (From Casey and Panish, 1978).

In direct gap semiconductors m∗
dos is just the effective mass for the conduction

band. In indirect gap materials it is given by

m∗
dos = (m

∗
1m

∗
2m

∗
3)

1/3

where m∗
1m

∗
2m

∗
3 are the effective masses along the three principle axes. For Si counting

the 6 degenerate X–valleys we have

m∗
dos = 6

2/3
(
m&m

2
t

)1/3

For the valence band we can write a simple expression for a density of states mass which
includes the HH and LH bands

m∗
dos =

(
m

∗3/2
hh +m

∗3/2
&h

)2/3

In pure semiconductors electrons in the conduction came from the valence band and
n = p = ni = pi where ni and pi are the intrinsic carrier concentrations. In general the
electron density in the conduction band is

n =
∫ ∞

Ec

Ne(E)f(E)dE

n =
1
2π2

(
2m∗

e

h̄2

)3/2 ∫ ∞

Ec

(E − Ec)1/2dE
exp (E−EF

kBT
) + 1

(2.89)

In Fig. 2.21 we show how a change of temperature alters the shape of the Fermi function
and alters the electron and hole densities. For small values of n (non-degenerate statistics
where we can ignore the unity in the Fermi function) we get

n = Nc exp [(EF − Ec) /kBT ] (2.90)



2.10. Mobile Carriers: Intrinsic Carriers 87

METALS

Evac

EF
Ec

E
N
E
R
G
Y Electrons in the

conduction band
can carry current

SEMICONDUCTORS
Evac

Ec

EV

E
N
E
R
G
Y

Electrons in the conduction band
(density, n) carry current− −

+ + +

Valence
band

Holes in the valence band
(density, p) carry current

Mobile carrier density = n + p

(a)

(b)

Figure 2.20: (a) A schematic showing allowed energy bands in electrons in a metal. The
electrons occupying the highest partially occupied band are capable of carrying current. (b)
A schematic showing the valence band and conduction band in a typical semiconductor. In
semiconductors only electrons in the conduction band and holes in the valence band can carry
current.
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semiconductor. (b) Density of states and Fermi occupation function at low temperature. (c)
Density of states and Fermi function at high temperatures when ni and pi became large.

where the effective density of states Nc is given by

Nc = 2
(
m∗
ekBT

2πh̄2

)3/2

(2.91)

Similar results arise for holes. We also obtain

np = 4
(

kBT

2πh̄2

)3

(m∗
em

∗
h)

3/2 exp (−Eg/kBT ) (2.92)

We note that the product np is independent of the position of the Fermi level and is
dependent only on the temperature and intrinsic properties of the semiconductor. This
observation is called the law of mass action. If n increases, p must decrease, and vice
versa. For the intrinsic case n = ni = p = pi, we have from the square root of the
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CONDUCTION BAND VALENCE BAND INTRINSIC CARRIER
MATERIAL EFFECTIVE DENSITY (NC) EFFECTIVE DENSITY (NV) CONCENTRATION (ni = pi)

Si (300 K) 2.78 x 1019 cm−3 9.84 x 1018 cm−3 1.5 x 1010 cm−3

Ge (300 K) 1.04 x 1019 cm−3 6.0 x 1018 cm−3 2.33 x 1013 cm−3

GaAs (300 K) 4.45 x 1017 cm−3 7.72 x 1018 cm−3 1.84 x 106 cm−3

Table 2.4: Effective densities and intrinsic carrier concentrations of Si, Ge, and GaAs. The
numbers for intrinsic carrier densities are the accepted values even though they are smaller
than the values obtained by using the equations derived in the text.

equation above,

ni = pi = 2
(

kBT

2πh̄2

)3/2

(m∗
em

∗
h)

3/4 exp (−Eg/2kBT )

EFi =
Ec + Ev

2
+
3
4

kBT&n (m∗
h/m

∗
e) (2.93)

Thus the Fermi level of an intrinsic material lies close to the midgap. Note that in
calculating the density of states masses m∗

h and m∗
e the number of valleys and the sum

of heavy and light hole states have to be included.
In Table 2.4 we show the effective densities and intrinsic carrier concentrations

in Si, Ge, and GaAs. The values given are those accepted from experiments. These values
are lower than the ones we get by using the equations derived in this section. The reason
for this difference is due to inaccuracies in carrier masses and the approximate nature
of the analytical expressions.

We note that the carrier concentration increases exponentially as the bandgap
decreases. Results for the intrinsic carrier concentrations for some semiconductors are
shown in Fig. 2.22. The strong temperature dependence and bandgap dependence of
intrinsic carrier concentration can be seen from this figure. In electronic devices where
current has to be modulated by some means, the concentration of intrinsic carriers is
fixed by the temperature and therefore is detrimental to device performance. Once the
intrinsic carrier concentration increases to∼ 1015 cm−3, the material becomes unsuitable
for electronic devices due to the high leakage current arising from the intrinsic carriers.
A growing interest in high-bandgap semiconductors such as diamond (C), SiC, etc., is
partly due to the potential applications of these materials for high-temperature devices
where, due to their larger gap, the intrinsic carrier concentration remains low up to very
high temperatures.

EXAMPLE 2.1 Calculate the effective density of states for the conduction and valence bands
of GaAs and Si at 300 K. Let us start with the GaAs conduction-band case. The effective density
of states is

Nc = 2

(
m∗

ekBT

2πh̄2

)3/2
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Note that at 300 K, kBT = 26 meV = 4× 10−21 J.

Nc = 2

(
0.067× 0.91× 10−30 (kg)× 4.16× 10−21 (J)

2× 3.1416× (1.05× 10−34 (Js))2

)3/2

m−3

= 4.45× 1023 m−3 = 4.45× 1017 cm−3

In silicon, the density of states mass is to be used in the effective density of states. This is given
by

m∗
dos = 6

2/3(0.98× 0.19× 0.19)1/3 m0 = 1.08 m0

The effective density of states becomes

Nc = 2

(
m∗

doskBT

2πh̄2

)3/2

= 2

(
1.06× 0.91× 10−30 (kg)× 4.16× 10−21 (J)

2× 3.1416× (1.05× 10−34 (Js))2

)3/2

m−3

= 2.78× 1025 m−3 = 2.78× 1019 cm−3

One can see the large difference in the effective density between Si and GaAs.

In the case of the valence band, one has the heavy hole and light hole bands, both of
which contribute to the effective density. The effective density is

Nv = 2
(
m

3/2
hh +m

3/2
�h

)(
kBT

2πh̄2

)3/2

For GaAs we use mhh = 0.45m0,m�h = 0.08m0 and for Si we use mhh = 0.5m0,m�h = 0.15m0,
to get

Nv(GaAs) = 7.72× 1018cm−3

Nv(Si) = 9.84× 1018cm−3

EXAMPLE 2.2 Calculate the position of the intrinsic Fermi level in Si at 300 K.

The density of states effective mass of the combined six valleys of silicon is

m∗
dos = (6)

2/3
(
m∗

� m
2
t

)1/3
= 1.08 m0

The density of states mass for the valence band is 0.55 m0. The intrinsic Fermi level is given
by (referring to the valence bandedge energy as zero)

EFi =
Eg

2
+
3

4
kBT"n

(
m∗

h

m∗
e

)
=

Eg

2
+
3

4
(0.026)"n

(
0.55

1.08

)
=

Eg

2
− (0.0132 eV)

The Fermi level is then 13.2 meV below the center of the mid-bandgap.

EXAMPLE 2.3 Calculate the intrinsic carrier concentration in InAs at 300 K and 600 K.
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The bandgap of InAs is 0.35 eV and the electron mass is 0.027m0. The hole density
of states mass is 0.4m0. The intrinsic concentration at 300 K is

ni = pi = 2
(
kBT

2πh̄2

)3/2

(m∗
e m

∗
h)

3/4
exp

( −Eg

2kBT

)
= 2

(
(0.026)(1.6× 10−19)

2× 3.1416× (1.05× 10−34)2

)3/2

(
0.027× 0.4× (0.91× 10−30)2

)3/4
exp

(
− 0.35

0.052

)
= 1.025× 1021 m−3 = 1.025× 1015cm−3

The concentration at 600 K becomes

ni(600 K) = 2.89× 1015cm−3

2.11 DOPING: DONORS AND ACCEPTORS
In the last section of this chapter we will discuss electron and hole densities arising
from doping. There are two kinds of dopants—donors, which donate an electron to
the conduction band, and acceptors, which accept an electron from the valence band
(thus creating a hole). To understand the donor (or acceptor) problem, we consider a
donor atom on a crystal lattice site. The donor atom could be a pentavalent atom in
silicon or a Si atom on a Ga site in GaAs. Thus it has one or two extra electrons in
its outermost shell compared to the host atom it replaces. Focusing on the pentavalent
atom in Si, four of the valence electrons of the donor atom behave as they would in
a Si atom; the remaining fifth electron now sees a positively charged ion to which it
is attracted, as shown in Fig. 2.23. The ion has a charge of unity and the attraction
is simply a Coulombic attraction suppressed by the dielectric constant of the material.
The attractive potential is (ε is the dielectric constant of the semiconductor, i.e., the
product of ε0 and the relative dielectric constant)

U(r) =
−e2

4πεr

This problem is now essentially the same as that of an electron in the hydrogen atom
problem. The only difference is that the electron mass ism∗ and the coulombic potential
is reduced by ε0/ε.

The lowest-energy solution for this problem is

Ed = Ec − e4m∗
e

2(4πε)2h̄2

= Ec − 13.6
(
m∗

mo

)(εo
ε

)2

eV (2.94)

Note that in the hydrogen atom problem the electron level is measured from the vacuum
energy level, which is taken as E = 0. In the donor problem, the energy level is measured
from the bandedge and the ground state is shown schematically in Fig. 2.24.
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Figure 2.23: A schematic showing the approach to understanding donors in semiconductors.
The donor problem is treated as the host atom problem together with a Coulombic interaction
term. The silicon atom has four “free” electrons per atom. All four electrons are contributed
to the valence band at 0 K. The dopant has five electrons out of which four are contributed
to the valence band, while the fifth one can be used for increasing electrons in the conduction
band.
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Figure 2.24: Charges associated with an arsenic impurity atom in silicon. Arsenic has five
valence electrons, but silicon has only four valence electrons. Thus four electrons on the ar-
senic form tetrahedral covalent bonds similar to silicon, and the fifth electron is available for
conduction. The arsenic atom is called a donor because when ionized it donates an electron to
the conduction band.
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The effective mass to be used is the conductivity effective mass m∗
σ, which tells

us how electrons respond to external potentials. This mass is used for donor energies as
well as for charge transport in an electric field. For direct bandgap materials like GaAs,
this is simply the effective mass. For materials like Si the conductivity mass is

m∗
σ = 3

(
2
m∗
t

+
1
m∗
&

)−1

(2.95)

According to the simple picture of the donor impurity discussed above, the
donor energy levels depend only upon the host crystal (through ε and m∗) and not on
the nature of the dopant. According to Eqn. 2.94, the donor energies for Ge, Si, and
GaAs should be 0.006 V, 0.025, and 0.007 eV, respectively. However there is a small
deviation from these numbers, depending upon the nature of the dopant. This difference
occurs because of the simplicity of our model. In a real sense there is a small distortion
of the atomic potential—the so called central cell correction—which modifies the donor
energy as given by the simple model discussed here.

Another important class of intentional impurities is the acceptors. Just as
donors are defect levels that are neutral when an electron occupies the defect level
and positively charged when unoccupied, the acceptors are neutral when empty and
negatively charged when occupied by an electron. The acceptor levels are produced
when impurities that have a similar core potential as the atoms in the host lattice, but
have one less electron in the outermost shell, are introduced in the crystal. Thus group
III elements can form acceptors in Si or Ge, while Si could be an acceptor if it replaces
As in GaAs.

From the discussion above, it is clear that while in group IV semiconductors,
the donor- or acceptor-like nature of an impurity is unambiguous, in compound semi-
conductors, the dopants can be “amphoteric.” For example, Si can act as a donor in
GaAs if it replaces a Ga atom while it can act as an acceptor if it replaces an As atom.

EXAMPLE 2.4 Calculate the donor and acceptor level energies in GaAs and Si. The shallow
level energies are in general given by

Ed = Ec − 13.6(eV)× m∗/m0

(ε/ε0)2

The conduction-band effective mass in GaAs is 0.067m0 and ε = 13.2ε0, and we get for the
donor level

Ed(GaAs) = Ec − 5.2 meV
The problem in silicon is a bit more complicated since the effective mass is not so simple. For
donors we need to use the conductivity mass, which is given by

m∗
σ =

3m0(
1
m∗

�
+ 2

m∗
t

)
where m∗

� and m
∗
t are the longitudinal and transverse masses for the silicon conduction band.

Using m∗
� = 0.98 and m∗

t = 0.2m0, we get

m∗
σ = 0.26m0
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Using ε = 11.9ε0, we get
Ed(Si) = 25 meV

The acceptor problem is much more complicated due to the degeneracy of the heavy hole
and light hole band. The simple hydrogen atom problem does not give very accurate results.
However, a reasonable approximation is obtained by using the heavy hole mass (∼ 0.45m0 for
GaAs, ∼ 0.5m0 for Si), and we get

Ea(Si) = 48 meV

Ea(GaAs) ∼= 36 meV

This is the energy above the valence bandedge. However, it must be noted that the use of the

heavy hole mass is not strictly valid.

2.11.1 Carriers in Doped Semiconductors
As noted above, if a donor is placed in a crystal it can, in principle, provide an electron
to the conduction band. However, whether this extra electron gives into the conduction
band or stays bound to the donor depends upon temperature, donor binding energy
and donor density. At very low temperatures, the donor electrons are tied to the donor
sites and this effect is called carrier freezeout. At higher temperatures, however, the
donor electron is “ionized” and resides in the conduction band as a free electron. Such
electrons can carry current and modify the electronic properties of the semiconductor.
The ionized donor atom is positively charged. Similarly, an ionized acceptor is negatively
charged and contributes a hole to the valence band.

In general the relation between electron density and Fermi level, EF , is given
by Eqn. 2.89. While in general this relation is to be obtained numerically, a good ap-
proximation is given by the Joyce-Dixon approximation . According to this relation, we
have

EF = Ec + kBT

[
&n

n

Nc
+

1√
8

n

Nc

]
= Ev − kBT

[
&n

p

Nv
+

1√
8

p

Nv

]
(2.96)

where the effective density of states Nc or Nv for the conduction or valence band is
given by

Nc = 2
(
m∗kBT
2πh̄2

)3/2

This relation can be used to obtain the Fermi level if n is specified. Alternatively, it can
be used to obtain n if EF is known by solving for n iteratively. If the term (n/

√
8 Nc)

is ignored the result corresponds to the Boltzmann approximation given in Eqn. 2.90.

EXAMPLE 2.5 A sample of GaAs has a free electron density of 1017 cm−3. Calculate the
position of the Fermi level using the Boltzmann approximation and the Joyce-Dixon approxi-
mation at 300 K.

In the Boltzmann approximation, the carrier concentration and the Fermi level are
related by the following equation:

EF = Ec + kBT
[
"n

n

Nc

]
= Ec + 0.026

[
"n

(
1017

4.45× 1017
)]

= Ec − 0.039 eV
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The Fermi level is 39 meV below the conduction band. In the Joyce-Dixon approximation we
have

EF = Ec + kBT

[
"n
(
n

Nc

)
+

1√
8

n

Nc

]

= Ec + 0.026

[
"n

(
1017

4.45× 1017
)
+

1017√
8(4.45× 1017)

]
= Ec − 0.039 + 0.002 = Ec − 0.037 eV

The error produced by using the Boltzmann approximation (compared to the more accurate
Joyce-Dixon approximation) is 2 meV.

EXAMPLE 2.6 Assume that the Fermi level in silicon coincides with the conduction band-
edge at 300 K. Calculate the electron carrier concentration using the Boltzmann approximation
and the Joyce-Dixon approximation.

In the Boltzmann approximation, the carrier density is simply

n = Nc = 2.78× 1019 cm−3

According to the Joyce-Dixon approximation, the carrier density is obtained from the solution
of the equation

EF = 0 = kBT

[
"n

n

Nc
+

n√
8Nc

]
Solving by trial and error, we get

n

Nc
= 0.76 or n = 2.11× 1019 cm−3

We see that the less accurate Boltzmann approximation gives a higher charge density.

2.11.2 Mobile Carrier Density and Carrier Freezeout

In the lowest energy state of the donor atom, the extra electron of the donor is localized
at the donor site. Such an electron cannot carry any current and is not useful for
changing the electronic properties of the semiconductor. At very low temperatures, the
donor electrons are, indeed, tied to the donor sites and this effect is called carrier freeze-
out. At higher temperatures, however, the donor electron is “ionized” and resides in the
conduction band as a free electron as shown schematically in Fig. 2.25. Such electrons
can, of course, carry current and modify the electronic properties of the semiconductor.
The ionized donor atom is negatively charged and offers a scattering center for the free
electrons. We will discuss the scattering in a later chapter.

The electron + donor system can be in one of the following states: i) the electron
is free; ii) there is one electron attached to the donor with spin up or spin down; or iii)
there are two electrons attached to a donor. While in principle the latter condition is
allowed, the repulsion energy for two electrons on the same donor is so large that the
third condition is not allowed. Thus, two electrons each with opposite spin cannot be
bound to a donor.
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Localized electron
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Figure 2.25: An electron band to a donor does not contribute to charge conduction. However,
if the donor is “ionized,” the electron becomes free and can contribute to the charge transport.

The occupation statistics for the donor system (an electron can occupy the
donor state in two independent ways) gives the following occupation function:

fdonor =
1

1
2 e(Ed−EF )/kBT + 1

Thus the number density of electrons bound to the donors, nd is

nd =
Nd

1
2 e(Ed−EF )/kBT + 1

≈ 2Nde
−(Ed−EF )/kBT for (Ed − EF )/kBT � 1 (2.97)

Here Nd is the number density of the donor energies.
An analysis similar to the one for acceptors above gives (note that the acceptor

levels are doubly degenerate, since the valence band is doubly degenerate. This allows
a total of 4 possible ways in which a gole can be bound to an acceptor)

pa =
Na

1
4 exp

(
(EF−Ea)
kBT

)
+ 1

(2.98)

where pa is the density of holes trapped at acceptor levels.

2.11.3 Equilibrium Density of Carriers in Doped Semiconductors
In a doped semiconductor we may have donors, acceptors, or both. To find the electron
and hole densities, we need to use the occupation functions for electrons, holes, and the
dopants. We start with the charge neutrality condition

nc + nd = Nd −Na + pv + pa (2.99)

where

nc = free electrons in the conduction band
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nd = electrons bound to the donors
pv = free holes in the valence band
pa = holes bound to the acceptors

This equation along with the explicit form of nc,nd,pv, and pa, in terms of
the Fermi level, allow us to calculate EF at a given temperature. The general analysis
requires numerical techniques. Essentially one chooses a Fermi level and adjusts it until
the charge neutrality condition is satisfied. In case of low doping (low n, p densities)
it is possible to get analytical results for electron and hole densities by ignoring the
unity in the denominator of the occupation probability we can write (using Boltzmann
approximation for free electrons)

n = Nc exp −
(
Ec − EF
kBT

)

nd =
Nd

2
exp

(
Ed − EF

kBT

)

In this case we can write

nd
n+ nd

=
1

Nc
2Nd

exp
[
− (Ec−Ed)

kBT

]
+ 1

(2.100)

A similar treatment for p-type material with acceptor doping Na gives the ratio

pa
p+ pa

=
1

Nv
4Na

exp
[
− (Ea − Ev)

kBT

]
+ 1

(2.101)

In Fig. 2.25 we show how free electron density varies with temperature in a
n-type silicon sample. As temperature increases, the fraction of “ionized” donors starts
to increase until all of the donors are ionized and the free carrier density is equal to the
donor density. This region is called the saturation region. Eventually, as the temperature
is further raised, the carrier density starts to increase because of the intrinsic carrier
density exceeding the donor density. At low temperatures the electrons are bound to the
donors. This is the freezeout regime. Semiconductor devices usually operate in the satu-
ration region where the mobile carrier density is essentially independent of temperature
and is approximately equal to the doping density.

Semiconductor devices cannot operate in the high temperature intrinsic regime,
since it is not possible to control intrinsic carrier density by applying an external bias.
Thus devices cannot be “shut off” due to the leakage current from intrinsic carriers.
High temperature electronics require large bandgap semiconductors for which the upper
temperature limit is high.

EXAMPLE 2.7 Consider a silicon sample doped with phosphorus at a doping density of
1016 cm−3. Calculate the fraction of ionized donors at 300 K. How does this fraction change if
the doping density is 1018 cm−3?
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Figure 2.26: Electron density as a function of temperature for a Si sample with donor impurity
concentration of 1015 cm−3. It is preferable to operate devices in the saturation region where
the free carrier density is approximately equal to the dopant density.

We have for silicon for Nd = 10
16 cm−3 (donor binding energy is 45 meV)

nd
n+ nd

=
1

2.8×1019

2(1016)
exp

(
− 0.045

0.026

)
+ 1

= 0.004

Thus nd is only 0.4% of the total electron concentration and almost all the donors are ionized.
For a doping level of 1018, we get

nd
n+ nd

= 0.29

We see that in this case where the doping is heavy, only 71% of the dopants are ionized.

2.11.4 Heavily Doped Semiconductors
In the theory discussed so far, we have made several important assumptions that are
valid only when the doping levels are low: i) we have assumed that the bandstructure
of the host crystal is not seriously perturbed and the bandedge states are still described
by simple parabolic bands; ii) the dopants are assumed to be independent of each other
and their potential is thus a simple coulombic potential. These assumptions become
invalid as the doping levels become higher. When the average spacing of the impurity
atoms reaches ∼ 100 Å, the potential seen by the impurity electron is influenced by the
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Figure 2.27: A schematic of many body effects arising from high doping levels. The free carrier
affect the donor energy level Ed.

neighboring impurities. In a sense this is like the problem of electrons in atoms. When the
atoms are far apart, we get discrete atomic levels. However, when the atomic separation
reaches a few angstroms, as in a crystal, we get electronic bands. At high doping levels
we get impurity bands. Several other important effects occur at high doping levels.

Screening of Impurity Potential
As the doping levels are increased, the background mobile electron density also increases.
This background density adjusts itself in response to the impurity potential causing a
screening of the potential. We will discuss this screening in Chapter 5, but in essence
the 1/r long-range potential is reduced by an exponential factor in the simplest theory.
This effect shown schematically in Fig. 2.27 lowers the binding energy of the electron
to the donor.

The reduction in the donor ionization energy causes the donor level to move
toward the conduction bandedge Ec as the donor concentration is gradually increased
and ultimately merges into the conduction band. Measurements of the ionization energy
of arsenic in germanium have shown that Ed can be expressed by the following empirical
relation

Ed = Ed0

[
1− (Nd/Ncrit)1/3

]
(2.102)

where Ed0 is the ionization energy in a lightly doped crystal and Ncrit = 2× 1017 cm−3

is the critical donor concentration at which the ionization energy will vanish. From the
known value of Ed0 = 0.0127 eV for arsenic, and using Bohr’s model for an electron
attached to the donor atom, it can be shown that Ed drops to zero when the average
spacing between the arsenic atoms is about 3r0, where r0 is the ground state Bohr radius
of the electron attached to the arsenic atom. Note that the electron donor interaction
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causes only a shift in the donor level toward Ec, but no change occurs in the position
of bandedges Ec and Ev so that the energy gap Eg remains unchanged.

Electron–Electron Interaction
The bandstructure calculations we discussed in earlier chapters define the position of
the valence and conduction bandedges for the situation where the valence band is full
and the conduction band is empty. When a large number of electrons are introduced
in the conduction band (or a large number of holes in the valence band), the electrons
which are Fermions interact strongly with each other.

Electron-electron interaction results on a downward shift in the conduction band
edge Ec. This shift is caused by electron exchange energy which evolves from the Pauli
exclusion principle. When the electron concentration in the semiconductor becomes
sufficiently large, their wavefunctions begin to overlap. Consequently, the Pauli exclusion
principle becomes operative, and the electrons spread in their momenta in such a way
that the overlapping of the individual electron wavefunctions is avoided. The Bloch
states that we devised earlier are thus modified by the presence of the other electrons.
In general, the electron-electron interaction can be represented by the usual Coulombic
interaction and the exchange interaction. The latter comes about due to the constraint of
the Pauli exclusion principle which forces any multiparticle electronic wavefunction to be
antisymmetric in the exchange of two electrons. The average Coulombic energy between
an electron with other electrons and with the background positive charge cancels out.
The exchange term which “keeps the electrons away from each other,” then lowers the
energy of the system. This lowering has been studied in 3D systems in great detail and is
an area of continuing research in sub-3D systems. For bulk GaAs the electron–electron
interaction results in a lowering of the bandgap which is given by (H. Casey and F.
Stern, 1976),

Eg = Eg0 − 1.6× 10−8(p1/3 + n1/3) eV (2.103)

where Eg0 is the bandgap at zero doping and n and p are the electron and hole densities.
As can be seen at background charge levels of ∼ 1018cm−3, the bandgap can shrink by
∼16 meV. In silicon the bandgap shrinkage is found to be

∆Eg � −22.5
(

Nd

1018

300
T (k)

)1/2

meV (2.104)

Band Tailing Effects
In addition to the band shrinkage that occurs when a semiconductor is heavily doped,
another important effect occurs near the bandedge. This effect occurs because of the
disordered arrangement of the impurity atoms on the host lattice. As shown schemat-
ically in Fig. 2.28, the randomly placed impurity atoms cause a random fluctuation in
the effective bandedge.

Deep well regions as indicated in the figure are produced which lead to low-
energy electronic states. The random nature of the potential fluctuation leads to a
bandedge tail in the density of states. The underlying reasons behind the effect of
disorder will be discussed in Chapter 8.

In view of the various effects discussed above, the “optical bandgap” of the
semiconductor changes as the doping changes. The optical bandgap is defined from
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Figure 2.28: A schematic description showing how the randomly distributed impurities cause
band tail states.

the optical absorption versus photon energy data and represents the energy separation
where the valence and conduction band density of states are significant. In addition,
one often defines artificially an electrical bandgap. This is defined from the np product
discussed earlier. According to this definition

np = n2
i

= C exp

(
−Eelect

g

kBT

)
(2.105)

This definition has only a mathematical significance and does not represent any real
physical property. The electrical bandgap is usually smaller than the optical bandgap.

2.12 TECHNOLOGY CHALLENGES
Bandstructure of semiconductors has a direct impact on electronic and optoelectronic
devices. In information processing devices there are hosts of (sometimes conflicting)
demands. In Table 2.5 we show how some of these demands can be met by choice of
the correct bandstructure. As shown in this table, depending upon applications, we
have to identify and choose semiconductors which have the desired bandstructure. This
does not mean that it is simple to satisfy technology needs, since most semiconductor
technologies are very immature. Only Si, GaAs, InP, InGaAsP, AlGaAs, and Ge have
mature technologies.



2.12. Technology Challenges 103

DESIRED DEVICE

PERFORMANCE

BANDSTRUCTURE
RELATED NEEDS

High power generation
electronic devices

Large bandgap
(GaN, SiC, C)

High frequency devices Small effective mass
large intervalley separation

(InAs, InGaAs)

Light emitter Direct gap materials

Long haul communication
lasers

(1.55 µm, 1.3 µm emission)

Bandgap of ~0.8 eV
(InGaAsP)

Display applications
Red, Green, Blue

Bandgap range of 1.6 −3.6 eV
(AlGaAs, InGaN)

Short wavelength emitters
for optical memory, printers

Large bandgap
(GaN, AlN)

Night vision/thermal
imaging

Narrow gap materials
(InSb, HgCdTe)

Table 2.5: An overview of how semiconductor bandstructure influences device performance.
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2.13 PROBLEMS
2.1 Using the relation ∑

k
eik·R = NδR,0

use the orthonormality of the Bloch functions to show that the Wannier functions φn(r)
at different sites are orthogonal, i.e.∫

φ∗
n(r−R) φn′ (r−R

′
) d3r ∝ δn,n′ δR,R′

2.2 In the text we had discussed the bandstructure of an s-band model in an fcc lattice.
What is the bandstructure in a bcc lattice? Assume only nearest neighbor interaction
γ = 1.0 eV. What is the effective mass near the bottom of the band and the top of the
band? Assume a lattice constant of 4 Å.
2.3 If in the s-band model discussed in the text one includes a second neighbor inter-
action γ2, what is the expression for the bandstructure? What is the electron effective
mass at the bottom of the band if γ1 = 1.0 eV; γ2 = 0.2 eV? Assume a lattice constant
of 4 Å.
2.4 Consider a cubic lattice with an s, px, py, pz basis. Write down the 4×4 eigenvalue
equation for the system. Assume only nearest neighbor interactions and make use of
the following symmetries of the tight binding matrix elements (use the notation s → 1,
px → 2, py → 3, pz → 4)∫

d3r φ1(x, y, z) ∆U φ1(x− a, y, z) = Vssσ∫
d3r φ1(x, y, z) ∆U φ2(x− a, y, z) = Vspσ∫
d3r φ1(x, y, z) ∆U φ2(x, y − a, z) = 0∫
d3r φ2(x, y, z) ∆U φ1(x− a, y, z) = Vspσ∫
d3r φ2(x, y, z) ∆U φ3(x, y − a, z) = Vppπ∫
d3r φ2(x, y, z) ∆U φ3(x− a, y, z) = 0

Show that the matrix elements in the 4×4 secular determinant are (Es0, Ep0 are on-site
matrix elements),

H1,1 = < s|H|s >

= Es0 + 2Vssσ[cos kxa+ cos kya+ cos kza]
H1,2 = < px|H|s >

= 2iVspσ sin kxa
H2,2 = < px|H|px >
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= Ep0 + 2Vppσ cos kxa+ 2Vppπ[cos kya+ cos kza]
H3,2 = < py|H|px >

= 0.

Other elements are generated by cyclical permutations. What are the solutions of the
problem at k = 0?
2.5 Write out the matrix elements for the diamond structure using the tight binding
approach. Without spin–orbit coupling, compare your results to the matrix elements
given in the classic paper of Slater and Koster (1954), (see Reference section). Note
that there is a misprint of the matrix elements in the original paper.
2.6 Include spin–orbit coupling in the tight binding matrix using an sp3 basis per site.
A good source of matrix elements for the tight binding for a variety of semiconductors
is Talwar and Ting (1982).
2.7 In Si electron transport, the intervalley scattering is very important. Two kinds of
intervalley scatterings are important: in the g–scattering an electron goes from one valley
(say a [001] valley) to an opposite valley ([001̄]), while in an f–scattering, the electron
goes to a perpendicular valley ([001] to [010], for example). The extra momentum for
the transitions is provided by a phonon and may include a reciprocal lattice vector.
Remembering that Si valleys are not precisely at the X–point, calculate the phonon
vector which allows these scatterings.
2.8 Assuming k conservation, what is the phonon wavevector which can take an electron
in the GaAs Γ–valley to the L–valley?
2.9 Using the 2×2 representation for the k ·p model for the heavy-hole light-hole bands
express the hole masses in terms of the Kohn-Luttinger parameters along the (100) and
(110) k-direction.
2.10 Plot the conduction-band and valence-band density of states in Si, Ge, and GaAs.
Use the following data:

Si :m∗
dos(c−band = 1.08 m0

m∗
hh = 0.49 m0

m∗
&h = 0.16 m0

Ge :m∗
dos(c−band = 0.56 m0

m∗
hh = 0.29 m0

m∗
&h = 0.044 m0

GaAs :m∗
e = m∗

dos0.067 m0

m∗
hh = 0.5 m0

m∗
&h = 0.08 m0

2.11 A conduction-band electron in silicon is in the (100) valley and has a k-vector of
2π/a(1.0, 0.1, 0.1). Calculate the energy of the electron measured form the conduction
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bandedge. Here a is the lattice constant of silicon.
2.12 The bandstructure of GaAs conduction-band electrons is given by a simple
parabolic relation (m∗ = 0.067 m0):

E =
h̄2k2

2m∗

A better approximation is

E(1 + αE) =
h̄2k2

2m∗

where α = 0.67 eV−1. Calculate the density of states and the difference in the energy
of an electron using the two expressions at k = 0.01 Å−1 and k = 0.1 Å−1.
2.13 Estimate the intrinsic carrier concentration of diamond at 700 K (you can as-
sume that the carrier masses are similar to those in Si). Compare the results with those
for GaAs and Si. The result illustrates one reason why diamond is useful for high-
temperature electronics.
2.14 An Si device is doped at 5× 1016 cm−3. Assume that the device can operate up
to a temperature where the intrinsic carrier density is less than 10% of the total carrier
density. What is the upper limit for the device operation?
2.15 Estimate the change in intrinsic carrier concentration with temperature, d/ni/dT ,
for InAs, Si, and GaAs near room temperature.
2.16 Calculate and plot the position of the intrinsic Fermi level in Si between 77 K
and 500 K.
2.17 A donor atom in a semiconductor has a donor energy of 0.045 eV below the
conduction band. Assuming the simple hydrogenic model for donors, estimate the con-
duction bandedge mass.
2.18 Calculate the density of electrons in a silicon conduction band if the Fermi level
is 0.1 eV below the conduction band at 300 K. Compare the results by using the Boltz-
mann approximation and the Joyce-Dixon approximation.
2.19 The electron density in s silicon sample at 300 K is 1016 cm−3. Calculate Ec−EF
and the hole density using the Boltzmann approximation.
2.20 A GaAs sample is dope n-type at 5 × 1017 cm−3. What is the position of the
Fermi level at 300 K?
2.21 Consider an n-type silicon with a donor energy 45 meV below the conduction
band. The sample is doped at 1017 cm−3. Calculate the temperature at which 90% of
the donors are ionized.
2.22 Consider a GaAs sample doped at Nd = 1017 cm−3. The donor energy is 6 meV.
Calculate the temperature at which 90% of the donors are ionized.
2.23 Calculate the n-type doping efficiency for phosphorous in silicon at room temper-
ature for the following dopant densities: (a) Nd = 1015 cm−3; (b) Nd = 1018 cm−3; and
(c) Nd = 5× 1019 cm−3. Assume that the donor level is 45 meV below the conduction
band. Doping efficiency is the fraction of dopants that are ionized.
2.24 A 2 meV α-particle hits a semiconductor sample. The entire energy of the α-
particle is used up in producing electron-hole pairs by knocking electrons from the
valence to the conduction band. Estimate the number of electron-hole pairs produced
in Si and GaAs.
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2.25 Calculate the average separation of dopants in Si when the doping density is: (a)
1016 cm−3; (b) 1018 cm−3; and (c) 1020 cm−3.
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Chapter

3

BANDSTRUCTURE
MODIFICATIONS

In the previous chapter we have seen how the intrinsic properties of a semiconductor
as reflected by its chemical composition and crystalline structure lead to the unique
electronic properties of the material. Can the bandstructure of a material be changed?
The answer is yes, and the ability to tailor the bandstructure is a powerful tool. Novel
devices can be conceived and designed for superior and tailorable performance. Also
new physical effects can be observed. In this chapter we will establish the physical
concepts which are responsible for bandstructure modifications. There are three widely
used approaches for band tailoring (or engineering). These three approaches are shown
in Fig. 3.1 and are:

1. Alloying of two or more semiconductors;

2. Use of heterostructures to cause quantum confinement; and

3. Use of built-in strain via lattice mismatched epitaxy.

These three concepts are increasingly being used for improved performance in electronic
and optical devices.

3.1 BANDSTRUCTURE OF SEMICONDUCTOR ALLOYS
The easiest way to alter the electronic properties or to produce a material with new
properties is based on making an alloy. Alloying of two materials is one of the oldest
techniques to modify properties of materials, not only in semiconductors, but in metals
and insulators as well.

The desire to form alloys in semiconductors is motivated by two objectives:
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ALLOYS QUANTUM WELLS,
WIRES & DOTS

STRAIN FIELD

• By
combining two
or more
materials, a
new lattice
constant and
bandgap can
be produced.

• 2-dimensional or
even lower
dimensional
electronic systems
can be produced.
• Effective bandgap
and density of states
can be altered.

•Degeneracies
can be removed.
• Character of
bandedge
wavefunctions
can be altered.
• Bandedge
density of states
can be altered.

Figure 3.1: Approaches used to modify bandstructure of semiconductors.

1. Achieving a desired bandgap. This motivation drives a great deal of alloy studies
in the laser/detector area. The bandgap essentially determines the energy of the
light emitted and absorbed.

2. To create a material with a proper lattice constant to match or mismatch with an
available substrate. For example, one uses In0.53Ga0.47As alloy since it is lattice
matched with InP substrates, which are easily available.

When an alloy AxB1−x is produced by a random mixing of two (the concepts
can be generalized to more than two components) the lattice constant of the alloy is
given by Vegard’s law:

aalloy = xaA + (1− x)aB (3.1)

Vegard’s law is applicable to random alloys (i.e., there is no phase separation) and to
components which have the same crystal structure. Lattice constants for some alloys
are shown in Fig. 3.2, assuming Vegard’s law. We have used the term random in de-
scribing alloys above without describing it properly. When an alloy AxB1−x is formed,
an important question is what is the arrangement of the atoms A and B in the alloy?
One could have several extreme cases, namely:

1. A atoms are localized in one region while the B atoms are localized in another
region. Such alloys are called phase separated.

2. The probability that an atom next to an A-type atom is A is x and the probability
that it is B is (1− x). Such alloys are called random alloys.

3. A and B atoms form a well-ordered periodic structure, leading to a superlattice.

In Fig. 3.3 we show a schematic of the three possibiities described above. Most
semiconductor alloys used in the electronics/optoelectronics industry are grown with
the intention of making perfectly random alloys.
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Figure 3.2: Lattice constant as a function of composition for ternary III-V crystalline solid
solutions. Vegard’s law is assumed to be obeyed in all cases. The dashed lines show regions
where miscibility gaps are expected. (After Casey and Panish (1978).

Alloys have a well–defined crystal structure, but the randomness of atoms on
the lattice sites means that other than the case of a superlattice (or ordered alloy)
there is no periodicity in the background crystalline potential. This means that we can
no longer use Bloch’s theorem to describe the electronic wavefunctions. The electronic
states, in general, are not the simple traveling waves but are much more complex with
position dependent probabilities.

A simple approximation is usually made to study the bandstructure of alloys
and is motivated by Fig. 3.4. The figure shows the atomic potentials distributed in real
space. The randomness of the potentials seen by the electrons is obvious. However, in the
virtual crystal approximation the random potential is replaced by an average periodic
potential as shown

Uav(r) = xUA(r) + (1− x)UB(r) (3.2)

For example, an implementation of this approach in the tight binding method involves
taking the weighted average of the matrix elements. For direct bandgap materials (band-
edges are at Γ–point or at k = 0) this implies that the bandgaps are also weighted
linearly, since the bandedges at k = 0 are linear sums of the tight binding matrix
elements.

Ealloy
g = xEA

g + (1− x)EB
g (3.3)

In most alloys, however, there is a bowing effect arising from the increasing
disorder due to the alloying. An equation that is found to describe the bandgap of
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Figure 3.3: A schematic example of (a) a clustered, (b) a random, and (c) an ordered alloy.

alloys resonably well is
Ealloy
g = a+ bx+ cx2 (3.4)

where c is the bowing parameter. In Fig. 3.5 we show bandgaps of alloys made from
various material combinations. The solid lines represent direct bandgap regions and
the dotted lines the indirect gap regions.

In the virtual crystal approximation it can be easily seen that the bandedge
masses scale as

1
m∗

alloy

=
x

m∗
A

+
1− x

m∗
B

(3.5)

since

Ealloy(k) =
h̄2k2

2m∗
alloy

= x
h̄2k2

2m∗
A

+ (1− x)
h̄2k2

2m∗
B

(3.6)

Several important alloys have made extremely important contributions in elec-
tronics and optoelectronics. We will briefly discuss a few specific cases.
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AA B B B B BA A AxB1−x

UA UB

xUA + (1−x)UB

Figure 3.4: Motivation for the virtual crystal approximation. The uppermost section of this
figure shows the arrangements of A and B type atoms on a lattice. Associated with these
atoms are the corresponding short ranged atomic potentials, UA and UB . In the virtual crystal
approximation it is assumed that the extended states see an “average” weighted potential
xUA + (1− x)UB which is then considered to be periodic.

3.1.1 GaAs/AlAs Alloy

The AlGaAs system is one of the most important alloy system. AlAs and GaAs are
nearly lattice matched so that the alloy can be grown on GaAs substrate without strain
energy build-up. As a result AlGaAs has become an important component of high speed
electronic devices (the modulation doped field effect transistors or MODFETs) and op-
toelectronic devices (modulators, detectors, and lasers). The alloy has a very interesting
switching of the bandgap from direct to indirect. Fig. 3.6 shows the composition de-
pendence of the conduction band valleys. Since the material becomes indirect for Al
fraction above ∼35%, most device structures use a composition below this value.

3.1.2 InAs/GaAs Alloy

InAs and GaAs have a lattice mismatch of 7% and their alloys can span a bandgap
range of 0.39 eV to 1.5 eV. However, because of the high strain it is not possible to grow
all compositions, and the choice of a substrate is very important. Special properties of
the InxGa1−xAs alloy have made it an active ingredient of very high speed transistors
as well as for fiber optic communication lasers. A lattice matched composition often
used is In0.53Ga0.47As (Eg = 0.88 eV) which matches to InP. The alloy can then form
a quantum well with InP (Eg = 1.35 eV) or In0.52Al0.48As (Eg = 1.45 eV) as barriers.
Other compositions that have become increasingly favorable are the lattice mismatched
compositions of InxGa1−xAs (grown on GaAs) and In0.53+xGa0.47−xAs (grown on InP).
These “strained” structures have remarkable properties which are being exploited for
high speed electronics and optoelectronics and will be discussed in detail in the next
chapter. The In0.53Ga0.47As alloy has found a niche in high speed electronics because
of its small effective mass (m∗

e = 0.04m0) and excellent low and high field transport
properties. Fig. 3.7 shows some properties of this alloy.
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LATTICE CONSTANTS AND BADGAPS OF SEMICONDUCTORS AT ROOM TEMPERATURE.
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Figure 3.5: The range of bandgaps achievable by alloy formation in some III-V compound
semiconductors. For the nitride system the lattice constant of SiC is given, since it is a useful
substrate for nitrides. The bandgap value of InN has some uncertainty, since it is difficult to
obtain high quality InN samples.

A



3.1. Bandstructure of Semiconductor Alloys 115

Ga1−xAlxAs

2.2

2.0

1.8

1.6

1.4
0 0.2 0.4 0.6 0.8 1.0

ALUMINUM FRACTION, x

V
A
L
L
E
Y
E
N
E
R
G
Y
,(
eV
)

L

X

L
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Figure 3.7: Variation of the principal gap energy levels in the alloy of InAs and GaAs. Also
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Figure 3.8: Cutoff wavelength for alloy HgCdTe as a function of composition.

3.1.3 HgTe/CdTe Alloy
The HgCdTe system is a very versatile alloy. The two components are very well lat-
tice matched and span a bandgap of 0 to 1.5 eV, remaining direct throughout the
composition range. The chief attraction of this alloy is for very small bandgap device
applications. These primarily involve night vision applications, thermal imaging in in-
dustrial and medical applications, imaging through dense fog, etc. The alloy also has the
advantage that it can be grown on both CdTe, ZnTe, and even Si and GaAs substrates.
This allows for the possibility of integrating long wavelength detectors with high speed
GaAs devices and high density silicon circuitry.

The semimetal HgTe has a “negative” bandgap, i.e., the Γ–point of the s-type
states normally associated with conduction band in other semiconductors lies below the
p-type Γ–point states. As the alloy composition is changed, one can obtain a wide range
of bandgaps. The electron masses can also be extremely small which offer attractive
possibilities of very high speed devices. The bandgap of the alloy Hg1−xCdxTe is given
by the relation

Eg(x) = −0.3 + 1.9x eV (3.7)

In Fig. 3.8 we show the cutoff wavelength corresponding to the alloy bandgap as well
as the carrier mass for the HgCdTe alloy. The cutoff wavelength is given by

λc =
1.24 µm

Eg(eV )
(3.8)
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3.1.4 Si/Ge Alloy

Silicon and Germanium have a lattice mismatch of ∼4% so only thin layers can be grown
on a silicon substrate. The alloy composition remains indirect, there is little motivation
from optoelectronic device considerations to grow the alloy. However, there has been
great interest in this alloy since it can be a component of Si–SiGe structures and allow
heterostructure concepts to be realized in Si technology. Extremely high speed Si/SiGe
transistors have been fabricated making this alloy a very important electronic material.
The conduction band minima of Si is at X–point while that of Ge is at the L–point. The
alloy retains an X–point character for the bandedge up to 85% Ge and then changes its
character to L–like.

3.1.5 InN, GaN, AlN System

As can be seen from Fig. 3.5, alloys made from InN, GaN, and AlN can span a very large
bandgap range. The alloys can be used for light emission in short wavelength regimes
(e.g., for blue light emission), for light absorption (e.g., for solar blind detectors) and for
high temperature/high power electronics where large bandgap materials are essential.

A key problem that needs to be surmounted in nitride technology is the lack of
an appropriate substrate. Nitrides are usually grown on sapphire or SiC substrates by
first depositing a GaN layer to create an effective GaN substrate. Although a variety of
novel growth approaches have been explored to produce this effective GaN substrate,
there is a high density of dislocations in the wafer.

In Chapter 1 we have discussed polarization effects in the nitride system. These
effects play a strong role in electronic properties of nitride heterostructures and will be
discussed later in this chapter.

EXAMPLE 3.1 Calculate the bandgap of Al0.3Ga0.7As and Al0.6Ga0.4As. Use the virtual
crystal approximation with the following values for the conduction band energies measured
from the top of the valence band (at 300 K): 1.43 eV and 1.91 eV for the GaAs Γ-point and X-
point, respectively. For AlAs the corresponding values are 2.75 eV and 2.15 eV. In the virtual
crystal approximation one calculates the position of an energy point in an alloy by simply
taking the weighted average of the same energy points in the alloy components.

For the Al0.3Ga0.7As alloy, the Γ- and X-point energies are

E(Γ-point) = 2.75(0.3) + (1.43)(0.7) = 1.826 eV

E(X-point) = 2.15(0.3) + (1.91)(0.7) = 1.982 eV

For the Al0.6Ga0.4As system, the energies are

E(Γ-point) = 2.75(0.6) + (1.43)(0.4) = 2.22 eV

E(X-point) = 2.15(0.6) + (1.91)(0.4) = 2.05 eV

We see that in Al0.3Ga0.7As, the lowest conduction band point is at the Γ-point and the

bandgap is direct. However, for the Al0.6Ga0.4As, the lowest conduction band is at the X-point

and the material is indirect.
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Figure 3.9: Various possible bandedge lineups in heterostructures.

3.2 BANDSTRUCTURE MODIFICATIONS BY HETEROSTRUCTURES

We have noted in Chapter 1 that it is possible to alter the chemical composition of
a semiconductor structure in the growth direction by techniques such as MBE and
MOCVD. By making heterostructures it is possible to confine electronic states and
produce lower dimensional systems. Such lower dimensional systems are now widely
exploited to make high performance optoelectronic and electronic devices.

Increased efforts are being dedicated to realizing confinement in two dimen-
sions (quantum wires) and all three dimensions (quantum dots). While the epitaxial
techniques for one-dimensional confinement are well-established and conceptually sim-
ple, confinement in other directions involves difficult and cumbersome epitaxial or pro-
cessing technologies. In Chapter 1 we have discussed how strained epitaxy can lead to
“self-assembled” quantum dots. This approach has led to a number of interesting de-
vices based on quasi-0D systems. We will primarily focus on quantum wells, but will
discuss some important issues in quantum dots as well.

One of the most important issues to be addressed when two semiconductors are
brought together abruptly to form an interface is how the bandedges of the two materials
line up at the interface. In principle, several possibilities could exist if a semiconductor
A with bandgap EA

g and edges EA
v and EA

c is grown with a semiconductor B with gap
EB
g and edges EB

v and EB
c . A number of possible band lineups can then arise, as shown

in Fig. 3.9.
In semiconductor physics it is usually common to use the position of the electron

affinity (or work function) to decide how conduction bands (or valence bands) of two
materials line up when they form a heterostructure. However, band lineups based on
electron affinity do not work in most cases when two different semiconductors form a
heterostructure. This is because of subtle charge sharing effects that occur across atoms
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on the interface. There have been a number of theoretical studies that can predict
general trends in how bands live up. However, the techniques are quite complex and
heterostructure designs usually depend on experiments to provide line up information.

As seen in Fig. 3.9 it is possible to have a number of qualitatively different band
line ups. The line up may be such that the conduction and valence bandedges of the
smaller bandgap material are in the bandgap region of the larger bandgap material. In
such a structure the lowest electron state and the highest valence band state exists in
the same physical space (i.e., in the narrow gap material). Such heterostructures (called
type I) are the most widely used ones. Material combinations such as GaAs/AlGaAs,
InGaAs/InP, and GaN/AlGaN, etc., all have type I line up.

A different kind of band line up is produced when the lowest conduction band
state is in one material and the highest valence band state is in the other region. If
the lowest conduction bandedge is above the highest valence bandedge we have the
type II heterostructure. In a type II heterostructure the “effective” bandgap of the
structure (i.e., energy difference between the lowest conduction bandedge and highest
valence bandedge) can be very small. These kinds of heterostructures are therefore quite
useful for long wavelength optoelectronics. Of course, one has to recognize that since
the electron and hole states are spatially separated optical transistors will be weak.
Antimonide based structures (InSb, GaSb, etc.) are shown to have type II behavior. A
system that has been widely studied is InAs/GaSb.

Finally it is possible to have a situation where, as shown on the right hand
panel of Fig. 3.9, the conduction bandedge of material A is below the valence bandedge
of material B. Such structures are called broken gap Type II (although other names
have also been given to them).

Once the band line up is known one has to decide how the electronic states in
the heterostructure should be described. An approach that has been quite successfully
applied to heterostructures is the k · p approach. In its simplest form it is possible to
represent the problem by the following simplification of the Schrödinger equation[−h̄2

2m0
+ V (r)

]
ψ(r) = Eψ →

[−h̄2

2m∗ + Eedge

]
φ = Eφ (3.9)

Here the atomistic potential V (r) is replaced by the bandedge energy Eedge and the
effect of the background potential is contained in the effective mass. The state in the
heterostructure has a central cell part which corresponds to that of the bandedge (see
Section 2.5.1).

The simple effective mass approach outlined by Eqn. 3.9 works quite well for
the conduction band and gives first order results for valence band for unstrained het-
erostructures. In general one may need to use a multiband k · p equation to describe
heterostructure states.

3.2.1 Bandstructure in Quantum Wells
To calculate the bandstructure in quantum wells, we recall the nature of the energy levels
and wavefunctions near the edges of the bandgap, since the quantum well problem is
described in terms of these wavefunctions. We will discuss the case where the well region
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Figure 3.10: A schematic of a quantum well formed for the electron and holes in a heterostruc-
ture.

is made up of a direct bandgap material. In this case, the conduction band states are
s-type and valence band states are p-type. It is straightforward to extend these results
to other quantum wells. The simple quantum well structure such as shown in Fig. 3.10
is one of the most studied heterostructures.

The Schrödinger equation for the electron states in the quantum well can be
written in a simple approximation as[

− h̄2

2m∗∇2 + V (z)
]
Ψ = EΨ (3.10)

where m∗ is the effective mass of the electron. The wavefunction Ψ can be separated
into its z and ρ (in the x–y plane) dependence and the problem is much simplified

Ψ(x, y, z) = eikx·x · eiky·yf(z) (3.11)

where f(z) satisfies [
− h̄2

2m∗
∂2

∂z2
+ V (z)

]
f(z) = Enf(z) (3.12)

This simple 1D problem is solved in undergraduate quantum mechanics books. Assuming
an infinite barrier approximation, the values of f(z) are (W is the well size)

f(z) = cos
πnz

W
, if n is even
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= sin
πnz

W
, if n is odd (3.13)

with energies

En =
π2h̄2n2

2m∗W 2
(3.14)

The energy of the electron bands are then

E = En +
h̄2k2

‖
2m∗ (3.15)

leading to subbands as shown in Fig. 3.11.
If the barrier potential Vc is not infinite, the wavefunction decays exponentially

into the barrier region, and is a sine or cosine function in the well. By matching the
wavefunction and its derivative at the boundaries one can show that the energy and the
wavefunctions are given by the solution to the transcendental equations

α tan
αW

2
= β

α cot
αW

2
= −β (3.16)

where

α =

√
2m∗E
h̄2

β =

√
2m∗(Vc − E)

h̄2

These equations can be solved numerically. The solutions give the energy levels E1, E2, E3

. . . and the wavefunctions.
Each level E1, E2, etc., is actually a subband due to the electron energy in the

x-y plane. As shown in Fig. 3.11 we have a series of subbands in the conduction and
valence band. In the valence band we have a heavy hole. The subband structure has
important consequences for optical and transport properties of heterostructures. An
important manifestation of this subband structure is the density of states (DOS) of the
electronic bands. The density of states figures importantly in both electrical and optical
properties of any system.

The density of states in a quantum well is (see Appendix C)
• Conduction band

N(E) =
∑
i

m∗

πh̄2σ(E − Ei) (3.17)

where σ is the heavyside step function (unity if E > Ei; zero otherwise) and Ei are the
subband energy levels.
• Valence band

N(E) =
∑
i

2∑
j=1

m∗
j

πh̄2σ(Eij − E) (3.18)
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where i represents the subbands for the heavy hole (j = 1) and light holes (j = 2).
In the simple discussion for the quantum well structure, we have assumed that

the conduction band state is a pure s-type state and we have used a very simple-minded
effective mass theory to understand the quantum well bandstructure. A more sophisti-
cated calculation can be done where one retains the full description of the bandstructure
of the individual components (e.g., an eight–band model). When this is done, it turns out
that the results for the conduction band states are not very much affected for unstrained
structures. However, for highly strained systems one needs to do a more complicated
study. Later we will discuss self-assembled quantum dots where an 8–band approach
becomes necessary.

3.2.2 Valence Bandstructure in Quantum Wells
The description of the quantum well bandstructure and the density of states presented
above is quite valid for electron states since, as noted earlier, the electron states in
direct bandgap materials are adequately described by a single s-type band. However,
the valence band states are formed from p-type states leading to HH and LH states.
Unfortunately, while the HH(3/2,±3/2) and LH (3/2,±1/2) states are pure states at
k = 0, they strongly mix away from k = 0. Thus, as far as subband level positions
are concerned, the starting energies of the subbands can be solved for just as for the
electron case, i.e., independently for the HH and LH. However, the dispersion relation
for the hole states in the x–y plane is only approximately given by

E(k) = En,i +
h̄2k2

2m∗
i

(3.19)

where i denotes the HH or LH band. A better description of the hole states is given by
solving the Kohn–Luttinger form of the Schrödinger equation

[H + Vp] Ψ = EΨ (3.20)

which for the HH, LH system is a 4× 4 coupled equation given by the Kohn–Luttinger
Hamiltonian discussed earlier. Treating the z component of the momentum as an oper-
ator (kz = −i(∂/∂z)), we get the following new expressions for the matrix elements.

Hhh = − h̄2

2m0

[
(γ1 + γ2)

(
k2
x + k2

y

)− (γ1 − 2γ2)
∂2

∂z2

]
+ Vp(z)

Hlh = − h̄2

2m0

[
(γ1 − γ2)

(
k2
x + k2

y

)− (γ1 + 2γ2)
∂2

∂z2

]
+ Vp(z)

c =
√
3h̄2

2m0

[
γ2

(
k2
x − k2

y

)− 2iγ3kxky
]

b = −i

√
3h̄2

m0
(−ky − ikx) γ3

∂

∂z
(3.21)

where Vp(z) represents the potential profile due to the quantum well. In the presence
of biaxial strain, additional terms are to be included and will be discussed later. The
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general hole solutions can be written as

Ψmh (k‖, z) =
∑
v

gvm(z) U
v(r) eik‖·ρ (3.22)

where gvm(z) is the z-dependent function arising from the confinement of the potential,
v is the index representing the total angular momentum of the state, m index for each
subband in the well, and Uv(r) is the valence band central cell state for the v-spin
component in the bulk material.

In the absence of the off-diagonal mixing terms in the Kohn–Luttinger Hamil-
tonian (the so-called diagonal approximation), the hole problem is as simple to solve as
the electron problem. However, in real semiconductors, the off-diagonal mixing is quite
strong and must be included for quantitative comparison to experiments.

A technique commonly employed to solve for the hole eigenfunctions and dis-
persion relations is to solve the problem variationally. Although this approach has been
shown to work quite well, it has the usual disadvantages of variational techniques, viz.
considerable insight is required to choose the form of the starting wave function and
the techniques become increasingly complex for excited states. In fact, the hole disper-
sion relations need not be solved variationally. The equation can be written in a finite
difference form as an eigenvalue problem and then solved by matrix solving techniques.

In Fig. 3.12 we show a typical valence bandstructure dispersion relation in a
quantum well. Results are shown for the valence band of a 100 Å GaAs/Al0.3Ga0.7As
quantum well. As can be seen the subbands are quite non-parabolic. The character of
the hole states is represented by pure angular momentum states at the zone center, but
there is a strong mixing of states as one proceeds away from the k = 0 point.

3.3 SUB–2-DIMENSIONAL SYSTEMS
Quantum well systems discussed in the previous section have found applications in a
number of devices. Examples include high-speed optical modulators and low threshold
lasers. Quantum wells are relatively easy to fabricate, since they require opening and
closing of shutters or valves while the crystal is being grown. No etching/lithography
processes are involved. It is even possible to grow quantum wells where they well region
is just one monolayer.

If one examines the electronic properties of sub–2-dimensional systems it is
clear that there are many advantages that can be exploited for superior device design.
As a result there has been a great deal of activity to fabricate quantum wire (a quasi
1D system) and quantum dot (a quasi 0D) structures. The key difference between the
fabrication of a quantum dot and a quantum wire (or dot) is that in a wire (or dot)
material composition has to be altered not just in the growth direction, but in the plane
normal to the growth direction. As a result the fabrication of sub–2D systems require
a lot more than opening or closing of shutters in a growth chamber. As discussed in
Chapter 1, there are two approaches to fabricating sub–2D systems: (i) etching/regrowth
and (ii) self-assembly.

In the etching/regrowth approach a quantum well is grown and then etched
leaving narrow regions of the “well” material exposed. The etched region is then filled
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Figure 3.12: Hole dispersion relations in a 100 Å GaAs/Al0.3Ga0.7As quantum well assuming
the same Kohn–Luttinger parameters in the well and barrier.

in by regrowth of a large bandgap (barrier) material to produce a sub–2D system.
While this approach seems to simple in theory, in practice it has not proven to be
very successful. The difficulty arises from the quality of the interface produced at the
etched negative regrowth region. Due to impurities, broken or distorted bonds, etc.,
this interface is not defect-free. The defect states dominate the electronic properties of
the system and the benefits of quantum effects are not realized. Of course, one has to
realize that growth–etching–regrowth technology is improving and it may eventually be
possible to fabricate sub–2D systems in this manner.

The self-assembly approach exploits thermodynamic and kinetic principles to
grow sub–2D systems without any etching–regrowth. One example is the V -groove ap-
proach that has been used to grow quantum wires using the AlGaAs/GaAs system. A
V -groove is etched into a substrate and an epilayer, say, GaAs is grown on the substrate.
The initial buffer layer buries the initial damaged region. After that AlGaAs is grown
on the V -groove. In MBE Al and Ga atoms impinge on the substrate randomly, but
because the Ga-As bond is not as strong as the Al-As bond, the Ga atoms migrate a
lot faster into the groove. This produces a Ga rich region at the groove which can then
be covered with a barrier region to produce quantum wires.

An approach that has become quite successful in the fabrication of quantum
dots is the use of strain. In Chapter 1, Section 1.4 we have discussed how the growth
mode changes from monolayer-by-monolayer to island mode as strain is increased in
the epilayer. This idea has been used to fabricate quantum dots from material systems
like InGaAs/GaAs and SiGe/Si. In these self-assembled quantum dots no regrowth is

A

A
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needed and the structural quality of the system is very good.
The self-assembled quantum dots are under a very high degree of strain (ε ∼

2 − 3%). As a result the simple effective mass equation which allows one to describe
the conduction band states and valence band states separately does not give accurate
results. The energy levels are obtained by using bandstructure approaches that include
the coupling between the valence and conduction bands. These include an 8-band k · p
method and full band models. We will discuss results for electronic spectra in self-
assembled dots after discussing the deformation potential theory.

The lower dimensional confinement problem can be solved in the same manner
as the approach discussed for the 2–dimensional problem. The outcome is a series of
subbands for the 1D problem and a series of δ-function density of states for the 0D
problem. The density of states for the conduction band in the quantum wire is given by
(a similar expression can be written for the valence band)

N(E) =
√
2m∗1/2

πh̄

∑
i

(E − Ei)−1/2 (3.23)

where Ei are the subband levels. Note that there may several degenerate subbands
depending upon the wire symmetry.

In Fig. 3.13 we show a schematic of the density of states in 3D, 2D, 1D, and
0D systems.

EXAMPLE 3.2 Using a simple infinite barrier approximation, calculate the “effective band-
gap” of a 100 Å GaAs/AlAs quantum well. If there is a one-monolayer fluctuation in the well
size, how much will the effective bandgap change? This example gives an idea of how stringent
the control has to be in order to exploit heterostructures.

The confinement of the electron (m∗ = 0.067 m0) pushes the effective conduction
band up, and the confinement of electrons at the valence band push the effective edge down
(m∗

hh = 0.4 m0). The change in the electron ground state is (using n = 1) 55.77 meV. The
shift (downwards) in the valence band is (why do we only need to worry about the shift of the
HH band to find the effective gap?) 9.34 meV. The net shift is 65.11 meV.

The effective bandgap is thus 65.11 meV larger than the bulk GaAs bandgap.
If the well size changes by one monolayer (e.g., goes from 100 Å to 102.86 Å), the

change in the electron level is

∆Ec = Ee

[
1− (100)2

(102.86)2

]
= Ec × 0.055

= 3.06 meV

The hole energy changes by

∆Ehh = Ehh × 0.055 = 0.51 meV
Thus, the bandgap changes by 3.56 meV for a one monolayer variation. In optical frequencies

this represents a change of 0.86 Terrahertz, which is too large a shift for many optoelectronic

applications.
EXAMPLE 3.3 Consider a 100 Å GaAs quantum well. The Fermi energy at 600 K is known
to have a value

EF = Ec(GaAs) + 0.15 eV
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where Ec(GaAs) is the bandedge of the GaAs conduction band.

• Calculate the electron density in the well in unites of cm−2. You can use the infinite
barrier model to get the subbband energies.

• Calculate the position of the Fermi level at 0 K.

The integral ∫
dx

ex + 1
= "n(1 + e−x)

will be useful for this problem.

We first find the energies of the subband level sin the quantum well using the infinite
barrier model. We have

E1 =
h̄2π2

2m∗W 2

Using m∗ = 0.067 m9 and W = 1.0× 10−8 m, we get

E1 = 0.056 eV

Also

E2 = 0.222; E3 = 0.504 eV; etc.

We do not have to worry about the occupation of level 3 and higher, since their energies are
well above the Fermi level. Note that the density of states of the first level starts at E1, and is
constant. The density of states of the second level starts at E2 and is constant, etc. Using the
integral given we have, for the 2-dimensional electron density,

n2D =
m∗

πh̄2
kBT

(
"n
[
+exp

(
EF − E1

kBT

)]
+ "n

[
1 + exp

(
EF − E2

kBT

)])
We have the following:

kBT = 0.052 eV; EF − E1 = 0.15− 0.052 = 0.094 eV; EF − E2 = −0.072 eV

Using these values we get

n2D =
(
2.82× 1013 cm−2

)
(0.052 eV) (1.96 + 0.22) = 3.2× 1012 cm−2

Note that the contribution from the third band is negligible and is, therefore, not included. To
find the Fermi level at 0 K we use the relation

n2D = (EF − E1)N(E)

Using the value of n2D calculated above and N(E) = 2.82× 1013 eV−1 cm−2, we get

EF − E1 = 0.113 eV

or

EF − Ec(GaAs) = 0.113 + 0.056 = 0.169 eV

Note that the second subband has no electrons at 0 K, since the Fermi level is below the value

of E2.
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3.4 STRAIN AND DEFORMATION POTENTIAL THEORY
The role of strain on electronic and optical properties of semiconductors has been stud-
ied for several decades. Such studies have been extremely important in developing a
better theoretical understanding of the bandstructure of semiconductors by identifying
symmetries of energy states involved in optically observed transitions. The studies have
also been important since they allow determination of deformation potentials that are
important in understanding electronic transport in presence of lattice scattering. Un-
til recently, the strain in the semiconductor was introduced by external means, using
sophisticated apparatus such as diamond anvil cells, and the experiments were done
primarily to clarify the physics of semiconductors.

With the advent of strained heteroepitaxy it is now possible to incorporate
strain into an epitaxial film. In fact, strain of a few percent can be built-in simply by
growing a film on a mismatched substrate as discussed in Chapter 1, Section 1.4. In
that section we have discussed the nature of strain tensor by epitaxy.

Once the strain tensor is known, we are ready to apply the deformation potential
theory to calculate the effects of strain on various eigenstates in the Brillouin zone. The
strain perturbation Hamiltonian is defined and its effects are calculated in the simple
first order perturbation theory. In general we have

Hαβ
ε =

∑
ij

Dαβ
ij εij (3.24)

where Dij is the deformation potential operator which transforms under symmetry
operations as a second rank tensor. Dαβ

ij are the matrix elements of Dij .
The deformation potential is not calculated in an ab initio manner, but is usually

fitted to experimental results. As in the case of the force constants, the number of
independent elements in the deformation potential can also be reduced based on the
symmetry of the wavefunctions.

Let us consider the matrix elements of the strain tensor (Eqn. 3.29) which de-
fines the perturbation Hamiltonian for the strain. We are interested in the (αβ) element
of the matrix where α and β represent the basic functions being used for the unper-
turbed crystal. The symmetry of the basis states is critical in simplifying the number of
independent deformation potential elements. In Chapter 2, Fig. 2.12 we have shown a
schematic of the nature of the symmetries encountered at the bandedges of direct and
indirect semiconductors. Due to the importance of this central cell nature we reproduce
a schematic in Fig. 3.14. We will discuss the deformation potentials realizing that we
are primarily interested in seeing the effect of the strain on bandedge states.

Case 1: Let us first examine the nondegenerate Γ
′
2 state which represents the

conduction bandedge of direct bandgap semiconductors. This state is an s-type state
and has the full cubic symmetry associated with it. Let us perform the following two
steps to establish the independent number of deformation potentials for this state:

Step 1: Rotate by 120◦ about (111). This causes the following transformation
in the new axes (primes).

x′ = y

y′ = z
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Figure 3.14: A schematic showing the nature of the central cell symmetry at the bandedges
of direct and indirect semiconductors.

z′ = x (3.25)

Consequently, we have

Dxx = Dz′z′

Dyy = Dx′x′

Dzz = Dy′y′


⇒ Dxx = Dyy = Dzz (3.26)

Dxy = Dz′x′

Dzx = Dy′z′

Dyz = Dx′y′


⇒ Dxy = Dyz = Dzx (3.27)

Step 2: Rotate about (001) by 90◦ leading to the transformation

x′ = y

y′ = −x

z′ = z

(3.28)

The deformation potentials transform as

Dxy = −Dy′x′

= −Dx′y′ (3.29)

Thus, Dxy = 0, and by symmetry, Dxy = Dyz = Dzx = 0.
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Thus for Γ
′
2 states there is only one deformation potential and the effect of the

strain is to produce a shift in energy.

δE(000) = Hε

= Dxx(εxx + εyy + εzz) (3.30)

Conventionally we write
Dxx = Ξ

(000)
d (3.31)

where Ξ(000)
d represents the dilation deformation potential for the conduction band (000)

valley.
Case 2: States along the (100) direction in k-space or ∆1 symmetry states. We

again carry out the following symmetry transformation.
Step 1: Rotate by 90◦ about the (100) axis, producing the transformation

x′ = x

y′ = z

z′ = −y (3.32)

The deformation potentials transform as

Dxx = Dx′x′

Dyy = Dz′z′

Dzz = Dy′y′

}
⇒ Dyy = Dzz

Dxy = −Dx′z′

Dzx = Dx′y′

}
⇒ Dxy = −Dx′y′

Dyz = −Dz′y′ ⇒ Dyz = 0

(3.33)

Thus,
δE(100) = Dxxεxx +Dyy(εyy + εzz) (3.34)

Once again we write

Dyy = Ξ(100)
d

Dxx = Ξ(100)
d + Ξ(100)

u (3.35)

where d and u represent dilation and uniaxial portions. This gives

δE(100) = Ξ(100)
d (εxx + εyy + εzz) + Ξ(100)

u εxx (3.36)

By symmetry we can write

δE(010) = Ξ(100)
d (εxx + εyy + εzz) + Ξ(100)

u εyy (3.37)

δE(001) = Ξ(100)
d (εxx + εyy + εzz) + Ξ(100)

u εzz (3.38)

We note that if the strain tensor is such that the diagonal elements are unequal (as is
the case in strained epitaxy), the strain will split the degeneracy of the ∆1 branches.
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Case 3: The L1 symmetry or states along (111) direction in k-space.
Step 1: Rotate by 120◦ about (111) axis causing the transformation

x′ = y

y′ = z

z′ = x (3.39)

The deformation potentials transform as for the Γ
′
2 case giving

Dxx = Dyy = Dzz (3.40)

Dxy = Dyz = Dxz (3.41)
Thus we get a perturbation

δE(111) = Dxx(εxx + εyy + εzz) + 2Dxy(εxy + εyz + εzx) (3.42)

Conventionally, we write

Dxx = Ξ(111)
d +

1
3
Ξ(111)
u

Dxy =
1
3
Ξ(111)
u (3.43)

By similar transformation we find that

δE(111̄) = Dxx(εxx + εyy + εzz) + 2Dxy(εxy − εyz − εzx)

δE(11̄1) = Dxx(εxx + εyy + εzz) + 2Dxy(−εxy − εyz + εzx)

δE(1̄11) = Dxx(εxx + εyy + εzz) + 2Dxy(−εxy + εyz − εzx) (3.44)

Case 4: The triple degenerate states describing the valence bandedge.
The valence band states are defined (near the bandedge) by primarily px, py,

pz (denoted by x,y,z) basis states. Consider a matrix element Hxx
ε .

Hxx
ε = 〈x |Hε|x〉

=
∑
ij

Dxx
ij εij

Step 1: Rotate by 90◦ about (100). This causes the transformation

x′ = x

y′ = z

z′ = −y (3.45)

Using arguments similar to those used before

Dxx
xx = Dx′x′

x′x′ = &

Dxx
yy = Dx′x′

z′z′

Dxx
zz = Dx′x′

y′y′

}
⇒ Dxx

yy = Dxx
zz = m

Dxx
xy = −Dx′x′

x′z′

Dxx
xz = Dx′x′

x′y′

}
= 0

Dxx
yz = −Dx′x′

z′y′ = 0

(3.46)
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Also examining terms like Hxy
ε , we rotate by 90

◦ about (001). Then it is easy to see
that

Dxy
xx = −Dx′y′

y′y′

Dxy
yy = −Dx′y′

x′x′

}
⇒ Dxy

xx = −Dxy
yy (3.47)

These are zero if we consider a reflection through x = y.

Dxy
zz = −Dx′y′

z′z′ = 0 (3.48)

Dxy
zz = −Dx′y′

z′z′ = 0 (3.49)

Dxy
xz = Dx′y′

y′z′

Dxy
yz = −Dx′y′

x′z′

}
⇒ Dxy

xz = Dxy
yz = 0 (3.50)

Thus the unique deformation potentials are

Dxx
xx = &

Dxx
yy = m

Dxy
xy = n (3.51)

We often use the related definition which is more useful for the angular momentum basis

a =
&+ 2m
3

b =
&−m

3
d =

n√
3

(3.52)

We have already discussed the strain tensor in epitaxial growth. For (001) growth which
has been the main growth direction studied because of its compatibility with technology
of processing we have

εxx = εyy = ε

εzz = −2c12

c11
ε (3.53)

Let us evaluate the matrix elements in the angular momentum basis instead of the
px,py,pz basis, since the angular momentum basis is used to describe the heavy hole,
light hole states (for a diagonal tensor produced by (001) epitaxy).〈

3
2
,
3
2

∣∣∣∣Hε

∣∣∣∣ 32 ,32
〉

=
1
2
〈px − ipy |Hε| px + ipy〉

=
1
2
[〈px |Hε| px〉+ i〈px |Hε| py〉

− i〈py |Hε| px〉+ 〈py |Hε| py〉]
=

1
2
[&εxx +m(εyy + εzz) + &εyy +m(εzz + εxx)]

=
1
2
[εxx(&+m) + εyy(&+m) + 2mεzz] (3.54)
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In terms of the deformation potentials, a, b, d,

m = a− b

& = a+ 2b
n =

√
3d

(3.55)

〈
3
2
,
3
2

∣∣∣∣Hε

∣∣∣∣ 32 ,32
〉

=
1
2
[εxx(2a+ b) + εyy(2a+ b) + εzz(2a− 2b)]

= a(εxx + εyy + εzz) +
b

2
(εxx + εyy − 2εzz) (3.56)

If we examine the case where growth is along the (001) direction, as noted earlier,

εxx = εyy = ε

εzz = −2c12

c11
ε (3.57)

we then obtain 〈
3
2
,
3
2

∣∣∣∣Hε

∣∣∣∣ 32 ,32
〉
= 2a

(c11 − c12)
c11

ε+ b

(
c11 + 2c12

c11

)
ε (3.58)

Remember that in our definition
ε =

aS
aL

− 1 (3.59)

In a similar manner it can be shown that〈
3
2
,± 1

2

∣∣∣∣Hε

∣∣∣∣ 32 ,± 1
2

〉
= 2a

(c11 − c12)
c11

ε− b

(
c11 + 2c12

c11

)
ε (3.60)

Restricting ourselves to the HH and LH states, the strain Hamiltonian can be
written as (the state ordering is |3/2, 3/2〉, |3/2,−1/2〉, |3/2, 1/2〉, and |3/2,−3/2〉)

Hε =




Hε
hh Hε

12 Hε
13 0

Hε∗
12 Hε

lh 0 Hε
13

Hε∗
13 0 Hε

lh −Hε
12

0 Hε∗
13 −Hε∗

12 Hε
hh


 (3.61)

where the matrix elements are given by

Hε
hh = a(εxx + εyy + εzz)− b

[
εzz − 1

2
(εxx + εyy)

]

Hε
lh = a(εxx + εyy + εzz) + b

[
εzz − 1

2
(εxx + εyy)

]
Hε

12 = −d(εxz − iεyz)
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=
3
2
,
3
2
Hε
3
2
,
1
2

Hε
13 =

√
3
2

b(εyy − εxx) + idεxy

=
3
2
,
3
2
Hε
3
2
,
−1
2

(3.62)

Here, the quantities a, b, and d are valence band deformation potentials. As discussed
earlier, strains achieved by lattice mismatched epitaxial growth along (001) direction
can be characterized by εxx = εyy = ε , and εzz = −(2c12/c11)ε. All of the diagonal
strain terms are zero. Using this information, we get

Hε
hh =

[
2a
(
c11 − c12

c11

)
+ b

(
c11 + 2c12

c11

)]
ε (3.63)

Hε
lh =

[
2a
(
c11 − c12

c11

)
− b

(
c11 + 2c12

c11

)]
ε (3.64)

with all other terms zero. If the hole dispersion is to be described in a quantum well,
the hole states |m,k〉 can be written as

〈rh|m,k〉 = eik·ρh

2π

∑
v

gvm(k, zh) U
v
0 (rh) (3.65)

where k is the in-plane two-dimensional wave vector, ρh is the in-plane radial coordinate,
zh is the coordinate in the growth direction, the Uv

0 are the zone-center Bloch functions
having spin symmetry v, and m is a subband index. The envelope functions gvm(k, zh)
and subband energies Em(k) satisfy the Kohn–Luttinger equation along with the strain
effect

−




Hhh − 1
2δ b c 0

b∗ Hlh + 1
2δ 0 c

c∗ 0 Hlh + 1
2δ −b

0 c∗ −b∗ Hhh − 1
2δ







g
3/2,3/2
m (k, zh)

g
3/2,1/2
m (k, zh)

g
3/2,−1/2
m (k, zh)

g
3/2,−3/2
m (k, zh)




= Em(k)




g
3/2,3/2
m (k, zh)

g
3/2,1/2
m (k, zh)

g
3/2,−1/2
m (k, zh)

g
3/2,−3/2
m (k, zh)




(3.66)

The δ is the separation of the HH and LH states in a bulk material due to the strain and is
given by Eqns. 3.63 and 3.64. For the InyGa1−yAs system it is given by δ = −5.966ε eV.
Note that the function gvm(k, zh) depends on k as well as zh and that the energy bands
are not, in general, parabolic. The matrix elements in Eqn. 3.66 are given by

Hhh =
h̄2

2m0

[(
k2
x + k2

y

)
(γ1 + γ2)− (γ1 − 2γ2)

∂2

∂z2
h

]
− V h(zh)
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Hlh =
h̄2

2m0

[(
k2
x + k2

y

)
(γ1 − γ2)− (γ1 + 2γ2)

∂2

∂z2
h

]
− V h(zh)

c =
√
3h̄2

2m0

[
γ2

(
k2
x − k2

y

)− 2iγ3kxky
]

b = −
√
3h̄2

m0
(kx − iky)γ3

∂

∂zh

where m0 is the free-electron mass, Vh is the potential profile for the hole, and for GaAs
γ1 = 6.85, γ2 = 2.1, and γ3 = 2.9.

Equation 3.66 can be solved by writing it in finite-difference form and diago-
nalizing the resulting matrix (as described in Appendix C) to obtain the in-plane band
structure. For GaAs, InAs type systems, the values of a and b are such that the net
effect is that the (3/2,±3/2) state moves a total of 5.96ε eV and the (3/2,±1/2) state
moves by energy equal to 12.0ε eV.

The relationships between the deformation potentials used in the discussion
above and what is measured from a hydrostatic pressure measurement are

Ξ(000)
d = Ξ(000)

hyd + a

Ξ(100)
d = Ξ(100)

hyd − 1
3
Ξ(100)
u + a

Ξ(111)
d = Ξ(111)

hyd − 1
3
Ξ(111)
u + a (3.67)

From hydrostatic compression

δEg(k̄) = Ξ(k̄)
hyd (εxx + εyy + εzz)

Ξ(k̄)
hyd = −1

3
(c11 + 2c12)

dEg
dP

(3.68)

The elastic stiffness constants, c11, c12, and the hydrostatic pressure coefficient of the
bandgap, dEg/dP , are fairly accurately measured by various experiments and we thus
get the values of the individual deformation potentials for different bands.

The effect of strain on bandstructure for both conduction band and valence
band states is illustrated by examining the direct bandgap material InxGa1−xAs grown
on GaAs and the indirect bandgap material GexSi1−x alloy grown on Si. For direct
bandgap materials conduction bands, the strain tensor only moves the position of the
bandedge and has a rather small effect on the carrier mass.

In Fig. 3.15 we show a schematic of how strain in a layer grown along the
(001) direction influences the bandedges in a direct gap semiconductor. The conduction
bandedge moves up or down with respect to its unstrained position as discussed earlier,
but since it is a non-degenerate state there is no splitting. The valence bandedge is
degenerate in the unstrained system. This degeneracy is lifted by quantum confinement
even in an unstrained quantum well, but the splitting produced by quantum confinement
is usually small (∼ 10–15 meV). Under biaxial compressive strain the bandgap of the
material increases and the HH and LH degeneracy is lifted. The splitting can easily



3.4. Strain and Deformation Potential Theory 137

Tensile strain in
growth plane

Unstrained Compressive strain in
growth plane

LH on top HH on topHH
LH

Degenerate

|3/2, ±1/2>

|3/2, ±1/2>

|3/2, ± 3/2>

|3/2, ± 3/2>

|3/2, ±1/2>

|3/2, ± 3/2>

Figure 3.15: Effect of strain on bandedges of a direct bandgap material. The valence band
degeneracy is lifted as shown.

approach 100 meV making strain an important resource to alter valence band density
of states. Under biaxial compressive strain the HH state is above the LH state, while
under biaxial tensile strain the LH state is above the HH state, as shown in Fig. 3.16.

In the case of the indirect bandgap Si1−xGex alloy grown on Si, the conduction
band also is significantly affected according to Eqns. 3.36 to 3.38. For (001) growth
there is splitting in the 6 equivalent valleys. The results on the bandedge states are
shown in Fig. 3.16. Note that the biaxial compressive strain causes a lowering of the
four-fold in-plane valleys below the 2 two-fold out of plane valleys. We see that the
bandgap of SiGe falls rapidly as Ge is added to Si. This makes the SiGe very useful for
Si/SiGe heterostructure devices such as heterojunction bipolar transistors. the splitting
of the HH, LH and SO bands also cause a sharp reduction in the density of states mass
near the bandedge. The splitting of the conduction bandedge valleys also reduces the
conduction band density of states in SiGe.

3.4.1 Strained Quantum Wells

Due to critical thickness-related issues most epitaxially grown strained layers form quan-
tum wells. In these structures the effective bandgap and carrier masses are strongly
dependent on strain. In our discussion so far we have mentioned that valence bandedge
states are significantly altered by biaxial strain. Indeed, the bandedge density of states
mass can be reduced by as much as a factor of 3 by incorporation of strain. To illustrate
this we show results for the bandstructure and density of states mass in unstrained and
strained quantum wells in Fig. 3.17. In Fig. 3.17a we show the in-plane dispersion of
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Figure 3.16: Splittings of the conduction band and valence band are shown as a function of
alloy composition for Si1−xGex grown on (001) Si. UCB: unstrained conduction band, HH:
heavy hole, LH: light hole, SH: split-off hole.

the valence band subbands in a 100 Å Al0.3Ga0.7As/GaAs quantum well. In Fig. 3.17b
we show the bandstructure in a 100 Å Al0.3Ga0.7As/In0.1Ga0.9As well. The addition of
10 % In in the well causes a biaxial compressive strain of 0.7 %. We can see the contrast
between the results in Figs. 3.18a and 3.17b. The strain has clearly reduced the effective
mass of the holes in the valence band.

In Fig. 3.17c we show results for the density of states mass in the HH, LH
and SO bands as a function of strain in the 100 Å quantum well. Notice that both
compressive and tensile strain cause a reduction in the bandedge hole masses.

We have discussed that in a quantum well the HH and LH states are not de-
generate. The splitting is of the order of 10–15 meV, depending upon the well size and
valence band discontinuity. We will see later in Chapter 9 that the HH and LH states
have different interactions with polarized light. As a result the HH, LH splitting is quite
important in determining the polarization response of quantum well devices.

It is interesting to note that the degeneracy lifting produced by quantum con-
finement of HH and LH states can be restored if the well is under tensile strain. This is
illustrated schematically in Fig. 3.18.

It is quite evident from the discussions in this section that strain can signifi-
cantly affect the bandstructure of semiconductors. The level of strain we have considered
can be incorporated in the semiconductor reasonably easily through strained epitaxy.
Degeneracy splittings in the valence band can be of the order of 100 meV, accompa-
nied by large changes in band curvatures. It is important to appreciate that such large
uniaxial strains are extremely difficult to obtain by external apparatus. It is important
to identify whether or not the changes produced by the strain have any impact on the
physical properties of the semiconductors. These consequences will be explored later in
the chapters on transport and optical properties. The effects are, indeed, found to be
significant.



3.4. Strain and Deformation Potential Theory 139

0.070 0.035 0.000 0.035 0.070
<110> <100>

K (1/ )

E
N
E
R
G
Y
[e
V
]

0.20

0.15

0.10

0.05

(a) (b)

0.070 0.035 0.000 0.035 0.070
<110> <100>

K (1/ )

0.20

0.15

0.10

0.05

HH
LH
SO

0.5

0.4

0.3

0.2

0.1

0.0
-2.0 -1.0 0.0 1.0 2.0

m
* /
m
0

ε(%)

(c)

Figure 3.17: Hole subband dispersion curves for a 100 Å wide quantum well in the (a)
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Figure 3.18: Effect of biaxial tensile strain and quantum confinement on conduction and
valence band states. By a proper choice of tensile strain the heavy-hole light-hole states can be
degenerate at k = 0 in a quantum well.

3.4.2 Self-Assembled Quantum Dots

In Chapter 1 we have discussed how under large strain epitaxy epilayers can grow in
the island growth mode. This feature of epitaxy has been exploited to fabricate quasi-
0-dimensional structures which are called self-assembled quantum dots. These dots are
produced without any etching/regrowth making them very attractive for exploration of
0D physics as well as for devices. A number of material combinations have been grown
as quantum dots using the strain epitaxy approach. The most widely studied system is
the InGaAs/GaAs system where self-assembled dots appear when the In composition
reaches ∼ 0.4. InGaAs/GaAs quantum dots have been extensively studied and used to
fabricate lasers and detectors.

Self-assembled dots usually grow as pyramidal dots although other “lens”-like
shapes are also observed. The strain tensor in these dots was discussed in Chapter 2 and
has quite large components. The strain between InAs and GaAs is 7 %—large enough
that to fully understand the bandstructure of the dots one needs to include coupling
between not only the HH, LH and SO bands, but also the conduction band states. This
has led to the use of 8 band k · p method and other full bandstructure models.

In Fig. 3.19 we show electronic transitions in a InAs/GaAs dot with a base edge
of 124 Å and a height of 62 Å. It can be seen that even though InAs has a bandgap
of 0.35 eV, the bandgap of the dot is close to 1.1 eV! This large difference is primarily
because of the large compressive strain in the dots.

The dimensions of the dots as well as their exact shape depends upon the strain
value and to some extent the growth conditions. It is possible to have a dot density of ∼
1011 cm−2 through self-assembly techniques. The ability to produce such a high density
of 0D systems has naturally made this technique very attractive for device scientists.
However, it must be recognized that there is considerable nonuniformity (∼ 5% in dot
dimensions) in a sample. Also the placement of dots is rather random. As a result of
the size fluctuations of the dots there are fluctuations in the transitional energies. For
many applications such fluctuations cause deleterious effects and can even negate the
potential benefits of quantum dots. Nevertheless, devices such as lasers and detectors
have been successfully fabricated using self-assembled dots.
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Figure 3.19: Results of an 8 band k · p model for a self-assembled InAs/GaAs quantum dot.
Several transition energies are identified to give an idea of the energy ranges. The bandgap of
unstrained InAs is only 0.35 eV.

EXAMPLE 3.4 Calculate the heavy hole-light hole splitting produced when In0.2Ga0.8As
is grown on a (001) GaAs substrate. Assume that the structure is pseudomorphic and the
deformation potential is given by bd = −2.0 eV. The force constants are C11 = 11.5 × 1011

dynes/cm2; C12 = 5.5× 1011 dynes/cm2.

The splitting produced by a pseudomorphic strain is (in eV)

∆Ehh −∆E�h = 2bd

(
C11 + 2C12

C11

)
ε

= −5.91ε

The strain between In0.2Ga0.8As and GaAs is

ε =
5.653− 5.734

5.653
= −0.014

Thus the splitting is

∆Ehh −∆E�h = 0.085 eV

A A
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EXAMPLE 3.5 Estimate the pseudomorphic strain needed in a 100 Å quantum well to
cause a merger of the HH and LH states at the top of the valence band. Assume the following
parameters:

bd = −2.0 eV ;C11 = 12.0× 1011 dynes/cm2;C12 = 6× 1011 dynes/cm2;

m∗
hh = 0.45 m0;m

∗
�h = 0.1 m0

In this problem we have to ensure that the HH-LH splitting due to strain exactly balances
the splitting due to the quantum confinement. The quantum confinement splitting is given
approximately by (note that the hole mass is taken as positive, while the electron mass in the
valence band is negative)

∆Ehh −∆E�h =
−h̄2π2

2W 2

(
1

m∗
hh

− 1

m∗
�h

)

=
(1.05× 10−34 Js)2(π2)

2× (100× 10−10 m)2

[
1

(0.45× 9.1× 10−31 kg)
− 1

(0.1× 9.1× 10−31 kg)

]
= 4.64× 10−21 J

= 29 meV

The splitting produced by strain has to have an opposite effect, i.e.,

∆E�h −∆Ehh = −2bd
(
C11 + C12

C11

)
ε = 0.029 eV

Thus a tensile strain of 0.005 is needed.

3.5 POLAR HETEROSTRUCTURES
In Chapter 1, Section 1.6 we have discussed how in certain materials a net polarization
can be present. This can be a result of spontaneous polarization, piezoelectric effect,
or ferroelectric effect. In the fcc based semiconductors there is no spontaneous polar-
ization, but there can be net polarization due to strain effects. An important result of
polarization differences in heterostructures is that one can have large built-in electric
fields at interfaces. A schematic example is shown in Fig. 3.20 where we show a nonpolar
(undoped) quantum well and a polar (undoped) quantum well. The interface electric
field is given by

F =
P

ε
(3.69)

where P is the net polarization of the heterostructure and ε is the dielectric constant.
The fixed polar charge at polar interfaces can be exploited for built-in field,

band bending and creation of mobile charge. In principle, with proper structure design
this fixed charge can be exploited to play the role of a sheet of dopants. As noted above,
in the zinc blende semiconductors the piezoelectric effect controls the polar charge.

The general polarization developed due to strain is given by

Pi =
∑
k,l

eikl εkl (3.70)
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Figure 3.20: A comparison of (undoped) nonpolar and polar quantum well band profiles in
the absence of any external electric field.

It was shown by Nye (1957) that for zinc–blende structures, only one piezoelectric
constant exists and in the reduced representation (xx ⇒ 1; yy ⇒ 2; zz ⇒ 3; yz ⇒
4; zx ⇒ 5; xy ⇒ 6), eikl can be written as eim(m = 1 to 6). The nonzero piezoelectric
coefficients are

e14 = e25 = e36 (3.71)

Thus, only for shear strain does one have a finite polarization. In Chapter 1, Table 1.5
we have given the piezoelectric coefficients for several semiconductors. In Chapter 1 we
have seen that for (100) growth the strain tensor is diagonal and as a result there is
no piezoelectric polarization for strained epitaxy along this growth. However, if growth
is along other directions there are off-diagonal components in the strain tensor. For
(111) growth of strained layers, one thus gets a strong dipole moment across a strained
quantum well producing an electric field profile as shown in Fig. 3.20. The electric field
is given by the equation

F =
√
3
e14εxy
εs

V/m (3.72)

where e14 is the piezoelectric coefficient (usually in the range of ∼ 0.1 C/m2), εxy is the
off-diagonal strain component, and εs is the dielectric constant of the semiconductor. A
straightforward evaluation shows that a strain εxy of about 1% can easily produce an
electric field of the range 105 V/cm.

In wurtzite structures (applicable for InN, GaN, and AlN) the growth is usually
carried out along the c-axis, i.e., (0001) or (0001̄) direction. In this case if the substrate
is thick the inplane strain tensor is

εxx = εyy =
a3

a0
− 1 (3.73)

where as is the substrate lattice constant and a0 is the unstrained lattice constant of
the growth material. For the growth direction the strain is given by

εzz = −2c13

c33

(
as
a0

− 1
)

(3.74)
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These strains induce piezoelectric polarization Ppz in the strained layer which for the
wurtzite system is

Ppz = e33εzz + e31 (εxx + εyy) (3.75)

where e33 and e31 are the piezoelectric constants. The direction of piezoelectric field is
along (0001) direction, or Ga-faced direction according to the convention that the Ga
atoms are on the top position of the bilayer. Table 1.5 shows the piezoelectric coefficients
and the spontaneous polarization for AlN, GaN and InN. Typical values of c13 and c33

for the InGaN system are 109 Gpa and 355 Gpa respectively so that the ratio 2c13/c33

is ∼ 0.6. The electric field induced by the polarization is

F =
P

εs
(3.76)

When we examine the spontaneous polarization values for the nitrides we notice that
InN and GaN have essentially the same values. As a result, in the InGaN/GaN structure
the polar charges at the interface are due to the piezoelectric effect alone. On the other
hand, for AlGaN films grown pseudomorphically on a GaN substrate the piezoelectric
polarization and spontaneous polarization (difference between AlGaN and GaN values)
are roughly equal.

When we compare the polarization values in the zinc blende semiconductors and
wurtzite semiconductors we see that the wurtzite materials have an order of magnitude
larger polarization. This results in large built-in interface charge and electric fields.
Consider, for example, a case where the effective substrate is GaN and an AlxGa1−xN
overlayer is grown coherently. The polarization is found to have the value

P(x) = Ppz +Psp
=

(−3.2x− 1.9x2
)× 10−6 C/cm2

5.2× 10−6x C/cm2 (3.77)

We see that in this system the effects arising from piezoelectric effect and spontaneous
polarization mismathc are comparable. Note that the two effects cqan have opposite
directions as well as depending on the surface termination conditions and the lattice
mismatch between the overlayer and the effective substrate. The electric field associated
with the polarization given above is

F (x) =
(−9.5x− 2.1x2

)
MV/cm (3.78)

We see that the built-in field and sheet charge values are very large. It is easy to produce
fields around 106 V/cm and charge density around 1013 cm2.

For the heterostructure InxGa1−xN grown on a GaN effective substrate the
polarization charge density and field values are

P (x) =
(
14.1x+ 4.9x2

)× 10−6 C/cm2

−0.3× 10−6x C/cm2

F (x) =
(
15.6x+ 5.5x2

)
MV/cm (3.79)

In this system the spontaneous polarization effect is negligible. However, the piezoelec-
tric effect is very strong.
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3.6 TECHNOLOGY ISSUES
At the end of Chapter 2, we examined some of the driving forces behind some of the
technologies. The use of alloys and heterostructures adds a tremendous versatility to
the available parameter space to exploit. Semiconductor alloys are already an integral
part of many advanced technology systems. Consider the following examples.

• The HgCdTe alloy is the most important high-performance imaging material for
long wavelength applications (10 – 14 µm). These applications include night vi-
sion, seeing through fog, thermal imaging of the human body parts for medical
applications, and a host of special purpose applications involving thermal tracking.

• The AlGaAs alloy is an important ingredient in GaAs/AlGaAs heterostructure
devices which drive a multitude of technologies including microwave circuits op-
erating up to 100 GHz, lasers for local area networks, and compact disc players.

• InGaAs and InGaAsP alloy systems are active ingredients of MMICs operating
above 100 GHz and long-haul optical communication lasers.

While alloys are important ingredients of many technologies, it must be em-
phasized again that alloys are not perfectly periodic structures. This results in random
potential fluctuations which leads to an important scattering mechanism that limits
certain performances. For example, the low temperature low field mobility is severely
affected by alloy scattering as is the exciton linewidth of optical modulators (discussed
in Chapter 10). The growth and fabrication issues in alloy systems are also sometimes
serious due to miscibility gaps that may be present.

Technologies based on the heterostructure concepts are also evident in many
high performance systems in use today. In Table 3.1 we provide an overview of some
of the important technology needs that heterostructure-based structures have fulfilled.
The most important heterostructure based devices are the MODFET, the HBT, and
the quantum well laser. These devices are the driving force behind advances in MMICs
operating above 100 GHz and low power optoelectronic systems. However, it must be
emphasized that while the heterostructures can produce an extremely broad range of
physical phenomena, not all of these effects can result in real devices. Over the last
decade, hundreds of proposals, many seemingly very attractive, have been made for
devices using heterostructure physics. Only a handful have made it into systems.

3.7 PROBLEMS
Section 3.1
3.1 Consider the alloy system Si1−xGex. Using the virtual crystal approximation, cal-
culate the positions of the Γ, X, and L point energies in the lowest conduction band. Use
the top of the valence band as a reference. At what Ge composition does the conduction
bandedge change from X-like to L-like?
3.2 Using the bandstructure of GaAs and AlAs, calculate the conduction band minima
at Γ, X, L points in AlxGa1−xAs alloy, as x varies from 0 to 1.
3.3 Glass fibers have a minimum loss window for light transmission at 1.3 µm and
1.55 µm. These wavelengths determine the laser materials of choice for long distance
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DESIRED TECHNOLOGY HETEROSTRUCTURE CONCEPTS

Low threshold lasers Quantum well, strained quantum
well structures (GaAs/AlGaAs;
InGaAs/AlGaAs; InGaAsP/InP...)
Quantum wire (?)
Quantum dots (?)

__ Chapter 9

High speed modulators Exciton-based quantum well
devices

__ Chapter 10

High mobility transitors Modulation-doped structures

__ Chapter 5

Low power devices Quantum well/wire-based
‘‘coherent transport’’devices

__ Chapter 8

Table 3.1: An overview of how heterostructures are impacting technology.
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optical communication. List the various semiconductor combinations that can be used
for lasers and detectors in such a system. List only those materials that can be grown
on GaAs or InP substrates with a strain of less than 2%. Using the virtual crystal ap-
proximation, estimate the electron effective masses of these materials.

Sections 3.2–3.3
3.4 Using Vegard’s Law for the lattice constant of an alloy (i.e., lattice constant is
the weighted average), find the bandgaps of alloys made in InAs, InP, GaAs, and GaP
which can be lattice matched to InP.
3.5 For long haul optical communication, the optical transmission losses in a fiber dic-
tate that the optical beam must have a wavelength of either 1.3 µm or 1.55 µm. Which
alloy combinations lattice-matched to InP have a bandgap corresponding to these wave-
lengths?
3.6 Using the virtual crystal approximation, up to what Al composition does the al-
loy AlxGa1−xAs remain a direct gap semiconductor? What is the maximum bandgap
achievable in the direct alloy?
3.7 Calculate the composition of HgxCd1−xTe which can be used for a night vision
detector with bandgap corresponding to a photon energy of 0.1 eV. Bandgap of CdTe
is 1.6 eV and that of HgTe is −0.3 eV at low tempertures around 4 K.
3.8 Calculate the bandgap of the alloy InGaN needed to produce blue light and green
light emission (do not include quantum or strain effects).
3.9 Consider the GaAs/AlxGa1−xAs (0 ≤ x < 1). Assume that the band discontinuity
distribution between the conduction and valence band is given by

∆Ec = 0.6∆Eg (direct)
∆Ev = 0.4∆Eg (direct)

where ∆Eg(direct) is the bandgap discontinuity between AlGaAs (even if the material
is indirect) and GaAs. Calculate the valence and conduction band offsets as a function
of Al composition. Notice that the conduction band offset starts to decrease as Al
composition increases beyond ∼0.4.
3.10 Show that the heterostructure AlxGa1−xAs/AlyGa1−yAs (x < y) can be type II
(i.e., valence band maxima is in AlxGa1−xAs and conduction band minima (X-type) is
in AlyGa1−yAs).
3.11 Calculate the first and second subband energy levels for the conduction band
in a GaAs/Al0.3Ga0.7As quantum well as a function of well size. Assume a 60:40 rule
for ∆Ec:∆Ev. Also, calculate the energy levels if an infinite barrier approximation was
being used.
3.12 Calculate the first two valence subband levels for heavy hole and light hole states
in a GaAs/Al0.3Ga0.7As quantum well as a function of the well size. Note that to find
the subband levels (at k‖ = 0), one does not need to include the coupling of the heavy
hole and light hole states.
3.13 Using the eigenvalue method described in the Appendix, write the valence band
4×4 Schrödinger equation (using the Kohn–Luttinger formalism discussed in the text) as
a difference equation. Write a computer program to solve this 4N×4N matrix equation
where N is the number of grid points used to describe the region of the well and the
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barrier. Using the parameter values γ1 = 6.85, γ2 = 2.1, and γ3 = 2.9, calculate the
E vs. k‖ diagram for the valence band in a 100 Å GaAs/Al0.3Ga0.7As quantum well.
You will need to find a proper mathematical library through your computer center to
diagonalize the large matrix.
3.14 In the In0.53Ga0.47As/InP system, 40% of the bandgap discontinuity is in the
conduction band. Calculate the conduction and valence band discontinuities. Calculate
the effective bandgap of a 100 Å quantum well. Use the infinite potential approximation
and the finite potential approximation and compare the results.
3.15 Compare the electron and HH ground state energies in a GaAs/Al0.3Ga0.7As well
for infinite potential and finite potential models as a function of well size. The well size
goes from 40 Å to 150 Å.
3.16 Show that in a parabolic potential well, the spacing between the energy levels
is constant. In semiconductors, parabolic potential wells are often produced by using
narrow square potential wells where the well to barrier width ratio gradually changes.
Use the virtual crystal approximation to design a GaAs/AlAs parabolic well where the
level spacing for the electron is approximately 10 meV. Hint: This is the “harmonic
oscillator” problem.
3.17 Consider a 80 Å GaAs quantum well. The position of the Fermi level is given by

EF = Ec + 0.1 eV

where Ec is the conduction bandedge of bulk GaAs. Use the infinte barrier model.

• Calculate the subband energies and the electron density (cm−2) in the first sub-
band.

• Calculate the electron density (cm−2) in the second subband.

• Plot the electron distribution (cm−2eV−1) versus energy in the range Ec to Ec +
0.2 eV.

3.18 Even in high quality glasses made for optical filters, small particulates of semi-
conductors (e.g., CdS) are suspended. The particle size can be altered by fabrication
parameter variations from several hundred Angstroms to several tens of Angstroms in
radius. Assuming an electron and hole mass of 0.07 m0 and 0.2 m0, calculate the effect
on the bandgap of confinement in these “quantum dots” if the particle size is 20 Å,
100 Å and 500 Å in radius.
3.19 Consider a quantum dot of GaAs of dimensions L × L × L. Assume infinite po-
tential barriers and calculate the separation of the ground and excited state energies in
the conduction band as a function of L. If an energy separation of kBT is needed to
observe 3-dimensional confinement effects, what is the maximum box size required to
see these effects at 4 K and at 300 K, in the conduction band?

Sections 3.4–3.5
3.20 Using the deformation potentials provided in Appendix D, calculate the splitting
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of the 6-fold degenerate X-valleys when Ge0.2Si0.8 is grown on a (001) Si substrate pseu-
domorphically.
3.21 Calculate the splitting between the heavy hole and light hole states at the zone
edge when In0.2Ga0.8As is grown lattice matched to GaAs.
3.22 Consider a 100 Å GaAsP/Al0.3Ga0.7As quantum well. At what composition of P
will be zone center heavy-hole and light-hole states merge?
3.23 Consider a 100 Å InxGa1−xAs/Al0.3GA0.7As (001) quantum well structure. Calcu-
late the heavy hole effective mass near the zone edge along the (100) and (110) direction
as x goes from 0 to 0.3, by solving the Kohn–Luttinger equation. You may write the
Kohn–Luttinger equation in the difference form and solve it by calling a matrix solving
subroutine from your computer library.
3.24 A 150 Å InxGa1−xAs quantum well is to be designed so that the HH-LH sepa-
ration is 3/2kBT at 300 K. Calculate the In composition needed, assuming the infinite
potential approximation.
3.25 Plot the electric field profile when a 100 Å /100 Å GaAs/In0.2Ga0.8As multi-
quantum well structure is grown on a (111) GaAs substrate. You can use the weighted
average of e14 for the alloy.
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Chapter
4

TRANSPORT:
GENERAL

FORMALISM

4.1 INTRODUCTION
According to Bloch theorem even though an electron sees a complex background po-
tential in a crystal, it suffers no collision during its motion through the structure. The
motion of an electron in an electric field is described schematically in Figure 4.1. As
shown in Fig. 4.1 electrons will simply follow a band to the Brillouin zone edge and
then retrace their trajectory. This produces oscillations called Bloch oscillations which
are discussed in Chapter 8. However, in real materials electrons are usually scattered
by the presence of various imperfections in the crystal.

We will now calculate the effects of imperfections on the electron transport. It
is important to remember that we use first order perturbation theory which gives us the
Fermi golden rule. The rates given by the golden rule are calculated for Bloch states.
Very often it is necessary to describe the electron by states that are well-defined in
position space as well as momentum space. This is done by the wavepacket description.
However, one ignores the uncertainty relation

∆x∆k ≈ 1 (4.1)

for the wavepacket. In this quasiclassical treatment the electron is then described as
having a well-defined position and momentum while the transition rates are calculated
using Bloch states. For most semiconductors this requires that the region of transport
be larger than about 1000 Å. If the transit region is much smaller the use of a point
particle description is inaccurate.

In this and the next few chapters we will develop the quasi-classical approach
of electron (hole transport). In this approach wavefunctions for electrons are used (in
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t = t2
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Figure 4.1: A schematic of how electrons move in absence of any imperfections in a crystal.
An electron gains crystal momentum according to the equation h̄ dk/dt = eF . The electron
climbs up the band until it reaches a zone edge and in the reduced zone scheme the electron
appears as if it has been scattered by a reciprocal lattice vector.

the Fermi Golden rule or Born approximation) to calculate scattering rates, but then
the electron is assumed to be a point particle that satisfies the modified Newton’s
equation in between scattering events. The approach used is shown schematically in
Fig. 4.2 where an electron is shown moving in a band, suffering scattering at some time
intervals. After scattering, the electron moves from one k–state to another. It is possible
to loosely describe a “relaxation” time which represents some average time over which
the particle scatters and loses coherence with its pre-scattering state.

In Fig. 4.3 we show an overall schematic of electron transport in real space. An
electron’s trajectory is considered to be made up of “free flight” periods where it moves
without scattering and instantaneous scattering events in which the electron can change
its momentum and/or energy. In this chapter we will discuss a generic approach used
to calculate transport properties such as mobility or conductivity in a material.

4.2 BOLTZMANN TRANSPORT EQUATION
In this section we will establish the Boltzmann transport equation which describes the
distribution function of electrons under an external perturbation in terms of the equi-
librium distribution function (i.e., the Fermi–Dirac function). The distribution would
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t1

t2t3

t4
k

Figure 4.2: In the presence of scattering the electron moves in the band in a random manner.
The presence of an electric field produces a net drift. The times t1, t2, . . . are times at which
collisions occur.

Collision

Free flight

Free flight

Collision

Collision

Collision

E

ZZ = 0

Injection

Figure 4.3: A schematic of a model used to understand carrier transport in semiconductors.
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Time t = 0

r = δtvk
n(r)

Position

Time t = δt

δtvk

r

− − −

Figure 4.4: At time t = 0 particles at position r − δtvk reach the position r at a later time
δt. This simple concept is important in establishing the Boltzmann transport equation.

tell us how electrons are distributed in momentum space or k-space (and energy-space)
and from this information all of the transport properties can be evaluated. We know
that at equilibrium the distribution function is simply the Fermi-Dirac function

f(E) =
1

exp
(
E − EF
kBT

)
+ 1

(4.2)

This distribution function describes the equilibrium electron gas and is independent of
any collisions that may be present.

Let us denote by fk(r) the local occupation of the electrons in state k in the
neighborhood of r. The Boltzmann approach begins with an attempt to determine how
fk(r) changes with time. Three possible reasons account for the change in the electron
distribution in k-space and r-space:

1. Due to the motion of the electrons (diffusion), carriers will be moving into and
out of any volume element around r.

2. Due to the influence of external forces, electrons will be changing their momentum
(or k-value) according to h̄ dk/dt = F ext.

3. Due to scattering processes, electrons will move from one k-state to another.

We will now calculate these three individual changes by evaluating the partial
time derivative of the function fk(r) due to each source using a simple and intuitive
approach.

4.2.1 Diffusion-Induced Evolution of fk(r)
If vk is the velocity of a carrier in the state k, in a time interval δt, the electron moves
a distance δtvk. Thus the number of electrons in the neighborhood of r at time δt is
equal to the number of carriers in the neighborhood of r− δt vk at time 0, as shown in
Fig. 4.4.

We can thus define the following equality due to the diffusion

fk(r, δt) = fk(r − δt vk, 0) (4.3)
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or

fk(r, 0) +
∂fk
∂t

· δt = fk(r, 0)− ∂fk
∂r

· δt vk

∂fk
∂t

∣∣∣∣
diff

= −∂fk
∂r

· vk (4.4)

4.2.2 External Field-Induced Evolution of fk(r)
Next we calculate how the distribution function changes as a result of applied fields.
The crystal momentum k of the electron evolves under the action of external forces
according to Newton’s equation of motion. For an electric and magnetic field (F and
B), the rate of change of k is given by

k̇ =
e

h̄
[F + vk ×B] (4.5)

In analogy to the diffusion-induced changes, we can argue that particles at time t = 0
with momentum k − k̇ δt will have momentum k at time δt and

fk(r, δt) = fk−k̇δt(r, 0) (4.6)

which leads to the equation

∂fk
∂t

∣∣∣∣
ext. forces

= −k̇
∂fk
∂k

=
−e

h̄
[F + v ×B] · ∂fk

∂k
(4.7)

4.2.3 Scattering-Induced Evolution of fk(r)
The electron distribution can also change due to scattering. Scattering processes take
an electron from one state to another. We will assume that the scattering processes are
local and instantaneous and change the state of the electron from k to k

′
. Let W (k,k

′
)

define the rate of scattering from the state k to k
′
if the state k is occupied and k

′
is

empty. The rate of change of the distribution function fk(r) due to scattering is

∂fk
∂t

)
scattering

=
∫ [

fk′ (1− fk)W (k
′
,k)− fk (1− fk′ )W (k,k

′
)
] d3k

′

(2π)3
(4.8)

The first term in the integral represents the rate at which electrons are coming from
an occupied k

′
-state (hence the factor fk′ ) to an unoccupied k-state (hence the factor

(1− fk)). The second term represents the loss term.
Under steady-state conditions, there will be no net change in the distribution

function and the total sum of the partial derivative terms calculated above will be zero.

∂fk
∂t

)
scattering

+
∂fk
∂t

)
fields

+
∂fk
∂t

)
diffusion

= 0 (4.9)
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Let us define
gk = fk − f0

k (4.10)

where f0
k is the equilibrium distribution.
Instead of calculating the distribution function fk, we will calculate gk, which

represents the deviation of the distribution function from the equilibrium case.
Substituting for the partial time derivatives due to diffusion and external fields

we get

− vk · ∇rfk − e

h̄
(F + vk ×B) · ∇kfk =

−∂fk
∂t

)
scattering

(4.11)

Substituting fk = f0
k + gk

−vk · ∇rf
0
k − e

h̄
(F + vk ×B)∇kf

0
k

= −∂fk
∂t

)
scattering

+ vk · ∇rgk + e
h̄
(F + vk ×B) · ∇kgk

(4.12)

We note that the magnetic force term on the left-hand side of Eqn. 4.12 is proportional
to

vk · e
h̄
(vk ×B)

and is thus zero. We remind ourselves that

vk =
1
h̄

∂Ek
∂k

f0
k =

1

exp
[
Ek − EF

kBT

]
+ 1

It is easy to see that

∇rf
0 =

∂f0

∂Ek

[
−∇EF − (Ek − EF )

T
∇T

]
Also

∇kf
0 =

∂f0

∂Ek
· ∇kEk

= h̄vk
∂f0

∂Ek

Substituting these terms and retaining terms only to second-order in electric
field (i.e., ignoring terms involving products gk ·F ), we get (from Eqn. 4.12) the Boltz-
mann equation

− ∂f0

∂Ek
· vk ·

[
− (Ek − µ)

T ∇T + eF −∇µ

]
= −∂f

∂t

)
scattering

+ vk · ∇rgk + e
h̄
(vk ×B) · ∇kgk

(4.13)
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We will now apply the Boltzmann equation to derive some simple expressions for
conductivity, mobility, etc., in semiconductors. We will attempt to relate the microscopic
scattering events to the measurable macroscopic transport properties. Let us consider
the case where we have a uniform electric field F in an infinite system maintained at a
uniform temperature.

The Boltzmann equation becomes (all gradients are zero)

− ∂f0

∂Ek
vk · eF = −∂fk

∂t

)
scattering

(4.14)

This equation, although it looks simple, is a very complex equation which can
only be solved analytically under simplifying assumptions. We make an assumption that
the scattering induced change in the distribution function is given by

−∂fk
∂t

)
scattering

= −∂gk
δt

=
gk
τ

(4.15)

We have introduced a time constant called the relaxation time τ whose physical
interpretation can be understood when we consider what happens when the external
fields are switched off. The perturbation in the distribution function will decay according
to the equation

−∂gk
∂t

=
gk
τ

or
gk(t) = gk(0)e−t/τ

The time τ thus represents the time constant for relaxation of the perturbation
as shown schematically in Fig. 4.5. The approximation which allows us to write such a
simple relation is called the relaxation time approximation (RTA).

Using RTA we get, from Eqn. 4.14,

gk = −∂fk
∂t

)
scattering

· τ

=
−∂f0

∂Ek
τvk · eF (4.16)

In RTA we lave shifted the problem of finding the distribution function to find-
ing the relaxation time. We will discuss later how this time is calculated. The distribution
function may be written as

fk(E) = f0(E)−
(

∂f0
k

∂Ek

)
eτvk · F = f0(E − eτvk · F ) (4.17)

To obtain the k-space distribution function we note that

fk = f0
k − (∇kf

0
k

) · ∂k

∂Ek
· eτvk · F
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t = 2τ
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Figure 4.5: A schematic of the time evolution of the distribution function and the perturbation
g(k) when the external field is removed at time t=0.

Using the relation

h̄
∂k

∂Ek
· vk = 1

We have

fk = f0
k − (∇kf

0
k

) · eτF
h̄

= f0
k

(
k − eτF

h̄

)
(4.18)

This result, based on RTA and valid for low electric fields (typically fields of
<∼ 1 kV/cm) is extremely useful for transport studies. As we can see the distribution
function fk in the presence of an electric field is defined in terms of f0

k, the equilibrium
function. One obtains fk from f0

k by shifting the original distribution function for k
values parallel to the electric field by eτF /h̄. If the field is along the z-direction, only
the distribution for kz will shift. This is shown schematically in Fig. 4.6. In equilibrium
there is a net cancellation between positive and negative momenta, but when a field is
applied, there is a net shift in the electron momenta and velocities given by

δp = h̄δk = −eτF

δv = −eτF

m∗ (4.19)

This gives, for the mobility,
µ =

eτ

m∗ (4.20)
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Figure 4.6: The displaced distribution function shows the effect of an applied electric field.

If the electron concentration is n, the current density is

J = neδv

=
ne2τF

m∗

or the conductivity of the system is

σ =
ne2τ

m∗ (4.21)

Transport properties such as mobility (and conductivity, diffusion constant, etc.,) are
macroscopic quantities that are measured in the laboratory. The equation above allows
us to relate a microscopic quantity τ to a macroscopic measurable quantity.

So far we have introduced the relaxation time τ , but not described how it is
to be calculated. We will now relate it to the scattering rate W (k,k

′
), which can be

calculated by using the Fermi golden rule.

Elastic Collisions
Elastic collisions represent scattering events in which the energy of the electrons remains
unchanged after the collision. Impurity scattering and alloy scattering discussed in the
next Chapter fall into this category. In the case of elastic scattering the principle of
microscopic reversibility ensures that

W (k,k
′
) =W (k

′
,k) (4.22)

i.e., the scattering rate from an initial state k to a final state k
′
is the same as that for

the reverse process. The collision integral given by Eqn. 4.8 is now simplified as

∂f

∂t

)
scattering

=
∫ [

f(k
′
)− f(k)

]
W (k,k

′
)
d3k

′

(2π)3

=
∫ [

g(k
′
)− g(k)

]
W (k,k

′
)
d3k

′

(2π)3
(4.23)
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Replacing the left hand side using the Boltzmann equation we get

−∂f0

∂Ek
vk · eF =

∫ (
gk − gk′

)
W (k,k

′
)
d3k

′

(2π)3

=
−∂f

∂t

)
scattering

The relaxation time was defined through

gk =
(−∂f0

∂E

)
eF · vk · τ

=
−∂f

∂t

)
scattering

· τ

Substituting this value in the integral on the right-hand side, we get

−∂f0

∂Ek
vk · eF =

−∂f0

∂Ek
eτF ·

∫
(vk − vk

′ )W (k,k
′
)

d3k
′

(2π)3

or

vk · F = τ

∫
(vk − vk

′ )W (k,k
′
)

d3k
′

(2π)3
· F

and
1
τ
=
∫

W (k,k
′
)
[
1− vk

′ · F
vk · F

]
d3k

′

(2π)3
(4.24)

In general, this is a rather complex integral to solve. However, it becomes con-
siderably simplified for certain simple cases. Consider, for example, the case of isotropic
parabolic bands and elastic scattering. In Fig. 4.7 we show a geometry for the scattering
process. We choose a coordinate axis where the initial momentum is along the z-axis and
the applied electric field is in the y-z plane. The wavevector after scattering is given by
k

′
represented by the angles α and φ. Assuming that the energy bands of the material

is isotropic, |vk| = |vk
′ |. We thus get

vk
′ · F

vk · F =
cos θ

′

cos θ
(4.25)

We can easily see from Fig. 4.7 that

cos θ
′
= sin θ sinα sinφ+ cos θ cosα

or
cos θ

′

cos θ
= tan θ sinα sinφ+ cosα
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Figure 4.7: Coordinate system illustrating a scattering event for elastic scattering in an
isotropic energy band.

When this term is integrated over φ to evaluate τ , the term involving sinφ will integrate
to zero for isotropic bands since W (k,k

′
) does not have a φ dependence, only an α

dependence. Thus
1
τ
=
∫

W (k,k
′
) (1− cosα) d3k

′
(4.26)

This weighting factor (1 − cosα) confirms the intuitively apparent fact that
large-angle scatterings are more important in determining transport properties than
small-angle scatterings. Forward-angle scatterings (α = 0), in particular, have no detri-
mental effect on σ or µ for the case of elastic scattering.

Inelastic Collisions
In the case of inelastic scattering processes, the energy of the electron changes after scat-
tering. Processes which cause inelastic scattering include lattice vibration (or phonon)
scattering. For inelastic scattering we cannot assume that W (k,k

′
) = W (k

′
,k). As a

result, the collision integral cannot be simplified to give an analytic result for the re-
laxation time. However, if f(E) is small, we can ignore second-order terms in f and we
have

∂f

∂t

∣∣∣∣
scattering

=
∫ [

gk′W (k
′
,k)− gkW (k,k

′
)
] d3k

′

(2π)3

Under equilibrium we have

f0
k
′W (k

′
,k) = f0

kW (k,k
′
)
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or

W (k
′
,k) =

f0
k

f0
k
′
W (k,k

′
)

Assuming that this relation holds for scattering rates in the presence of the applied
field, we have

∂f

∂t

∣∣∣∣
scattering

=
∫

W (k,k
′
)

[
gk′

f0
k

f0
k
′
− gk

]
d3k

′

(2π)3

The relaxation time then becomes

1
τ
=
∫

W (k,k
′
)

[
1− gk′

gk

f0
k

f0
k
′

]
d3k

′

(2π)3
(4.27)

The Boltzmann is usually solved iteratively using numerical techniques. We will discuss
the approaches later in this chapter.

4.3 AVERAGING PROCEDURES
In our calculations we have assumed that the incident electron has a well-defined state.
In general the electron gas will have an energy distribution and τ , in general, will
depend upon the energy of the electron. Thus it is important to address the appropriate
averaging procedure for τ to be used in macroscopic quantities such as mobility or
conductivity.

Let us evaluate the average current in the system.

J =
∫

e vk gk
d3k

(2π)3
(4.28)

The perturbation in the distribution function is

gk =
−∂f0

∂Ek
τvk · eF

≈ f0

kBT
vk · eF

Substituting for gk in the current equation, if we consider a field in the x-
direction, the average current in the x-direction is given by

〈Jx〉 = e2

kBT

∫
τ v2

x f0 d3k

(2π)3
F x (4.29)

In the derivations below we will assume that the electric field is small so that the average
energy of electrons is equal to the thermal energy 3/2kBT . Thus we can assume that
v2
x = v2/3, where v is the total velocity of the electron. Thus we get

〈Jx〉 = e2

3kBT

∫
τ v2 f0(k)

d3k

(2π)3
F x (4.30)
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Now we note that

1
2
m∗〈v2〉 =

3
2
kBT

⇒ kBT = m∗〈v2〉/3
also

〈v2 τ〉 =
∫
v2 τ f0(k) d3k/(2π)3∫

f0(k) d3k/(2π)3

=
∫
v2 τ f0(k) d3k/(2π)3

n

Substituting in the right-hand side of Eqn. 4.30, we get (using 3kBT = m
〈
v2
〉
)

〈Jx〉 =
ne2

m∗
〈v2τ〉
〈v2〉 F x

=
ne2

m∗
〈Eτ〉
〈E〉 F x (4.31)

Thus, for the purpose of transport, the proper averaging for the relaxation time
is

〈〈τ〉〉 = 〈Eτ〉
〈E〉 (4.32)

Here the double brackets represent an averaging with respect to the perturbed distribu-
tion function while the single brackets represent averaging with the equilibrium distri-
bution function. For calculations of low-field transport where the condition v2

x = v2/3
is valid, one has to use the averaging procedure given by Eqn. 4.32 to calculate mobility
or conductivity of the semiconductors.

In the next two chapters we will calculate scattering rates and relaxation times
for several important scattering processes. For most scattering processes, one finds that
it is possible to express the energy dependence of the relaxation time in the form

τ(E) = τ0

(
E

kBT

)s
(4.33)

where τ0 is a constant and s is an exponent which is characteristic of the scattering
process. When this form is used in the averaging we get, using a Boltzmann distribution
for f0(k)

〈〈τ〉〉 = τ0

∫∞
0
[p2/(2m∗kBT )]s exp[−p2/(2m∗kBT )] p4 dp∫∞

0
exp[−p2/(2m∗kBT )] p4 dp

where p = h̄k is the momentum of the electron.
Substituting y = p2/(2m∗kBT ), we get

〈〈τ〉〉 = τ0

∫∞
0

ys+(3/2)e−ydy∫∞
0

y3/2e−ydy
(4.34)
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To evaluate this integral, we use Γ-functions which have the properties

Γ(n) = (n− 1)!
Γ(1/2) =

√
π

Γ(n+ 1) = n Γ(n) (4.35)

and have the integral value

Γ(a) =
∫ ∞

0

ya−1e−ydy

In terms of the Γ-functions we can then write

〈〈τ〉〉 = τ0
Γ(s+ 5/2)
Γ(5/2)

(4.36)

If a number of different scattering processes are participating in transport, the following
approximate rule (Mathiesen’s rule) may be used to calculate mobility:

1
τtot

=
∑
i

1
τi

1
µtot

=
∑
i

1
µi

(4.37)

where the sum is over all different scattering processes.

4.4 TRANSPORT IN A WEAK MAGNETIC FIELD: HALL MOBILITY
One of the most important transport characterization techniques for semiconductors is
the Hall effect. This effect is used to obtain information on carrier type (electron or
hole), carrier concentration, and mobility. We will discuss the theoretical basis of the
Hall effect. The Hall effect experiment is shown schematically in Fig. 4.8. One applies
an electric field F and a magnetic field B in the geometry shown in the figure. The
conductivity of the sample is then measured as a function of the magnetic field. The
electric field is maintained at a very low value (a few V/cm) and the analysis we will
discuss below will also assume a low magnetic field. In Chapter 11 we will discuss how
electrons respond if the magnetic field is high.

In the presence of a magnetic field the Boltzmann equation is

e [F + v ×B] · ∇pf = − (f − f0)
τ

(4.38)

We have seen that

∇pf
0(E) =

v∂f0

∂E

so that to zeroeth order the magnetic field term [v ×B] · ∇pf is zero if we replace f by
f0. We assume that the B-field is in the z-direction while the electric field is in the x-y
plane. We write the distribution function in the form

f = f0 + a1vx + a2vy (4.39)
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Figure 4.8: A rectangular Hall sample of an n-type semiconductor.

where a1 and a2 are to be determined. Substituting for f in the Boltzmann equation
and equating the coefficients of vx and vy on the two sides we get

a1 +
eτB

m∗ a2 = eτFx
∂f0

∂E

−eτB

m∗ a1 + a2 = eτFy
∂f0

∂E
(4.40)

This gives for a1 and a2

a1 = eτ
∂f0

∂E

Fx − ωcτFy

1 + (ωcτ)
2

a2 = eτ
∂f0

∂E

ωcτFx + Fy

1 + (ωcτ)
2 (4.41)

where ωc is the cyclotron resonance frequency given by eB/m∗.
The current is given by

J = e

∫
d3k

(2π)3
v (a1vx + a2vy)

which can be written as
Ji = σijFj

We see that we have for our configuration

Jx = σxxFx − σxyFy

Jy = σyxFx + σyyFy (4.42)

−
−

−
−

−
−

−
−
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The conductivity tensor components are then

σxx = −
∫

∂f∗

∂E

d3k

(2π)3
e2τ

1 + (ωcτ)
2 v

2
x (4.43)

This is the same result as we had in the absence of a magnetic field except for the
1 + (ωcτ)

2 term in the denominator. If the B-field is small we simply have

σxx = σ0 (4.44)

where σ0 is the conductivity in the absence of a magnetic field.
We also have the off-diagonal term given by

σxy = −
∫

∂f0

∂E

d3k

(2π)3
e2τ2ωc

1 + (ωcτ)
2 v

2
x

= −
∫

∂f0

∂E

d3k

(2π)3
e3τ2

m∗ v2
x ·

B

1 + (ωcτ)
2 (4.45)

The term in the averaging is similar to what we had for the mobility in the absence of
the magnetic field except that we are averaging τ2 instead of τ . For very small B-fields
(e.g., those employed in Hall effect experiments) we can ignore the B2 and higher terms
and the off-diagonal conductivity becomes

σxy =
[
e

∫
d3k

(2π)3
τ2 e2

m∗
∂f0

∂E
v2

1

]
B

=
e3

m∗

∫
τ2v2

3kBT
d3k

(2π)3
B

=
ne3

m∗ 〈〈τ2〉〉 = neµ
〈〈τ2〉〉µ
〈〈τ〉〉2 B

= σ0µHB (4.46)

where µ and σ0 are the mobility and conductivity in the absence of the magnetic field.
The quantity µH is called the Hall mobility and is given by

µH =
〈〈τ2〉〉
〈〈τ〉〉2 µ

= rH µ (4.47)

Once again
〈〈A〉〉 ⇒ 〈EA〉

where the double-bracket averaging is over the actual perturbed distribution function
and the single-bracket averaging is over the equilibrium distribution function. If we
assume as before that the scattering time τ has an energy dependence

τ = τ0

(
E

kBT

)s
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it can be shown that

rH =
Γ (2s+ 5/2) Γ (s/2)
[Γ (s+ 5/2)]2

(4.48)

As we can see, the Hall mobility can be quite different from the drift mobility, depending
on which scattering mechanism dominates.

From the discussions above we see that in general, in the presence of both
electric and magnetic fields, we have for very small B-fields

Ji = σij (B)F j

where

[σ(B)] = σ0


 1 −µHB3 µHB2

µHB3 1 −µHB1

−µHB2 µHB1 1


 (4.49)

It must be noted that in general we have the (1 + (ωcτ)2) term in the denominator, as
seen in Eqns. 4.43 and 4.45. In Chapter 11 we will consider details of how Hall effect
is used to get carrier concentration and Hall mobility information. As shown in this
section Hall mobility is somewhat different from drift mobility.

4.5 SOLUTION OF THE BOLTZMANN TRANSPORT EQUATION
In the previous sections we have introduced the time τ which relates microscopic scat-
tering to mobility and conductivity. It is straightforward to evaluate τ only for elastic
scattering in parabolic bands. However, for most semiconductors, the scattering process
is not always elastic or isotropic and the RTA itself fails at high electric fields. Numer-
ous approaches have been developed to address the transport problem in such cases. We
will discuss the iterative approach and the balance equation approach in this chapter.
Another powerful technique, the Monte Carlo method, will be discussed in Chapter 7.

4.5.1 Iterative Approach
An approach which is quite successful for the solution of steady state, the homogeneous
Boltzmann equation, is based on the iterative method. The equation to be addressed is

eF · ∇pf =
∫

d3k
′

(2π)3
W (k

′
,k) f(k

′
)−

∫
d3k

′

(2π)3
W (k,k

′
) f(k)

= I(k)− f(k)
τ(k)

(4.50)

where we have defined

I(k) =
∫

d3k
′

(2π)3
W (k

′
,k) f(k

′
) (4.51)

1
τ(k)

=
∫

d3k
′

(2π)3
W (k,k

′
) (4.52)
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We then obtain
f(k) = τ(k) [I(k)− eF · ∇pf ] (4.53)

This integral equation contains the unknown distribution function f(k) on both sides of
the equation. To solve this equation, one makes an intelligent guess for f(k) and then
calculates the next order f(k) iteratively. If fn(k) is the nth iterative value for f(k),
the n+ 1 value is

fn+1(k) = τ(k) [In(k)− eF · ∇pf
n] (4.54)

It is interesting to note that if the starting distribution is chosen to be the
equilibrium distribution, one gets upon the first iteration

f2(k) = τ(k)
[
I1(k)− eF · ∇pf

0
]

and

I1(k) =
∫

d3k

(2π)3
W (k

′
,k) f0(k

′
)

which by detailed balance at equilibrium is equal to

I1(k) =
∫

d3k

(2π)3
W (k,k

′
)f0(k)

=
f0(k)
τ(k)

Thus

f2(k) = f0(k)− eτF · ∇pf
0

= f0(k − eτF

h̄
)

which is the result we obtained earlier. However, for more accurate results, one has to
continue the iteration until the results for transport properties such as drift velocity or
mobility converge.

4.6 BALANCE EQUATION: TRANSPORT PARAMETERS
As we have seen in our discussion so far, it is difficult to solve the Boltzmann equation
except under very simplifying conditions, e.g., conditions of very low fields. For high
fields or nonuniform fields one often has to use computer simulation techniques based
on Monte Carlo methods which will be discussed in Chapter 7. However, it is useful to
develop additional numerical approaches since Monte Carlo methods are very computer
intensive. The Boltzmann equation can be written in the form of balance equations
which prove to be very useful for such treatments.

Consider a general physical quantity ng(r, t) defined by the average value of a
function θ(k)

nθ(r, t) =
∫

θ(k) f(r,k, t)
d3k

(2π)3
(4.55)
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By choosing various values of θ(k), one can get different physical quantities of interest.
For example, θ(k) can be chosen to give particle density, momentum, energy, etc., of
the system. The general balance equation is produced when we take the Boltzmann
equation, multiply it by θ(k) and integrate over k-space. We get the equation∫

θ(k) ∂f
∂t

d3k
(2π)3 +

∫
θ(k) v · ∇rf d3k/(2π)3 +

∫
θ(k)eF · ∇pf d3k/(2π)3

=
∫
θ(k) ∂f

∂t

∣∣∣
coll.

d3k/(2π)3
(4.56)

From the definition of nθ we have for the first term∫
θ(k)

∂f

∂t

d3k

(2π)3
=

∂

∂t
ng(r, t)

since θ(k) has no time dependence. The second term in Eqn. 4.56 becomes∫
θ(k) v · ∇rf

d3k

(2π)3
= ∇ · F g(r, t)

where

F θ(r, t) =
∫

θ(k) v f
d3k

(2π)3

The function Fθ represents a flux associated with nθ.
The electric field term of Eqn. 4.56 becomes

eF ·
∫

θ(k) ∇pf
d3k

(2π)3
= eF ·

∫
∇p(θf)

d3k

(2π)3
− eF ·

∫
f ∇pθ

d3k

(2π)3

The first term can be represented by a surface integral which equals zero, since f(k)
goes to zero at large k. We now define a generation term Gθ

Gθ = −eF ·
∫

θ(k) ∇pf
d3k

(2π)3

= eF ·
∫

f ∇pθ
d3k

(2π)3

Finally coming to the collision term in the general balance equation, we note
that the collisions are responsible for destroying momentum and can be physically rep-
resented by a recombination term Rθ.

Rθ = −
∫

θ(k)
∂f

∂t

∣∣∣∣
coll.

d3k

(2π)3

≡ 〈〈 1
τθ

〉〉 [nθ(r, t)− n0
θ(r, t)

]
where n0

θ is the equilibrium value of n evaluated with the Fermi function. The relation
for Rθ defines a quantity 〈〈1/τθ〉〉 which represents a relaxation rate for the ensemble.
Collecting these terms we get the final balance equation

∂nθ(r, t)
∂t

= −∇ · F θ +Gθ −Rθ (4.57)
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By substituting different physical quantities for θ, we get various balance equa-
tions. The equations that are important for most semiconductor devices are the equa-
tions pertaining to carrier density, momentum, and energy.

The balance equation for the carrier density is obtained by putting θ(k) = 1 so
that nθ = n, the carrier density. The flux term is just the particle flux (= J/e). The
electric field term Gθ and the collision term Rθ are both just zero. The balance equation
becomes

∂n

∂t
= −1

e
∇ · J (4.58)

which is just the current continuity equation.
To obtain the momentum balance equation, we use θ(k) = pz (for the z-

component of the momentum). The quantity nθ is now

nθ =
∫

d3k

(2π)3
pz f

= 〈pz〉
= n m∗ vdz (4.59)

where m∗ is the carrier mass and vdz is the z-component of the average velocity (i.e.,
the drift velocity). The flux term associated with the momentum is

F θ =
∫

d3k

(2π)3
v pz f

Denoting the x,y,z components of this flux by the index i, we can write

Fθ,i = 2Wiz (4.60)

where Wiz is an element of the kinetic energy tensor defined in Eqn. 4.62, below. The
generation term from the electric field is

Gθ = enF z

The momentum loss rate is (p0
z = 0)

Rθ = 〈〈 1
τm

〉〉pz

Collecting these terms we get the momentum balance equation

dpz
dt

= − ∂

∂xi
(2Wiz) + neF z − 〈〈 1

τm
〉〉 pz

or in general
∂p

∂t
= −2 ∇ ·W + neF − 〈〈 1

τm
〉〉 p (4.61)

where the i,j components of the kinetic energy tensor are

Wij =
1
2

∫
d3k

(2π)3
vi · pj f (4.62)
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and the derivative ∇ ·W is the vector

∇ ·W ≡
∑
ij

∂

∂xi
Wij x̂j

If the bandstructure of the electron is parabolic

J =
ep

m∗

Thus, for such a case, the current density equation can be written as

∂J

∂t
= −2e∇ ·W

m∗ +
e2nF

m∗ − 〈〈 1
τm

〉〉J (4.63)

If we define the mobility as

µ =
e

m∗ 〈〈1/τm〉〉 (4.64)

and assume that the current is not changing very rapidly during the time
1/〈〈1/τm〉〉, we get

J = neµF − 2µ∇ ·W (4.65)

The kinetic energy contains terms due to the random motion of the electrons as
well as the drift components. We assume that the drift components are negligible (valid
at low fields), and that the kinetic energy tensor is diagonal. We then get

Wij =
nkBTc
2

δij

=
w

3
δij

where Tc defines the carrier temperature, and

w =
3
2
n kB Tc (4.66)

With this description of the kinetic energy we get,

J = neµF − 2
3
µ ∇ w

= neµF − eD ∇n− e S ∇Tc (4.67)

where D is the diffusion coefficient

D =
kBTc
e

µ (4.68)

and S is the Soret coefficient
S = µ

kB
e

n (4.69)
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This is the drift-diffusion equation and shows that a current may flow due to an electric
field, a concentration gradient, or a temperature gradient.

Let us now go to the energy balance equation which is quite useful in under-
standing high field transport. Choosing θ(k) = E(k) the particle energy, we get

nθ =
∫

d3k

(2π)3
E(k) f

= w

where w is defined in Eqn. 4.66.
The associated flux is

F θ =
∫

d3k

(2π)3
v E(k) f

= FEss

which represents an energy flux. The energy supplied to the carriers is due to the electric
field generation term

Gθ = eF ·
∫

d3k

(2π)3
∇pE(k) f

= J · F
since ∇pE(k) is the carrier velocity. The energy is lost through the collision terms

Rθ = 〈〈 1
τEss

〉〉(w − w0)

The energy balance equation is then

∂w

∂t
= −∇ · FEss + J · F − 〈〈 1

τEss
〉〉(w − w0) (4.70)

We had earlier mentioned the carrier temperature Tc in discussing the drift-diffusion
equation. We will now formalize this concept. As the electric field is increased, the carri-
ers gain energy from the field and a balance is established between this energy increase
and the loss due to collisions. The distribution function describing the electrons is no
longer the Fermi-Dirac function. It is sometimes useful to define this distribution func-
tion by a carrier temperature which is, in general, higher than the lattice temperature.
In general, the carrier velocities can be written as

v = vd + vr (4.71)

where vd is the drift velocity and vr is the random velocity component. The kinetic
energy is

w =
1
2
n m∗ v2

d +
1
2
n m∗ 〈v2

r〉 (4.72)

Note that there is no cross term since 〈vr〉 = 0. The first term in the energy, w, is the
drift term, while the second term is due to the random thermal motion of the carriers,
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though not at the lattice temperature, in general. We define the carrier temperature by
this thermal part of the kinetic energy

3
2
n kB Tc =

1
2
m∗ n 〈v2

r〉

For simplicity we will assume that the carrier temperature is represented by a
diagonal tensor. The momentum balance equation can now be represented in terms of
a carrier temperature

∂pj
∂t

= −∂(n m∗ vdi vdj + n kB Tc)
∂xi

+ neF j − 〈〈 1
τm

〉〉 pj (4.73)

Finally, to write the energy balance equation in terms of a carrier temperature, we
consider the energy flux

FEss =
n m∗

2
〈v2v〉 (4.74)

Once again we separate the energy flux coming from the thermal motion by defining
By the definition of the velocity v, we get

FEss =
n m∗

2
〈v2〉vd + n m∗

2
〈v2vr〉

= wvd +
n m∗

2
〈(v2

d + 2vd · vr + v2
r

)
vr〉 (4.75)

The term to be averaged on the right-hand side has three terms, the first of which
averages to zero, the second is related to the carrier temperature, and the third is the
heat flux. Thus

FEss = wvd + vd · nkBTc + θ

θ =
n m∗

2
〈v2
rvr〉 (4.76)

This term is nonzero if there is a nonzero gradient in carrier random motion, i.e., in
carrier temperature.

If we write
θ = −H∇Tc (4.77)

where H is the thermal conductivity, we get the following energy balance
equation

∂w

∂t
=

∑
i

(
− ∂

∂xi

[
(w + nkBTc)vdi −H

∂Tc
∂xi

]
+ JiF i

)

−〈〈 1
τEss

〉〉(w − w0) (4.78)

The advantage of writing the balance equations in terms of the carrier temper-
atures is that the relationship between Tc and the applied electric field may be available
from either some simplifications or from Monte Carlo methods. Once this is known, the
balance equations can be solved.
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DESIRED TECHNOLOGY MATERIAL SYSTEMS

High speed:
short dimensions +

high mobiity + high
saturation velocity

Silicon up to 30 GHz
SiGe up to 100 GHz
GaAs up to 120 GHz
InGaAs up to 200 GHz

Low power switching
low bandgap +

high mobility

Si
SiGe
InGaAs

InSb (experimental)

High power devices
high breakdown

voltage

Si, GaAs (serious limitations)
SiC
GaN

C (experimental)

Table 4.1: An overview of materials used for various device needs.

4.7 TECHNOLOGY ISSUES

At present essentially all commercial semiconductor electronic devices are based on elec-
tron (hole) transport that involves scattering. Devices that involve “coherent” transport,
i.e., transport without any scattering (discussed in Chapters 8 and 11) are still at vari-
ous experimental stages. In electronic devices there are often conflicting needs: i) high
speed devices that can switch at very high frequencies or amplify signals at very high
frequencies. Speed is mainly controlled by electron (hole) transit time across critical de-
vice dimensions. Materials with high mobility or small carrier mass are desirable; ii) low
power devices which require very small electrical power to switch. Usually this requires
a small bandgap material where a small voltage charge translates into a large carrier
density charge; and iii) high power devices which are needed for power switching or high
power oscillators. These require large bandgap materials to avoid breakdown.

In Table 4.1 we give an overview on materials being considered for various
needs. It has to be emphasized that the most important driving force for semiconductor
electronic devices is device dimensions. In addition specific material parameters play a
role. Let us briefly examine some important materials from the point of view of scattering
processes.
Silicon: This is the dominant material used in electronics. Low-cost, high-yield, and
reliable insulator (SiO2) and reasonable performance have allowed Si to dominate elec-
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tronics. Electron (and hole) mass in Si is quite large, resulting in relatively low mobility
(∼ 1400 cm2 V·s in pure Si, ∼550 cm2/V·s in NMOS channel). However, at high fields
the velocity saturates at ∼ 107 cm/s which is comparable to other materials, like GaAs.

SiGe: The SiGe alloy is used as the base region of a n(Si)-p(SiGe)-n(Si) bipolar tran-
sistor. Very high performance devices can be made on this heterostructure. The devices
are useful for low power and high frequency applications.

GaAs: This material has a small electron effective mass and, as a result, high mobility.
As we will see later in Chapter 7 it also shows negative differential resistance which can
be exploited for microwave oscillations. GaAs is used by itself (GaAs MESFETs) and
with AlGaAs (AlGaAs/GaAs MODFETs) to produce devices capable of operating up
to 120 GHz.

InGaAs: Due to the very small electron mass in InAs, the InGaAs alloy is used for
very high mobility devices. The devices are heterostructure devices (InP/InGaAs, In-
AlAs/InGaAs) which can operate up to 200 GHz. Since there is no substrate for all
InAs devices, such devices have not been successfully fabricated.

In addition to InAs, InSb is used in alloys for low power high speed devices.
However, Sb-based devices are mostly experimental.

SiC, GaN: An important scattering mechanism limiting high power performance of
semiconductors is impact ionization, which will be discussed in the next chapter. This
scattering rate is suppressed for large bandgap semiconductors. As a result, materials
like SiC and GaN (or AlGaN) are being used for high power applications.

4.8 PROBLEMS
4.1 Using the Maxwell-Boltzmann distribution function at equilibrium show that the
average kinetic energy of an electron is given by 3kBT/2. Show that for a displaced
Maxwell-Boltzmann distribution the average kinetic energy is given by

1
2
m∗v2

d +
3
2
kBT

where vd is the drift velocity.
4.2 Show that for Boltzmann distribution for electrons, the average velocity is given
by

〈v〉 = 2
(
2kBT
πm∗

)1/2

For Si electron mobility is 1400 cm2/V·s at 300 K.
• Calculate the mean free path.
• Calculate the energy gained by an electron within a mean free path if the applied
field is kV/cm.

4.3 Consider a sample of GaAs with electron effective mass of 0.067 m0. If an electric
field of 1 kV/cm is applied, what is the drift velocity produced if i) τ = 10−13s; ii)
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τ = 10−12s; or iii) τ = 10−11s ? How does the drift velocity compare to the average
thermal speed of the electrons?
4.4 (1.) Plot the room temperature distribution function for electrons in GaAs (f(E))
when a field of 0.5, 1.0, 2.0 kV/cm is applied. Assume that τ = 10−12s, and assume a
nondegenerate case.
(2.) Plot the k-space distribution function when an electric field F = F 0x̂ is applied to
the sample of GaAs. Assume the field magnitudes and τ as given in part a.
4.5 In a semiconductor sample, the Hall probe region has a dimension of 0.5 cm by
0.25 cm by 0.05 cm thick. For an applied electric field of 1.0 V/cm, 20 mA current flows
(through the long side) in the circuit. When a 10 kG magnetic field is applied, a Hall
voltage of 10 mV is developed. What is the Hall mobility of the sample and what is the
carrier density?
4.6 Show that the average energy gained between collisions is

δEav = αm∗(µF )2

where F is the applied electric field, and α ∼ 1. If the optical phonon energies in GaAs
and Si are 36 meV and 47 meV, and the mobilities are 8000 cm2/V-s and 1400 cm2/V-
s, respectively, what are the electric fields at which optical phonon emission can start?
Note that because of the statistical nature of the scattering, a small fraction of the
electrons can emit phonons at much lower electric fields.
4.7 Derive an expression for the Hall factor assuming a low carrier concentration of
electrons and relaxation time given by

τ = τ0

(
E

kBT

)1/2

If the Hall mobility in the sample is measured to be 5000 cm2V·s, what is the drift
mobility?
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Chapter
5

DEFECT AND
CARRIER–CARRIER

SCATTERING

In Chapter 4 we have derived a number of important mathematical relations necessary
to calculate transport properties. A key ingredient of the theory is the scattering rate
W (k,k′) which tells us how an electron in a state k scatters into the state k′. We will
now evaluate the scattering rates for a number of important scattering mechanisms. As
noted in Chapter 4, the approach used by us is semiclassical—the electron is treated as
a Bloch wave while calculating the scattering rate, but is otherwise treated as a particle.
The Fermi golden rule is used to calculate the scattering rate.

In Fig. 5.1 we show an overview of how one goes about a transport calculation.
Once the various imperfections in a material are identified the first and most important
ingredient is an understanding of the scattering potential. This may seem like a simple
problem, but is, in fact, one of the most difficult parts of the problem. Once the potential
is known, one evaluates the scattering matrix element between the initial and final state
of the electron. This effectively amounts to taking a Fourier transform of the potential
since the initial and final states are essentially plane wave states. With the matrix
element known one carries out an integral over all final states into which the electron
can scatter and which are consistent with energy conservation. This kind of integral
provides the various scattering times. Finally, one uses any of a variety of approaches to
solve for the transport problem and obtain results for transport properties as outlined
in Chapter 4.

In this chapter we will examine two kinds of scattering mechanisms. The first
involves fixed defect centers such as ionized impurity atoms (donors, acceptors) and
random crystal potential disorder arising in alloys. The second kind of scattering involves
the scattering of electrons from other electrons (or holes). This can be an important
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Identify scattering potential
V(r,t)

Calculate matrix element
Mkk'

Mkk'
2 δ(Ef Ei)Σ

k'

Calculate total scattering rate

Calculate matrix element
ttot, τm, τE

Obtain macroscopic transport
properties

Shifted
Maxwellian
approach

Balance
equations

Iterative
solution

Monte
Carlo
method

Figure 5.1: Mathematical steps in a typical transport calculation.

−
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scattering mechanism in heavily doped semiconductors where there is a high density
of background free carriers. This type of mechanism also gives rise to the important
processes of impact ionization and Auger processes. The former is responsible for the
breakdown of semiconductors at high electric fields while the latter is responsible for the
nonradiative recombination of electrons and holes. Impact ionization is the key reason
for limiting the high power performance of electronic devices. Similarly Auger scattering
is the key reason why long wavelength light emission is very difficult in semiconductor
lasers.

5.1 IONIZED IMPURITY SCATTERING
One of the most important scattering mechansims arises from ionized dopants in semi-
conductors. In a simplistic model we would expect that an ionized donor or acceptor
will have a scattering potential given by

V (r) =
e2

4πεr
(5.1)

Such a potential is called the bare potential. However, we do not use this simple poten-
tial to describe scattering from donors or acceptors because of the “screening” of the
potential by other free carriers. Free electrons (holes) respond to the bare potential by
changing their local density. The variation produced in the electron density reduces the
effect of the ionized impurity, particularly at distances that are far from the impurity.
As a result the dielectric response of the material changes. To calculate the dielectric
response we define the following:

• ρext;φext: the charge density and potential due to the external perturbation, e.g.,
the ionized impurity.

• ρind;φind: the charge density and potential due to the induced effects in the free
carriers.

• ρtot;φtot: the total charge density and potentials.

We have

φtot = φext + φind

ρtot = ρext + ρind

The dielectric response is defined by

εfree(k) =
ρext

ρtot

=
φext

φtot

= 1− ρind

ρtot
(5.2)

since ρext = ρtot − ρind.
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Excess carriers

− − − − − − − − − − −
+ + + + + + + + + + +

φtot = 0
ρind = 0

(r)

No
perturbation

With
perturbation

Figure 5.2: Effect of the impurity potential is to alter the uniform free charge by inducing
charge. This in turn modifies the potential profile.

The dielectric response will be calculated in k-space due to the simplicity of
the Poisson equation in k-space or Fourier space. Let us consider a particular Fourier
component of the external potential

ρext(k) = ρeik·r (5.3)

The Poisson equation is

∇2φ =
−ρ

ε
(5.4)

and in k-space this equation becomes

φ =
ρ

εk2
(5.5)

The free electron charge density will be assumed to be given by the Boltzmann
statistics (i.e., we will deal with nondegenerate semiconductors). In the top panel of
Fig. 5.2 we show that in the absence of any external perturbation there is local charge
balance. The electron density is n0 and is uniform. When a potential disturbance occurs
as shown in the lower panel of Fig. 5.2, there will be an induced charge given by

ρind = n0e− n0e exp
(
eφtot

kBT

)
(5.6)

where n0 is the mean background carrier density. If the perturbation φtot(r) is small,
we can linearize the exponential and get

ρind =
−n0e

2

kBT
φtot

=
−n0e

2

kBT
· 1
εk2

ρtot (5.7)

using Eqn. 5.5. Substituting from Eqn. 5.7 into Eqn. 5.2 we get

εfree = 1 +
n0e

2

εkBT

1
k2

−− −
−−−

− −−
−− −− −−−−−

−−−− −−
−−− − −− − −− −−

−
−

−− −− −−−− −−− −− −− − −−

−
φtot
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= 1 +
λ2

k2
(5.8)

where (note that ε is equal to ε0εr where εr is the relative dielectric constant)

λ2 =
n0e

2

εkBT
(5.9)

We now apply this formalism to the case where we have a bare potential which is
Coulombic. In real space, the charge is

ρext(r) = qδ(r) (5.10)

The potential is
φext =

q

4πεr
(5.11)

We will express φext in Fourier space by noting that

δ(r) =
1

(2π)3

∫
d3keik·r (5.12)

i.e., the Fourier transform of δ(r) is unity. Thus

ρext(k) = q (5.13)

and
φext(k) =

q

εk2
(5.14)

Using our value of the dielectric constant, from Eqn. 5.8

φtot(k) =
q

ε (k2 + λ2)
(5.15)

The real space behavior of this function can be obtained by the Fourier transform:

φtot(r) =
q

ε(2π)3

∫ ∞

0

dk
k2

k2 + λ2

∫ 1

−1

d(cos θ)eikr cos θ

∫ 2π

0

dφ

=
q · 2π
ε(2π)3

∫ ∞

0

dk
k2

k2 + λ2

[
1
ikr

e ikr cos θ|1−1

]

=
2q

(2π)2εr

∫ ∞

0

dk
k sin kr
k2 + λ2

=
q

4πεr
e−λr (5.16)

This is the screened Coulombic potential which we will use for the calculations
of the scattering rate in nondegenerate semiconductors. The effect of screening is to
reduce the range of the potential from a 1/r variation to a exp(−λr)/r variation as
shown schematically in Fig. 5.3.
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Figure 5.3: Comparison of screened and unscreened Coulomb potentials of a unit positive
charge as seen by an electron. The screening length is λ−1.

In doped semiconductors, a certain fraction of dopants are ionized. The ionized
dopants have a charge Ze (usually Z = 1) which provides a scattering center for electrons
and holes. To calculate the scattering rate we need to use the screened Coulombic
potential and then use the sequence described by Fig. 5.1. We first calculate the matrix
element for screened Coulombic potential

U(r) =
Ze2e−λr

4πεr
(5.17)

where Ze is the charge of the impurity. Using plane wave functions normalized to a
volume V , the scattering matrix element is then

Mkk
′ =

Ze2

4πV ε

∫
e−i(k

′−k)·r e
−λr

r
r2dr sin θ′dθ′dφ′ (5.18)

where |k′ | = |k| since the scattering is elastic. Then, as can be seen from Fig. 5.4∣∣∣k − k
′ ∣∣∣ = 2k sin(θ/2) (5.19)

where θ is the polar scattering angle.

Mkk
′ =

Ze2

4πεV
2π
∫ ∞

0

rdr

∫ 1

−1

d(cos θ′)e−λre−i|k
′−k|r cos θ′

=
Ze2

4πεV
2π
∫ ∞

0

rdre−λr
1

−i|k′ − k|r |e
−i|k′−k|r cos θ′ |−1

1

=
Ze2

4πεV
2π
∫ ∞

0

dre−λr
1

−i|k′ − k|
[
ei|k

′−k|r − e−i|k
′−k|r

]

−
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k'

k

θ
|k − k'| = 2k sin(θ/2)

Figure 5.4: As a consequence of the elastic scattering, there is a simple relation between the
magnitude of the scattered wavevector and the scattering angle q.

=
Ze2

4πεV
2π
∫ ∞

0

dr
1

−i|k′ − k|
[
e(−λ+i|k′−k|)r − e(−λ−i|k′−k|)r

]
=

Ze2

4πεV
2π

1
−i|k′ − k|

[
1

−λ+ i|k′ − k| −
1

−λ− i|k′ − k|

]

=
Ze2

4πεV
2π

2
|k′ − k|2 + λ2

=
Ze2

V ε

1
4k2 sin2(θ/2) + λ2

(5.20)

The scattering rate is given by the Fermi golden rule

W (k,k′) =
2π
h̄

(
Ze2

V ε

)2
δ
(
Ek − Ek

′
)

(
4k2 sin2(θ/2) + λ2

)2 (5.21)

One can see that in the two extremes of no screening (λ → 0) and strong screening
(λ → ∞), the rate becomes respectively

W (k,k′) ∝ 1
16k4 sin4(θ/2)

(5.22)

and
W (k,k′) ∝ 1

λ4
(5.23)

We see that for weak screening (low free carrier density) forward angle scattering
dominates. However, we note that forward angle scattering (θ ∼ 0) is not as important
in reducing mobility as large angle scattering. For high screening the scattering has less
angular dependence as shown in Fig. 5.5. Using results from Chapter 4, Eqn. 4.26 we
examine the relaxation time τ which is used to obtain the low field carrier mobility
(using the normalized functions).

1
τ

=
V

(2π)3

∫
(1− cos θ)W (k,k′) d3k

′

=
2π
h̄

(
Ze2

ε

)2 1
V 2

V

(2π)3
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Strong screening:
Random angle screening

Weak screening:
Forward angle scattering

π0

W(k,k')

θ

Figure 5.5: Angular dependence of the scattering by ionized impurities. The scattering has a
strong forward angle preference.

×
∫
(1− cos θ) δ

(
Fk − Fk

′
)

(
4k2 sin2(θ/2) + λ2

)2 k
′2 dk

′
sin θ dθ dφ

=
1
2h̄

(
Ze2

ε

)2 1
V

×
∫
(1− cos θ) δ

(
Fk − Fk

′
)

(
4k2 sin2(θ/2) + λ2

)2N(Fk
′ ) dFk

′ d(cos θ) dφ

=
1
h̄

(
Ze2

ε

)2 1
V

N(Fk)
32k4

×
∫
(1− cos θ) 1[

sin2(θ/2) +
(

λ
2k

)2
]2 d(cos θ) dφ

= F

∫
(1− cos θ) 1[

sin2(θ/2) +
(

λ
2k

)2
]2 d(cos θ) dφ (5.24)

with

F =
1
h̄

(
Ze2

ε

)2 1
V

N(Ek)
32k4

(5.25)

Let z = cos θ, so that sin2(θ/2) = (1− z)/2.

1
τ

= 8πF
∫ 1

−1

(1− z) dz(
1 + 2

(
λ
2k

)2

− z

)2
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= 8πF
∫ 1

−1

dz(
1 + 2

(
λ
2k

)2

− z

)2 −
∫ 1

−1

z dz(
1 + 2

(
λ
2k

)2

− z

)2

Upon integration this gives

1
τ

=
π

4h̄

(
4πZe2

ε

)2
N(Fk)
V k4

×


ln

(
1 +

(
2k
λ

)2
)

− 1

1 +
(

λ
2k

)2




N(Fk) =
m∗3/2E1/2

√
2π2h̄3

(5.26)

Spin degeneracy is not included, since the ionized impurity scattering cannot alter the
spin of the electron. In terms of the electron energy, Fk, we have

1
τ

=
1

V 16
√
2π

(
Ze2

ε

)2 1

m∗1/2E
3/2
k

×


ln

(
1 +

(
8m∗Ek

h̄2λ

)2
)

− 1

1 +
(

h̄2λ
8m∗Essk

)2


 (5.27)

The average relaxation time is

〈〈τ〉〉 =
∫∞

0
F τk e−βEss dF∫∞

0
F e−βEss dF

To a good approximation, the effect of this averaging is essentially to replace Fk by kBT
in the expression for 1/τ . An accurate determination of the average integral gives

1
〈〈τ〉〉 =

1
V 128

√
2π

(
Ze2

ε

)2 1

m∗1/2 (kBT )
3/2

×


ln

(
1 +

(
8m∗kBT

h̄2λ

)2
)

− 1

1 +
(

h̄2λ
8m∗kBT

)2


 (5.28)

The expression above gives the relaxation time from one scatterer in a volume V . If
the density of ionized impurities is Ni, there are NiV impurities in the volume. We
will assume that these impurities are randomly placed and are well separated from each
other so that the scattering is incoherent from them. In this case according to quantum
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mechanics we simply sum the scattering rate from each scatterer. The total relaxation
time is

1
〈〈τ〉〉 = Ni

1
128

√
2π

(
Ze2

ε

)2 1

m∗1/2 (kBT )
3/2

×


ln

(
1 +

(
8m∗kBT

h̄2λ

)2
)

− 1

1 +
(

h̄2λ
8m∗kBT

)2


 (5.29)

The mobility limited from ionized impurity scattering is

µ =
e〈〈τ〉〉
m∗

The mobility limited by ionized dopant has the special feature that it decreases
with temperature (µ ∼ T 3/2). This temperature dependence is quite unique to ionized
impurity scattering. One can understand this behavior physically by saying that at
higher temperatures, the electrons are traveling faster and are less affected by the ionized
impurities.

The decrease in mobility as limited by ionized impurity scattering with decreas-
ing temperature is a distinguishing feature which is not observed in other scattering
processes. In the next chapter we will discuss scattering from lattice vibrations (phonon
scattering) which causes mobility to decrease as temperature increases. Phonon scatter-
ing becomes very important at higher temperatures, while ionized impurity scattering
becomes important at lower temperatures. Thus, for a semiconductor with some back-
ground doping, the mobility versus temperature relation has the form shown in curve
(a) of Fig. 5.6. At low temperatures the mobility is low because of ionized impurity
scattering. The mobility increases with temperature up to ∼ 50 K or so, after which
it starts decreasing because of phonon scattering effects. This behavior is in marked
contrast to what happens in modulation doped semiconductor structures where ionized
dopants are spatially separated from electrons by using heterostructures. Here, due to
the remoteness of the dopants from the free electrons, the ionized impurity scattering
is essentially absent. This leads to a mobility that continues to increase with decreasing
temperature as shown in curve (b) of Fig. 5.6. By using modulation doping extremely
high mobilities can be reached at low temperatures—a fact that is exploited for high
performance electronic devices.

The formalism discussed above is applicable for low doping levels (<∼ 1018 cm−3).
The derivation for screening is for a nondegenerate semiconductor where the Boltzmann
expression was sufficient to describe the carrier density variation in presence of the
external potential (Eqn. 5.6). For heavily doped semiconductors with a high free carrier
density, one may be in the degenerate limit where the Fermi level is in the band and
one needs to use the proper distribution function to represent the fluctuations in the
electron density. In the high degeneracy limit, this leads to a screening parameter λ
given by

λ2 =
3n0e

2

2εEF
(5.30)
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Figure 5.6: Typical measurements of electron mobility as a function of temperature in a
uniformly doped GaAs with ND = 1017 cm−3. The mobility drops at low temperature due to
ionized impurity scattering becoming very strong. In contrast, the curve (b) shows the mobility
in a modulation doped structure where ionized impurity is essentially eliminated.

where EF is the Fermi level energy measured from the bandedge. The problem of scatter-
ing in heavily doped semiconductors is a lot more complex than the incoherent scattering
model used here. In writing Eqn. 5.29, we made the assumption that each impurity cen-
ter causes scattering independent of each other. While this is a reasonable assumption
when the impurities are separated by a large distance (several hundred Angstroms),
it is not a good approximation for inter-impurity separations less than approximately
100 Å. In general, the mobility falls faster with doping density than predicted by Eqn.
5.29 for heavily doped semiconductors due to the effects of multi-impurity scatterings.
Fig. 5.7 shows the concentration dependence of mobility for both electrons and holes in
Si and GaAs. In these results the scattering from lattice vibrations remains unchanged
and limits the mobility at low impurity concentrations.

EXAMPLE 5.1 A sample of Si is doped with dopant A which gives one electron to the
conduction band per dopant. Another sample of Si is doped with dopant B which gives two
electrons per dopant. The electron density in both samples is found to be 1017 cm−3. Calculate
the mobility in the two samples at 300 K. Mobility in pure Si at 300 K is 1100 cm2/V·s.
Electron mass is 0.26 m0.
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Figure 5.7: Mobility of electrons and holes in Ge, Si, and GaAs as 300 K versus impurity
concentration. At doping of ∼ 1014 cm−3 the mobility is limited only by lattice vibration
scattering.

In solving this problem we must note an important point. Both samples have the same
free electron density. This means we have the following:

Sample A : Ni = 1017 cm−3; Z = 1

Sample B : Ni = 5× 1016 cm−3; Z = 2

where Z is the charge on the donor. Since the mobility goes as

µ ∝ Z2Ni

the impurity scattering limited mobility of sample A is twice that of sample B. The calculation
for ionized impurity limited mobility gives

µii(Sample A) ∼ 9500 cm2/V · s
µii(Sample B) =

µ(Sample A)

2

Using the mobility summing rate the total mobility is then

µ(Sample A) = 985 cm2/V · s
µ(Sample B) = 893 cm2/V · s

.
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A B B A A B A

V(r)
Uall

Figure 5.8: A schematic of the actual atomic potential (solid line) and the average virtual
crystal potential (dashed line) of an A-B alloy. The shaded area shows the difference between
the real potential and the virtual crystal approximation.

5.2 ALLOY SCATTERING
In Chapter 3 we have discussed how alloys can be used to tailor the bandgap of ma-
terials. As discussed there, alloys have no microscopic periodicity in the alloy crystal.
For example, in the alloy (AlAs)x(GaAs)1−x while the atom on the anion sublattice is
always As, the atoms on the cation sublattice are randomly distributed between Ga and
Al. In a random alloy the probability that a particular cation site is occupied by an Al
atom is x and that it is occupied by a Ga atom is (1− x) regardless of the neighboring
composition of the site. If, on the other hand, the alloy is clustered, there are regions in
space where there is a higher than x or (1− x) probability of finding a particular kind
of atom.

Due to the inherent disorder present in alloys, electrons and holes suffer scatter-
ing as they propagate through the material. Let us consider the scattering processes in a
perfectly random alloy where the smallest physical size over which the crystal potential
fluctuates randomly is the unit cell. An electron moving in the alloy AxB1−x will see
a random potential schematically shown in the Fig. 5.8. The average potential and the
average bandstructure of the alloy is described to the lowest order by the virtual crystal
approximation. In this approximation, the averaging of the atomic potentials

{M}all = x{M}A + (1− x){M}B (5.31)

gives an average periodic potential represented by the dashed line in Fig. 5.8. To con-
struct the scattering model the difference between the real potential and the assumed
virtual crystal potential is represented within each unit cell by a highly localized poten-
tial. For example, for the A-type atoms, the difference is

Eall − EA = xEA + (1− x)EB − EA

= (1− x) [EB − EA]
= (1− x) Uall (5.32)

Similarly, for the B atom, the difference is

EB − Eall = x (EB − EA)
= x Uall (5.33)

The quantities EA, EB, Eall are not well-defined and (EB − EA), often called the alloy
potential, is adjusted to fit experimental data.
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The so-called “hard sphere” model for scattering is used to understand alloy
scattering. The scattering potential is chosen to be of the form

∆U(r) = U0 for |r| ≤ r0

= 0 for |r| > r0
(5.34)

where r0 is the interatomic distance and U0 = Uall. If we use the Fermi golden rule to
calculate the scattering rate, we have

W (k) =
2π
h̄

∑
k
′

∣∣Mkk
′
∣∣2 δ(Ek − Ek

′ )

and
Mkk

′ =
∫

ei(k−k
′
)·r ∆U(r) d3r

We will now use the fact that the scattering potential only extends over a unit cell and
over this small distance

ei(k−k
′
)·r ≈ 1

Thus the matrix element has no k-dependence

Mkk
′ =

4π
3

r3
0 U0 (5.35)

and

W (k) =
2π
h̄

(
4π
3

r3
0 U0

)2 1
(2π)3

∫
δ(Ek − Ek

′ ) d3k
′

=
2π
h̄

(
4π
3

r3
0 U0

)2

N(Ek),

In a fcc crystal of lattice constant a, we relate the extent of the potential r0 to a by the
relation

r0 =
√
3
4

a

This gives (
4π
3
r3
0

)2

=
3π2

16
V 2

0 (5.36)

where V0 = a3/4 is the volume of the unit cell. We now obtain for the scattering rate

W (k) =
2π
h̄

(
3π2

16
V 2

0

)
U2

0 N(Ek) (5.37)

We will now assume that all scattering centers cause incoherent scattering so
that we can simply sum the scattering rates. For the A-type atoms, the scattering rate
is (using U0 = (1− x)Uall)

WA(k) =
2π
h̄

(
3π2

16
V 2

0

)
(1− x)2 U2

all N(Ek)
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For the B-type atoms, the rate is (using U0 = xUall)

WA(k) =
2π
h̄

(
3π2

16
V 2

0

)
x2 U2

all N(Ek)

There are x/V0 A-type atoms and (1 − x)/V0 B-type atoms in the unit volume and
under the assumption of incoherent scattering, the total scattering rate is

Wtot =
2π
h̄

(
3π2

16
V0

)
U2
all N(Ek)

[
x (1− x)2 + (1− x) x2

]
=

3π3

8h̄
V0 U2

all N(Ek) x (1− x) (5.38)

Several important points are to be noted about the alloy scattering. The first
is that the matrix element has no k,k

′
dependence, i.e., there is no angular dependence

of the matrix element. If the density of states is isotropic, there will be no angular
dependence of the scattering rateW (k,k′). This is in contrast to the impurity scattering
which had a strong forward angle scattering preference. After doing the proper ensemble
averaging the relaxation time for the alloy scattering is

1
〈〈τ〉〉 =

3π3

8h̄
V0U

2
allx(1− x)

m∗3/2(kBT )1/2√
2π2h̄3

1
0.75

(5.39)

according to which the mobility due to alloy scattering is

µ0 ∝ T−1/2

The temperature dependence of mobility is in contrast to the situation for the ion-
ized impurity scattering. The quantity Uall is not known with any certainty from the
scattering theory discussed here. Its value is usually obtained by carefully fitting the
temperature dependent mobility data. The value of Uall is usually in the range of 0.5 eV.

In the discussions above we assumed that the alloy was cluster-free and the
smallest region in which the disorder occurred was the unit cell. However, in some alloys
one can expect alloy clustering as shown schematically in Fig. 5.9. Here we show a macro-
scopic alloy AxB1−x made up of microscopic regions with compositions Ax+δB1−x−δ and
Ax−δB1−x+δ. We can no longer calculate the total scattering rate assuming independent
scattering from each unit cell. Atoms within a cluster size rc will now scatter coherently
making the problem more complex. One approximation for the alloy shown in Fig. 5.9
to is to use a scattering potential

∆U(r) = Uall · δ for |r| ≤ rc

= 0 for |r| > rc (5.40)

where we have used a potential with a smaller value but a larger spatial extent. Now in
the matrix element evaluation we can no longer make the constant phase approximation,
since rc could be a large value. In fact, the matrix element now depends critically on
the value of |k − k

′ |, reaching a maximum when |k − k
′ | ≈ 1/rc. The scattering rate
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Ax+δB1−x−δ

Ax−δB1−x+δ

Figure 5.9: A clustered AxB1−x alloy with A-rich and B-rich regions.

and mobility is, therefore, very much dependent upon the cluster size and temperature
which determines the effective value of k and k

′
.

In general, in the presence of clustering, mobility is reduced because of the
coherent nature of scattering. For most applications in electronics and optoelectronics
one therefore seeks alloys that are random.

EXAMPLE 5.2 Calculate the alloy scattering limited mobility in Al0.3Ga0.7As at 77 K and
at 300 K. Assume that the alloy scattering potential is 1.0 eV. The relaxation time at 300 K
is (m∗ = 0.07 m0).

1

〈〈r〉〉 =
3πV0(Uall)

2x(1− x)m∗3/2(kBT )1/2

8
√
2h̄4(0.75)

= 2.1× 1012 s
Here we have used x = 0.3, V0 = a3/4 with a = 5.65 Å.

The value of 〈〈r〉〉 is 4.77× 10−13 s. The mobility is then

µall(300 K) = 1.2× 104 cm2/V · s
The mobility goes as T−1/2 which gives

µall(77 K) = 2.36× 104 cm2/V · s

5.3 NEUTRAL IMPURITY SCATTERING
Another source of scattering is the presence of neutral impurities and defects in semi-
conductors. Substitutional impurities and dopants that have not ionized can produce
neutral impurities. Scattering from these impurities can be addressed using the same
approach as used for alloy scatterings. The defect can be represented by a perturbation
having a hard sphere like scattering potential. The scattering rate as in alloy scattering
is

W (k) =
2π
h̄

(
4π
3
r3
0U0

)2

N(Ek)
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where U0 is the scattering potential and r0 is the radius describing the extent of the
defect. The scattering time for mobility is simply

1
〈〈τ〉〉 = Nimp · 2π

h̄

(
4π
3
r3
0U0

)2
m∗3/2(kBT )1/2√

2π2h̄3

1
0.75

(5.41)

Here Nimp is the density of the neutral impurities. Unless the neutral impurity density
is very high (>∼ 1018 cm−3) there is little effect of this scattering (in comparison to other
scattering processes) on mobility.

EXAMPLE 5.3 Consider a poor quality Si sample doped n-type with P at 1017 cm−3.
Assume all the donors are ionized. The sample also has 1017 cm−3 defects described by the
scattering potential

V (r) = 1.5 eV r ≤ 10 Å

= 0 otherwise

i) Calculate the mobility of the sample limited by ionized impurity scattering.
ii) Calculate the mobility of the sample limited by defect scattering.
iii) What mobility will be measure in the lab?
Conductivity mass of electrons is 0.26 m0. The mobility of electrons in pure Si is 1100 cm

2/V·s
at 300 K.

The defect problem is similar to the alloy problem. The matrix element of scattering
is

Mkk′ =
4π

3
r30 U0

where r0 = 10 Å and U0 = 1.5 eV. The scattering time is

1〈〈
τdefect

〉〉 = Ndefect
2π

h̄
M2

kk′
m3/2(kBT )

1/2

√
2π2h̄3

1

0.75

Upon evaluating these terms we get

1〈〈
τdefect

〉〉 = 3.73× 1012 s−1

The defect limited mobility is then

µdefect = 0.18 m
2/V · s = 1800 cm2/V · s

The ionized impurity limited mobility is found to be

µii = 9500 cm
2/V · s

The total mobility is given by the reciprocal relation and is

µtot = 640 cm
2/V · s



196 Chapter 5. Defect and Carrier–Carrier Scattering

5.4 INTERFACE ROUGHNESS SCATTERING
Interfaces between two materials are an important ingredient of modern electronic and
optoelectronic devices. Depending upon the fabrication techniques, this interface has
varying degrees of roughness. The interface roughness causes potential “bumps” in the
path of the carriers, causing the carriers to scatter.

In Fig. 5.10 we show a schematic of the metal-oxide-semiconductor field effect
transistor (MOSFET). In this device, a metal contact (the gate of the transistor) is
isolated from the Si channel by a silicon oxide layer. The oxide layer is produced by
oxidizing the silicon by exposing it to steam, and since SiOx and Si have very different
crystal structures, the Si/SiOx interface has a roughness, schematically shown in Fig.
5.10c.

In an n-type MOSFET, electrons are induced in the channel in the “inversion”
state as shown in Fig. 5.10. The electrons reside in a triangular quantum well with a
wavefunction that goes to zero at the oxide side of the interface. A number of models have
been suggested to account for the form of the interface roughness scattering potential.
One model describes the potential as (r is the in-plane vector, z is the direction from
the gate to the semiconductor)

δU(r, z) = U(z +∆(r))− U(z)

∼= ∆(r)
∂

∂z
U

= eẼ(z)∆(r) (5.42)

where Ẽ(z) is the electric field in the inversion channel. The function ∆(r) is assumed
to have the form

〈∆(r)∆(r′ − r)〉 = ∆2 exp
(
− r2

λ2

)
(5.43)

where ∆ represents the height of the interface “islands” and λ represents their correlation
length along the interface, as shown schematically in Fig. 5.10c.

The scattering matrix element is now

M(k, k
′
) = e∆(q)

∫ ∞

0

Ẽ(z) | ψ(z) |2 dz

where ∆(q) is the two-dimensional Fourier transform of ∆(r) and ψ(z) is the wavefunc-
tion of the electrons in the inversion layer. If ns is the electron sheet density and Ndepl

is the areal density of space charge (e.g., if there is any doping in the channel), then
from Gauss’s law we get ∫

Ẽ(z) | ψ(z) |2 dz � e
Ndepl + ns/2

εs
(5.44)

The factor 1/2 multiplying ns, is used because the interface field (which is of interest)
is assumed to be about half of the average field in the channel. Under deep inversion
conditions Ndepl can be ignored in comparison to ns.
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Figure 5.10: (a) A schematic of a metal-oxide-semiconductor structure; (b) a band profile
of a MOSFET under inversion (ON) condition; and (c) a schematic of the roughness at the
oxide-semiconductor interface.
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For the surface roughness model assumed (A is area)

| ∆(q) |2= π∆2λ2

A
exp

(
−q2λ2

4

)
(5.45)

and the scattering rate becomes (q = 2k sin θ/2)

W (k) =
1
A

2π
h̄

1
4π2

∫ 2π

0

dθ

∫ ∞

0

q dq |M(k, k′)|2 δ(Ek − E′
k)

=
m∗

2πh̄3

∫ 2π

0

π∆2λ2e4

ε2
s

(
Ndepl +

ns
2

)2

exp
(
−k2λ2 sin2 θ

2

)
dθ

=
m∗∆2λ2e4

2h̄3ε2
s

[
I0

(
k2λ2

2

)
− I1

(
k2λ2

2

)]
exp

(−k2λ2

2

)
(
Ndepl +

ns
2

)2

(5.46)

where I0 and I1 are modified Bessel functions. The mobility, which is approximately
obtained by replacing the energy (through the value of k) in the rate above by kBT , is
then inversely proportional to the square of the surface field or the charge density in
the channel. This is borne out by experimental studies.

5.5 CARRIER–CARRIER SCATTERING
The various scattering sources discussed so far—ionized impurity, alloy disorder, neutral
impurity and interface roughness—are all fixed in space and time. In these processes
the electron energy remains unchanged after scattering because of the large mass of the
scatterer. We will now discuss scattering of mobile carriers from other mobile carriers.
Since electrons and holes are both charged particles there is Coulombic scattering be-
tween them. Also, there can be scattering between electrons themselves. The scattering
between electrons is somewhat more complex due to the fact that they are identical
Fermions. This introduces special features which we will discuss in this section. Both
electron–hole and electron–electron scattering is quite important especially in materials
where chrage densities reach or exceed 1018 cm−3.

5.5.1 Electron–Hole Scattering
We have already discussed the scattering of electrons from the screened Coulombic po-
tential of ionized dopants. Electrons can also scatter from holes and other electrons.
This scattering mechanism is closely related in essence to the charged impurity scat-
tering discussed earlier. We can approximate the interaction once again by a screened
Coulombic potential between two point particles and obtain the rate in the Born ap-
proximation as done previously. As shown in Fig. 5.11, the interaction occurs as particle
1, with the initial wavevector k1, collides with particle 2, with initial wavevector k2.
The collision causes a change in the wavevectors of both particles. Particle 1 leaves the
interaction with a final wavevector k

′
1 and particle 2 leaves with a final wavevector k

′
2.
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Figure 5.11: Scattering of an electron and hole. Each particle remains in the same band after
scattering.

This interaction is described by the matrix element

〈k′
1k

′
2 |eV |k1k2〉 = I(k1,k

′
1)I(k2,k

′
2)

× 1
V 2

∫ ∫
d3r1d

3r2e
−i(k′

1·r1+k
′
2·r2)

× e2 exp(−λ|r1 − r2|)
4πε|r1 − r2| ei(k1·r1+k2·r2) (5.47)

where I(k1,k
′
1), I(k2,k

′
2) are the overlap integrals over the unit cell involving the cell-

periodic parts of the Bloch functions

I(k1,k
′
1) I(k2,k

′
2) =

∫
cell

u∗
k
′
1
(r1) uk1(r1) d3r1

×
∫

cell

u∗
k
′
2
(r2) uk2(r2) d3r2 (5.48)

In our previous calculation we have not worried about the central cell part of the
electron (hole) wavefunctions. This is reasonable, since the scattering carrier is in the
same band (conduction band or valence band) and the overlap between the central cell
parts is close to unity. For scattering events in which all wavevectors lie close to the
bandedges, the integrals are usually assumed to be unity. In general, they are less than
unity, especially for the hole states.
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The interaction depends only on the separation distance of the particles, so it is
convenient to transform the problem to a frame of reference in which the center of mass
of the two particles is at rest. The transformation (nonrelativistic) to the center-of-mass
frame is affected by converting to the new coordinates given by

K = k − kcm

kcm =
1
2
(k1 + k2)

K12 =
1
2
(k1 − k2)

or

k1 = kcm +K12

k2 = kcm −K12 (5.49)

The corresponding transformation of spatial coordinates is

R = r − rcm

rcm =
m∗

1 r1 +m∗
2 r2

m∗
1 +m∗

2

r12 = r1 − r2

leading to

r1 = rcm +
m∗

2

m∗
1 +m∗

2

r12

r2 = rcm − m∗
1

m∗
1 +m∗

2

r12 (5.50)

The integral for the matrix element now splits into a product of two integrals,
one over rcm and the other over r12. The former gives unity and ensures the conservation
of momentum. The integral over r12 is

〈K ′
12 |eV (r12)|K12〉 =

1
V

∫
exp(−iK

′
12 · r12)

× e2 exp(−λr12)
4πε r12

exp(iK12 · r12) d3r12

=
e2

εV

1∣∣∣K ′
12 −K12

∣∣∣2 + λ2

(5.51)

as for the case of the ionized impurity scattering. The problem is exactly similar to the
collision of a particle of mass µ∗, equal to the reduced mass of the two particles, with
a fixed center. Thus one can use the calculations carried out for the ionized impurity
scattering to obtain the angular dependence of the scattering rate.
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The scattering angles θ in the center of mass system discussed above is related
to the scattering angle in the laboratory system by the relation

tan θ0
sin θ

m∗
1/m

∗
2 + cos θ

(5.52)

If the mass of the electron (m∗
1) is much smaller than that of the hole (m

∗
2) the scattering

angle in the laboratory frame and the center of mass frame is the same. In this case
the holes cause the same scattering for electrons as ionized impurities (which are fixed
center of essentially infinite mass).

In minority carrier transport, e.g., electrons moving in p-type semiconductors,
the electron gets scattered from acceptors and holes with the result that ifm∗

h � m∗
e, the

scattering rate simply becomes twice that from the impurities alone. This approximation
works quite well for most semiconductors.

5.5.2 Electron–Electron Scattering: Scattering of Identical Particles
In quantum mechanics there is an important distinction when scattering occurs be-
tween identical particles or distinguishable particles. In the calculation discussed so far
(electron–impurity, electron–hole) electrons scatter from other particles that are distin-
guishable from them. We will now discuss electron–electron scattering which involves
identical particles. In Fig. 5.12 we show two particles, A and B, scatter from each other
and we measure their scattering rates by placing detectors. We will look for the angular
distribution of the probability that some particle arrives at the detector D1. We will
work in the center of mass system and denote by f(θ) the amplitude that the particle
A is scattered by angle θ. We have to consider the two possibilities, shown in the figure,
where the particles are exchanged. The amplitude of scattering for the second case is
f(π − θ). The following is observed experimentally.

• If the particles are distinguishable the probability of some particle appearing as
D1 is

|f(θ)|2 + |f(π − θ)|2 (5.53)

• If the particles are indistinguishable and are bosons (e.g. α-particles, photons,
mesons) the probability of one of the particles appearing is D1 is

|f(θ) + f(π − θ)|2 (5.54)

• If the particles are identical but are fermions (e.g. electrons, neutrinoes, protons,
neutrons) the probability is

|f(θ)− f(π − θ)|2 (5.55)

Note that if the two particles are electrons but have different spins, and the
scattering is not supposed to alter the spin, then the probability is given by the distin-
guishable case.
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Figure 5.12: Scattering of two particles in the center of mass system. The detector D1 is able
to detect any particle being scattered at the angle.
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Figure 5.13: A schematic showing the direct and exchange scattering processes for identical
particle scattering. When the spins of the two particles are the same, the two processes (1
and 2) are indistinguishable. When the spins are different, the two processes (3 and 4) are
distinguishable.

As noted above, for e-e scattering we have to include the direct and exchange
terms and add the scattering amplitudes with the prescription discussed above. In Fig.
5.13 we show the various possible scattering processes for both the indistinguishable
(i.e., same spins) and distinguishable (opposite spins) cases.

We can essentially use the formalism we have already developed for the e-h
collisions and apply it to the e-e case. The processes (1) and (2) are totally indistin-
guishable and will interfere. The matrix element we calculated earlier for e-h case is
M12

M12 = 〈K ′
12 |V |K12〉



204 Chapter 5. Defect and Carrier–Carrier Scattering

=
e2

εV

1∣∣∣K ′
12 −K12

∣∣∣2 + λ2

(5.56)

where ∣∣∣K ′
12 −K12

∣∣∣ = 2K12 sin(θ/2)

The process (2) changes θ → π − θ

M21 =
e2

εV

1∣∣∣K ′
12 −K12

∣∣∣2 + λ2

(5.57)

where ∣∣∣K ′
12 −K12

∣∣∣ = 2K12 cos(θ/2)

Since these two processes are indistinguishable, they interfere destructively
(since the electrons are fermions) at the amplitude level. The processes (3) and (4)
are distinguishable and therefore do not interfere. One has to square and add the con-
tributions separately The total matrix element squared is now

|M |2 =
1
2

[
|M12|2 + |M21|2 + |M12 −M21|2

]
= |M12|2 + |M21|2 − 1

2
(M21M

∗
12 +M∗

21M12) (5.58)

The factor 1/2 arises because in half the collisions the spins are aligned and in half they
are opposed.

Following the arguments for the e-h case, or the ionized impurity case, we can
write for the differential cross section in the center of mass frame (taking the overlap
integrals to be unity)

σ(θ) =
(

e2

16πεE12

)2


 1{

sin2(θ/2) +
(

λ
2K12

)2
}2

+
1{

cos2(θ/2) +
(

λ
2K12

)2
}2

− 1{
sin2(θ/2) +

(
λ

2K12

)2
}{

cos2(θ/2) +
(

λ
2K12

)2
}

 (5.59)

where θ is the angle between K12 and K
′
12.

K12 =
∣∣∣∣K1 −K2

2

∣∣∣∣
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DIRECT PHONON ASSISTED TRAP ASSISTED

Figure 5.14: Various processes that contribute to Auger recombination. In high purity mate-
rials trap assisted processes are not important.

E12 =
h̄2K2

12

2m∗

m∗ =
m∗

2
(5.60)

The total cross section is derived by integrating over all angles

σ =
(

e2

16πεE12

)2

8π
[

1
(λ/2K12)2{1 + (λ/2K12)2}

+
1

1 + 2(λ/2K12)2
ln
{

(λ/2K12)2

1 + (λ/2K12)2

}]
(5.61)

A momentum relaxation cross-section can be found by multiplying the first term in Eqn.
5.59 by (1−cos θ), second term by (1+cos θ), and the third term by (1−cos θ)(1+cos θ).
With x = (h̄2λ2)/(2m∗E12)

1
τm

=
e4

8πε2V
√
2m∗E3/2

12

[
ln
(
1 +

4
x

)
− 1
1 + x

− π

2

{
1

1 + x
(
1 + x

4

)}] (5.62)

Electron–electron scattering rate is usually too small for carrier concentrations of less
than 1017 cm−3.

5.6 AUGER PROCESSES AND IMPACT IONIZATION
In the scattering processes discussed so far the electron (hole) remains in the same band
(conduction or valence) after scattering. The number of free carriers is unchanged as a
result of scattering. In Auger processes and in impact ionization carriers scatter across
bands. This can increase or decrease the total density of free carriers in a material. Fig.
5.14 shows a schematic of several possible Auger processes. For example, in the direct
process an electron recombines with a hole and the extra energy is absorbed by another
electron. In this process, the electron hole recombination does not produce a photon as
would be the case for radiative transitions. Such processes are very important in narrow
bandgap lasers where this process causes carrier recombination without producing useful
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k1

k1'

k2

k2'
Initial state:
2e + 1h

Final state:
1e

Figure 5.15: A schematic of the states of the electrons before and after an Auger scattering.
The reverse of this process is the impact ionization process. This particular process is called
CHCC (Conduction-Heavy hole-Conduction-Conduction).

photons. In addition to the processes shown for electrons, we have the processes for
holes (where the energy of recombination is transferred to a hole). These processes are
all mediated by the Coulombic interactions and involve e-e scattering. In high purity
materials only the direct processes are of significance.

Impact ionization (which is the reverse of the Auger process) occurs in the pres-
ence of high electric fields. Under very high electric fields, electrons gain energy larger
than the bandgap of the semiconductor. Thus a high energy electron in the conduction
band scatters from an electron in the valence band. The second electron is raised to the
conduction band, resulting in two electrons in the conduction band and a hole in the
valence band. This causes carrier multiplication and the current in the semiconductor
increases dramatically. This results in the breakdown of the semiconductor and limits
the high performance behavior of electronic devices. Impact ionization is also exploited
in avalanche photodetectors for very high gains.

Let us discuss the direct Auger process. The matrix element M12 for the scat-
tering in the direct process is as before (see Fig. 5.15)

M12 =
1
V 2

∫ ∫
d3r1 d3r2

e2 exp(−λ|r1 − r2|)
4πε|r1 − r2|

× u∗
vk

′
1
(r1) exp(−ik

′
1 · r1) u∗

ck
′
2
(r2) exp(−ik

′
2 · r2)

× u∗
ck1
(r1) exp(ik1 · r1) u∗

ck2
(r2) exp(ik2 · r2) (5.63)

Transforming to the center of mass system gives us the conservation of momentum

k1 + k2 = k
′
1 + k

′
2 (5.64)
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As before, we have

M12 =
(

e2

εV

)
I(k1,k

′
1) I(k2,k

′
2)∣∣∣k′

1 − k1

∣∣∣2 + λ2

(5.65)

The relevant overlap integrals are

I(k1,k
′
1) =

∫
cell

d3r1 u∗
vk

′
1
(r1) u∗

ck1
(r1)

I(k2,k
′
2) =

∫
cell

d3r2 u∗
ck

′
2
(r2) u∗

ck2
(r2)

Here we have used the fact that

K12 =
1
2
|k1 − k2|

so that due to momentum conservation∣∣∣K ′
12 −K12

∣∣∣2 = ∣∣∣k′
1 − k1

∣∣∣2
For the exchange process

M21 =
(

e2

εV

)
I(k1,k

′
2)I(k2,k

′
1)∣∣∣k′

1 − k2

∣∣∣2 + λ2

and

I(k1,k
′
2) =

∫
cell

d3r1u
∗
ck

′
2
(r1)uck1(r1)

I(k2,k
′
1) =

∫
cell

d3r2u
∗
vk

′
1
(r2)uck2(r2)

As discussed for the case of the e-e scattering we have to consider the four processes of
Fig. 5.13 which give us the total matrix element squared

|M |2 =
[
|M12|2 + |M21|2 + |M12 −M21|2

]
To calculate the Auger rates we must discuss the occupation statistics of the

various electrons and hole states involved in the process. We need to weigh the rate
with the probability that state k2 is full, k

′
1 is empty and k1 is full. In general we have

to use the Fermi–Dirac function to describe the occupation. This requires numerical
evaluation of the scattering rate. However, if we assume nondegenerate statistics we can
obtain analytical expressions. We have

P (k1,k2,k
′
1) = f(k1) f(k2)

(
1− f(k

′
1)
)

(5.66)
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k1 k1'k2 k2'

Figure 5.16: Procedure for finding the maximum in probability for Auger rates. This proce-
dure is also used to find the threshold energy for the impact ionization process to occur. The
threshold is reached when the high energy electron k

′
2 has its wavevector lined up opposite to

those of the low energy electrons as shown.

where

f(k1) =
n

Nc
exp

(−Eck1

kBT

)

f(k2) =
n

Nc
exp

(−Eck2

kBT

)

1− f(k
′
1) =

p

Nv
exp

(−Evk′
1

kBT

)
(5.67)

Here n and p are the electron and hole carrier densities and Nc, Nv are the conduction
and valence band effective density of states.

This gives the total probability factor

P (k1,k2,k
′
1) =

np

NcNv

n

Nc
exp

(
−
Eck2 + Evk′

1
+ Eck1

kBT

)

≈ n

Nc
exp

(
−
Eg + Eck2 + Evk′

1
+ Eck1

kBT

)
(5.68)

We have assumed that the state k
′
2 is always available since it is a high energy electron

state in the conduction band.
It is useful to examine the energy at which this term maximizes. This involves

finding the extremum of the expression (in the parabolic band approximation)

k2
1

2m∗
c

+
k2

2

2m∗
c

+
k

′2
1

2m∗
v

=
1
2m∗

c

[
k2

1 + k2
2 + µk

′2
1

]
(5.69)

where

µ =
m∗
c

m∗
v

The probability factor will maximize for the lowest energy values of k1, k
′
1 and k2 which

are consistent with energy and momentum conservation. Since k
′
2 is the largest vector,

we line up k1, k
′
1, and k2 with k

′
2 in the opposite direction as shown in Fig. 5.16. Thus

we choose
k1 + k

′
1 + k2 = −k

′
2 (5.70)
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We also write

k1 = ak
′
1

k2 = bk
′
1 (5.71)

We now have from conservation of energy

k
′2
2 = (a2 + b2 + µ)k

′2
1 +K2

g (5.72)

where

Eg =
h̄2K2

g

2m∗
c

Also the conservation of momentum gives us

k
′
2 = (a+ b+ 1)k

′
2

or
k

′2
2 = (a2 + b2 + 1 + 2ab+ 2a+ 2b)k

′2
1 (5.73)

Eliminating k
′2
2 from Eqns. 5.72 and 5.73 we get

k
′2
1 (1 + 2ab+ 2a+ 2b− µ) = K2

g (5.74)

The quantity to be minimized for maximum Auger rate or the impact ionization thresh-
old is

k2
1 + k2

2 + µk
′2
1 = k

′2
1 (a

2 + b2 + µ)

Substituting for k
′2
1 from Eqn. 5.74 we get

(a2 + b2 + µ)k
′2
1 =

a2 + b2 + µ

1 + 2ab+ 2a+ 2b− µ
K2
g

This quantity minimizes when
a = b = µ (5.75)

This gives us the energy values

Eck1 = Eck2

= µEvk′
1

=
(

µ2

1 + 3µ+ 2µ2

)
Eg (5.76)

The maximum probability function is now

P (k1,k2,k
′
1) =

n

Nc
exp

(
−1 + 2µ
1 + µ

Eg
kBT

)
(5.77)
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and the energy of the high energy electron is

Eck′
2
=
1 + 2µ
1 + µ

Eg (5.78)

If µ � 1, we have the approximation

Eck′
2
≈ (1 + µ)Eg (5.79)

The value for Eck′
2
represents the threshold for the inverse process of impact ionization.

According to this (very approximate) expression the Auger process starts when
the initial carriers have a certain minimum energy. This is because both momentum
and energy have to be conserved in the scattering (in general, momentum has to be
conserved within a reciprocal lattice vector). As a result of the threshold energy, Auger
rates have a strong dependence on temperature and bandgap.

To solve the general integral for the Auger rates, one needs to evaluate the
multiple integral (these are rates for a particular electron at k1; the total rate over all
electrons will involve a further integral over k1, as well)

WAuger = 2
(
2π
h̄

)(
e2

ε

)2 1
(2π)9

×
∫

d3k2

∫
d3k

′
1

∫
d3k

′
2 |M |2 P (k1,k2,k

′
1)

× δ(Eck1 + Eck2 − Evk′
1
− Eck′

2
) (5.80)

The matrix element |M |2 has been discussed before and for most purposes it is adequate
to use λ = 0. In general, one has to explicitly evaluate the overlap integrals by using
an accurate bandstructure description. Typical results for such a calculation are shown
in Fig. 5.17 where we show the Auger recombination rate for the narrow bandgap
material In0.53Ga0.47As (Eg ≈ 0.8 eV) which is widely used for long-distance optical
communication lasers. The Auger rate is approximately proportional to n3 (for most
lasers n = p), and is often written in the form

W = RAuger

= Fn3 (5.81)

where F is the Auger coefficient.
The Auger rates increase exponentially as the bandgap is decreased. They

also increase exponentially as the temperature increases. These are direct results of
the energy and momentum conservation constraints and the carrier statistics. Auger
processes are more or less unimportant in semiconductors with bandgaps larger than
approximately 1.5 eV (e.g., GaAs, AlGaAs, InP). However, they become quite impor-
tant in narrow bandgap materials such as In0.53Ga0.47As (E = 0.8 eV) and HgCdTe
(E < 0.5 eV), and are thus a serious hindrance for the development of long wavelength
lasers. Table 5.1 shows the values of Auger coefficients for some semiconductors.
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Figure 5.17: Auger rates calculated for In0.53Ga0.47As at room temperature. The important
process involves the final state with one hole in the split off band. The term CHHS (Conduction-
Heavy hole-Heavy hole-Split off hole) is used for such events.

MATERIAL BANDGAP AUGER COEFFICIENT

(cm 6 s 1)

InGaAs 0.8 eV 10 28 at 300 K

HgCdTe 0.2 eV 10 27 at 77 K

GaInAsP 0.8 eV ~6 x 10 28 at 300 K

GaInAsP 0.7 eV ~1.2 x 10 27 at 300 K

GaInAsSb 0.4 eV ~6 x 10 27 at 300 K

Table 5.1: Auger coefficients of some semiconductors. There is a large uncertainty in these
values.
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As noted earlier, the impact ionization process is the inverse of the Auger pro-
cess. In an electron initiated impact ionization process a “hot” (high energy) electron
scatters with an electron in the valence band and exchanges energy with it to knock it
into the conduction band. As a result, after the scattering we have two electrons in the
conduction band and a hole in the valence band. The net result of impact ionization
is that the number of mobile carriers (electrons and holes) increases. As a result the
current flowing in the semiconductor increases rapidly resulting in “breakdown.” The
impact ionization process is the main reason which limits the high power performance
of semiconductor devices. The process only occurs at high applied electric fields since
the initial electron must have an energy slightly larger than the bandgap of the mate-
rial. Thus, for a given material impact ionization does not stand until the electric field
reaches critical value. The larger the bandgap, the higher the critical field.

The full calculation for the impact ionization rates also involves the knowledge
of the entire bandstructure. This implies a complicated numerical solution.

In the impact ionization processes, the initiating electron (hole) energy has to
be larger than the bandgap energy. As discussed for the Auger processes the threshold
energy is

Ek1 =
1 + 2µ
1 + µ

Eg; µ =
m∗
c

m∗
v

(5.82)

Thus the initial electron energy must be slightly larger than the bandgap of the material.
The threshold energy expression given above is only approximate. Since bands are quite
anisotropic at high energies the threshold energy has a strong angular dependence. Once
the electron (hole) energy exceeds the threshold energy the impact ionization scattering
rate becomes very strong reaching values of ∼ 1012 s−1 rapidly. As a result carrier
multiplication occurs rapidly beyond a threshold applied electric field.

As noted earlier the detailed calculation for the impact ionization has to be
done numerically due to the complexity of the final state density of states and the
bandstructure. However, a simple expression has been derived by Ridley (1982) for
parabolic bands

Wimp = 4.139× 1016

×
{
4
√
m∗
cm

∗
v

m0

(
m∗
c

m0
+ µ

)(ε0

ε

)2
[
Eck′

2

Eg
− (1 + µ)

]}
s−1 (5.83)

In Fig. 5.18 we show the calculated impact ionization rates for electrons in
GaAs assuming simple isotropic electron and hole masses and a non-parabolic relation
for GaAs electrons

(1 + αE)E =
h̄h2

2m∗ (5.84)

where α = 0.67 eV−1.
The impact ionization process becomes important in semiconductor devices

when they are operated at high electric fields (several hundred kV/cm). It causes break-
down in semiconductor structures and thus limits the high power application of tran-
sistors. The impact ionization process (or avalanche process) is, however, exploited in
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Figure 5.18: Impact ionization rates for GaAs (Eg = 1.4 eV) calculated using an isotropic
bandstructure.

avalanche detectors where a photo-generated carrier causes carrier multiplication by
impact ionization and thus provides a high gain detector.

5.7 PROBLEMS
5.1 Calculate and plot the screening length λ−1 as a function of free carrier density
from nfree = 1× 1014 cm−3 to 1× 1018 cm−3 at 77 K and 300 K for GaAs and Si.
5.2 Plot the angular dependence of the scattering rate (like Fig. 5.5) due to ionized
impurities when the background ionized donors are 1015 cm−3 and 1017 cm−3 at room
temperature for GaAs. Assume an electron energy of kBT .
5.3 Plot the bare and screened Coulombic potential (i.e., V (r) vs. r) arising from a
singly charged donor in Si at carrier concentrations of i) 1014 cm−3; ii) 1016 cm−3; and
iii) 1018 cm−3. Plot the results at 300 K and 77 K.
5.4 Plot the scattering rate versus scattering angle for electrons with energy equal to
3/2kBT in Si doped at i) 1017 cm−3 and ii) 1018 cm−3. Calculate the results at 77 K
and 300 K.
5.5 Calculate the ionized impurity limited mobility (ND = 1016 cm−3; 1017 cm−3) in
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GaAs from 77 K to 300 K.
5.6 If the measured room temperature mobility of electrons in GaAs doped n-type at
5× 1017 cm−3 is 3500 cm2V−1 s−1 calculate the relaxation time for phonon scattering.
5.7 Calculate the alloy scattering limited mobility in In0.53Ga0.47As as a function of
temperature from 77 K to 400 K. Assume an alloy scattering potential of 1.0 eV.
5.8 Assume that the holes are much heavier than electrons in GaAs. Calculate the
room temperature minority carrier mobility of electrons moving in a p-type base of an
HBT where the base acceptor doping level is 1017 cm−3. Remember that the electrons
will scatter from the holes as well as the acceptors.
5.9 Assume that the scattering potential of neutral, or un-ionized impurities, in a
semiconductor can be represented by a form similar to that used for the alloy scattering
potential. What is the room temperature electron mobility in GaAs, due to 1015 neutral
impurities per cm3, each having a potential of 1.0 eV and a radial extent of 10 Å?
5.10 In a clustered alloy, the scattering potential is represented by

V (r) = V0 for r ≤ rc

= 0 for r > rc,

where rc is the cluster radius. Explain why the temperature dependence of the alloy
scattering limited mobility shows a peak at high temperatures.
5.11 In the text, when considering impurity scattering, we considered each scatterer
to be independent. It is found experimentally that at high doping, the mobility is much
lower than the theoretical value. Explain this qualitatively.
5.12 In our discussions of impact ionization, we continued to use the Fermi golden
rule or Born approximation for the scattering rates. At the high energies encountered
in impact ionization, the total scattering rates may approach 1013 s−1 or even 1014 s−1.
Discuss the effects this may have in terms of the energy conservation rule used in the
scattering rate derivation.
5.13 In the lucky drift model for impact ionization, it is assumed that some lucky
carriers are accelerated ballistically (i.e., without scattering) to energies above thresh-
old, causing impact ionization. Assume that the average relaxation time is 0.01 ps. At
approximately what electric fields will 0.1% of the electrons acquire threshold energy in
GaAs?
5.14 Calculate the energy dependence of the impact ionization rate in GaAs and InAs.
5.15 Show that while in a 3-dimensional and 2-dimensional system, it is possible for
electron–electron scattering to randomize the energy distribution of hot electrons, in a
strictly 1-dimensional system, this is not possible.
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Chapter

6

LATTICE
VIBRATIONS:

PHONON
SCATTERING

In a crystalline material atoms vibrate about the rigid lattice sites and one of the most
important scattering mechanisms for mobile carriers in semiconductors is due to these
vibrations. In our discussions for the bandstructure we assumed that the background
potential is periodic, and does not have any time dependence. In actual materials the
background ions forming the crystal are not fixed rigidly but vibrate. The vibration
increases as the temperature is increased. To understand the properties of electrons in a
vibrating structure we use an approach shown schematically in Fig. 6.1. Scattering will
occur due to the potential disturbances by the lattice vibration. Before we can answer
the question regarding how lattice vibrations cause scattering, we must understand
some basic properties of these vibrations. Once we understand the nature of the lattice
vibrations we can begin to examine how the potential fluctuations arising from these
vibrations cause scattering.

6.1 LATTICE VIBRATIONS
In Chapter 1 we have discussed how atoms are arranged in a crystalline material. The
reason a particular crystal structure is chosen by a material has to do with the minimum
energy of the system. As atoms are brought together to form a crystal, there is an
attractive potential that tends to bring the atoms closer and a repulsive potential which
tends to keep them apart. The attractive interaction is due to a variety of different
causes including Van der Waals forces (resulting from the dipole moment created when
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Perfect crystal E vs k relation
k-state maintained

Lattice vibrations
− phonons E vs k picture still

valid, but k-state is
not maintained, i.e.,
scattering can occurPotential variations

Figure 6.1: The effect of imperfections caused by either lattice vibrations or other potential
fluctuations lead to scattering of electrons.

an atoms’ electron cloud is disturbed by the presence of another atom), ionic bonding
where electrons are transferred from one atom to another and covalent bonding where
electrons are shared between atoms. When atoms are very close to each other there is
a strong repulsion between the electrons on neighboring atoms. As a result the overall
energy-configuration profile for the system has a schematic form, shown in Fig. 6.2. The
total energy of the system is minimum when the atomic spacing becomes R0 as shown
in the figure.

In general we can expand the crystal binding energy around the point R0 as
follows:

U(R) = U(R0) +
(
dU

dR

)
R0

∆R+
1
2

(
d2U

dR2

)
R0

∆R2 + . . . (6.1)

Repulsive energy

Total energy

Equilibrium interatomic spacing

Interatomic spacing, R

Coulombic
bond
sharing

Energy

Energy

0

R0

{ {
Figure 6.2: General form of the binding energy versus atomic distance of a crystal. In the case
of most semiconductors, the long range attraction is due to either electrostatic interactions of
the ions or the bond sharing energy of the covalent bond.
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Figure 6.3: Vibrations in a crystal with two atoms per unit cell with massesM1,M2 connected
by force constant C between adjacent planes.

The second term is zero since R0 is the equilibrium interatomic separation. Retaining
terms to the second order in ∆R (this is called the harmonic approximation),we get

U(R) = U(R0) +
1
2
C(∆R)2 (6.2)

where

C =
∂2U

∂R2
(6.3)

is the force constant of the material. The restoring force is then

Force = −C∆R (6.4)

Due to this restoring force the atoms in the crystal vibrate as a particle attached
to a spring would do. We will now discuss such vibrations for semiconductors. Let us
consider a diatomic lattice (two atoms per basis) as shown in Fig. 6.3. The atoms are
at an equilibrium position around which they vibrate. There is a restoring force (let us
assume this force is between the nearest neighbors only). We assume that the atoms
have masses M1 and M2.

If us and vs represent the displacements of the two kinds of atoms of the unit
cell s (see Fig. 6.3), we get the following equations of motion for the atoms in the unit
cell s:

M1
d2us
dt2

= C(vs + vs−1 − 2us) (6.5)

M2
d2vs
dt2

= C(us+1 + us − 2vs) (6.6)

We look for solutions of the traveling wave form, but with different amplitudes
u and v on alternating planes

us = u exp(iska) exp(−iωt)
vs = v exp(iska) exp(−iωt) (6.7)
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We note that a is the distance between nearest identical planes and not nearest planes,
i.e., it is the minimum distance of periodicity in the crystal as shown in Fig. 6.3. Eqn.
6.7, when substituted in Eqns. 6.5 and 6.6 gives

−ω2M1u = Cv [1 + exp(−ika)]− 2Cu (6.8)
−ω2M2v = Cu [exp(−ika) + 1]− 2Cv (6.9)

These are coupled eigenvalue equations which can be solved by the matrix method. The
equations can be written as the matrix vector product∣∣∣∣ −ω2M1 + 2C −C [1 + exp(−ika)]

−C [exp(−ika) + 1] −ω2M2 + 2C

∣∣∣∣
∣∣∣∣ u
v

∣∣∣∣ = 0
Equating the determinant to zero, we get∣∣2C −M1ω

2 − C[1 + exp(−ika)]− C[1 + exp(ika)] 2C −M2ω
2
∣∣ = 0 (6.10)

or
M1M2ω

4 − 2C(M1 +M2)ω2 + 2C2(1− coska) = 0 (6.11)

This gives the solution

ω2 =
2C(M1 +M2)± [4C2(M1 +M2)2 − 8C2(1− coska)M1M2]1/2

2M1M2
(6.12)

It is useful to examine the results at two limiting cases. For small k, we get the
two solutions

ω2 ≈ 2C
(
1
M1

+
1
M2

)
(6.13)

and

ω2 ≈ C/2
M1 +M2

k2a2 (6.14)

Near k = π/a we get (beyond this value the solutions repeat)

ω2 = 2C/M2

ω2 = 2C/M1 (6.15)

The general dependence of ω on k is shown in Fig. 6.4. Two branches of lattice
vibrations can be observed in the results. The lower branch, which is called the acoustic
branch, has the property that as for the monatomic lattice, ω goes to zero as k goes to
zero. The upper branch, called the optical branch, has a finite ω even at k = 0.

The acoustical branch represents the propagation of sound waves in the crystal.
The sound velocity is

vs =
dω

dk
=
√

C

Mav
a (6.16)

where Mav is the average mass of the two atoms.
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Figure 6.4: Optical and acoustical branches of the dispersion relation for a diatomic linear
lattice

It is important to examine the eigenfunctions (i.e., us), for the optical branch
and the acoustic branch of the dispersion relation. For k = 0, for the optical branch, we
have, after substituting

ω2 = 2C
(
1
M1

+
1
M2

)
(6.17)

in the equation of motion (say, Eqn. 6.8)

u =
−M2

M1
v (6.18)

The two atoms vibrate against each other, but their center of mass is fixed. If
we examine the acoustic branch, we get u = v in the long wavelength limit. In Fig. 6.5a
we show the different nature of vibration of the acoustic and optical mode.

Note that for each wavevector, k, there will be a longitudinal mode and two
transverse modes. The frequencies of these modes will, in general, be different since the
restoring force will be different. When optical vibration takes place in ionic materials like
GaAs, polarization fields are set up that vibrate as well. These fields are important for
longitudinal vibration, but not for translational vibration. As a result, in longitudinal
vibrations there is an additional restoring force due to the long-range polarization. In
Fig. 6.5b we show the lattice vibration frequency wavevector relation for GaAs. Notice
that the longitudinal optical mode frequency is higher than that of the transverse mode
frequency.

Phonons: Quantization of Lattice Vibrations
In the previous discussions we evaluated the dispersion relation ω vs. k for a set of cou-
pled harmonic oscillator equations. If we consider a single harmonic oscillator problem
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Phonon dispersion relation in GaAs. The longitudinal (LO, LA) and transverse (TO, TA)
optical and acoustical modes are shown.
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in quantum mechanics with the Hamiltonian

H =
P 2

2m
+
1
2
Cx2 (6.19)

the energy of the vibrating particles is quantized and is given by

εn =
(
n+

1
2

)
h̄ω (6.20)

where n = 0, 1, 2 . . ..
The frequency ω is just the classical frequency (C/M)1/2. In classical physics the

energy of the oscillator can be continuous and corresponds to a continuously increasing
amplitude of vibration. The quantum oscillator has a minimum energy h̄ω/2 and the
energy changes in steps of h̄ω. In the language of second quantization one says that
the number n of Eqn. 6.20 represents the number of “particles” in the system or the
occupation number of the system. One uses the term phonon to describe the lattice
vibrations once they are treated as particles. For a single oscillator the frequency ω is
fixed, but if we have a series of coupled oscillators as is the case for the atoms in a
crystal, the frequency varies and we can introduce the phase determining vector k and
get an ω vs. k relation of the form we derived. However, at each frequency ωk one can
solve the harmonic oscillator problem in quantum mechanics and find that the energy
is quantized and given by

εk =
(
nk +

1
2

)
h̄ωk (6.21)

In the context of lattice vibrations the number nk denotes the number of
phonons in the mode ωk. To find out how many phonons are in a given mode one
needs to define the statistics for phonons which we will discuss later, in Section 9.7.

The wave vector k can take on the values given by

|k| = 2πn
Na

; for n = 0,±1, . . . ,±N − 1
2 , N2 (6.22)

where N is the number of unit cells in the system. This leads to 3N (N longitudinal and
2N transverse) modes of vibration for the system. Each such mode can have a number
n for its occupation number as given by the phonon statistics.

6.2 PHONON STATISTICS
We have briefly discussed how the lattice vibration can be represented by particles called
phonons. How many phonons are present in a given mode ωk at temperature T? As in
the case of electrons, to get this information we need to know the distribution function.
The phonons are characterized as Bosons, i.e., particles which can “share” the same
quantum state. Their occupation number is given by Bose–Einstein statistics which is
valid at thermal equilibrium.

The phonon number is given by

〈nω〉 = 1
exp h̄ω

kBT
− 1 (6.23)
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Figure 6.6: Plot of the Bose–Einstein distribution function. At high temperatures the oc-
cupancy of a state is approximately linear in the temperature. The upper straight line is a
classical limit.

In Fig. 6.6 we show a plot of this distribution function. As can be seen, unlike the
Fermi–Dirac function, for occupancy of electron states, phonon occupancy can be larger
than unity. The higher the temperature, the larger the vibration of the lattice atoms
and larger the value of 〈nω〉. It is also important to note that at low temperatures, the
occupancy of the optical phonons is going to be very small since the optical phonons
have a large energy for any value of k. On the other hand, the acoustic phonons exist
with very small h̄ω (at low k values) and are thus present even at very low temperatures.
Thus at low temperatures, the optical phonons do not play as important a role. One
can see that in the limit

h̄ω � kBT

〈n〉 ≈ kBT

h̄ω
(6.24)

The total energy of the lattice vibrations is given by (ignoring the zero point energy)

U =
∑
k,ρ

〈nk,ρ〉 h̄ωk,ρ (6.25)

where k is the wavevector and ρ represents the polarization of the mode.

6.2.1 Conservation Laws in Scattering of Particles Involving Phonons
A phonon with a wave vector k will interact with particles such as electrons and photons
and change their momentum as if its momentum was h̄k. Remember that in the case
of electrons, the relevant electron momentum is h̄k (wave vector) and not the true
momentum of the electron. The phonons actually do not carry any momentum, they
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just behave as if they had a momentum. The actual physical momentum of the lattice
vibrations is zero. Physically, this is obvious since the atoms are moving against each
other, the crystal as a whole is not moving. Mathematically this can be seen as follows.
The momentum of the crystal is

p =M
d

dt

∑
s

us (6.26)

Due to the nature of the solution for the vibration us, this quantity is zero as
one expects. When we discuss electron-phonon interactions in Section 6.5, we will see
that one has, in general, the conservation laws (for first order phonon scattering)

ki = kf + q (6.27)

Ei = Ef ± h̄wq (6.28)

where ki and kf are the initial and final electron momenta, q is the phonon momenta,
Ei, Ef , h̄ωq are the corresponding energies. In more complex scattering problems where
more phonons are involved, the conservation laws get appropriately modified.

EXAMPLE 6.1 In GaN the optical phonon energy is 93 meV. Calculate the optical phonon
occupation at 77 K and 300 K.

The occupation at 77 K (kBT = 6.6 meV) is

n(ωop) =
1

exp
(
93
6.66

)
− 1

= 9× 10−7

In all practical purposes no optical phonon modes are excited at this temperature. By contrast,
in GaAs (h̄ωop = 36 meV) the occupation at 77 K is 4.5×10−3. We will see later in this chapter
that scattering due to phonon absorption is proportional to n(ω). Thus phonon absorption plays
no role in transport of carriers in GaN at 77 K. We will also see that phonon emission scattering
is proportional to (n(ω)+1). Thus electrons can scatter by emitting phonons even if n(ω) = 0.
However, they need an initial energy of h̄ωop to emit a phonon. At 300 K

n(ωop) = 0.029

6.3 POLAR OPTICAL PHONONS
In our discussions of optical phonons, we have ignored the fact that in some semicon-
ductors, the atoms carry positive and negative charges (the anions and cations). This is
not true only of group IV semiconductors like Si, Ge, C, etc. Due to this ionic nature of
compound semiconductors, there is an additional restoring force due to the long-range
polarization fields that are produced in the lattice vibrations. These polarization fields
are only produced in the longitudinal modes and not in the transverse modes as can
be seen from Fig. 6.7 . Due to this additional restoring force, there is a difference be-
tween the longitudinal and transverse frequencies. We will examine these differences in
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Figure 6.7: Optical modes of vibration of an ionic crystal. (a) During transverse modes,
the vibrations do not produce any polarization effects. (b) Long-range electric fields due to
polarization are produced in longitudinal modes.



6.3. Polar Optical Phonons 227

two approaches. The first one is extremely simplistic and only brings out the physical
concepts. We will work in the relative vector

ur = u− v (6.29)

which represents the relative displacement between the positively and negatively charged
ion lattices. The equation of motion for the transverse vibrations which do not produce
any polarizations is

M ür +Mω2
tur = 0 (6.30)

where M is the reduced mass of the two atoms and ωt is the transverse optical phonon
frequency. In a longitudinal vibration mode, an addition electric field is produced due
to the polarization produced by the vibrations. The equation of motion is given by the
restoring force, which is the sum of the force in Eqn. 6.30 and the electric field force.
The equation for the longitudinal vibration is

− ω2
lMur = −ω2

tMur + F ie
∗ (6.31)

when F i is the internal electric field due to the polarization, and e∗ is an effective
electronic charge per ion. If n is the number of unit cells per unit volume, the polarization
is

P = ne∗ur (6.32)

and the electric field is (ε0 is the free space dielectric constant)

F i =
−P

ε0

=
−ne∗ur

ε0
(6.33)

The longitudinal frequency is then

ω2
l = ω2

t +
ne∗2

Mε0

If the material has a relative static dielectric constant of εrel (= εs/ε0) the result becomes

ω2
& = ω2

t +
nεrele

∗2

mε0
(6.34)

The effective charge, e∗, will be discussed in Section 6.9, when we discuss polar optical
phonon scattering. The longitudinal optical phonon frequency is higher than the trans-
verse phonons at small k. Figs. 6.8 through 6.11 show some phonon dispersion curves
for several semiconductors. For group IV semiconductors, there is, of course, no split-
ting at k = 0 between the longitudinal and transverse phonon frequencies. However,
for III-V compounds there is an important difference arising from the ionicity of the
crystal. An important point to note is that the optical phonons have little dispersion
near k = 0, i.e., the bands are almost flat unlike the acoustic phonons. When we dis-
cuss scattering of electrons by phonons we will make the assumption that the optical
phonons are dispersionless.
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Figure 6.8: Phonon spectra of Si.
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Figure 6.9: Phonon spectra in Ge.
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Figure 6.10: Phonon spectra of GaAs.
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Figure 6.11: Phonon spectra in InAs.
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EXAMPLE 6.2 Using results for phonon spectra for InAs shown, estimate the effective
charge on In and As atoms.

The reduced mass of InAs is 7.57× 10−26 kg. Using the values for ω�, ωt, n and ε0 we
get (εrel ∼ 14)

e∗2 =

(
3.2× 1026 s−2

) (
7.57× 10−26 kg

) (
8.84× 1012 F/m

)
1.8× 1028 m−3 × 14

= 8.57× 10−40 C2

or

e∗ = 2.9× 10−20 C = 0.18 e

InAs is quite ionic, i.e., a fairly large charge transfer occurs between In and As atoms. It is not

as ionic as NaCl where e∗ = e.

6.4 PHONONS IN HETEROSTRUCTURES
We have noticed that the phonon problem is quite similar to the electron problem, since
both involve solutions of differential equations in a periodic potential. In Chapter 3 we
discussed the electronic bandstructure in heterostructures. The concepts of quantum
wells, superlattices, etc., have important consequences on the phonon dispersion just like
they do for electronic spectra. The main difference between the two cases is qualitative.
For electrons, the band offsets in semiconductors are such that heterostructure effects
start becoming important when quantum well dimensions approach the electron de
Broglie wavelength which is ∼ 100 Å. Equivalent length scales for phonons are a few
monolayers. As a result there are phonon modes associated with interfaces and narrow
period superlattices that are quite important.

Confined Optical Phonons
In narrow period superlattices phonon modes can be confined within a single layer just
as electron waves can be confined in a quantum well. For example, the optical phonon
dispersion curves of GaAs and AlAs do not overlap and, therefore, the optical modes
of one material cannot propagate into the other. These modes are confined within their
respective layers. The picture of confined phonons is similar to the case of a particle in
an infinite square well. The allowed wave vectors of these modes are:

|kn| = n

2d
; for n = 1, 2, 3, . . . (6.35)

where d is a thickness of the GaAs or AlAs layer. The energy of these modes has been
found to follow the dispersion curve of the bulk material fairly well. In other words,
E(k) is nearly the same whether one is looking at the continuous values of k for, say,
GaAs or the discrete values of k dictated by Eqn. 6.35.

Interface Phonons
In heterostructures there are also modes in the optical region that have their largest
amplitude at the interfaces between two semiconductors. These interface modes carry a
macroscopic electric field and can be discussed in terms of a simple electrostatic model.
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Theoretical studies have shown that the combined effects of interface and con-
fined phonons in thin structures on electron scattering is quite close to the scattering
calculated by ignoring the finite size phonon effects.

6.5 PHONON SCATTERING: GENERAL FORMALISM

In our discussion of electronic bandstructure, we assumed a time-independent back-
ground periodic potential which led to our bandstructure picture. The problem of lattice
vibrations, on the other hand, led us to the phonons and their dispersion. The ability to
separate in the first order the lattice vibrations from the electronic spectra is dependent
upon the so called adiabatic approximation which can be applied to a time-dependent
problem. This approximation is applicable when the time variation of the Hamiltonian is
slow enough that the problem can be treated as a stationary state (time-independent)
problem at each instant in time. Of course, as we have seen from our discussions on
phonon frequencies, the term slow variation is only relative, since the atoms move at
frequencies of several terrahertz (1012 Hz)! Nevertheless, since the electron masses are
so much smaller than the atomic masses, the adiabatic approximation works quite well.
Thus, we are able to treat the problem in two steps:

1. Electronic states in a perfect lattice (bandstructure).

2. Interaction of electrons with lattice vibrations (phonon scattering).

In the previous sections we have seen that in semiconductors which have two
atoms per basis, we have acoustic phonons which have an essentially linear ω vs. k
relation near k = 0 and optical phonons which have essentially no dispersion (i.e.,
variation of ω) near k = 0. For both acoustic and optical phonons we have longitudinal
and transverse modes of vibration. The motion of the lattice atoms produces strain in
the crystal which according to the deformation potential theory produces perturbation
in the electronic states. This relationship was examined in detail in our chapter on
bandstructure modification by strain (Chapter 3). The effect of optical phonon strain
can be understood on the basis of a similar formalism.

We have seen that there are two kinds of phonons. In acoustic phonons atoms
vibrate essentially in phase with each other as shown in Fig. 6.5a. Strain energy is thus
caused by the derivative of the displacement of atoms. In optical phonons atoms vibrate
against each other and therefore the energy perturbation is proportional to the atomic
displacement. In polar materials, longitudinal optical vibrations cause vibration of the
ions with effective charge e∗. This causes additional scattering.

The electrons see the energy fluctuations produced by the phonons as shown
schematically in Fig. 6.12 and scatter from them.

We will first develop a general formalism for scattering rate and then apply it
to the specific case of acoustic optical or polar optical phonons.

In general, the electron-phonon interaction will depend directly upon the dis-
placement u of the atoms in the crystal. For example, as we shall see later, the form of
the perturbation potential is
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Figure 6.12: A schematic showing the effect of atomic displacement on bandedge energy levels
in real space.

Acoustic phonons UAP ∼ D∂u/∂x
Optical phonons UOP ∼ D0u
Polar optical phonons UOP ∼ e∗u

where e∗ is an effective charge which we will evaluate later and was discussed in Section
6.3 in connection with longitudinal polar optical phonons.

To understand scattering of electrons from lattice vibrations we invoke “second
quantization” according to which these classical vibrations are to be represented by
“particles” or phonons. In Fig. 6.13 we show a schematic of the “first” and “second”
quantization whereby the wave-particle duality is established. According to the second
quantization approach, a harmonic oscillator of classical frequency ω can have energies
given by

E(h̄ω) =
(
n+

1
2

)
h̄ω (6.36)

where n is the number of quanta (of energy h̄ω) in the system. The number operator
has the following properties:

n = a†a
〈n|a†|n− 1〉 = √

n = 〈n− 1|a|n〉 (6.37)

Here |n〉 is the eigenstate corresponding to the number operator n and energy (n +
1/2)h̄ω, a† is called the creation operator and a the destruction operator. In terms
of the creation and destruction operators the displacement u and momentum of the
oscillator are given by

u =
(

h̄

2Mω

)1/2 (
a† + a

)
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Schrodinger
equation Particle behaves as

a wave

Wave nature is manifested only if wavelength is
comparable to or smaller than distances over
which potential energy changes significantly.

FIRST QUANTIZATION

Classical particles

quantization Wave has n quanta
each of energy hν.
The number of
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Particle nature is manifested when either/or:
• wave intensity is very low so that the number of quanta

approaches ~1

• Interactions with matter involve exchange of single quantum.

SECOND QUANTIZATION
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frequency ν and
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Figure 6.13: A conceptual picture of first and second quantization. The second quantization
allows us to describe classical waves as quantum mechanical particles.

p = i

(
Mh̄ω

2

)1/2 (
a† − a

)
(6.38)

where M is the mass of the oscillator. According to quantum mechanics the vibrations
of the atoms are described in terms of creation and destruction operators and in terms
of the phonon occupation number. As shown in Fig. 6.13 the creation operator in the
electron-phonon interaction would then lead to scattering processes in which a phonon
is created after scattering (phonon-emission process). The destruction operator, on the
other hand, would lead to processes where a phonon is destroyed (phonon absorption)
in the scattering.

In general, the lattice vibrations represent coupled oscillators, and the displace-
ment u representing the deformation of the unit cell or of the two atoms in the unit cell,
must be represented in “normal coordinates” where the different modes are uncoupled.
The conversion of real displacement to the normal coordinate description involves a sim-
ple transformation, and the normal modes can then be described by harmonic oscillator

..
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quantum mechanics. In general

u =
1√
N

∑
q

[θqb bq exp(iq ·R) + c.c.] (6.39)

where c.c. is the complex conjugate of the first term, N is the number of unit cells, θqb

are the normal coordinate displacements for wavevector q and polarization b, and bq is
the polarization vector.

The normal coordinate displacement can now be written in terms of the phonon
creation and destruction operators a† and a as discussed above

θqb =

√
h̄

2 m ωqb

(
a
†
−q + aq

)
(6.40)

In the scattering problem of interest we consider the initial state of the electron-
phonon system where the electron has a state |k〉 and the phonons are described by the
product state

∏ |nqb(θ)〉 which describes the phonon distribution. The product state
essentially describes the phonons in all of the possible modes. After scattering, the
electron is in the state |k′〉 and the phonons are described by a new product state where
the number of phonons may have changed due to scattering. We thus have the initial
and final states of the electron- phonon system written as

Ψi = ψk(r)
∏
qb

|nqb(θ)〉

Ψf = ψk
′ (r)

∏
qb

|n′
qb(θ)〉 (6.41)

To keep the matrix element calculations clear, we will examine the phonon part
and the electronic part of the matrix element separately for the sake of clarity. The
phonon part is for a particular normal mode q and polarization b∏

q′′ ,b′′

∏
q′ ,b′

〈nq′′b′′ |θqb|nq′b′ 〉 (6.42)

The quantum mechanics of the harmonic oscillator tells us that θ consists of

terms (a†−q+aq) (as seen by Eqn. 6.40) and these operators will only mix states according
to the following rules

〈nqb − 1|aq|nqb〉 =
√
nqb

〈n−qb + 1|a†−q|n−qb〉 =
√

nqb + 1 (6.43)

The matrix element involving θqb will only involve the above states resulting in a term√
h̄

2 m ωqb
δq,q′ ,q′′ δb,b′

,b
′′
[√

nqb δn′−1,n +
√

nqb + 1 δn′+1,n

]
(6.44)
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Figure 6.14: (a) A schematic of an absorption process where a phonon is absorbed (destroyed)
and the energy and momentum of the electron are altered and (b) the emission of a phonon
where a phonon is created.

The two processes, schematically shown in Fig. 6.14, represent the “destruction”
and “creation” of a phonon. The first term in the brackets involves removing a phonon
from the initial state during scattering and is the phonon absorption term. The second
term involves adding an extra phonon to the final state and is the phonon emission
term. Note that if there are no initial phonons in a system the absorption is zero. On
the other hand, the emission process involves the (n−qb + 1) term and is nonzero even
if there are no initial phonons present. At equilibrium the phonon occupation is simply
given by the phonon statistics discussed in Section 6.3.
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We will now consider the electronic part of the matrix element. If we write the
general electron-phonon interaction as

Hep =
∑
q

[
Hqb θqb eiq·R + c.c.

]
(6.45)

then the electronic part of the matrix element for a particular mode (qb) is

1
V

∫
u∗
n′k′ e−ik·r Hqb(r) e±iq·R unk eik·r d3r (6.46)

The r-space interaction can be broken up into a sum over all lattice sites R,
and an integral over a unit cell. This gives

1
V

∫
cell

Ψ∗
n′k′ Hqb Ψ∗

nk d3r
∑
R

exp
[
i(k ± q − k

′
) ·R

]
(6.47)

We assume that over the small size of the unit cell exp[i(k − k
′
) · r] ≈ 1. The

lattice sum is given by ∑
R

exp
[
i(k ± q − k

′
) ·R

]
= δk±q−k

′
,G (6.48)

where G is a reciprocal vector. This essentially says that momentum is conserved to
within a reciprocal lattice vector in a crystal. In a scattering process, if G = 0 the
process is the normal process. If G = 0, the process is an Umklapp process. The matrix
element can now be written as

M electronic
k,k

′ =
1
V

Cqb G(k,k
′
) δk±q−k

′
,G (6.49)

where
Cqb G(k,k

′
) =

∫
cell

Ψ∗
n′k′ Hqb Ψ∗

nk d3r (6.50)

In most phonon scattering problems Hqb does not vary over the unit cell and
the equality in Eqns. 6.50 can be written as

CqbG(k,k
′
) = HqbG(k,k

′
) (6.51)

where

G(k,k
′
) =

1
2

∑
µ,µ′

Iµ,µ′ (k,k
′
)

Iµ,µ′ (k,k
′
) = 〈n′

k
′
µ

′ |nkµ〉
n is the band index
k is the electron wavevector
µ is the electron spin.
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i.e., G(k,k
′
) represents the overlap of the cell periodic part of the initial and final

electron states. As we have discussed in the chapter on bandstructure, the bottom of
conduction band for direct bandgap material is essentially s-type in which case the
overlap integral for scattering within the conduction band would be unity. However,
because of the small p-type mixture, the integral is given by (Fawcett et al., 1970)

G(k,k
′
) =

{√
1 + αEk

′
√
1 + αEk + α

√
Ek

′Ek cos θk
}2

(1 + 2αEk
′ )(1 + 2αEk)

(6.52)

where α is the non-parabolicity factor given by h̄2k2/(2m∗) = E(1 + αE), and θk is
the angle between k and k

′
. The hole bands are p-type in nature with strong angular

dependence of the overlap integral. For scattering within the same bands (e.g. heavy
hole to heavy hole), the integral is approximately

G(k,k
′
) =

1
4
(1 + 3 cos2 θk) (6.53)

while for interband scattering (e.g. heavy hole to light hole)

G(k,k
′
) =

3
4
sin2 θk (6.54)

The electron-phonon matrix element becomes for normal processes

|〈f |Hep|i〉|2 = h̄

2NM

C2
qb G(k,k

′
)

ωqb

(
n(ωqb) +

1
2
∓ 1
2

)
δk±q−k

′
,0 (6.55)

where the upper sign is for phonon absorption and the power sign is for phonon emission.
The scattering rate, according to the golden rule, is then

W (k) =
1

8π2NM

∫
C2

qb G(k,k
′
)

ωqb

(
n(ωqb) +

1
2
∓ 1
2

)
×δk±q−k

′
,0 δ

(
Ek

′ −Ek ∓ h̄ωqb

)
d3k

′
(6.56)

6.6 LIMITS ON PHONON WAVEVECTORS
In a phonon scattering the electron’s energy and momentum are altered. It is important
to note that while the electrons and phonons have similar wavevectors, the electron
energy is much larger than the phonon energy due to the very different dispersion
relations. It is important to consider the consequences of the energy and momentum
conservation.

In normal processes involving phonon scattering, both energy and momentum
are conserved

E(k
′
) = E(k)± h̄ω(q) (6.57)

For parabolic electron bands we have

h̄2k
′2

2m∗ =
h̄2k2

2m∗ ± h̄ω(q) (6.58)
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Figure 6.15: Wavevectors of the electron and phonon in a scattering event.

and
k

′
= k ± q (6.59)

If θ is the scattering angle, we have, as shown in Fig. 6.15,

k
′2 = k2 + q2 ± 2k · q

= k2 + q2 ± 2kq cos θ (6.60)

From this and Eqn. 6.58 we have

h̄2k
′2

2m∗ =
h̄2k2

2m∗ +
h̄2q2

2m∗ ± h̄2kq cos θ
m∗

=
h̄2k2

2m∗ ± h̄ω

thus
h̄2q2

2m∗ = ∓ h̄2kq cos θ
m∗ ± h̄ω (6.61)

or

h̄q = h̄k

[
∓2 cos θ ± 2ωm∗

h̄kq

]

= h̄k

[
∓2 cos θ ± 2ω

v(k)q

]
(6.62)

where v(k) = h̄k/m∗ is the electron velocity. The value of cos θ is restricted between ±1
and this imposes limits on the wavevectors of the phonons involved in the scattering. It
is useful to consider the restriction arising from the momentum and energy conservation
relations for various kinds of phonons.

6.6.1 Intravalley Acoustic Phonon Scattering
As we have seen in our discussion of Section 6.1, acoustic phonons have small energies for
small values of k. Energy momentum conservation requires that the phonons involved
in scattering electrons have small phonon wavevector. For acoustic phonons ω/q = vs,
the sound velocity, and Eqn. 6.62 gives

h̄q = 2h̄k
[
∓ cos θ ± vs

v(k)

]
(6.63)
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Figure 6.16: A scattering event in which the electron is scattered backwards. This defines the
maximum limit for the phonon vector.

The upper limit on the phonon vector involved in a scattering is given by θ = π for
phonon absorption and by θ = 0 for phonon emission. The upper limits are then

h̄qmax = 2h̄k
[
1± vs

v(k)

]
(6.64)

since vs ∼ 105 cm/sec and typically the electron velocity, v(k) ∼ 106 – 107 cm/sec.
This corresponds to a backward scattering of the electron as shown in Fig. 6.16. The
maximum acoustic phonon wavevectors are also close to the zone center and energy
change produced by these phonons is

∆Emax = h̄ωmax

∼ h̄qmax vs

∼ 10−4 eV (6.65)

Since the energy change is so small, one usually takes the acoustic phonon scattering
to be elastic since ∆Emax is so much smaller than the electron energy. Only at very
low temperatures does one need to be concerned about the inelastic nature of acoustic
phonon scattering.

6.6.2 Intravalley Optical Phonon Scattering
We have seen from Section 6.1 that for optical phonons the energy is essentially inde-
pendent of k near the zone center. We will use the constant phonon frequency model
for our scattering calculations. For constant frequency ω0, we can solve for q in Eqn.
6.62 to get

h̄q = h̄k

[
− cos θ +

√
cos2 θ ± h̄ω0

E(k)

]
(6.66)

The maximum phonon vector is then, (cos θ = −1)

h̄qmax = h̄k

[
1 +

√
1± h̄ω0

E(k)

]
(6.67)
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Figure 6.17: Bandstructure of Si and constant energy ellipsoids for Si conduction band. There
are six equivalent valleys in Si at the bandedge. The g and f intervalley scattering processes
are shown.

We note from this equation that an electron cannot emit an optical phonon unless its
energy is larger than h̄ω0. Also only zone center phonons are important in scattering.

6.6.3 Intervalley Phonon Scattering

Our bandstructure studies have shown that there are a number of “valleys” and “bands”
in the E vs. k relationship. Electrons can scatter from one valley into another. A vari-
ety of important intervalley or interband scattering processes are induced by phonons.
Fig. 6.17 shows the important processes in Silicon electron transport. where we have
6 equivalent X-valleys. Scattering between opposite valleys, e.g., < 100 > to < 100 >
is called a g-process and that between non-opposite valleys is called an f-process (e.g.,
between < 100 > and < 010 >. Once again, we must maintain momentum conservation
to within a reciprocal lattice vector. In Si scattering, the intervalley scattering involves
an Umklapp process. The reciprocal lattice vector involved in the g-process is G100 and
for an f-process it is G111. It must be remembered that the minimum of the conduction
band in Si is not at the zone edge (X-point) but is only 85% to the zone edge. Thus, an
additional phonon of wavevector 0.3 times the X-point zone edge value 2π/a(100) is re-
quired for a g-process. For the f-process one needs a phonon with the wave vector along
the Σ1 symmetry line (11◦ off a < 100 > direction) and with the zone edge magnitude
is required.

In GaAs, as shown in Fig. 6.18, the lowest valley for electron transport is the
Γ-valley and the next valley is the L-valley with a separation of 0.36 eV. The X-valleys
are slightly higher in energy at ∼ 0.5 eV above the Γ-point. Energy conservation ensures
that an electron cannot scatter from the Γ- valley to the L-valley unless the electron
energy is equal to at least Ei = ∆EΓL − h̄ω, in which case the electron can absorb a
phonon and move to the upper valley. The momentum of the phonon has to be close to
the zone edge value to provide the electron the momentum difference between the Γ and
the L-valleys. Scattering from the Γ-valley to the L-valley plays a very important role
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Figure 6.18: Scattering process involving intervalley scattering in GaAs. Electrons in Γ-valley
can scatter into the L-valley (or even the X-valley) by absorbing or emitting an appropriate
phonon. This scattering process is important at high electric fields and leads to the negative
differential resistance in GaAs.

in GaAs electron transport. The scattering process also takes the electron from a low
mass Γ-valley (m∗ ≈ 0.067 m0) to a high mass L-valley (m∗ ≈ 0.35 m0). This results
in a negative differential mobility in the high field transport of direct gap materials like
GaAs, InGaAs, etc.

Holes can also scatter from one band to another as shown in Fig. 6.19. The
interband scatterings are important at both low and high electric fields, because of the
degeneracy of the HH and LH bands at the zone center. In most semiconductors, the SO
band is separated from the HH and LH bands by an energy of several hundred meV’s,
so that scattering into the SO band does not occur until high electric fields. However,
for Si, this is not the case since the SO band is only 44 meV away from the top of the
valence band. This is one of the reasons that hole transport in Si is comparatively poor.

6.7 ACOUSTIC PHONON SCATTERING
We will apply the general formalisms developed so far to specific phonon scattering
processes. We start with acoustic phonons which is an almost elastic scattering process.
We will assume that the overlap integral involving the central cell function is unity. In

H-L
L-S

H-S

Heavy hole

Light hole

Split-off

Figure 6.19: Important interband scattering between the hole bands.
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the case of acoustic phonons, the electronic energy perturbation is related to the strain
in the crystal ∇u and is given by the deformation potential theory as

Hep = D
∂u

∂r

=
1√
N

∑
q

[i θqb D bq · q exp(iq ·R) + c.c.] (6.68)

where D is the deformation potential for the particular valley of interest. Thus, for
acoustic phonons we have from Eqn. 6.50

C2
qb = D2q2

Also for acoustic phonons the phonon dispersion relation is simply

ωq = vsq

where vs is the sound velocity. In addition since the low energy phonons will dominate
the scattering process

n(ωq) =
1

exp (h̄ωq/kBT )− 1
≈ kBT

h̄ωq

Finally, assuming that the overlap integral is unity, we get for the scattering
rate

W (k) =
V

8π2NM

×
∫

d3k
′ D2q2

ωq
δ(k ± q − k

′
) δ(Ek

′ −Ek ∓ h̄ωq)

×
(
n+

1
2
∓ 1
2

)
(6.69)

Note thatM = ρV/N , where ρ is the mass density. We also ignore 1/2 in comparison to
the occupation number n, which is a good approximation except at temperatures below
∼ 50 K.

With these approximations, we find that the acoustic phonon scattering rate is

W (k) =
D2kBT

8π2h̄ρv2
s

∫
d3k

′
δ(k ± q − k

′
) δ(Ek

′ −Ek ∓ h̄ωq) (6.70)

Ignoring h̄ω in the energy δ function (i.e., assuming elastic scattering) and using the
definition of the density of states

1
8π3

∫
d3k = N(Ek)
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we get

W (k) =
π D2 kBT N(Ek)

h̄ρv2
s

The total scattering is the sum of emission and absorption rates which for
acoustic scattering (under our assumptions) are the same. Thus, the total rate is we get

Wac(k) =
2π D2 kBT N(Ek)

h̄ρv2
s

(6.71)

The acoustic phonon scattering is proportional to the temperature as one may expect.
In Fig. 6.20 we show a plot of acoustic phonon scattering rates as a function of

energy for GaAs. We see that the scattering rates are of the order of ∼ 2 × 1012 s−1.
Acoustic phonon scattering is usually the dominant phonon scattering at low temper-
atures and low fields, since the system does not have enough energy to excite optical
phonons.

EXAMPLE 6.3 Calculate the 300 K acoustic phonon scattering rate for an electron in GaAs
if the initial electron energy is 0.1 eV. The relevant material parameters are

D = 7.8 eV

ρ = 5.37 g/cm3

vs = 5.22× 105 cm/s

The scattering rate is

Wac =

√
2 (m∗)3/2 kBT D2

√
E

π ρv2
s h̄

4

=

√
2
(
0.067× 9.1× 10−31 kg

)3/2 (
0.026× 1.6× 10−19 J

)
π
(
5.37× 103 kg/m3

)
(5.22× 103 m/s)2

×
(
7.8× 1.6× 10−19 J

)2 (
0.1× 1.6× 10−19 J

)1/2
(1.05× 10−34 Js)4

= 3.13× 1011 s−1

On an average the electron will scatter every 3.2 ps.

6.8 OPTICAL PHONONS: DEFORMATION POTENTIAL SCATTERING
In optical phonons the two atoms of the basis vibrate against each other. This produces
strain and, if the two atoms have a charge e∗, a polar field. Both of these perturbations
cause scattering. The strain produced causes fluctuations in the electron energy and
is responsible for deformation potential scatterings. The scattering potential for the
optical phonons is

Hep = D0 · u
where D0 is the optical deformation potential, and u is the relative displacement of the
two atoms in the basis.
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Figure 6.20: Acoustic phonon scattering rates in silicon as a function of energy.

Once again, expanding in terms of the normal coordinates, the interaction
Hamiltonian is

Hep =
1√
N

∑
q

{θqb exp(iq ·R) + c.c.}D0 · bq (6.72)

and the appropriate coupling coefficient is

C2
q = D2

0

where bq represents the polarization vector. As noted earlier we will assume that opti-
cal phonon have a fixed frequency ω0 which is the zone center frequency. For diamond
structure the transverse and longitudinal phonons have the same frequency at the zone
center. This is not the case for the zinc-blende structures, but the differences are quite
small and can be ignored. With this dispersionless ω approximation, the energy con-
serving δ-function in the Fermi golden rule for the scattering rate (Eqn. 6.56) becomes
independent of the scattering angle and one is simply left with an integration over the fi-
nal energy states. This simply gives the final state density of states. Thus, the scattering
rate becomes

W (k) =
πD2

0

ρω0
[n(ω0) N(Ek + h̄ω0)] (absorption)
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Figure 6.21: A schematic of the inelastic phonon scattering (e.g., optical phonon scattering–
deformation type or polar type). The absorption (ABS) process can occur at low energies, but
the emission process (EM) can only start once the electron has an energy equal to h̄ω0.

=
πD2

0

ρω0
[(n(ω0) + 1) N(Ek − h̄ω0)] (emission) (6.73)

where N(Ek) is the density of states (without spin degeneracy). We have also assumed
that G(k,k

′
), the overlap integral, is unity. This approximation also has to be removed

for the hole bands.
In Fig. 6.21 we show a typical form of the scattering of electrons from optical

phonons. The scattering rates have two distinct regions. At low electron energies the
electrons scatter only by absorption of the phonons. This scattering rate is proportional
to n(ω0), the occupation probability, and is thus very sensitive to the lattice temper-
ature. At higher electron energy, the scattering is dominated by the phonon emission
process with the factor (n(ω0) + 1). Phonons can be emitted even if n(ω0) is zero,
provided the starting electron has an energy at least equal to the phonon energy h̄ω0.

EXAMPLE 6.4 Calculate the deformation optical phonon absorption for an electron with
the following parameters:

E = 0.1 eV

D = 1.0× 109 eV/cm
ρ = 2.33 g/cm3

ω0 = 9.8× 1013 rad/s
T = 300 K

m∗ = 0.26 m0

The phonon occupation at 300 K is 0.092. The absorption rate is

Wabs =
D2

0n(ω0)(m
∗)3/2(Ef )

1/2

ρω0

√
2πh̄3
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=

(
1011 × 1.6× 10−19 J/m

)2
(0.092)(

2.33× 103 kg/m3
)
(9.8× 1013 s−1)

×
(
0.26× 9.1× 10−31 kg

)3/2 (
0.164× 1.6× 10−19 J

)1/2(√
2π
)
(1.05× 10−34 Js)3

= 3.7× 1012 s−1

6.9 OPTICAL PHONONS: POLAR SCATTERING
In addition to the strain energy perturbation produced by optical phonons, in polar
materials there is a polarization related perturbation. As shown in Fig. 6.7 in polar
materials such as GaAs, InAs, etc., when the cation and anion vibrate against each
other in a longitudinal optical phonon mode, a polarization field is created. This causes
a strong perturbation for the electrons resulting in the polar optical phonon scattering.
The dipole produced by this perturbation is

δp = e∗u (6.74)

where e∗ is an effective charge in the cation or anion. We will first relate e∗ to physically
observable properties of the semiconductor. The dielectric constant of the semiconductor
has a contribution from the electronic levels (the dominant contribution) and the lattice
dipole moments. At low frequencies both of these are important. However, at high
frequencies only the electronic contribution is present, since the lattice response is too
slow. The polarization of the medium is given by

ptot(0) =
(
εs − ε0

εs

)
D (low frequency)

ptot(∞) =
(
ε∞ − ε0

ε∞

)
D (high frequency) (6.75)

where εs is the low frequency (static) permitivity, ε∞ is the high frequency permitivity,
and D is the displacement vector. The difference in polarization is due to the lattice
dipoles, which is then given by

plattice = ptot(0)− ptot(∞)
= ε0

(
1
ε∞

− 1
εs

)
D (6.76)

The lattice vibrations causing the dipole satisfy the equation

m̄

(
∂2u

∂t2
+ ω2

0u

)
= F (6.77)

where F is the applied force and m̄ is the reduced mass. The polarization is given by

plattice =
e∗u
V0

(6.78)
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where V0 is the unit cell volume and e∗ is the effective charge. The equation for the
polarization is then (force = e∗D/ε0);

m̄V0

e∗

(
∂2p

∂t2
+ ω2

0p

)
=

e∗D
ε0

(6.79)

The value of the polarization is for static case (no time dependence)

plattice =
e∗2D

m̄ V0 ω2
0

(6.80)

Equating these two values from Eqns. 6.78 and 6.80, we get

e∗2 = m̄ V0 ω2
0ε

2
0

(
1
ε∞

− 1
εs

)
(6.81)

ε∞ and εs can be measured experimentally so that e∗ can be evaluated.
We are now ready to calculate the scattering rate from the polar optical phonons.

Only longitudinal modes will result in such a polarization fields as discussed in Section
6.3. Firstly we consider the interaction Hamiltonian. The basic energy interaction energy
is

Hep =
∫

ρ(R) φ(R) d3R

where ρ(R) (= ∇·D) is the electronic charge density and φ(R) is the electric potential
due to the polarization in the unit cell at R. The polarization, as before, is

p(R) =
e∗u(R)

V0

To calculate the perturbation we evaluate the integral

Hep =
∫
{∇ ·D(R)} φ(R) d3R

= −
∫

D(R) · ∇φ(R) d3R

=
∫

D(R) · F (R) d3R (6.82)

where D(R) is the electric displacement associated with the charge and F (R) is the
field associated with the polarization.

The electric displacement at a point R due to an electron at a point r is

D(R) =
−1
4π

∇
(

e

|r −R|
)

In the presence of screening, the displacement is suppressed by a screening factor
exp(−λ |r −R|) as discussed in the case of ionized impurity scattering. Thus, we have

D(R) =
−1
4π

∇
{

e

|r −R| e
−λ|r−R|

}
(6.83)



248 Chapter 6. Lattice Vibrations: Phonon Scattering

Substituting the normal coordinate form for the lattice displacement

u(R) =
1√
N

∑
q,b

{θq,b bq exp(iq ·R) + c.c.} (6.84)

and using the expression Eqn. 6.83 for the displacement we get (remember that F (R) =
−P /ε0)

Hep =
1√
N

ee∗

V0ε0

∑
q,b

∫ {
∇
[
exp(−λ |r −R|)

|r −R|
]
eiq·R θq,b bq + c.c.

}
d3R

The spatial integral has the same form as the integral solved by us in ionized impurity
scattering.

The resulting value for the electron-polar optical phonon interaction is

Hep = − 1√
Nε0

ee∗

V0

∑
q

q

q2 + λ2
{i θq exp(iq · r) + c.c.} (6.85)

The scattering rate then becomes from Eqns. 6.50 and 6.56

W (k) =
V0

8π2m̄ω0

(
ee∗

ε0V0

)2 ∫ qmax

0

∫ 1

−1

∫ 2π

0

q4

(q2 + λ2)2
δk±q+k

′
,0

×
(
n (ω0) +

1
2
∓ 1
2

)
δ
(
Ek

′ −Ek ∓ h̄ω0

)
dq d(cos θ) dφ (6.86)

The scattering rate depends explicitly on q making this integral more difficult
than the ones encountered in the case of deformation scattering. The scattering rate
integral becomes for parabolic bands

W (k) =
V0

4π m̄ ω0

(
ee∗

ε0V0

)2 1
h̄v

[
n(ω0)

∫ qmax,a

qmin,a

q3

(q2 + λ2)2
dq

+(n(ω0) + 1)
∫ qmax,e

qmin,e

q3

(q2 + λ2)2
dq

]

where v is the electron velocity and qmin and qmax are the limits on the phonon wavevec-
tor. We will now proceed assuming no screening effect (λ = 0), in which case the integrals
are simple

W (k) =
V0

2π m̄ h̄ ω0 v

(
ee∗

ε0V0

)2

(6.87)

×
[
n(ω0) ln

(
qmax

qmin

)
+ (n(ω0) + 1) ln

(
qmax

qmin

)]

qmax = k

(
1 +

√
1± h̄ω0

E(k)

)
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and

qmin = k

(
∓1±

√
1± h̄ω0

E(k)

)

where the upper sign corresponds to phonon emission (qmax,e, qmin,e) and the lower sign
corresponds to phonon absorption (qmax,a, qmin,a).

Using the identity

sinh−1(x) = ln
[
x+

√
1 + x2

]
we get for the final scattering rate

W (k) =
V0

2π m̄ h̄ ω0 v

(
ee∗

V0ε0

)2
[
n(ω0) sinh−1

(
Ek

h̄ω0

)1/2

+(n(ω0) + 1) sinh−1

(
Ek

h̄ω0
− 1

)1/2
]

(6.88)

The emission rate is zero unless Ek > h̄ω0. Substituting for the value of effective charge
we get

W (k) =
e2ω0

2πh̄v

(
1
ε∞

− 1
εs

)[
n(ω0) sinh−1

(
Ek

h̄ω0

)1/2

+(n(ω0) + 1) sinh−1

(
Ek

h̄ω0
− 1

)1/2
]

(6.89)

In Fig. 6.22 we show a plot of the polar optical phonon scattering for electrons
in GaAs at room temperature. This scattering is not very important at low temperature
since the occupation probability n(ω0) is small, but is a dominant scattering mechanism
in compound semiconductors at room temperature. In the presence of an electric field
electrons have higher energies and polar optical phonon emission becomes a dominant
scattering mechanism even at low temperatures.

To evaluate the momentum relaxation time for the polar optical phonons, one
has to weigh each scattering by the change in momentum ∓(q/k) cos θ

q

k
cos θ = cos θ

√
cos2 θ +

(
k′2

k2
− 1

)
− cos2 θ (absorption)

−q

k
cos θ = ± cos θ

√
cos2 θ −

(
1− k′2

k2

)
− cos2 θ (emission)

This leads to the following expression

1
τm

=
e2ω0

(4π)2h̄v

(
1
ε∞

− 1
εs

)
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Figure 6.22: A comparison of the polar optical phonon scattering and acoustic phonon scat-
tering in GaAs at room temperature.

×
(
n(ω0)

(
1 +

h̄ω0

Ek

)1/2

+ (n(ω0) + 1)
(
1− h̄ω0

Ek

)1/2

+
h̄ω0

Ek

[
−n(ω0) sinh−1

(
Ek

h̄ω0

)1/2

+ (n(ω0) + 1) sinh−1

(
Ek

h̄ω0
− 1

)1/2
])

(6.90)

Once again the emission process occurs only if En > h̄ω0.

It should be noted that as with optical phonons, acoustic vibrations also cause
polar vibrations. An acoustic vibration produces a polar charge fluctuation called the
piezoelectric effect. In Chapter 1, Section 1.7 we have discussed this effect for semicon-
ductors. Piezoelectric scattering is much weaker than polar optical phonon scattering
and becomes significant only at very low temperatures in very pure materials.
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Figure 6.23: The g and f intervalley scattering rates in Si at 300 K. The nature of the g and
f scattering are shown in Fig. 6.17.

6.10 INTERVALLEY SCATTERING

We will now discuss scattering of carriers between various valleys in the bandstructure.
In Section 6.6.2 we have discussed how phonons can cause intervalley scattering. In Figs.
6.17 and 6.18 we have shown the various intervalley processes that can occur in direct
and indirect bandgap materials. The mathematical treatment of intervalley scattering
is done in a very simple phenomenological manner by simply postulating a deformation
potential-like interaction

Hep = Dif u (6.91)

where Dif is the intervalley deformation potential that scatters the electron from the
valley i to f . In a sense this choice is like that for a deformation optical phonon scat-
tering. In general, the scattering could involve an acoustic phonon, but one still chooses
the expression in given above and simply redefines Dij . The value of Dij is usually
found by fitting to experimental data. By analogy with the deformation optical phonon
scattering discussed in Section 6.8, we have, for the scattering rate

W (k) =
πD2

ijZf

ρ ωij

(
n(ωij) +

1
2
∓ 1
2

)
N (E ± h̄ωij −∆Efi) (6.92)

where N(E) is the density of states in the final valley (without spin degeneracy), Zf is
the number of equivalent final valleys, ∆Efi is the energy separation between the initial
and final valley (= 0 for Si and 0.3 eV for Γ to L valley transfers and −0.3 eV for L to
Γ valley transfers in GaAs). The frequency of the phonons responsible for scattering is
ωij . In Figs. 6.23 and 6.24 we plot some typical results for the intervalley scattering in
Si and GaAs.
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Figure 6.24: Intervalley scattering rates for electrons in Γ-valley scattering into the L-valley
in GaAs at 300 K.

6.11 ELECTRON–PLASMON SCATTERING

We will now briefly review scattering of electrons from plasmons—a quantum description
of free charge excitations or plasmons. The mathematics of this scattering is similar to
that of polar optical phonon scattering. Plasmons involve the collective vibration of the
free electrons against the fixed background of positive charges. Fig. 6.25 shows such
a vibration. Just like the longitudinal polar optical phonons, these vibrations create a
long-range electric field from which the electrons can scatter. This scattering rate is
given by the same expressions derived by us for polar optical phonon scattering except
that we do not need to worry about the effective charge e∗. We simply need to find the
frequency of the plasmons.

The electron gas moves as a whole with respect to the positive ion background,

ρ(r)

r

Figure 6.25: A schematic of the local charge density ρ(r) produced in the collective oscillation
of the free charge against the fixed positive background charge.
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the displacement u creates an electric field

F =
neu

ε
(6.93)

where n is the electron density. This creates a restoring force on the electrons. The
equation of motion then becomes

m∗ d
2u

dt2
= −eF

= −ne2u

ε
(6.94)

This gives a plasma frequency ωp, where

ωp =
(

ne2

εm∗

)1/2

(6.95)

The scattering from these plasmon fields has the same form as that of the polar optical
phonon scattering. The scattering rate is

Wp(k) =
e2ωp

(
N(ωp) + 1

2 ∓ 1
2

)
4πεh̄v

ln

[
qc/(2k)

∓1±√
1± (h̄ωp/Ek)

]
(6.96)

Here qc is either the maximum value of the phonon vector given by Eqn. 6.64 or is the
inverse of the screening length (λ−1), whichever is smaller. For plasma oscillations to
be sustained, we must have ωpτ � 1, where τ is the relaxation time for the scattering
electrons. This tells us that the plasma oscillations can only be sustained for the carrier
concentration n > 1017 cm−3 since τ ∼ 10−13 s. In Fig. 6.26 we show typical values
of plasma scattering at room temperature for GaAs with a carrier concentration of
1017 cm−3. As can be seen from these rates, this scattering is quite strong at such high
carrier concentrations.

6.12 TECHNOLOGY ISSUES
Phonon scattering is intimately tied to the performance of semiconductor electronic
and optoelectronic devices. Other scattering processes (ionized impurity, defect-related
scattering, carrier-carrier scattering) can be eliminated by proper choices of material
systems. Phonon scattering, on the other hand, is present in perfect material. Although
it can be suppressed at low temperatures, it is still effective in limiting “coherent”
electron devices of the type discussed in Chapters 8 and 11.

Phonon scattering is usually detrimental to high speed device performance. In
Table 6.1 we show how low field mobility and high field mobilities are influenced by
various phonon scattering processes. It is interesting to note that low field mobility
is greatly improved by cooling a device. This is because optical phonon occupation
essentially goes to zero and electrons (at low fields) do not have enough energy to emit
optical phonons. On the other hand, at high fields there is only a small improvement
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Figure 6.26: Electron-plasmon scattering rate versus energy for electrons in GaAs at room
temperature. The electron density is n0 = 1.0× 1017 cm−3.

in the carrier velocity, since optical phonon emission is proportional to (n(ω) + 1) and
even at low temperature it can be very strong.

Phonon scattering is an important (usually the most dominant) mechanism of
energy loss for electrons and holes. This does have some beneficial effects on devices, as
shown in Table 6.1. In semiconductor lasers (discussed in Chapter 9) electrons and holes
are injected into an active region with high energies. These carriers have to rapidly lose
their energy to “thermalize” to the bandedges from where they recombine to produce
photons. It is thus essential that the phonon emission process be very rapid.

In impact ionization we have seen in Chapter 5 that electrons (holes) must
reach a certain energy threshold before carrier multiplication can start. In the absence
of phonon emission this threshold will be reached at very low electric fields and devices
will breakdown. Thus phonon emission helps in high power devices.

6.13 PROBLEMS
6.1 Consider a crystal which can be represented by a simple linear chain as far as
the acoustic phonon spectra is concerned. If the sound velocity in this material is 3 ×
105 cm/s, what is the phonon frequency at the zone edge (a = 5.6 Å)?
6.2 Calculate the Debye frequency for GaAs where the sound velocity is 5.6×105 cm/s.
Assume that the volume of the unit cell is 4.39× 10−23 cm−3.
6.3 The optical phonon energies of GaAs and AlAs are 36 meV and 50 meV respectively
at the zone center. What is the occupation probability of these optical phonons at 77 K
and 300 K?
6.4 Consider a crystal of GaAs in which the sound velocity is 5.6× 105 cm/s and the
optical phonon energy is 36 meV and is assumed to have no dispersion. Using the Debye
model for the acoustic phonon energy and the Einstein model for the optical phonons,
calculate the lattice vibration energy per cm3 at 77 K, 300 K and 1000 K. If the Ga–As
bond energy is 1 eV, compare the phonon energy with the crystal binding energy per
cm3.
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LIMITATIONS DUE TO PHONON SCATTERING

Low field + low temperature
mobility important in coded electrons

Acoustic phonons dominate

Low field + high (room) temperature
mobility determines gate access resis-

tance in FETs, base difusion in bipolar
devices

Optical phonon scattering + acoustic
phonon scattering

High field + low temperature
device speed, high frequency

operation of cooled electronics

Optical phonon emission dominates
little temperature dependence

High field + high temperature
device high frequency limits

through saturation velocity

Optical phonon emission + absorption
dominant

BENEFITS OF PHONON SCATTERING

High speed lasers Carriers injected at high energies must
‘‘thermalize’’rapidly. Fast phonon
emission helps device speed.

High power electronic devices
reduction in impact ionization

Phonon emission keeps the electron
(hole) energy low, so that carriers do not
reach the threshold energy at low fields.

e
e

hω

Emission

e
e

hω

Emission

e
e

hω
Absorption

−
−
−
−

Phonon emission

Table 6.1: A schematic of how phonon scattering influences transport and device parameters.
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6.5 In Si electron transport, the intervalley scattering is very important. Two kinds of
intervalley scatterings are important: in the g–scattering an electron goes from one valley
(say a [001] valley) to an opposite valley ([001̄]), while in an f–scattering, the electron
goes to a perpendicular valley ([001] to [010], for example). The extra momentum for
the transitions is provided by a phonon and may include a reciprocal lattice vector.
Remembering that Si valleys are not precisely at the X–point, calculate the phonon
vectors which allow these scatterings.
6.6 Assuming k conservation, what is the phonon wavevector which can take an electron
in the GaAs from the Γ–valley to the L–valley?
6.7 In the text, we solved the problem of phonon dispersion in a two atom basis system
assuming that the force constants are the same between theM1–M2 bonds and theM2–
M1 bonds. This is true for longitudinal modes, but not for transverse modes. Assume
two force constants f1 and f2 and show that the phonon solutions are given by the
equation

ω4 − M1 +M2

M1M2
(f1 + f2)ω2 +

2f1f2

M1M2
(1− cos ka

2
) = 0

and
u2

u1
=
(f1 + f2 exp(ika/2))/

√
M1M2

f1 + f2
M2

− ω2

6.8 The optical phonon zone center energy for GaAs is 36 meV and for AlAs it is
50 meV. Calculate the force constants for the two materials, assuming a simple linear
chain model. Based on these results, what are the sound velocities in the two semicon-
ductors?
6.9 Based on a simple linear chain model, calculate the phonon dispersion in a 2 mono-
layer/2 monolayer GaAs/AlAs superlattice. Use the information obtained from the pre-
vious problem.
6.10 Estimate the rms fluctuation of the atoms in an fcc structure with a bulk modulus
of 7.5 × 1011 erg cm−2 at a temperature of 300 K. Assume that each unit cell has a
thermal energy of ∼ kBT/2.
6.11 Calculate and plot the total scattering rate for acoustic phonons as a function of
electron energy in GaAs and Si at 77 K and 300 K. Plot the results for electron energies
between 0.0 and 0.5 eV.
6.12 Calculate and plot the total scattering rate for polar optical phonons in GaAs
for electron energy between 0 and 300 meV, at 77 K and 300 K. Calculate the results
separately for the absorption and emission of the optical phonon.
6.13 Calculate the optical phonon scattering rates in Si at 77 K and 300 K as a function
of electron energy between 0 and 300 meV.
6.14 Using momentum conservation considerations (i.e., momentum is conserved to
within a reciprocal vector), identify the phonon vectors necessary for intervalley scat-
tering in (a) GaAs for Γ-X and Γ-L scattering; (b) in Si for g and f scattering and in
(c) in Ge for L-X scattering.
6.15 Calculate the Γ→L and L→ Γ intervalley scattering rate for GaAs electrons as a
function of energy at 77 K and 300 K.
6.16 Calculate the f- and g-type scattering rates for Si as a function of electron energy
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at 77 K and 300 K.
6.17 Using GaAs and In0.53Ga0.47As bandstructure plots, estimate the magnitude of
the phonon vectors needed to cause Γ-L and Γ-X intervalley scatterings.
6.18 In the text, the optical phonon density is assumed to be given by the thermody-
namic lattice temperature. At high fields, the electrons emit optical phonons at a very
high rate, causing “hot phonon” related effects. Estimate the optical phonon generation
rate in GaAs at electron energies of 200 meV. If the optical phonons cannot dissipate
rapidly, the phonon occupancy n(ω0) becomes large. What effect will this have in terms
of hot carrier relaxation?
6.19 Calculate the energy dependence of f- and g-type scattering rates in Si. If an alloy
Si1−xGex is grown on Si(001), there is a splitting of the four in-plane valleys ([100],
[1̄00], [010], [01̄0]) and the two out of plane valleys. What would the f- and g-type scat-
tering rates be as a function of energy for the Si0.8Ge0.2 alloy? You can use the results
in Chapter 3 for the splitting values.
6.20 The static and high frequency relative dielectric constants in GaAs are 13.2 and
10.9, respectively. The transverse optical phonon frequency is ωt = 5.4 × 1013 rad s−1

and the ionic masses are MGa = 69.7 M , MAs = 74.9 M (M = 1.67× 10−24 gm). What
is the ionic charge on the Ga atom?
6.21 Calculate and plot the energy dependence of acoustic and polar optical phonon
scattering rates in GaAs at 77 K and at 300 K. It is observed experimentally that when
temperature is lowered, the low field mobility improves but the high field mobility re-
mains almost unaffected. Do your results explain this behavior?
6.22 In many experiments, electron (and hole) carrier distributions are specially pre-
pared by laser pulses. Thus, at time zero, the electrons have a well-defined energy.
In such experiments, the time- dependent optical spectroscopy of such monoenergetic
particles show “phonon replicas.” Discuss the source of such phonon replicas.
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Chapter
7

VELOCITY-FIELD
RELATIONS

IN SEMICONDUCTORS

In this chapter we will examine how the various scattering processes discussed in the
last two chapters influence transport properties of electrons and holes. In steady state
the response of the free carriers to an external electric field is represented by the veloc-
ity versus electric field relationship. This relationship is vital to the understanding of
electronic devices. There are three regions of the electric field which are important in
charge transport:

1. The low electric field region where the velocity-field relation is linear and is defined
by the mobility µ through the relation

v = µF

It is usually possible to develop analytic formalisms for this region based on the
Boltzmann transport equation.

2. A higher electric field (usually F ≥ 1 kV/cm), where the v-F relation is no longer
linear. To understand the transport in this region one usually requires numerical
methods including those based on computer simulations.

3. Finally, at extremely high electric fields (F ≥ 105 V/cm), the semiconductor
“breaks down” either due to impact ionization or due to electrons tunneling from
the valence band to the conduction band.

The steady state v-F relationships require an electron to undergo several (usu-
ally at least several tens) collisions before reaching steady state. Most collision times are
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of the order of a picosecond, and since electron velocities are of the order of 107 cm/s, it
takes an electron several hundred Angstroms of travel before scattering occurs. Trans-
port in regions which are submicron in length is therefore not described by the usual v-F
curves. This region of transport is described by the transient velocity-field curves and
for extremely short distances the electron moves “ballistically” (i.e., without scattering).
While several numerical approaches have been developed to describe this region, it is
best described the computer simulation techniques based on Monte Carlo methods.

7.1 LOW FIELD TRANSPORT
In Chapter 4 we have discussed how it is possible to obtain mobility through relaxation
time calculations. In general we have for the mobility

µ =
eτ

m∗ (7.1)

At low fields, the first order solution of the Boltzmann equation is quite valid and the
distribution function in presence of an electric field is simply

f(k) = f0

(
k +

eτF
h̄

)
(7.2)

In case the carrier density is small, the distribution function is adequately given by a
displaced Maxwellian function and as discussed in Chapter 4, the relaxation time is
simply

� τ �= 〈Eτ〉
〈E〉 (7.3)

In most cases, one does not have a single scattering process present during
carrier transport. If the various scattering processes are independent of each other, the
total scattering rate is just the sum of the individual scattering rates. Thus, we have

1
τtot

=
∑
i

1
τi

(7.4)

Now, if the various scattering rates have the same energy dependence, then
when one carries out the averaging the final mobility is simply given by

1
µtot

=
∑ 1

µi
(7.5)

This is known as the Mathieson’s rule and is strictly valid only when all the scattering
mechanisms have the same energy dependence. As we have seen in the previous chapters,
this is usually not true, so Eqn. 7.6 is not strictly valid. However, Mathieson’s rule is
widely used because of its ease of application and reasonable accuracy.

In Chapter 4 we showed that if a scattering mechanism has an energy depen-
dence given by

τ(E) = τ0

(
E

kBT

)s
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the averaging gives 〈〈
1
τ

〉〉
=
1
τ0

Γ(5/2)
Γ(s+ 5/2)

(7.6)

In Chapter 4 we have calculated the averaged relaxation time for ionized impurity
scattering. If Ni is the ionized impurity density (assuming a single charge per impurity),
the mobility is

µI =
128

√
2πε2ε2

0(kBT )
3/2

e3
√
m∗Ni [ln(1 + γ2

m)− γ2
m/(1 + γ2

m)]
(7.7)

where
γm =

2
h̄λ

√
6m∗kBT

The mobility increases with temperature, a distinguishing signature of the ionized im-
purity scattering.

In the case of acoustic phonon scattering we have from Chapter 6

τ(E) = τ0

(
E

kBT

)−1/2

(7.8)

with

τ0 =
2πh̄4c&
D2

(2m∗kBT )−3/2 (7.9)

The mobility then becomes

µAP =
eτ0

m∗
Γ(2)
Γ(5/2)

=
2
√
2π e h̄4 c&

3D2 (m∗)5/2 (kBT )3/2
(7.10)

The mobility limited by acoustic phonons decreases with temperature and has a char-
acteristic T−3/2 dependence. Mobilities limited by scattering from optical phonons can
be calculated numerically or by the use of the Monte Carlo method described later.

Low Field Mobility in Silicon
Si has a rather poor low field mobility as compared to the mobilities in direct bandgap
materials. However, the high field velocity is quite good. In Fig. 7.1. we show typical
mobilities for Si as a function of temperature and doping. For high quality samples,
the mobility continues to increase as the temperature decreases since ionized impurity
scattering is absent and the acoustic phonon scattering has a T−3/2 behavior. However,
for doped samples the mobility shows a peak at low temperatures and then decreases.

Low Field Mobility in GaAs
Electrons in GaAs have a superior low field mobility as compared to the case in Si.
This is mainly due to the lower density of states at the bandedge. Room temperature
mobilities in high quality GaAs samples are ∼ 8500 cm2V−1s−1 compared to only ∼
1500 cm2V−1s−1 for Si. Fig. 7.2 shows a typical plot of mobility versus temperature for
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Figure 7.1: Low-field mobility of electrons in silicon as a function of temperature.
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Figure 7.2: Low-field Hall mobility of electrons in GaAs as a function of temperature. The
material has an ionized impurity concentration of 7× 1013 cm−3.
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Bandgap Mobility at 300 K
(eV) (cm2/V-s)

Semiconductor 300 K 0 K Elec. Holes
C 5.47 5.48 1800 1200
GaN 3.4 3.5 1400 350
Ge 0.66 0.74 3900 1900
Si 1.12 1.17 1500 450
α-SiC 3.00 3.30 400 50
GaSb 0.72 0.81 5000 850
GaAs 1.42 1.52 8500 400
GaP 2.26 2.34 110 75
InSb 0.17 0.23 80000 1250
InAs 0.36 0.42 33000 460
InP 1.35 1.42 4600 150
CdTe 1.48 1.61 1050 100
PbTe 0.31 0.19 6000 4000
In0.53Ga0.47As 0.8 0.88 11000 400

Table 7.1: Bandgaps along with electron and hole mobilities in several semiconductors. Proper-
ties of large bandgap materials (C, GaN, SiC) are continuously changing (mobility is improving)
due to progress in crystal growth. Zero temperature bandgap is extrapolated.

GaAs. Also shown are the relative contributions of ionized impurity, acoustic phonons
and polar optical phonons to the mobility. The polar optical phonon scattering is the
dominant scattering for temperatures above 100 K.

In Table 7.1 we show mobilities for electrons and holes for a number of semi-
conductors. These results are given for “pure” materials and are limited by phonon
scattering only.

7.2 HIGH FIELD TRANSPORT: MONTE CARLO SIMULATION
At low fields the energy gained by electrons from the field is small compared to the
thermal energy at equilibrium. As the field is increased, the carrier energy increases
and the simple approximations used to solve the Boltzmann equation do not hold. As a
result, one needs fairly complex numerical techniques to address the problem. One very
versatile technique is the Monte Carlo method.

In the Monte Carlo process, the electron is considered as a point particle whose
scattering rates are given by the Fermi golden rule expressions. The Monte Carlo ap-
proach comes in because of the probabilistic nature of the transport phenomenon. The
Monte Carlo method involves carrying out a computer simulation to represent as closely
as possible the actual physical phenomena occurring during the carrier transport. Carrier
transport in Monte Carlo techniques is viewed as a series of free flight and scattering
events. The scattering events are treated as instantaneous as shown in Fig. 7.3. The
simulation involves the following stages:



7.2. High Field Transport: Monte Carlo Simulation 265

1. Particle Injection into the Region of Study: The particles under study are in-
jected into the region (say from a contact) with a prechosen distribution of carrier
momenta.

2. Free Flight of the Carrier: This is an important component of the Monte Carlo
method. In the Monte Carlo approach, the scattering event is considered to be
instantaneous and between the scattering process the electron simply moves in
the electric field according to the “free particle” equation of motion.

3. Scattering Event: A specific prescription is used in the Monte Carlo method to de-
termine the time between scattering events. At the end of a free flight a scattering
occurs which alters the flight pattern of the electron.

4. Selection of the Scattering Event: Since a number of scattering processes will
be simultaneously present one has to decide which event was responsible for the
scattering that occurred. This choice is again based on the Monte Carlo method.

5. State of the Electron After Scattering: Finally, one uses the Monte Carlo method
to determine the momentum of the electron immediately after the collision has
occurred. Remember that the collision duration is assumed to be zero. To deter-
mine the final state after collision one needs detailed information on the scattering
process.

Once the final state is known, the procedure is simply repeated with a new free flight.
In Fig. 7.4 we provide a general flowchart for the Monte Carlo computer simulation
program.

7.2.1 Simulation of Probability Functions by Random Numbers
The Monte Carlo approach depends upon the generation of “random” numbers which
are cleverly used to simulate random physical events. Since the random numbers are
actually generated by a computer program, they are not really random since the entire
sequence of numbers is predictable. Nevertheless, if the random number generation code
is good, there should be little correlation between the random numbers.

If P (β) is a probability distribution of some variable β in a range a to b, the
question one asks in the Monte Carlo methods is the following: What are the different
values of β if the events are chosen randomly? For example, P (β) may be the probability
that an electron scatters by an angle β. In this case we would be interested in finding the
scattering angle during successive random collisions. This choice is made by generating
a random number which has a uniform distribution, say between 0 and 1. As shown
in Fig. 7.5 we are then interested in mapping the probability function for the random
number Pu(R) to the probability function P (β). The mapping is given by the equation∫ Rn

0

Pu(R)dR =
∫ βn

0

P (β)dβ (7.11)

where Rn is the random number generated in the nth try. The left-hand side of Eqn. 7.11
is simply Rn. In many cases the right-hand side can be expressed analytically in terms
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Figure 7.3: A schematic of processes involved in the physical picture used in Monte Carlo
methods.

of βn, in which case once Rn is known, βn is also known, at least implicitly. In some
cases, it is difficult to evaluate the integral on the right-hand side and other approaches
are then used to evaluate β.

Let us now examine the various components of the Monte Carlo program as
outlined in Figs. 7.3 and 7.4.

7.2.2 Injection of Carriers
The injection conditions are relevant for transport of carriers over short distances or
time. The steady state v-F relations should not be dependent upon the initial conditions
under which an electron is injected into the semiconductor. Usually in a device the
contact is simply a heavily doped semiconductor region (an ohmic contact) where the
electrons simply reside with nearly an equilibrium distribution. For a nondegenerate case
the equilibrium distribution is simply a Maxwellian distribution according to which the
probability of finding the velocity between v and v + dv is

P (v) = A3 exp
[ −m∗

2kBT
(
v2
x + v2

y + v2
z

)]
(7.12)

with

A3 =
(

m∗

2πkBT

)3/2

If the electrons are injected along the z-axis, we are only interested in electrons with
positive velocities which provide the current into the device. The x- and y-direction
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Figure 7.4: A flowchart of the Monte Carlo program to study carrier transport.
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Figure 7.5: Mapping of a random probability function to a randomly generated number from
a uniform random number generator.

velocities can be positive or negative since the current flow is along the z-axis. These
are then given by ∫ Rn

0

Pu(R)dR =
∫ vxn

−∞
A exp

[ −m∗

2kBT
v2
x

]
dvx

with a similar equation for vy. Two random numbers are therefore used to get vx and
vy.

To find the velocity along the z-axis one makes the approximation that the
current is given by the velocities along the z-direction only, i.e.,

J

e
=
∫

vz f(vz) dvz

The flux between the velocity vz and vz + dvz is just

P (vz) dvz = vz f(vz) dvz

Then the z-direction velocity is weighted into the probability function. The Monte Carlo
method gives ∫ Rn

0

Pu(R)dR =

∫ vzn
0

vz exp
[−m∗v2

z/(2kBT )
]
dvz∫∞

0
vz exp [−m∗v2

z/(2kBT )] dvz
The denominator is present to ensure that the probability is normalized. The right-hand
side can now be integrated to get

vzn =

√
−2kBT ln(1−Rn)

m∗ (7.13)

The term − ln(1 − Rn) is positive since 0 ≤ Rn ≤ 1. The z-direction velocity then has
only a positive value.
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If the contact injects the electrons according to some other distribution, the
Monte Carlo method has to simulate that particular distribution.

7.2.3 Free Flight
As shown in Fig. 7.3 the Monte Carlo approach treats the transport problem as a series
of free flights followed by scattering events. During the free flight the electron simply
moves in the electric field according to the free electron equations of motion

dp

dt
= eF

If the electric field is along the z-axis, we have the following changes in the
various properties of the electron (the time interval for free flight is typically 10−13 s so
that on can linearize the equations):

Momentum after time t

px(t) = px(0)
py(t) = py(0)
pz(t) = pz(0) + eF t (7.14)

Position after time t

x(t) = x(0) +
px(0)
m∗ t

y(t) = y(0) +
py(0)
m∗ t

z(t) = z(0) +
E(t)− E(0)

eF
(7.15)

where the energy change is given by

E(t)− E(0) =
p2(t)
2m∗ − p2(0)

2m∗ (7.16)

7.2.4 Scattering Times
An important question to address next is: How long does free flight last? To evaluate
this, we note that:

1. The scattering rate for the ith scattering process is given by the Fermi golden rule

Wi(k) =
2π
h̄

∑
k
′

∣∣∣Mk,k
′
∣∣∣2 δ(Ef − Ei)

Rtot =
m∑
i=1

Wi(k) (7.17)

where Rtot represents the sum of all scattering rates due to the m scattering
processes. All of the scattering rates are calculated and in some cases tabulated
in look up tables.
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2. The angular dependence of the scattering process is given by the matrix element

W (k,k
′
) =

2π
h̄

∣∣Mkk
′
∣∣2 δ(Ef − Ei) (7.18)

If λ(k, t) is the total scattering rate for an electron with momentum k(t), the
probability that the electron will drift without scattering for time t and then scatter in
time ∆t is

P (t)∆t = λ(k, t) ∆t [1− λ(ki, ti)∆t]n (7.19)

with

n∆t = t

i∆t = ti

ki = k(ti)

The first term in Eqn. 7.19 is the probability of having a collision in time ∆t and the
second term in the parenthesis is the combined probability of not having a collision in
n time intervals of ∆t. If ∆t is small or n is large, Eqn. 7.19 becomes

P (t) = λ(k, t) exp
[
−
∫ t

0

λ(k, t
′
)dt

′
]

(7.20)

We use the Monte Carlo approach to find the times interval tf between collisions. We
have ∫ Rn

0

Pu(r)dr =
∫ tf

0

P (t)dt

or

Rn =
∫ tf

0

λ(t) exp
{
−
∫ t

0

λ(t
′
)dt

′
}
dt

Noting that
−d

dt
exp

{
−
∫ t

0

λ(t)
′
dt

′
}
= λ(t) exp

{
−
∫ t

0

λ(t)
′
dt

′
}

we get

Rn =
[
− exp

(
−
∫ t

0

λ(t)
′
dt

′
)]∣∣∣∣tf

0

or

Rn = 1− exp
(
−
∫ t

0

λ(t)
′
dt

′
)

(7.21)

In principle this equation can be used to generate various values of tf . However,
if λ(t) is equal to Rtot, it has a fairly complex energetic and, therefore, temporal de-
pendence, which makes it difficult to evaluate the integral. One possibility is to develop
elaborate look up tables after having solved the problem numerically. However, a simple
and ingenious way is based on the concept of self-scattering as shown in Fig. 7.6. We
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Figure 7.6: A schematic showing how a random number allows one to determine the scattering
mechanism responsible for scattering.

define a scattering rate
Γ ≡ λ = Rtot + λ0 (7.22)

where λ0 is such that Γ is a constant scattering rate. The λ0 part of the scattering rate
is just a fictitious scattering rate called the self-scattering rate which does not cause any
real scattering. With this choice we get

Rn = 1− exp
[
−
∫ tf

0

Γdt
]

= 1− e−Γtf

or
tf =

−1
Γ
ln(1−Rn) (7.23)

Eqn. 7.23 allows us to find the free flight time during which the electron simply accel-
erates in the presence of the electric field. At the end of the free flight time the electron
scatters. Depending upon the choice of the parameter Γ, a small fraction of the electrons
will “self scatter,” i.e., here no real scattering. In this case the electron is simply allowed
to continue accelerating in the field.

7.2.5 Nature of the Scattering Event
After the free flight the properties of the electron are updated. This requires us to know
which particular mechanism is responsible for scattering. This is determined as shown
schematically in Fig. 7.6 and requires a single random number, R, which is used to
identify the scattering mechanism & which satisfies the inequality

&−1∑
i=1

Wi(k) < ΓR ≤
&∑
i=1

Wi(k) (7.24)
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The self-scattering process is introduced so that the simple expression of Eqn. 7.23
can be used. As shown in Fig. 7.6 there will be cases where self-scattering (i.e., no
scattering) will be chosen. One has to be quite judicious in the choice of Γ. Γ should be
larger than Rtot, but not by too much, otherwise a larger number of scattering events
will be self-scattering events which just consume extra computer time.

7.2.6 Energy and Momentum After Scattering

After the scattering event is identified one has to define the electron’s energy and mo-
mentum just after the scattering event. Since the scattering time is assumed to be zero,
the position of the electron is unaffected by the scattering event. The scattering process
immediately tells us how much the energy has changed as a result of scattering. For
example, we have the following results:

Ionized impurity: ∆E = 0
Alloy scattering: ∆E = 0
Polar optical phonon absorption: ∆E = h̄ω0

Polar optical phonon emission: ∆E = −h̄ω0

Acoustic phonon scattering: ∆E ≈ 0.

The updating of the momentum (direction) requires further generation of ran-
dom numbers. It is convenient to find the scattered angle in the coordinate system where
the z-axis is along the direction of the original momentum k. This is done since all the
angular dependencies calculated in the previous two chapters are in this system. Of
course, eventually we will describe the final momentum in the coordinate system where
the z-axis is along the electric field. This will require a simple transformation. The two
coordinate systems are shown in Fig. 7.7. The angles β and α represent the azimuthal
and polar angles of scattering in the initial momentum coordinate system while φ and
θ are the scattering angles in the F-field coordinate system.

The determination of the azimuthal angle β after scattering is given by the
probability that k

′
lies between azimuthal angles β and β + dβ

P (β)dβ =
dβ
∫∞

0

∫ π
0
W (k,k

′
) sinα dα k

′2 dk
′∫ 2π

0
dβ
∫∞

0

∫ π
0
W (k,k

′
) sinα dα k′2 dk′

Since W (k,k
′
) does not depend upon β for any of the isotropic band scattering

rates, we simply have

P (β)dβ =
dβ

2π

The generation of a random number Rn determines β by the equation

β = 2πRn (7.25)

The azimuthal angle is then uniformly distributed between 0 and 2π.
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Figure 7.7: The two coordinate systems used in Monte Carlo method. One uses the system
(left) where the momentum before scattering is along the z-axis to determine the final state
after scattering. This has then to be transformed in the fixed-coordinate system (right) where
the F-field is along the z-axis.

In general, the scattering rate has a polar angle dependence so that the deter-
mination of the polar angle α is somewhat more involved. We have

P (α)dα =
sinα dα

∫∞
0

∫ 2π

0
W (k,k

′
) dβ k

′2 dk
′∫ π

0

∫ 2π

0

∫∞
0
sinα dα W (k,k

′
) dβ k′2 dk′

Let us first examine isotropic scattering where W (k,k
′
) has no α dependence.

This case occurs for acoustic phonon scattering, alloy scattering (with no clustering),
etc. In this case we have

P (α)dα =
sinα dα

2
a

In the Monte Carlo approach, a random number is generated and we have

Rn =
1
2

∫ α

0

sinα
′
dα

′

=
1
2
(1− cosα)

or
cosα = 1− 2Rn (7.26)

Note that even though the scattering is isotropic, the average value of α is π/2.
This is due to the number of available states between α and α+ dα which peak at π/2
as shown in Fig. 7.8.

If the scattering process is not randomizing, techniques have to be developed
to find the scattering angle. We will now examine a few such approaches.
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Figure 7.8: The probability of the azimuthal and polar scattering angles in the case of an
isotopic scattering involving a randomizing scattering.

Ionized Impurity Scattering
In this case the scattering matrix element has a strong angular dependence as shown in
Fig. 7.9. The dependence is given by

W (k,k
′
) ∝ 1[

4k2 sin2(α/2) + λ2
]2

where λ is the inverse screening length. The integration for P (α) can be carried out and
the scattering angle is given by

cosα = 1− 2(1−Rn)
1 + 4 Ess

Essβ
Rn

(7.27)

where

Eβ =
h̄2λ2

2m∗

and

E =
h̄2k2

2m∗
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Figure 7.9: Angular dependence of the scattering by ionized impurities. The scattering has a
strong forward angle preference.

Polar Optical Phonon Scattering
Another important nonrandomizing scattering is the polar optical phonon scattering.
In this case the scattering matrix element has a dependence given by

W (k,k
′
) ∝ 1∣∣∣k − k

′
∣∣∣2

For a parabolic energy momentum relation

h̄2k2

2m∗ = E

we get

P (α)dα =

[
sinα dα

Ess+Ess′−2(EssEss′ )1/2 cosα

]
∫ π

0
sinα dα

Ess+Ess′−2(EssEss′ )1/2 cosα

Using the Monte Carlo approach

Rn =
∫ α

0

P (α
′
) dα

′

=
ln [1 + f(1− cosα)]

ln [1 + 2f ]

where
f = 2(EE

′
)1/2

[
E1/2 − E

′1/2
]−2

(7.28)

Thus, the polar angle is given by

cosα =

[
(1 + f)− (1 + 2f)Rn

]
f

(7.29)
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Figure 7.10: The procedure for using the von Neumann method to generate an arbitrary
probability function.

There are cases where it is not possible to carry out the integrals needed to
obtain a relation like the one given above. This may be due to the bandstructure not
being parabolic. In such cases, a technique due to von Neumann is used to obtain α
from an arbitrary P (α). In this technique, random numbers are generated in pairs, the
first number R1 representing the value of cosα in the range −1 to 1, i.e., the limits
for α = 0 and π. The second number, R2, is generated between 0 and P (max), where
P (max) is the maximum value of the probability. If P (R1) is less than R2, the value
of R1 (= cosα) is not accepted and another pair of random numbers is generated until
P (R1) is larger than R2. In this case the value of cosα will then mimic P (α). Fig. 7.10
shows schematically how the von Neumann technique works.

Once α and β are known, a simple rotational transformation is made to obtain
the angles φ and θ in the electric field coordinate system. This is straightforward, since
the orientation of the vector k just before scattering and the electric field are known.
This updates the momentum of the electron after each scattering event.

The Monte Carlo procedure described here is repeated thousands of times to
obtain convergence. Since the trajectory of the electron is followed in real space, as
well as energy and momentum space, a tremendous insight is gained. The k-space dis-
tribution for the electron ensemble can be mapped out by constructing a k-space grid
and determining the relative time spent by the electron around each grid point. Once
the distribution function is known, essentially all physical quantities of interest can be
determined. However, often it is useful to determine certain physical quantities directly.
For example, the drift velocity in the jth valley is determined from the relation

vj =
1
kj

∑∫ kzf

kzi

1
h̄

∂E(k)
∂kz

dkz

=
1

h̄kj

∑
(Ef − Ei) (7.30)
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Here kzi and kzf are the initial and final k-vectors in a free flight, the summation is over
all free flights and Ei and Ef are the energies of the electron at the beginning and end of
a free flight. The vector kj is the total length in the direction of the k-space trajectory
in the valley and is given by

kj =
Tje |F|

h̄
(7.31)

where Tj is the total time spent in the valley and F is the electric field. The relative
population of the electron in different valleys is determined by simply the relative time
spent by the electron in different valleys.

The material parameters, including the various deformation potentials, have
been collected from various experimental papers and represented by Jacoboni and Rag-
giani (1983) and Hess (1988). In Table 7.2 we have collected the parameters for GaAs
and Si. We will briefly list the total scattering rate W (k) and differential scattering
rates W (k,k

′
) for electron transport in direct gap semiconductors below. The results

for the Γ-valley assume a nonparabolic band.

Ionized Impurity Scattering

W (k) = 4πF
(
2k
λ

)2 [ 1
1 + (λ/2k)2

]

F =
1
h̄

[
Ze2

ε

]2
N(Ek)
32k4

·NI (7.32)

Angular dependence
1

4k2 sin2(θ/2) + λ2
sin θdθ (7.33)

Alloy Scattering in Alloy AxB1−x

W (k) =
3π3

8h̄
V0 U2

all N(Ek) x (1− x) (7.34)

Angular dependence: randomizing.

Polar Optical Phonon Scattering
In Chapter 6 we discussed the polar optical phonon scattering assuming unity for the
central cell overlap integral and a parabolic band. The polar optical phonon is usually
the most important scattering mechanism for high field transport. At these high fields
the electron energies are quite large and nonparabolic effects quite important. We will,
therefore, give the rates for nonparabolic bands (Fawcett, et al., 1970). The angular
dependence of the scattering rate is given by

W (k,k
′
) =

πe2ω0

V
∣∣∣k − k

′
∣∣∣2
(
1
ε∞

− 1
εs

)
G(k,k

′
)

×
{

n(ω0) δ(E(k
′
)− E(k)− h̄ω0) (absorption)

(n(ω0) + 1) δ(E(k
′
)− E(k) + h̄ω0) (emission)

(7.35)
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Parameter Symbol Value in Si Value in GaAs

Mass density (g/cm3) ρ 2.329 5.36

Lattice constant (Å) a0 5.43 5.642

Low frequency dielectric ε0 11.7 12.90

constant

High frequency dielectric ε∞ — 10.92

constant

Piezoelectric constant (C/m2) ePZ — 0.160

Longitudinal acoustic velocity vl 9.04 5.24

(×105 cm/s)
Transverse acoustic velocity vt 5.34 3.0

(×105 cm/s)
Longitudinal optical phonon h̄ω0 0.063 0.03536

energy (eV)

Electron effective mass m∗ — 0.067 (Γ)

(lowest valley) (m0) m∗
l , m

∗
t 0.916, 0.19 (X) —

Electron effective mass m∗ — 0.222 (L)

(upper valley) (m0) m∗ — 0.58 (X)

m∗
l , m

∗
t 1.59, 0.12 (L) —

Nonparabolicity parameter α 0.5 (X) 0.610 (Γ)

(eV−1) 0.461 (L)

0.204 (X)

Energy separation ∆EΓL — 0.29

between valleys (eV) ∆EΓX — 0.48

Table 7.2: Material parameters for Silicon and Gallium Arsenide, (from Jacoboni and Reggiani,
1983, Hess, 1988).

where n(ω0) is the occupation probability for the optical phonons, ε∞, εs are the high
frequency and static dielectric constants, and ω0 is the optical phonon frequency. If a
nonparabolic energy band is assumed with the relation

h̄2k2

2m∗ = E(1 + αE)

the overlap integral is given by

G(k,k
′
) =

[
akak

′ + ckck′ cosβ
]2 (7.36)
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Parameter Symbol Value in Si Value in GaAs

Electron acoustic deformation DA 9.5 7.0 (Γ)

potential (eV) 9.2 (L)

9.0 (X)

Electron optical deformation D0 — 3.0 (L)

potential (×108 eV/cm)
Optical phonon energy (eV) ω0 0.0642 0.0343

Hole acoustic deformation DA 5.0 3.5

potential (eV)

Hole optical deformation D0 6.00 6.48

potential (eV/cm)

Intervalley parameters, Dy, Ey 0.5, 0.012 (TA)

g-type (X–X) 0.8, 0.019 (LA) —

(×108 eV/cm), (eV) 11.0, 0.062 (LO)

Intervalley parameters, Dy, Ey 0.3, 0.019 (TA)

f-type (X–X) 2.0, 9.947 (LA) —

(×108 eV/cm), (eV) 2.0, 0.059 (LO)

Intervalley parameters, Dy, Ey 2.0, 0.058

(X–L) 2.0, 0.055 —

(×108 eV/cm), (eV) 2.0, 0.041

2.0, 0.017

Intervalley deformation DΓL, DΓX — 10.0, 10.0

potential DLL, DLX 10.0, 5.0

(×108 eV/cm) DXX 7.0

Intervalley phonon EΓL, EΓX - – 0.0278, 0.0299

energy (eV) ELL, ELX 0.0290, 0.0293

EXX 0.0299

Table 7.2: continued.

where β is the angle between k and k
′
and

ak =
[
1 + αE(k)
1 + 2αE(k)

]1/2

ck =
[

αE(k)
1 + 2αE(k)

]1/2

Also, ak
′ and ck′ are the same corresponding functions of E(k).
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If α is 0, the overlap integral is unity. The total scattering rate is

W (k) =
e2m∗1/2ω0

4π
√
2h̄

(
1
ε∞

− 1
εs

)
1 + 2αE

′

γ1/2(E)
F0(E,E

′
)

×
{

n(ω0) (absorption)
(n(ω0) + 1) (emission) (7.37)

where

E
′
= E + h̄ω0 for absorption
= E − h̄ω0 for emission

γ(E) = E(1 + αE)

F0(E,E
′
) = C−1

(
A ln

∣∣∣∣∣γ
1/2(E) + γ1/2(E

′
)

γ1/2(E)− γ1/2(E′)

∣∣∣∣∣+B

)

A =
[
2(1 + αE)(1 + αE

′
) + α{γ(E) + γ(E

′
)}
]2

B = −2αγ1/2(E) γ1/2(E
′
)

×
[
4(1 + αE)(1 + αE

′
) + α{γ(E) + γ(E

′
)}
]

C = 4(1 + αE)(1 + αE
′
)(1 + 2αE)(1 + 2αE

′
) (7.38)

Although the results look quite complicated, it is straightforward to use them
in the Monte Carlo method. The angular dependence of the momentum after scattering
requires the von Neumann technique discussed earlier.

Acoustic Phonon Scattering
Acoustic phonon scattering is an important scattering mechanism at low electric fields
especially at low temperatures where the optical phonon occupation number is very
small. The total scattering rate is

W (k) =
(2m∗)3/2 kBT D2

ac

2πρv2
s h̄

4 γ1/2(E)(1 + 2αE)Fa(E)

Fa(E) =
(1 + αE)2 + 1

3 (αE)
2

(1 + 2αE)2
(7.39)

Once again if α = 0, we recover the results of Chapter 6.

Intervalley Scattering
As noted in Chapter 6, the intervalley scattering is simply treated as a deformation
potential scattering described by a deformation potential Dij . For equivalent valleys
the total scattering rate is

W (k) =
(Ze − 1) m∗3/2D2

ij√
2πρ ωij h̄

3
E

′1/2
{

n(ωij) (absorption)
(n(ωij) + 1) (emission) (7.40)



7.2. High Field Transport: Monte Carlo Simulation 281

where

E
′
=
{

E(k) + h̄wij (absorption)
E(k)− h̄wij (emission)

Ze is the number of equivalent valleys and ωij is the phonon frequency which allows the
intervalley scattering. The angular dependence of the scattering rate is randomizing.

For non-equivalent intervalley scattering (e.g., Γ → L) the scattering rate has
a similar form except the factor (Ze − 1) is replaced by the number of final valleys
available for scattering (e.g., 4 for Γ → L scattering; 1 for L → Γ scattering; 6 for
Γ→ X scattering, etc.). The scattering rate for the transfer of the electron form i to j
valley in this case is

W (k) =
Zjm

∗3/2
j D2

ij√
2πρωij h̄3

γ
1/2
j (E

′
)(1 + 2αjE′) Gij(E,E

′
)

×
{

n(ωij) (absorption)
(n(ωij) + 1) (emission) (7.41)

where

Gij(k,k
′
) =

[
1 + αiEi(k)

][
1 + αjEj(k

′
)

]
[
1 + 2αiEi(k)

][
1 + 2αjEj(k

′
)

]

and

E
′
j =

{
Ei −∆j +∆i + h̄wij (absorption)
Ei −∆j +∆i − h̄wij (emission)

The approach discussed here is extremely versatile, since it can be easily gen-
eralized to address any of the following problems:

1. Steady state v–F relations along with information on carrier distribution in k-
space, electron temperature, valley occupation, etc.

2. Noise in electronic transport can also be studied from the carrier distribution
information.

3. Transient v–F relations and its dependence on transit length, scattering processes,
injection conditions, etc.

4. Dependence of transit time in a fixed channel on the field distribution which
could be calculated in a self-consistent way with the Poisson equation and current
continuity equation.

5. Carrier injection and thermalization process.

6. Impact ionization process.
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EXAMPLE 7.1 Use the scattering rates given in this section for a Monte Carlo method and
obtain some typical scattering rates for GaAs.

In the following we will examine some typical energies. The reader can easily scale
for other energies and material parameters. The example includes the non-parabolic band
approximations.

In GaAs the bandstructure nonparabolicity parameter α is given as

α =
1

Eg

(
1− m∗

m0

)2

= 0.576 eV−1

Polar L-O Phonon Scattering

W =
e2(m∗)1/2ω0

4π
√
2h̄ε0

(
ε0
ε∞

− ε0
εs

)
(1 + 2αEF )

γ1/2(Ei)
F0(Ei, Ef )

{
N absorption
N + 1 emission

= 3.69

(
ω0

rad/s

)(
m∗

m0

)1/2 (
ε0
ε∞

− ε0
εs

)
× (1 + 2αEf )

(γ(Ei)/eV)1/2
F0(Ei, Ef )

{
N
N + 1

}
s−1

with F0 given in Eqn. 7.38, γ(E) = E(1 + αE) and

Ef = Ei ± h̄ω0

{
+ for absorption
− for emission

N =
1

exp(h̄ω0/kBT )− 1
Example: GaAs, T = 300 K, Γ valley, L-O phonon absorption, Ei = 3kBT/2 = 0.039 eV.

ω0 = 4.5× 1013 rad/s
h̄ω0 = 0.030 eV

Ef = Ei + h̄ω0 = 0.069 eV

m∗ = 0.067 mo

εs/ε0 = 13.2

ε∞/ε0 = 10.9

N =
1

exp(h̄ω0/kBT )− 1 = 0.458

α =
1

Eg

(
1− m∗

m0

)2

= 0.576 eV−1

γ(Ei) = Ei(1 + αEi) = 0.040 eV

γ(Ef ) = Ef (1 + αEf ) = 0.072 eV

1 + αEi = 1.022

1 + αEf = 1.040

1 + 2αEi = 1.045
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1 + 2αEf = 1.079

2γ(Ei) = 0.023

αγ(Ef ) = 0.041

W = 3.69

(
ω0

rad/s

)√
m∗

m0

(
ε0
ε∞

− ε0
εs

)
× 1 + 2αEf√

γ(Ei)/eV
F0(Ei, Ef )N s−1

= 3.69(4.5× 1013)
√
0.067

(
1

10.9
− 1

13.2

)
× 1.079√

0.040
F0(Ei, Ef ) 0.458 s

−1

= 1.70× 1012F0(Ei, Ef ) s
−1

F0(Ei, Ef ) =
1

C

(
A ln

∣∣∣∣∣
√
γ(Ei) +

√
γ(Ef )√

γ(Ei)−
√
γ(Ef )

∣∣∣∣∣+B

)

=
1

C

(
A ln

∣∣∣∣
√
0.040 +

√
0.072√

0.040−√
0.072

∣∣∣∣+B

)
=

1.926A+B

C

A = [2 (1 + αEi) (1 + αEf ) + α (γ (Ei) + γ (Ef ))]
2

= [2 (1.022) (1.040) + 0.023 + 0.041] = 4.795

B = −2α
√
γ (Ei) γ (Ef )

× [4 (1 + αEi) (1 + αEf ) + α (γ (Ei) + γ (Ef ))]

= −2
√
(0.023) (0.041)

× [4 (1.022) (1.040) + 0.023 + 0.041] = −0.265
C = 4 (1 + αEi) (1 + αEf ) (1 + 2αEi) (1 + 2αEf )

= 4 (1.022) (1.040) (1.045) (1.079) = 4.794

F0 (Ei, Ef ) =
(1.926) (4.795) + (−0.265)

4.794
= 1.871

W = 1.70× 1012 (1.871) s−1 = 3.18× 1012 s−1

Acoustic Phonon Scattering

W =
(2m∗)3/2kBT D2

ac

2πρ v2
s h̄

4
γ1/2(E)(1 + 2αE)Fa(E)

= 4.49× 1021
(
m∗
m0

)3/2 (T
K

) (
Dac
eV

)2(
ρ

gm/cm3

)(
vs

cm/s

)2

(
γ(E)

eV

)1/2

(1 + 2αE)Fa(E) s
−1

with Fa(E) as given in Eqn. 7.39.
Example: GaAs, T = 300 K, Γ valley, acoustic phonon scattering,

Ei = Ef =
3

2
kBT = 0.039 eV = E
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m∗ = 0.067 m0

Dac = 7.8 eV

ρ = 5.37 gm/cm3

vs = 5.22× 105 cm/s

α = 0.576 eV−1

γ(E) = 0.040 eV

αE = 0.022

1 + αE = 1.022

1 + 2αE = 1.045

W = 4.49× 1021
(
m∗
m0

)3/2 (T
K

) (
Dac
eV

)2(
ρ

gm/cm3

)(
vs

cm/s

)2

√
γ (E)

eV
(1 + 2αE)Fa (E) s

−1

= 4.49× 1021 (0.067)
3/2 (300) (7.8)2

(5.37) (5.22× 105)2 (0.040)1/2 (1.045)Fa (E) s
−1

= 2.03× 1011Fa (E) s−1

Fa (E) =
(1 + αE)2 + 1

3
(αE)2

(1 + 2αE)2
=
(1.022)2 + 1

3
(0.022)2

(1.045)2
= 0.957

W = 2.03× 1011 (0.957) s−1 = 1.94× 1011 s−1

Equivalent Intervalley Scattering

W =
(Ze − 1) (m∗)3/2D2

ij√
2πρ ωij h̄

3
E

1/2
f

{
N absorption
N + 1 emission

= 1.71× 1010
(Ze − 1)

(
m∗
m0

)3/2 ( Dij

eV cm−1

)2

(
ρ

gm/cm3

)(
ωij

rad/s

) (
Ef

eV

)1/2

×
{

N absorption
N + 1 emission

s−1

Example: GaAs, T = 300 K, L valley, equivalent intervalley scattering by absorption

Ei = 0 eV (at L valley edge; 0.36 eV above Γ valley edge).

Ze = 4

m∗ = 0.35m0

Dij = 1.0× 109 eV cm−1

ρ = 5.37 gm/cm−3

ωij = 4.56× 1013 rad/s
Ef = Ei + h̄ωij = 0.030 eV

N =
1

exp(h̄ωij/kBT )− 1 = 0.457
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W = 1.71× 1010
(Ze − 1)

(
m∗
m0

)3/2 ( Dij

eV cm−1

)2

(
ρ

gm/cm3

)(
ωij

rad/s

) (
Ef

eV

)1/2

N s−1

= 1.71× 1010 (3)(0.35)(1× 10
9)2

(5.37)(4.56× 1013) (0.030)(0.457) s
−1

= 1.01× 1012 s−1

Non-Equivalent Intervalley Scattering

W =
Zj(m

∗
j )

3/2(Dij)
2

√
2πρ ωij h̄

3
γ

1/2
j (Ef ) (1 + 2αfEf ) Gij(Ei, Ef )

×
{

N absorption
N + 1 emission

= 1.71× 1010
Zj

(
m∗

j

m0

)3/2 (
Dij

eV cm−1

)2

(
ρ

gm/cm3

)(
ωij

rad/s

) (
γjEf

eV

)1/2

× (1 + 2αfEf )Gij(Ei, Ef )

{
N absorption
N + 1 emission

s−1

with Gij given in Eqn 7.41.

Example: GaAs, T = 300 K, Γ valley, non-equivalent intervalley scattering by absorption,

Ei = EL − EΓ = 0.36 eV = 13.9kBT

Zj = 4

m∗
j = 0.35m0

Dij = 1.0× 109 eV cm−1

ρ = 5.37 gm/cm3

ωij = 4.56× 1013 rad/s
N = 0.457

αi = 0.576 eV−1 (Γ valley is nonparabolic)

αf = 0 eV−1 (L valley is parabolic)

Ef = Ei − (EL − EΓ) + h̄ωij = h̄ωij = 0.030 eV

γi(Ef ) = Ef = 0.030 eV

1 + αiEi = 1.21

1 + αfEf = 1

1 + 2αiEi = 1.41

1 + 2αfEf = 1

W = 1.71× 1010
Zj

(
m∗

j

m0

)3/2 (
Dij

eV cm−1

)2

(
ρ

gm/cm3

)(
ωij

rad/s

) √
γj(Ef )

eV
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× (1 + 2αfEf ) Gij(Ei, Ef )N s−1

= 1.71× 1010 4(0.35)(1× 10
9)2

(5.37)(4.56× 1013)
√
0.030

× (1)(0.457) Gij(Ei, Ef ) s
−1

= 7.74× 1012 Gij (Ei, Ef ) s
−1

Gij(Ei, Ef ) =
(1 + αiEi) (1 + αfEf )

(1 + 2αiEi) (1 + 2αfEf )

=
(1.21)(1)

(1.41)(1)
= 0.858

W = 7.74× 1012(0.858) s−1 = 6.64× 1012 s−1

Ionized Impurity Scattering

W = 4πF
(
2k

λ

)2
[

1

1 +
(
λ
2k

)2
]2

F =
1

h̄

[
Ze2

εs

]2
N(Ek)

32k4
NI

where the density of states N(Ek) is (without spin degeneracy)

N(Ek) =
(m∗)3/2√
2π2h̄3

γ1/2(Ek)(1 + 2αEk)

F = 5.34× 1025
Z2
(

NI

m−3

)(
m∗
m0

)3/2
(εs/ε0)2

(
k

m−1

)4

√
γ(Ek)

eV
(1 + 2αEk) s

−1

Using (
k

m−1

)4

= 6.89× 1038
(
m∗

m0

)2(
γ(Ek)

eV

)2

F = 7.62× 10−14
Z2
(

NI

m−3

)
(εs/ε0)2s

√
m∗
m0

1 + 2αEk(
γ(Ek)

eV

)3/2
s−1

λ2 =
(n+ p)e2

εskBT

=
2.1× 10−4

(
n+p

m−3

)
(εs/ε0)

(
T
K

) m−2

Example: GaAs, T = 300 K, Γ valley, ionized impurity scattering

Ei = Ef =
3

2
kBT = 0.039 eV = Ek

n+ p ≈ NI = 1× 1017 cm−3 = 1023 m−3
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Z = 1 (singly ionized impurity)

m∗ = 0.067m0

εs/ε0 = 13.2

α = 0.576 eV−1

γ(Ek) = 0.040 eV

1 + 2αEk = 1.045

λ = 7.28× 107 m−1

k = 5.12× 109
(
m∗

m0

)1/2(
γ(Ek)

eV

)1/2

m−1

= 2.65× 108 m−1

2k

λ
= 7.29

W = 4πF
(
2k

λ

)2
[

1

1 +
(
λ
2k

)2
]2

= 1.46× 1013s−1

Alloy Scattering

W =
3π3

8h̄
V0 U

2
all N(Ek)x(1− x)

For zinc-blende and diamond lattices, V0 = a3
0/4, where a0 is the lattice constant (e.g., a0 =

5.6533× 10−8 cm for GaAs).

N(Ek) =
(m∗)3/2√
2π2h̄3

γ1/2(Ek)(1 + 2αEk)

W = 1.5× 1013
(
m∗

m0

)3/2 (
Uall

eV

)2 ( a0

Å

)3

x(1− x)

×
√

γ(E)

eV
(1 + 2αE) s−1

Example: Al0.1Ga0.9As, T = 300 K, Γ valley, alloy scattering,

Ei = Ef =
3

2
kBT = 0.039 eV

m∗ = 0.067 m0

Uall = 0.2 eV

a0 = 5.65 Å

x = 0.1

γ(E) = 0.040 eV

1 + 2αE = 1.045

W = 1.5× 1013
(
m∗

m0

)3/2 (
Uall

eV

)2 ( a0

Å

)3

x(1− x)

×
√

γ(E)

eV
(1 + 2αE) s−1
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Figure 7.11: Electron velocity as a function of electric field in a GaAs. The impurity density
for the different curves is (a) ND = 0; (b) ND = 1.0× 1017 cm−3; (c) ND = 2.0× 1017 cm−3;
(d) ND = 4.0× 1017 cm−3; (e) ND = 8.0× 1017 cm−3.

= 1.5× 1013(0.067)3/2(0.2)2(5.65)3(0.1)(0.9)
√
0.040(1.045) s−1

= 3.5× 1010 s−1

It is important to calculate the relative rates of various scattering mechanisms for the para-

meters used. However, one must note that angular dependence of the scattering event is also

very important.

7.3 STEADY STATE AND TRANSIENT TRANSPORT

7.3.1 GaAs, Steady State
As a semiconductor widely used in high speed electronic devices, transport in GaAs has
been extensively studied by Monte Carlo methods. At low electric fields the electron
moves in the high mobility, low mass (m∗/m0 = 0.067) Γ-valley and has an excellent
v– F relationship with a room temperature mobility ∼ 8000 cm2/V-s, for pure GaAs.
The peak velocity in pure GaAs is ∼ 2× 107 cm/s at room temperature, at an electric
field of ∼ 3.5 kV/cm. Up to this field, most of the electrons are in the Γ-valley as
their energy is less than the Γ-L energy separation. However, at higher electric fields
there is a transfer of electrons from the Γ to L valley where the electron mass is very
large (m∗/m0 ∼ 0.22). This causes the negative differential resistance which is a special
feature of most direct bandgap semiconductors. The negative differential resistance is
exploited to produce charge domains resulting from instabilities and leading to Gunn
oscillations.

In Fig. 7.11 we show the doping dependence of the v- F relations in GaAs
at room temperature. It is interesting to note that while the low field mobility falls
as rapidly as the doping is increased, the high field velocity does not show such a
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Figure 7.12: (a) A schematic of how electrons transfer from the Γ-valley to the X-valley in
GaAs as the field is increased. (b) Occupation of the Γ-valley in GaAs electron transport as a
function of electric field.

pronounced dependence. This is because the low field mobility electron energy is small
and ionized impurity scattering is quite important. The high field transport, on the
other hand, is dominated by polar optical phonon emission and intervalley scattering
and since carriers have high energies ionized impurity is not as important.

In Fig. 7.12 we show the Γ valley occupation fraction for the electrons as a
function of the electric field. As we can see at high fields the electrons transfer out of
the Γ-valley. Also shown are the electron temperatures as a function of the electric field.

While the Monte Carlo calculations are computer intensive, they can be used
to develop simple analytical descriptions for the v–F curves which could be used for
certain device simulations. For example, one can use the following function for the field
dependence of the mobility

µ(F) =
µ0[

1 + θ(F− F0) {(F− F0)/F2
cr}2

] (7.42)

where µ0 is the low field mobility, Fcr = vsat/µ
0 and

F0 =
1
2

[
Fth +

√
F2

th − 4F2
cr

]
where Fth is the electric field where the velocity peaks. The function θ(F − F0) is a
step function which is zero for fields below F0 and 1 otherwise. Similarly, the saturation
velocity has a temperature dependence given by (Jacoboni, et al., 1977)

vsat =
2.4× 107

1 + 0.8 exp(TL/600)
cm/s (7.43)

where TL is the lattice temperature in K.
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Figure 7.13: A schematic of how velocity overshoot occurs in a direct bandgap material like
GaAs.

7.3.2 GaAs, Transient Behavior
The steady state results discussed above are valid when the electrons have sufficient
time to suffer several scattering events to reach a steady state distribution. This usually
requires a few picoseconds or a transit distance of ≥ 1000 Å. Transient transport is
important in all semiconductors during times shorter than the scattering times. For
electrons in direct gap semiconductors the electron mass is small in the Γ-valley and large
in the upper valleys. In these materials transient behavior can result in very interesting
effects which are commonly known as velocity overshoot and velocity undershoot. To
observe these effects it is necessary that the electric fields encountered by the injected
electrons are quite large.

To understand the overshoot effect consider Fig. 7.13. When electrons are in-
jected into a region of high electric field, for a short time (t < τsc) the electrons move
without scattering or ballistically. During this time the electron velocity is given by

v(t) = v(0) +
1
2
eF

m∗ t
2 (7.44)

The electrons stay in the Γ-valley (if they start out there) even though their energy
exceeds the intervalley separation. This allows electrons to have velocities well above
the steady state value.

Once the scattering processes start (e.g., intervalley scattering) the electron
velocity begins to drop and eventually reaches the steady state value.

If electrons are initially injected into an upper valley where the mass is high
into a region with low electric field, it is possible for electrons to have velocities smaller
than the steady state values for a short time. This leads to velocity undershoot.

In InGaAs and GaAs based devices velocity overshoot effect is very important,
especially as device dimensions reach < 0.1 µm.

In Fig. 7.14 we show some typical results for this “velocity overshoot” at various
electric fields. It is important to note that the velocity overshoot persists up to a few
picoseconds which is the transit time in many modern submicron GaAs devices. The
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Figure 7.14: A schematic of how velocity overshoot occurs in a direct bandgap material like
GaAs.

Monte Carlo method is ideally suited to understanding the nonstationary transport in
the transient regime. However, since it is usually very computer intensive, especially
for device simulations, key parameters (e.g., average momentum and energy relaxation
time, carrier temperature, etc.) are extracted from Monte Carlo methods and then used
in simpler numerical techniques. We will discuss some of these aspects later on.

The results described for GaAs are typical of electron transport in most di-
rect bandgap semiconductors. A material system that has become very important for
high frequency microwave devices is In0.53Ga0.47As which is lattice matched to InP
substrates. This material has a very small carrier mass (m∗/m0 = 0.04) and a large
intervalley separation (∆EL−X ∼ 0.55 eV) which gives it a superior v–F relation than
that of GaAs. Also, the velocity overshoot effects persist up to longer transit times and
are also much stronger than in GaAs.

7.3.3 High Field Electron Transport in Si

Silicon is by far the most important semiconductor in electronics. Both electron trans-
port and hole transport are important for MOSFET and bipolar junction transistor
technology. Unlike GaAs, Si is an indirect gap material and electrons have to sample
6 equivalent valleys as they move in an electric field. The high density of states and
the strong g and f scattering causes the velocity to be lower than that in direct gap
semiconductors. There is no negative differential resistance region, since there is no low
mass–high mass transition in the energy band.

The mobility of electrons in silicon is a factor of 5 smaller than that in GaAs.
This is an important reason why GaAs devices are superior. However, as devices become
smaller, electrons move under high field conditions. At high fields the velocity of elec-
trons in GaAs and in Si are similar, as can be seen in Fig. 7.15. As a result, Si devices
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Figure 7.15: Velocity-field curves for several semiconductors.

perform quite well and are not a factor 5 slower than GaAs devices.
Silicon does not show transient transport phenomena, except in very short chan-

nels (approaching a few hundred Angstroms).
In Fig. 7.15 we show the velocity field relations for several materials. It is

interesting to note that while the low field velocities are quite different for electrons in
different materials, at high fields velocities tend to saturate (in all materials) to a value
of ∼ 107 cm/s. At very high fields electrons move at high energies where the density of
states are quite similar in all materials.

7.4 BALANCE EQUATION APPROACH TO HIGH FIELD TRANSPORT
The Monte Carlo approach provides the most versatile technique for transport studies
at high fields not only for bulk semiconductors, but also for heterostructures as will
be discussed later in this chapter. However, due to the computer intensive character
of the Monte Carlo method, other numerical tools have been developed to study high
field transport. These techniques are particularly useful for device simulations where
the necessity of self-consistency forces one to study transport iteratively which requires
numerous field dependent transport studies. In Chapter 4, we discussed some of the
approximate methods to solve the Boltzmann transport equation. In particular we de-
veloped the balance equations for carrier density, carrier momentum, and carrier energy.
These equations are extremely useful in providing a simple description of the high field
transport in semiconductors.

A widely used approach for transport studies is dependent on the momentum
and energy balance equations written for the displaced Maxwellian carrier distribution.
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The carrier distribution in turn is described by the carrier temperature as discussed in
Chapter 4. We will briefly recall some of those results and describe the approach used
for high field transport. The displaced Maxwellian distribution function has the general
form

f ≈ e−|p−m∗vd|2/(2m∗kBTC) (7.45)

where TC is the carrier temperature. In Chapter 4, we showed that the energy argument
of Eqn. 7.45 can be expanded to give

f = e−(p
2−2m∗p·vd+m∗2v2d)/(kBTC)

≈ exp
{− [p2/(2m∗kBTC)

]} [
1 +

p · vd
kBTC

]
(7.46)

This simplification is valid if the drift part of the energy, m∗v2
d/2, is small

compared to the total energy of the electron distribution. This is usually true since
vd ∼ 107 cm s−1, i.e., m∗v2

d/2 is of the order of 20–30 meV while the average energy of
the electron is approximately 200–300 meV at high fields. The kinetic energy is given
essentially by the carrier temperature

Wzz =
1
2
kBTC (7.47)

The diffusion coefficient also takes on a simple form

D =
kBTC

e
µ (7.48)

The approach based on the drifted Maxwellian assumptions are called the electron
temperature approach since the unknown is the electron temperature. The balance
equations for energy and momentum are used to solve the problem. The velocity under
steady state conditions with uniform electric field is

vz =
e

m∗ � 1/τm �Fz

The energy balance equation then gives for steady state conditions

JzFz
n

=
〈〈

1
τE

〉〉(
3
2
kBTC − 3

2
kBTL

)
(7.49)

which gives us for the carrier temperature

TC
TL

= 1 +
2e2

3kBTLm∗
F 2
z

� 1/τm �� 1/τE � (7.50)

To solve for the drift velocity and the carrier temperature, one has to evaluate
the averaged relaxation times which further requires the knowledge of the distribution
function. In the displaced Maxwellian approach by ignoring the drift part, the relaxation
times can be calculated in terms of the carrier temperature. For example, we showed that
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if a particular scattering process has a energy dependence given through the scattering
time of

τ = τ0

(
E

kBTC

)s
then we have 〈〈

1
τm

〉〉
=
1
τ0

Γ(5/2)
Γ(s+ 5/2)

A similar solution can be obtained for the energy relaxation time. Iterative self-consistent
approaches can then be developed to solve the balance equations. Usually one has to
compare the results of the balance equation with the Monte Carlo results to make sure
that the assumptions made are valid.

Let us examine the dependence of mobility of carriers on carrier temperature
and electric field in the electron temperature approach. While this approach is not as
accurate as the Monte Carlo approach, it provides good semiquantitative fits. Consider
the case where the transport is limited by acoustic phonon scattering. The scattering
time is given by

τm =
πh̄4c&√

2 (m∗)3/2 D2

E−1/2

kBTL

=
πh̄4c&√

2 (m∗)3/2 D2

1
(kBTL)3/2

(
TL
TC

)1/2 [
E

kBTC

]−1/2

= τ0(TC)
[

E

kBTC

]−1/2

(7.51)

The constant τ0(TC) is given by

τ0(TC) = τ0(TL)
√

TL
TC

(7.52)

We then have 〈〈
1
τm

〉〉
=
〈〈

1
τ0
m

〉〉√
TC
TL

or

µ(TC) = µ0
n

√
TL
TC

(7.53)

The mobility thus decreases as the carriers get hotter.
In the case of mobility limited by ionized impurity scattering, the energy de-

pendence is E3/2 for the scattering time. The use of the electron temperature approach
then gives

µn(TC) = µ0
n

[
TC
TL

]3/2

(7.54)

and the mobility increases with carrier temperature. It must be remembered that these
expressions are valid in case the density of states does not alter with increased energy
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Figure 7.16: The impact ionization process where a high energy electron scatters from a
valence band electron producing two conduction band electrons and a hole. Hot holes can
undergo a similar process.

in a manner other than E1/2. In the case of III–V direct bandgap materials, we know
that the presence of the satellite valleys can abruptly alter the density of states so that
the equations would be invalid once the electrons transfer to the upper valleys.

7.5 IMPACT IONIZATION IN SEMICONDUTORS
In Chapter 5 we have discussed how “hot” carriers with energies larger than the semi-
conductor bandgap can cause impact ionization. Impact ionization becomes important
at high electric fields (typically, F > 105 V/cm) and is usually responsible for break-
down in semiconductor devices. As shown in Fig. 7.16, in this process hot electrons
(holes) scatter from holes (electrons) via the Coulombic interaction to excite the hole
(electron) from the valence band (construction band) to the conduction band (valence
band). The number of excess free carriers thus increases (called carrier multiplication)
causing a runaway current.

The impact ionization process can be included in a Monte Carlo approach just as
another scattering mechanism. While this is simple in principle, it is somewhat tedious
in practice. The reason for the difficulty is that the energies required for the impact
ionization to start is quite high as shown in Chapter 5. At these high energies the
bandstructure is no longer described by simple analytical methods. Also the collision
rates are so high at such high carrier energies that the use of the Fermi golden rule
becomes questionable. The δ-function in the golden rule arises from the assumption that
the perturbation exists for a long time. One has to relax the energy conservation rule for
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very short duration collisions at high rates. Also the assumption that the collision time is
essentially zero during which the electric field has no influence on the electrons, becomes
questionable at such high electric fields. This effect (intracollisional field effect) also
causes the simple Monte Carlo method to develop inaccuracies. Nevertheless, reasonable
results which shed light on the impact ionization phenomenon can be obtained by Monte
Carlo methods.

For device applications, one is usually interested in the impact ionization coef-
ficient defined by the equation

∂I

∂t
= αtI

or
∂I

∂Z
= αzI (7.55)

where I is the current and α represents an average rate of ionization per unit time (αt)
or unit distance (αz). For the steady state case, with uniform time and space dependence

αz = ατ/vd (7.56)

Monte Carlo techniques have been used to understand impact ionization break-
down by including the impact ionization rate discussed in Chapter 5. Such techniques
have been applied to electrons and holes in several semiconductors and give reasonable
agreement with experiments. Impact ionization results from electrons (holes) that are
at the very high energy tail of the distribution function. This is because of the threshold
energy needed to start the ionization process. In Fig. 7.17 we show a schematic of the
carrier distribution function for different electric fields. At no applied field we simply
have the Fermi Dirac distribution function f0(E). As the field is increased the distribu-
tion function becomes more like a “displaced Maxwellian” and eventually at very high
fields there is a small density of carriers that have energies larger than the threshold
energy needed for impact ionization. Monte Carlo methods used to describe such high
energy carriers need to accurately account for the bandstructure. Simple effective mass
approaches don’t give very accurate results.

Several numerical or semi-analytical approaches exist to understand impact
ionization. These use the energy balance approach to estimate the carriers that can
cause impact ionization. The interested reader can examine the publications listed at
the end of this chapter to understand these approaches.

In Fig. 7.18 we show the impact ionization coefficients for electrons (αimp) and
holes (βimp) for some semiconductors. Note that, as expected, the smaller the bandgap,
the larger the impact ionization coefficient. A commonly used parameter to represent
impact ionization is via the “critical field.” At the critical field α (or β) reaches a value
of ∼ 104 cm−1 so that over a 1 µm semiconductor film the probability of breakdown is
near unity. In Table 7.3 we show critical fields for some semiconductors.

7.6 TRANSPORT IN QUANTUM WELLS
In Chapter 3 we have discussed how semiconductors can be combined to make quantum
wells. Most high performance semiconductor electronic devices are based on heterostruc-
tures and electrons (holes) essentially move in 2-dimensional space. Two important
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Figure 7.17: A schematic of how the carrier distribution function change as field is increased.
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MATERIAL BANDGAP BREAKDOWN ELECTRIC

(eV) FIELD (V/cm)

GaAs 1.43 4 x 105

Ge 0.664 105

InP 1.34

Si 1.1 3 x 105

In0.53Ga0.47As 0.8 2 x 105

C 5.5 107

SiC 2.9 2-3 x 106

SiO2 9 107

Si3N4 5 107

Table 7.3: Breakdown electric fields in some materials.
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Figure 7.18: Ionization rates at 300 K versus reciprocal electric field for some semiconductors.
(Adapted from S.M. Sze, Physics of Semiconductor Devices, Wiley, New York (1981).)

classes of devices are the metal-oxide-semiconductor field effect transistor (MOSFET)
and modulation doped field effect transistor (MODFET). In Figs. 7.19 and 7.20 we show
schematics of the cross-section and band profile of the two devices. The MOSFET is
based on silicon technology (the only semiconductor on which a high quality insulator,
SiO2, can be grown), while the MODFET is based on compound semiconductors such
as AlGaAs/GaAs, InP/InGaAs, AlGaN/GaN, etc.

In the MOSFET, the most important electronic device, a gate bias, is used to
“invert” the silicon bands and create a triangular quantum well where electrons reside.
In the MODFET also a triangular quantum well is formed as shown. By modulation
doping and using an undoped spacer layer between the electrons and the dopants, ionized
impurity scattering is effectively eliminated.

Transport in 2-dimensional systems can be studied by the Monte Carlo method
in a manner similar to that discussed for the 3-dimensional system. The key differences
are:

• The wavefunctions have the form

ψk(ρ, z) = ukg(z)eik·ρ (7.57)

where uk is the central cell part, g(z) is the envelope function in the 2-dimensional
potential defining the quantum well, ρ is a vector in the 2-dimensional plane of transport.
Thus in calculating the matrix elements for scattering and scattering rates one has to
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use the proper envelope functions. One has to evaluate the integral∫
gi(z)gj(z)dz

when one scatters from a state i to state j. This is usually done numerically.
• The density of states describing the final states into which scattering occurs

is altered. One has to be careful to include intrasubband scattering and intersubband
scattering. For intersubband scattering it is important to note that∫

gi(z)gj(z) = 0

However, if the scattering potential has z-dependence, the scattering matrix element∫
gi(z)V (z)gj(z)

need not be zero.
• Scattering mechanisms absent in 3-dimensional systems can become impor-

tant in 2-dimensional systems. For example, interface roughness scattering can play
an important role in 2-dimensional transport. For example, in bulk pure silicon room
temperature electron mobility is ∼ 1100 cm2/V·s. However, in n-type MOSFET the
mobility is ∼ 600 cm2/V·s due to the importance of interface roughness scattering.

Once the scattering rates are calculated transport can be studied by the Monte
Carlo method. The method proceeds in a manner similar to what has been described for
the 3-dimensional problem. Because the envelope functions and potential profile have
to be often determined numerically, the scattering rates can usually not be expressed
analytically.

The acoustic phonon scattering in a two dimensional system from state i to j
is

Wij =
m∗kBTD2

h̄3ρs2
l

∣∣∣∣
∫

gi(z)gj(z)dz
∣∣∣∣2 (7.58)

where ρ is the density of the material, sl is the longitudinal sound velocity and D is the
acoustic phonon deformation potential. The envelope function is g(z).

The polar optical phonon scattering is given by

Wij =
eE0

2h̄

[
N(ω0) +

1
2
± 1
2

] ∫ 2π

0

Hij(Q±)
Q±

dθ (7.59)

with

E0 =
m∗eω0

h̄

[
1
ε∞

− 1
εs

]
N(ω0) =

1

exp
(
h̄ω0
kBT

)
− 1

Hij =
∫ ∞

−∞
dz

∫ ∞

−∞
dz′ρij(z)ρ∗ij(z

′) exp (−Q |z − z′|)
ρij(z) = g∗i gj
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Figure 7.19: (a) A schematic of a MOSFET with gate length L. (b) By applying a gate bias
the semiconductor bands can be “invented,” as shown, inducing electrons in the traingular
quantum well.
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Figure 7.20: (a) A schematic of a typical AlGaAs/GaAs MEDFET. An undoped “spacer”
layer (∼ 30− 50 Å) is used to minimize ionized impurity scattering. (b) The conduction band
profile showing a triangular quantum well in which a 2-dimensional electrons gas resides. Under
applied bias the electrons move from the source to the drain.
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Figure 7.21: (a) Scattering rates in a GaAs/Al0.3Ga0.7As channel as a function of energy. (b)
Velocity-field curves calculated in the channel. Electron density is 2× 1012 cm−2.

Here m∗ is the effective mass, i and j denote the initial and final subband indices, εs and
ε∞ are the low and high-frequency dielectric constants, and h̄ω0 is the optical phonon
energy. The + and − signs on Q refer to absorption and emission, respectively, for the
scattered wave vector given by

Q = |k− k′| =

[
2k2 ± 2ωijm∗

h̄
− 2k

(
k2 ± 2ωijm∗

h̄

)1/2

cos(θ)

]1/2

h̄ωij = h̄ω0 ± (Ei − Ej) (7.60)

Form factor Hij is evaluated numerically using the envelope functions g.

As an example of Monte Carlo results for transport in a 2D system in Fig.
7.21 we show results for an AlGaAs/GaAs quantum well with an electron density of
2 × 1012 cm−2. It is interesting to note that the velocity-field results are not very
different from those in pure GaAs, especially at high electric fields.
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7.7 TRANSPORT IN QUANTUM WIRES AND DOTS
In the previous section we have discussed how ionized impurity scattering, important at
low field and low temperatures, can be essentially eliminated in 2-dimensional systems.
There are some other differences between 3-dimensional transport and 2-dimensional
transport which are due to the differences in the density of states. However, there are
no major qualitative differences, since in 3D and 2D the density of states are continuous
and increase as one moves away from the banedges into the allowed band. In sub-2-
dimensional systems the density of states shape is qualitatively different from 2- or 3-
dimensional systems. It is reasonable to expect then that scattering rates and transport
will be dramatically different in quantum wires. Also scattering rates in quantum dots
will be quite different due to the unique density of states (a series of δ-functions).

There has been considerable interest in pursuing research in quasi-1-D struc-
tures due to the nature of the eigenstates, eigenenergies, and density of states. In a
quasi-1-D wire, the electron function is confined in two dimensions and is “free” only in
one direction. For a simple rectangular wire of dimensions Lx and Ly, the wavefunction
is of the form

ψk =
1√
Lz

gn(x) g&(y) eikzz (7.61)

where the envelope functions for an infinite barrier case have the usual form

gn(x) =
√

2
Lx

cos
(
nπx

Lx

)
, for n odd

gn(x) =
√

2
Lx

sin
(
nπx

Lx

)
, for n even (7.62)

where the well extends from x = −Lx/2 to x = +Lx/2. Similar eigenfunctions pertain
for g&(y).

The electron energies are

En,& =
h̄2

2m∗

{(
nπ

Lx

)2

+
(
&π

Ly

)2
}
+

h̄2k2
z

2m∗ (7.63)

Such a dispersion relation produces a density of states of the form

N(E) =
∑
n

√
2m∗1/2

πh̄
(E −En&)−1/2 (7.64)

where the En& are the various subband levels. An important effect of this quantization
is that once Lx and Ly approach 100 Å or less, there is enough inter-subband separa-
tion (≥ 50 meV) that there is no inter-subband scattering. The scattering in the same
subband is severely restricted for the 1D system as can be seen from Fig. 7.22 where
elastic scattering is considered. The only possible final state for elastic scattering is k
or −k unlike for the 2D or 3D system. Scattering to the state k has no influence on
transport while scattering to −k state requires a very short ranged potential to conserve
momentum. Overall this results in a severe suppression of scattering and mobilities as
high as 107 cm2 V−1s−1 have been predicted.
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Figure 7.22: Equal energy surface of a 1-DEG (a) in comparison with that of 2-DEG or 3-DEG
(b) in k-space. Note that scattering of a 1-DEG takes place only between k and −k, whereas
for the 2D or 3D system, the electron can be scattered into various states.

The experimental picture of superior transport in 1D systems has not been
very rosy so far. This appears to be linked to the growth and fabrication difficulties.
Unlike quantum wells, the fabrication of quantum wires usually involves complex etch-
ing/regrowth steps which probably introduce serious defects which affect the transport
properties.

In quasi-0-dimensional systems (quantum dots) we cannot talk about transport
in the usual sense of electrons moving in space. However, we can talk about an electron
entering the quantum dot potential well and then trickling down to the ground state.
This process of carrier “relaxation” is quite important for optoelectronic devices such
as lasers and detectors based on quantum dots.

As shown in Fig. 7.23 in a quantum dot system the density of states are finite
only at certain energies and go to zero in between these confined energies. In other higher
dimensional systems the density of states is always nonzero once the band starts. Since
there are energy regions where no electronic states are allowed in the quantum dot, the
electron cannot scatter into these energy regions. This creates several interesting issues
in carrier scattering times that can be exploited for device design. A most interesting
situation arises when the separation between the ground state E1 and the next excited
state, E2, is larger than the phonon energy, i.e.,

E2 − E1 = E21 > h̄ω0 (7.65)

where ω0 is the frequency of the optical phonons. In this case energy conservation forbids
an electron in state E2 to go to state E1 by emitting an optical phonon. Since optical
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Figure 7.23: (a) Electronic levels and density of states in a quantum dot. If E2 −E1 is larger
than the optical phonon energy an electron in level E2 cannot go to level E1 by first order
phonon scattering. (b) Processes that can allow electrons to by-pass the phonon bottleneck.

phonon emission is the strongest scattering rate in higher dimensional systems, the
words “phonon bottleneck” are used to describe the carrier relaxation process in dots.

Experimental studies on carrier relaxation show that electrons can indeed relax
to the ground state quite fast. Theoretical studies have shown that processes represented
in Fig. 7.23b are responsible for bypassing the phonon bottleneck. Thus an electron in
the excited state can scatter from holes or other electrons and lose energy to relax
into the ground state. However, even though the phonon bottleneck is bypassed, the
relaxation times have been shown to be longer than those observed in quantum wells
where the density of states is continuous.

7.8 TECHNOLOGY ISSUES
The velocity-field relationship is a critical ingredient of device design. As devices become
smaller and more complicated and expensive to build, accurate simulations can save
enormous amounts of money. Results used from Monte Carlo programs are widely used
to model devices, especially as devices become so small that velocity overshoot effects
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become important. It is important to note that in semiconductor electronic devices both
low field and high field transport properties are important.

In Table 7.4 we show a schematic of the electric field profiles in a field effect
transistor and a bipolar junction transistor. These two classes of devices are the basis
of most of modern electronics.

Field Effect Transistors (FETs)
As shown in Table 7.4, the field effect device is a “lateral” device in which either electrons
or holes move from the source to the drain. The electric field is small between the source
and the gate and increases rapidly at the drain side as shown. The low field mobility
is very important to ensure a small source-gate access resistance. High field velocity is
crucial in determining the device high frequency behavior.

Bipolar Junction Transistors (BJTs)
As with FETs, bipolar devices also have important low field and high field regions as
shown in Table 7.4. In BJTs both electron and hole transport are important in an npn
BJT the holes move under low field conditions, while electrons move under both low
and high field conditions.

Both FETs and BJTs show improved high speed performance as device dimen-
sions shrink. In addition, by using different materials it is possible to enhance device
performance as outlined in Table 7.4.

7.9 PROBLEMS

7.1 Calculate and plot the average speed of electrons in GaAs and Si between 10 K
and 400 K. How do these speeds compare to the saturation drift velocities?
7.2 Calculate the low field mobility in undoped and doped (ND = 1017 cm−3) Si
between 77 K and 300 K. Assume that all the donors are ionized.
7.3 Calculate the low field mobility in pure GaAs and In0.53Ga0.47As at 10 K and
300 K. Note that the room temperature mobility in In0.53Ga0.47As is higher than in
GaAs, but at 10 K, this is not the case. What is the key reason for this turnaround?
Assume an alloy scattering potential of 1.0 eV.
7.4 Calculate and plot the energy dependence of the various scattering rates listed in
Section 13.3 for electrons in GaAs from 0 to 400 meV. Examine carefully the relative
strengths of the various scattering processes.
7.5 Write a Monte Carlo computer program based on the flowchart of Fig. 7.4 and
using the scattering rates and their angular dependence for GaAs based upon the Γ-L
ordering. Compare the output of your results with the results presented in the paper
by Fawcett, et al., (1970). Note that in their paper they had used a Γ-X ordering of the
valleys.
7.6 Develop a Monte Carlo computer program to study electron transport in Si using
the six equivalent X-valleys model and without including any other valleys. Examine
the differences in the electron transport if you use an isotropic band with the density
of states mass for the E vs k relation or if you use the longitudinal and transverse mass
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DEVICE IMPORTANT CONSIDERATIONS

FIELD EFFECT TRANSISTORS • Superior low field moblity
improved source-gate resistance

• Si GaAs InGaAs
• Superior high field velocity

high frequency/high speed operation
• Low impact ionization coefficient

high power devices
Si GaAs SiC GaN C(?)

• Superior hole mobility low base
resistance

• Superior electron low field mobility
(diffusion coefficient) small base
transit time

• Superior high field electron velocity
small base-collector transit time,
high frequency/high field response

• Power devices high bandgap
collector region.
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Table 7.4: An overview of two important classes of electronic devices and influences of carrier
transport on their performance.
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relation, i.e.,

E(k) =
h̄2k2

2m∗
dos

vs.

E(k) =
h̄2k2

l

2m∗
l

+
h̄2k2

t

2m∗
t

7.7 Use your Monte Carlo program developed for GaAs to study the transient electron
transport. Compare your results to the results in the paper by Maloney and Frey.
7.8 Study the transient transport in Si using your Monte Carlo program. How small
would Si devices have to be before transient effects become important. Compare this to
the case for GaAs devices.
7.9 When devices operate at high frequency, the conductivity of the semiconductor
material changes. The propagation of the signal is then described by the description
used in Chapter xx for electromagnetic waves. Using the equation of motion for the
drift velocity,

d〈v〉
dt

= −〈v〉
τ
+
F
m

show that the conductivity has the frequency dependent form

σ(ω) =
σ0

1 + iωτ

where σ0 is the dc conductivity. Using µ = 8000 cm2/V-s for GaAs, plot the frequency
dependence of the conductivity up to a frequency of 200 GHz.
7.10 Using a Monte Carlo method, calculate the electron temperature as a function of
electric field for GaAs. Study the temperature up to a field of 105 V/cm.
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8

COHERENCE,
DISORDER, AND

MESOSCOPIC
SYSTEMS

8.1 INTRODUCTION
In the previous chapters on transport we have applied Born approximation or the Fermi
golden rule to describe the scattering processes in semiconductors. While the approach
described in these chapters and the outcome is most relevant to modern microelectronic
devices there are a number of important issues that are not described by this approach.
As semiconductor devices and technology evolve, these issues are becoming increasingly
important. In this chapter we will discuss some transport issues that are not described
by the formalisms of the previous three chapters.

In Fig. 8.1 we show several types of structural properties of materials. In Fig.
8.1a we show a perfect crystal where there are no sources of scattering. Of course, in a
real material we have phonon related fluctuations even in a perfect material. However,
for short times or at very low temperatures it is possible to consider a material with
no scattering. There are several types of transport that are of interest when there is
no scattering: i) ballistic transport, where electrons move according to the modified
Newton’s equation. This kind of transport has been discussed in Section 7.3.2; and
ii) Bloch oscillations, where electrons oscillate in k-space as they reach the Brillouin
zone edge, as will be discussed in Section 8.2. In addition we can have tunneling type
transport as well as quantum interference effects. These are discussed in Sections 8.3
and 8.4.

In Fig. 8.1b we show the case where there is a small degree of disorder. This is the
situation where Born approximation can be used and transport under these conditions
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Figure 8.1: A schematic of how levels of structural disorder and size impact electronic prop-
erties of a material. The various cases have been described in the text.

has been discussed in the previous chapters. In Fig. 8.1c we show the case where the
structural disorder is large. This happens in amorphous materials and leads to localized
states (band tails) and transport that is described by “hopping” behavior. We will
discuss these issues in Sections 8.5 and 8.6.

Finally in Fig. 8.1d we show the case for devices that are very small (several tens
of atoms across). Such structures are called mesoscopic structures and are increasingly
becoming important as fabrication technology improves. Mesoscopic structures have
a number of very interesting and potentially important transport properties. We will
discuss these in Section 8.6.

8.2 ZENER-BLOCH OSCILLATIONS
In the discussion so far on transport, we discussed the effects of scattering on the
response of electrons to an electric field. It is interesting to look at the electron response
in absence of any scattering. We briefly mentioned this in the discussion of ballistic
transport. The equation of motion is simply

h̄
dk

dt
= eF (8.1)

In the absence of any collisions the electron will simply start from the bottom of the
band (Fig. 8.2) and go along the E vs k curve until it reaches the Brillouin zone edge. As
discussed in Chapter 2, the bandstructure E vs k is represented within the first Brillouin
zone since it is periodic in k-space. The electron at the zone edge is thus “reflected” as
shown in Fig. 8.2 and now starts to lose energy in its motion in the field. The k-direction
of the electron changes sign as the electron passes through the zone edge representing
oscillations in k-space and consequently in the real space. These oscillations are called
the Zener-Bloch oscillations.

. ..
.

..
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Figure 8.2: A schematic showing how an electron starting at t = 0 at the bottom of the
Γ-valley travels up the E vs k diagram and gets reflected at the zone edge.

If we have a spatial periodicity defined by distance a the bandstructure is pe-
riodic in the reciprocal vector Γ = 2π/a. As a result the frequency of this oscillation
is

ω =
eFa
h̄

(8.2)

The oscillation frequency is quite high and can easily be in the several terrahertz regime.
Due to this possibility of high frequency oscillations, there is a tremendous interest in
this phenomenon. However, since the scattering mechanisms are usually strong enough
to cause the electron to scatter before it can go through a complete oscillation, it has
not been possible to observe these oscillations. Also, at high electric fields, the tunneling
between bands is quite strong, reducing the possibility of oscillations.

The Bloch oscillations are localized in space and the electron function is centered
on a particular unit cell. The simple plane wave description is no longer adequate since
the presence of the electric field causes a perturbation in the bands making k in the
direction of the field no longer a good quantum number. It is easy to see the nature of
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the state in presence of the field by using perturbation theory. The equation satisfied
by the electron is

(H0 − eF · r)ψb = Ebψb (8.3)

where H0 is the Hamiltonian that leads to the zero-field bandstructure and Eb are the
energy levels (say, measured from the bandedge). The general wavefunction is

ψb =
1√
V

∑
k

Ck φk(r) (8.4)

where φk(r) are the unperturbed Bloch functions for the crystal. Substituting ψb in
Eqn. 8.3 and taking a dot product with φk

′ we have

Ck
′ =

∑
k

Ck〈k
′ |(−eF · r)|k〉
Eb − Ek

′
(8.5)

The matrix element to be determined is

Mkk
′ = − eF

(2π)3
· V

∫
d3k e−ik

′ ·r Ck r eik·r (8.6)

We use the identity
reik·r = −i∇ke

ik·r (8.7)

and integrate by parts using the orthogonality of the plane waves to get∑
k

Ck〈k
′ |(−eF · r)|k〉 = −eF ∇kCk δkk

′

This gives upon substitution in Eqn. 8.5

dCk

dk
=

i(Eb − Ek)Ck

eF

or

Ck = C0 exp
{∫

i(Eb − Ek)
eF

dk

}
(8.8)

We recall that Ek is periodic in k-space. The localized function ψb must be
periodic in unit cells, i.e., for the same value of Eb measured from the bandedge there
have to be series of degenerate energy levels which are simply centered around different
unit cells. To retain this periodicity, the function Ck must be periodic.

Choosing
Ek = E0 + E(k) (8.9)

where E0 is the bandedge, we get a periodic value for C0 if

Eb − E0 = −eFna (8.10)
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where n is an integer and a is the unit cell dimension. Thus, the wavefunction which
has an energy Eb is centered around the unit cell at the point na (= r0). This gives us

Ck = C0 exp
{
−(k · r0) +

∫
(E(k)
eF

dk

}
(8.11)

and the wavefunction is

ψb =
1√
V
C0

∑
k

uk(r) exp
{
i

∫
E(k)
eF

dk − ik · (r0 − r)
}

(8.12)

where uk(r) is the central cell part of the states.
As shown schematically in Fig. 8.2 the electron oscillates in k-space as it goes

from the bottom of a band to the zone edge and then suffers a reflection and reverses
its k-space trajectory. It also oscillates in real space. Such charge oscillations could be
exploited as a source of radiation. The frequency of the Bloch-Zener oscillations is

ωb =
eF

2πh̄G
(8.13)

whereG is the reciprocal lattice vector. This frequency can be adjusted to be in the range
of 102 Hz. This frequency range is quite important in technology, but lower frequencies
(∼ 100 Ghz) can be reached by high speed electronic devices, while higher frequencies
can be reached by optical devices.

Due to the potential applications of the Bloch oscillations, a considerable amount
of work has focused on their realization. However, these attempts have not been very
successful. The reason for this is the scattering processes and interband transitions which
do not allow the coherent movement of the electrons that is necessary for the oscillations
to occur. Oscillations can occur if we have the condition

ωbτSC ≥ 1 (8.14)

where τSC is the scattering time. Use of superlattice concepts can, in principle, make it
easier for the condition to be satisfied.

In Fig. 8.3 we show a schematic of the effect of enlarging the periodic distance
(by making superlattices) on an energy band. On the top panel of the figure we show
the energy band schematic of a crystal with a unit cell periodicity represented by the
distance a. The zone edge in k-space is at 2π/a. Now if a superlattice with a period na
is made as shown in the lower panel the zone edge occurs at 2π/na. Assuming that the
scattering time is not changed much due to superlattice formation, it can be expected
that an electron will be able to reach the superlattice zone edge without scattering, thus
Bloch-Zener oscillations could occur. In reality, however, it has proven to be difficult to
observe such oscillations in superlattices.

8.3 RESONANT TUNNELING
Resonant tunneling is a very interesting phenomenon in which an electron passes through
two or more classically forbidden regions sandwiching a classically allowed region. A par-
ticularly interesting outcome of resonant tunneling is “negative differential resistance.”
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Figure 8.3: A schematic of how the use of a superlattice can reduce the k-space an electron
has to traverse before it reaches the zone edge. The reduced zone edge may allow the possibility
of Bloch-Zener oscillations.

In Fig. 8.4a we show a typical potential profile for a resonant tunneling structure. Such
a structure will be discussed in detail in this section. As shown the double barrier struc-
ture of Fig. 8.4 has a quasi-bound state at energy E0 as shown. If electrons injected
from the left side region have energies that correspond to E0 they are reflected back. As
a result when a bias is applied across the structure interesting effects are observed. The
operation of a resonant tunneling structure is understood conceptually by examining
Fig. 8.4. At zero bias, point A, no current flows through the structure. At point B, when
the Fermi energy lines up with the quasibound state, a maximum amount of current
flows through the structure. Further increasing the bias results in the structure of point
C, where the current through the structure has decreased with increasing bias (negative
resistance). Applying a larger bias results in a strong thermionic emission current and
thus the current increases substantially as shown at point D.

To understand the tunneling behavior we will discuss an approach known as
the transfer matrix approach in which the potential profile (say, the conduction band
lineup) is divided into regions of constant potential. The Schrödinger equation is solved
in each region and the corresponding wavefunction in each region is matched at the
boundaries with the wavefunctions in the adjacent regions. For simplicity the electronic
wavefunction is expanded in terms of a single band on either side of a barrier and
the Schrödinger equation is separated into a parallel and perpendicular part. The one-
dimensional Schrödinger’s equation for the direction perpendicular to a barrier interface
can be written as [

− h̄2

2m
d2

dz2
+ V (z)−E

]
ψE(z) = 0 (8.15)
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Figure 8.4: (a) Schematic explanation of the operation of resonant tunneling devices showing
the energy band diagram for different bias voltages. (b) Typical current–voltage characteristic
for the resonant tunneling diode.
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Figure 8.5: Typical resonant tunneling structure with two barriers. The wavefunction in each
region has a general form shown.

When the potential V (z) is constant in a given region, the general solution of Eqn. 8.15
has the form (see Fig. 8.5)

ψ(z) = A exp [ikz] +B exp [−ikz] (8.16)

with
h̄2k2

2m
= E − V (8.17)

When E−V > 0, k is real, and the wave functions are plane waves. When E−V < 0, k
is imaginary and the wave functions are growing and decaying waves. Thus, the overall
wavefunction for a single barrier profile is an exponentially decaying wave for the barrier
region and a plane-wave everywhere else.

At the boundaries between two materials one applies the boundary
conditions

ψ(z−) = ψ(z+) (8.18)

and
1
m1

dψ

dz

∣∣∣∣
z−
=

1
m2

dψ

dz

∣∣∣∣
z+

(8.19)

where m1 and m2 are the masses in the two regions. The second boundary condition
ensures current continuity across the interface. The boundary conditions at the interface
then determine the coefficients A and B (the subscripts denote the different regions)
and can be described by a 2× 2 matrix, M , such that[

A1

B1

]
=M

[
A2

B2

]
(8.20)

where M is known as the transfer matrix. It can be written as

M =
1

2k1m2

[
C exp [i(k2 − k1)z1] D exp [−i(k2 + k1)z1]
D exp [i(k2 + k1)z1] C exp [−i(k2 − k1)z1]

]
(8.21)
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where C = (k1m2 + k2m1) and D = (k1m2 − k2m1).
In general, if the potential profile consists of n , characterized by the potential

values Vx and the masses mx separated by n− 1 interfaces at positions zx then[
A1

B1

]
= [M1 · · ·Mn−1]

[
An
Bn

]
(8.22)

The elements of Mx are

Mx(1, 1) =
(
1
2
+

kx+1 mx

2kx mx+1

)
exp [i(kx+1 − kx)zx]

Mx(1, 2) =
(
1
2
− kx+1 mx

2kx mx+1

)
exp [−i(kx+1 + kx)zx]

Mx(2, 1) =
(
1
2
− kx+1 mx

2kx mx+1

)
exp [i(kx+1 + kx)zx]

Mx(2, 2) =
(
1
2
+

kx+1 mx

2kx mx+1

)
exp [−i(kx+1 − kx)zx]

If an electron is incident from the left only a transmitted wave will appear in region n,
and therefore Bn = 0.

A simple application of this formalism is the tunneling of electrons through a
single barrier of height V0 and width a. The tunneling probability is given by

T1B(E) =
∣∣∣∣A3

A1

∣∣∣∣2
=

4E(V0 − E)
V 2

0 sinh
2(γa) + 4E(V0 − E)

(8.23)

with
γ =

1
h̄

√
2m(V0 − E) (8.24)

This tunneling probability does not have any useful features. On the other hand,
the double barrier structure has very interesting behavior in its tunneling probability.
If we have two barriers as shown in Fig. 8.4, the tunneling through the double barrier
is given by

T2B =
[
1 +

4R1B

T 2
1B

sin2 (k1W − θ)
]−1

(8.25)

where R1B is the reflection probability from a single barrier

R1B =
V 2

0 sinh
2 γa

V 2
0 sinh

2 γa+ 4E(V0 − E)
(8.26)

and θ is given by

tan θ =
2k1γ cosh γa

(k2
1 − γ2) sinh γa

(8.27)
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The wavevector k1 is given by
h̄2k2

1

2m∗ = E

The tunneling through a double barrier structure has interesting resonancies as can be
seen from the expression for T2B . The calculated transmission probability as a function
of longitudinal electron energy for a typical RTD is shown in Fig. 8.6. For this calcu-
lation the barriers are assumed to be 1.2 eV and 26 Å wide. The well is 50 Å wide.
The mass of the particle is taken to be 0.15m0 in the barriers and 0.042m0 outside of
the barriers. The sharp peaks in the transmission probability correspond to resonant
tunneling through the quasi-bound states in the quantum well formed between the two
barriers. Note the relative widths of the ground and first resonant state. Also note that
the transmission probability reaches unity. The tunneling probability reaches unity at
energies corresponding to the quasi-bound states in the quantum well, of width W ,
formed by the barriers.

Although the transfer-matrix method was developed for rectangular barriers,
it can be generalized to profiles of arbitrary shape, by dividing the barrier into steps

A

A A
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of infinitesimal width. This enables one to calculate the probability of transmission
through the double barrier structure in the presence of an applied field.

The current in the system is given by

J = nev

=
e

4π3h̄

∫ ∞

0

dk&

∫ ∞

0

d2kt

[
f(E)− f(E

′
)
]
T (E&)

∂E

∂k&
(8.28)

where the longitudinal velocity is

v =
1
h̄

∂E

∂k&
and the net current is due to the electrons going from the left-hand side with energy
E and from the right-hand side with energy E

′
= E + eF l = E + eV where F is the

electric field and l is the distance between the contacts on the two sides.

J =
e

4π3h̄

∫
dk&T (E&)

∂E

∂k&

∫
d2kt

[
1

exp [(Et +E& −EF )/kBT ] + 1

− 1
exp [(Et +E& + eV −EF )/kBT ] + 1

]
The transverse momentum integral can be simplified by noting that

d2kt = kt dkt dφ

=
m∗ dEt dφ

h̄2

The current then becomes

J =
em∗

2π2h̄3

∫
dE&T (E&)

∫ ∞

0

dEt

[
1

exp [(Et +E& −EF )/kBT ] + 1

− 1
exp [(Et +E& + eV −EF )/kBT ] + 1

]

=
em∗

2π2h̄3

∫ ∞

0

T (E&) ln
[

1 + exp [(EF −E&)/kBT ]
1 + exp [(EF −E& − eV )/kBT ]

]
dE& (8.29)

The current shows peaks because of the peaks in the tunneling probability. The reader
is advised to be careful to distinguish between T (E&), the tunneling probability and T ,
the temperature.

In Fig. 8.7 we show typical current-voltage characteristics measured in resonant
double barrier structures. The results show are for a InGaAs/AlAs structure with para-
meters shown. As can be seen a large peak to valley current ration can be obtained at
room temperature. While the formalism described above does provide the qualitative
features observed in the I–V characteristics of the resonant tunneling diodes, it does not
provide good quantitative agreement. Approaches which include scattering effects have
been used to improve the agreement between experiments and theory. The techniques
are too complex to be discussed here. Nevertheless, the need for such complexity shows
how electronic devices have approached the regime where simpler quantum mechanics
concepts are not adequate.
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Figure 8.7: Static current–voltage characteristics of an InGaAs/AlAs resonant tunneling diode
at room temperature.

8.4 QUANTUM INTERFERENCE EFFECTS
In Chapter 2 we have seen that in a perfectly periodic potential the electron wavefunction
has the form

ψk(r) = uk(r)eik·r

In this perfect structure the electron maintains its phase coherence as it propagates in
the structure. However, in a real material electrons scatter from a variety of sources.
As a result, the particle wave’s coherence is lost after a distance of a mean free path.
If v is the average speed of the electron and τ the time interval between scattering, the
particle loses its phase coherence in a distance

λ ∼ vτ

In the absence of phase coherence, effects such as interference are not observable unless
the dimensions of the material (or device) are smaller than the mean free path.

In high-quality semiconductors (the material of choice for most information-
processing devices) the mean free path is ∼ 100 Å at room temperature and ∼ 1000 Å at
liquid helium. It is possible to see quantum interference effects at very low temperatures
in semiconductor devices. These effects can be exploited to design digital devices and
switches operating at very low power levels. The general principle of operation is shown
in Fig. 8.9. Electron waves travel from a source to a drain via two paths. At the output
the intensity of the electron wave is

I(d) =| ψ1(d) + ψ2(d)2 (8.30)

If the waves are described by

ψ1(x) = Aeik1x

ψ2(x) = Aeik2x (8.31)

A

A A
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we have
I(d) = 2A2[1− cos(k1 − k2)d] (8.32)

If we can now somehow alter the wavelengths of the electron (i.e., the value
of (k1 − k2)) we can modulate the signal at the drain. This modulation can be done
by using an electric bias to alter the kinetic energy of the electrons in one arm. In
Fig. 8.8b we show a schematic of a split-gate device in which electrons propagate from
the source to the drain either under one gate or the other. The ungated region is such
that it provides a potential barrier for electron transport as shown by the band profile.
Interference effects are then caused by altering the gate bias.

In quantum interference transistors, a gate bias is alters the potential energy
seen by the electrons. The electron k-vector at the Fermi energy is given by (Ec is the
bandedge)

E = Ec +
h̄2k2

2m∗ (8.33)

By changing the position of EF , one can alter the k-value. Thus one can develop quan-
tum interference transistors. Unfortunately, these effects are only observable at very low
temperatures.

8.5 DISORDERED SEMICONDUCTORS

The first seven chapters of this text have dealt with the properties of the nearly perfect
crystalline structure and defects or “disorder” has been assumed to be small. However,
there are cases where “disorder” is very large and the basic nature of the electronic states
is altered. In this section we will deal with situations where there is some “defect” at
almost every site of the crystal.

A most important example is the Si/SiO2 interface where, because of the lattice
mismatch between Si and SiO2, the interface region has an amorphous nature with
small but significant distortions in the bond angles and bond lengths of the interfacial
atoms. Another important example are the random alloy semiconductors, in which, even
though there is a perfect underlying lattice, the atoms on each site are not well-defined
leading to random potential fluctuations. Similarly the interfaces of even high quality
heterostructures have interfacial disorder on the scale of a few monolayers.

The amorphous semiconductors also form an important class of materials. These
semiconductors are usually grown under highly non-equilibrium growth conditions so
that the growing structure is unable to reach the equilibrium crystalline structure. The
advantage, of course, is that the structure is grown at a very low cost and, perhaps,
can be grown over large areas. Amorphous silicon is a prime example of such semicon-
ductors and offers the possibility of a cheap material for solar energy conversion. In
such amorphous semiconductors, the nearest neighbor coordination is maintained, but
long-range order is lost. Since often such semiconductors have broken bonds, certain
additional defects are introduced in the structure to passivate the defects. For example,
in amorphous silicon, hydrogen serves this purpose.
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8.5.1 Extended and Localized States
In the discussion of levels produced by dopants, we saw that the wavefunction associated
with the point defect is not an extended or Bloch state of the form

ψex =
1√
V
uk(r)eik·r (8.34)

but a localized state with a finite extent in space. The defect states have a general
form ψloc(r, r0) representing the fact that they are localized around a point r0 in space.
Typical localized states may have an exponentially decaying behavior.

In amorphous semiconductors electrons see a random background potential in
contrast to the periodic potential of a crystal. In the random potential electrons can
find local potential wells where they can be trapped or localized. At low energies in
a random potential (in an infinite structure) we get a continuum of localized states.
As one goes up to higher electronic energies the electron wavefunction spreads over a
larger volume until eventually it becomes extended to the entire volume. Of course, the
extended state is not the Bloch state of the crystal—it simply spreads over the entire
sample.

The qualitative differences between the extended and localized states can theo-
retically be brought out by an approach suggested by Thouless. Consider a volume V1 of
the disordered sample. If one solves for the electronic states of the sample with boundary
conditions that the wavefunctions go to zero at the boundary, then both “extended”
and localized states will be confined to this volume. Now if one increases the volume, the
amplitude of the “extended” states will decrease as ∼ 1/

√
V1 while that of the localized

states will essentially remain constant. The energy points which separate the extended
and localized states are called the mobility edge, the term arising from the consensus
that the dc conductivity of the localized states goes to zero (at low temperatures). The
effect of disorder on the nature of electronic states was first studied by Anderson in his
classic paper. It was shown that as the disorder is increased, the extent of the localized
states increases as shown schematically in Fig. 8.9. As can be seen, near the bandedges
one gets localized states forming “bandtails.” The width of these bandtails is related to
the level of disorder in the system.

There have been many different approaches to tackle the problem of disordered
systems. We will briefly discuss a statistical model to examine the bandtail states.
Such models are useful to address not only the “band tail states” (i.e., states in the
bandgap away from the mobility edges), but also their success in addressing problems
of broadening of excitonic transitions and general effects of fluctuations.

We will discuss the issue of how bandtails are produced by examining a random
alloy in which two materials are randomly mixed. Due to the random nature of the po-
tential bandtail states are formed. Lifshitz was the first to introduce a statistical theory
to attack the problem of a random A-B alloy. Fig. 8.10 shows individual eigenspectra of
any A and B components forming the alloy. The problem that Lifshitz addressed was
to find the density of states near the extremities EA

min and EB
max. The region of interest

for statistical-variational theories is between EA
min, E

B
min and EA

max, E
B
max. The mean

concentrations of A and B atoms are C0
A and C0

B , and it is assumed that no correlations
exist between the atoms. Lifshitz asserted that states near EA

min (in the alloy) will arise
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from regions in space which are purely A-like, i.e., regions which represent extreme po-
tential fluctuations. The probability of a volume V0 having a concentration CA when
the mean concentration is C0

A is given by the usual statistical techniques

P (V0) = exp
[
−V0

v0
{CA ln(CA/C0

A) + CB ln(CB/C0
B)}

]
(8.35)

where v0 is the atomic volume.
In addition Lifshitz argued that it is the ground state of such a fluctuation which

is important in determining the density of states near EA
min. Using these prescriptions,

then the probability in Eqn. 8.35 becomes (for CA = 1)

P (V0) = exp
[
−V0

v0
ln(1/C0

A)
]

(8.36)

and the energy of a localized wavefunction describing ground state may be written as

E = EA
min +B/R2

0 (8.37)

where B is a constant (∼ h2/m∗
A) and R3

0 ∼ V0 for 3D. The first term in Eqn. 8.37
represents the lowest “potential energy” that an electron could have in the pure A
environment, while the second term represents the “kinetic energy” or the energy of
confining the electron to a volume V . From Eqn. 8.37, one then derives the relation
between V0 and E, viz.

V0 =
[(

E − EA
min

B

)]−3/2

(8.38)

and substituting in Eqn. 8.36, one gets

n(E) ∝ P (E)

= exp

[
− 1
v0
ln(1/C0

A)
(
E − EA

min

B

)−3/2
]

(8.39)

The density of band tail states thus depends upon the smallest volume of dis-
order (v0 which is the unit cell volume for a perfectly random system or could be larger
for a clustered alloy). The Lifshitz results are applicable only at the extreme end of
the band tail states, since it is assumed that these states arise from regions of pure A
material. In general one has to relax this condition along with the condition that the
localized states result from the ground state function.

With the availability of computers capable of handling large matrix solutions,
it is now possible to study the electronic spectrum of a disordered system numerically.
These approaches then allow one to examine localized and extended states. A typical
plot of band tail states is shown in Fig. 8.11.

8.5.2 Transport in Disordered Semiconductors
There are some important qualitative differences between transport in a crystalline
material with a small degree of imperfections and transport in disordered materials. As
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we have discussed in Chapters 4 through 7, in crystalline materials electrons scatter
between one state and another due to the imperfections. Transport is then described by
the Boltzmann transport equation or by Monte Carlo methods. In disordered systems
the electrons are trapped in localized states. Thus below the mobility edge transport
occurs via i) “hopping” of electrons from one localized state to another; ii) “hopping”
from a localized state to an extended state; and iii) transport in extended states. The
approaches used to understand transport in disordered systems are listed in Fig. 8.12.

In the case of the disordered system we calculate the electronic spectra first in
presence of the disorder. This is important, as discussed earlier, because of the qualita-
tive differences between a crystalline material with defects and a disordered material.
Transport in the localized states is by hopping conduction, details of which we will dis-
cuss shortly. The extended states are described by a phase coherence distance and we

Disordered semiconductors

Kubo
formalism;
Landauer
formalism...

Localized
states

Hopping
conduction

Extended states
phase coherence

limited

Figure 8.12: The different approaches used to address defects in disordered systems.
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need to develop a formalism which will connect this to the conductivity of the mate-
rial. This connection is provided by the Kubo formalism which is a general approach to
transport and is particularly useful for cases of strong scattering. We will present the
Kubo formalism for transport now.

We will calculate the conductivity σ(ω) of a disordered system at frequency ω
and then obtain the dc conductivity by letting ω go to zero. Let us consider an electric
field, F cosωt, acting on a system of volume V . The probability, P , per unit time that
an electron makes a transition from a state E to any of the degenerate states E+ h̄ω is

P =
1
4
e2 F 2

(
2π
h̄

)
|〈E + h̄ω|x|E〉|2 V N (E + h̄ω) (8.40)

The matrix element for the transition is

〈E′ |x|E〉 =
∫

ψ∗
Ess′ x ψEss d

3x (8.41)

where ψEss is the electronic state with energy E and is normalized to volume V . The
states need not be a Bloch state. It is useful to rewrite the matrix element in the form.

〈E + h̄ω|x|E〉 = h̄

mω

∫
ψ∗
Ess+h̄ω

∂

∂x
ψEss d

3x (8.42)

This form could be obtained if we use the perturbation potential as eA/mc instead of
eFx, and use the relation A = cF/ω. The transition rate is now

P =
πe2h̄V

2m2ω2
F 2 |D|2N(E + h̄ω) (8.43)

where
D =

∫
ψ∗
Ess+h̄ω

∂

∂x
ψEss d

3x

We now define the conductivity of the system via the relationship between
the conductivity and the rate of loss of energy per unit volume. This quantity is just
σ(ω)F 2/2. The rate of energy gain is given by

Rgain = 2 h̄ω

∫
P f(E) [1− f(E + h̄ω)] N(E) dE (8.44)

The factor of 2 is to count both spin directions. The rate of loss of the energy is

Rloss = 2 h̄ω

∫
P f(E + h̄ω) [1− f(E)] N(E + h̄ω) dE (8.45)

Thus, the conductivity is given by

σ(ω) =
2πe2h̄3V

m2

∫
[f(E)− f(E + h̄ω)] |D|2avN(E)N(E + h̄ω) dE

h̄ω
(8.46)

The term |D|2av is |D|2 averaged over all states ψEss with energy E.
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At zero temperature, this becomes

σ(ω) =
2πe2h̄3V

m2

∫ |D|2avN(E)N(E + h̄ω)
h̄ω

dE (8.47)

The dc conductivity is given by taking the limit ω → 0

σEss =
2πe2h̄2Ω

m2
|DEss|2av{N(E)}2 (8.48)

where
DEss =

∫
ψ∗
Ess′

∂

∂x
ψEss d

3x, at E
′
= E (8.49)

The Kubo formalism reduces to the Boltzmann formalism

σ =
ne2〈τ〉
m∗ (8.50)

when the mean free path is long. To evaluate the matrix element D, it is useful to
consider the volume &3 over which the wavefunction in the localized state maintains
phase coherence. Thus, even though the extended state is not a Bloch state, we argue
that in the volume &3 it can be written as a Bloch state with wavevector k. The coherence
is then lost outside the volume &3. We can then divide the spatial integral over V for
D, into volume regions &3, where the integral is nonzero.

D =
(
V

&3

)1/2

δ (8.51)

where

δ = k

∫
&3

exp[i(k
′ − k) · r]
V

d3r (8.52)

We may write |k′ − k| = 2k sin(θ/2) ≈ kθ where θ is the angle between k and k
′
. The

integral is approximately evaluated as

δ =
k&3

V
, if k&θ < 1

= 0 otherwise (8.53)

To obtain |DEss|2, we have to do an averaging over the angle θ

〈|D|2〉 =
V

&3

k2&6

V 2

1
4π

∫ π

0

sin(k&θ/2)
(k&θ/2)

2π sin θ dθ

≈ π&

3V
(8.54)

We note that & is the mean free path used in the Boltzmann approach, i.e.,

& = vτ

=
h̄k

m∗ τ (8.55)
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Figure 8.13: Mechanisms for transport in a disordered system. In case 1, the electron is
thermal activated to the states above the mobility edge. In case 2, the electron hops to the
nearest localized state while in the case 3, the electron hops to the “optimum” site as explained
in the text.

The Kubo formalism provides new results for conductivity only when the mean
free path becomes very small. When & approaches a, the atomic spacing, the conductivity
that results is called the minimum conductivity.

The effects of phonon scattering which is not reflected in the electronic spectra
directly have to be treated separately. For the extended states the phonon scattering re-
duces the phase coherence length and reduce the conductivity. However, for conductivity
in the localized states, phonons actually increase the mobility of the carriers.

The localized states are not connected in real space so that the electron needs
to hop from one state to another. The important conduction mechanisms are shown
schematically in Fig. 8.13. In the first mode of conduction the electrons are excited to
the mobility edge by phonons, and the conduction behavior is described by the thermally
activated behavior

σ = σ0 exp
[−(Ec − EF )

kBT

]
(8.56)

where σ0 is the conductivity at the mobility edge. The conductivity at the mobility edge
has been a subject of great interest and is still being examined. Mott has shown that it
has a form

σ0 =
Ce2

h̄a
(8.57)

where C ∼ 0.03 and a is the minimum distance over which phase coherence could occur.
This quantity is also called the minimum metallic conductivity. For a = 3 Å, the value
is 2× 102 Ω−1 cm−1.

The second process indicated in Fig. 8.13 involves thermal activation from one
localized state to the nearest state in space, above the Fermi level. This process has been
used to explain the impurity conduction in doped semiconductors. The electron is always
assumed to move to the nearest empty localized state. To estimate this conductivity,
we assume that the wavefunctions are described by (assuming a center at the origin)

ψ = e−αr (8.58)

where α−1 is the localization length. The current density is proportional to the overlap
between the wavefunctions, the density of states at the Fermi level N(EF ), the width
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of the Fermi distribution kBT , the effective velocity of transport which is chosen as νph,
the attempt frequency (≈ phonon frequency) times the average spacing between the
states R. If ∆E is the average separation between the energies of the two states, and F
the applied field, the current density is

J ∼ ekBT N(EF ) R νph exp(−2αR)
×

[
exp

(−∆E + eFR

kBT

)
− exp

(−∆E − eFR

kBT

)]

= 2ekBT N(EF ) R νph exp
(
−2αR− ∆E

kBT

)
sinh

(
eFR

kBT

)
(8.59)

For small electric fields, the sinh function can be expanded and the conductivity becomes

σ =
J

F

= 2e2R2 νph N(EF ) exp
[
−2αR− ∆E

kBT

]
(8.60)

An estimate of the energy spacing of the levels is simply obtained from the definition
of the density of states, i.e.,

∆E ≈ 1
N(EF )R3

0

(8.61)

where R0 is the average separation between nearest neighbor states. This kind of near-
est neighbor hopping is dominant if nearly all states are strongly localized, e.g., as in
impurity states due to dopants.

In most disordered semiconductors, where the disorder is not too strong, one
has another important transport process indicated by the third process in Fig. 8.13. This
process, known as variable range hopping, was introduced by Mott and is a dominant
transport mode at low temperatures. At low temperatures, the hop would not occur to
the nearest spatial state, but the electron may prefer to go a potentially farther state
but one which is closer in energy so that a lower phonon energy is needed.

In a range R of a given localized state, the density of states per unit energy
range near the Fermi level are (

4π
3

)
R3N(EF )

Thus, for the hopping process involving a distance within R, the average separation of
level energies will be

∆E =
3

4πR3 N(EF )

As can be seen, the farther the electron hops, the smaller the activation barrier that it
needs to overcome. On the other hand, a hop of a distance R will involve an overlap
function which falls as exp(−2αR). Thus, there will be an optimum distance for which
the term

exp(−2αR) exp
(−∆E

kBT

)
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is a maximum. This can easily be seen to occur when

d

dR

[
2αR+

3
4πR3 N(E) kBT

]
= 0

or

Rm =
[

1
8πN(E) αkBT

]1/4

Using this value of Rm, we get for the conductivity behavior

σ = A exp
(
− B

T 1/4

)
(8.62)

where

B = 2
(
3
2π

)1/4(
α3

kBN(EF )

)1/4

This variable range hopping temperature behavior has been observed in numerous dis-
ordered systems. It is straightforward to show that for 2-dimensional systems the tem-
perature dependence is

σ = A exp

(
− B

′

T 1/3

)
(8.63)

The temperature dependence of conductivity given above has been observed in 2-
dimensional electron systems.

The formalisms given above for transport in amorphous semiconductors provide
a mere glimpse into the complexities of transport in disordered materials. We have not
discussed high field transport in amorphous materials. It is expected that at high fields
where electron energies are large, carriers will primarily reside in extended states above
the mobility edge. Here the transport will be similar to transport in crystalline materials,
except the scattering rates would be higher.

We have discussed transport in essentially infinite systems. When the sample
length starts to approach the localization length (coherence length) interesting new
effects arise. These are discussed in the next section.

8.6 MESOSCOPIC STRUCTURES
In our studies of transport we have assumed so far that the sample is quite large com-
pared to the coherence length (or distance between successive scattering events). New
physical phenomena emerge when sample dimensions become comparable to or smaller
than the coherence length. An area where continuous development has been occurring
in technology is the fabrication of small structures. Advances in electron beam and X-
ray lithography combined with low damage etching techniques has allowed fabrication
of structures as small as ∼ 100 Å. This has enabled the fabrication of semiconductor
devices that are small enough that electrons move from one contact to the other main-
taining their phase. This is unlike tunneling structures discussed in Section 8.3 in which
phase coherence is present only in the tunneling region. Such structures known generally
as mesoscopic structures exhibit two interesting effects.
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Figure 8.14: A schematic showing the effect of the scattering center S on electron waves a
and c incident from the left and right respectively. The waves b and d emerge as a result of
reflection and transmission.

• The transport and conductance may be described by coherent movement of the
electron wave.

• It is also possible that the capacitance of the structure is so small that addition
of a single electron can alter the potential energy of the system. This can cause
interesting effects generally described by the term Coulomb blockade. Both of
these effects offer the potential of new devices that can operate at very small
power levels. The structures also offer the study of few-electron physics.

8.6.1 Conductance Fluctuations and Coherent Transport

As noted above, in very small structures electron waves can flow from one contact to
another maintaining phase coherence. In structures that are ∼ 100–500 Å this occurs
at low temperatures, since at high temperatures the random scattering due to phonons
removes the coherence in the transport process. Since phase coherence is maintained in
transport, the macroscopic averaging procedures we have been using in defining mobility
or conductivity do not hold anymore. A dramatic manifestation of the phase coherence
is the fluctuation seen in conductivity of mesoscopic structures as a function of magnetic
field, electron concentration, etc.

The origin of the fluctuations can be understood on the basis of Landauer
formalism which allows one to study transport in terms of the scattering processes
directly. For simplicity consider a one-dimensional system with scattering centers. Each
of these scatterers is characterized in terms of a transfer matrix which describes what
fraction of the incident electron is “reflected” after scattering and what fraction is
transmitted. The scatterer is described by the reflection and transmission coefficients
shown in Fig. 8.14. The reflection and transmission coefficients are R and T for an
incident wave from the left or right. To calculate the current flow one needs to identify
the relative change in the carrier density on the left and right side of the scatterer. If
there is an applied bias δV , the excess carrier density (at low temperatures) is

δn ≈ dn

dE
(e δV ) (8.64)

The excess carriers on the left over the right side can also be evaluated as the magnitude
of the particle currents on the left divided by the velocity minus the magnitude of the
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particle currents on the right.

δn =
ja + jb

v
− jc + jd

v

=
(ja − jc) + (jb − jd)

v
(8.65)

Now it can be easily seen that

(jb − jd) = (R− T )(ja − jc) (8.66)

Thus, since R+ T = 1

δn =
2R (ja − jc)

v
(8.67)

The electrical current on the left side is

I& = eT ja − eT jc

= eT (ja − jc) (8.68)

These equations then give for the conductance

G =
I&
δV

=
T

2R
e2 dn

dE

1
h̄

∂E

∂k
(8.69)

Now for a 1-dimensional case
dn

dk
=
1
π

(8.70)

so that (including the spin degeneracy factor of 2)

G =
2e2

h

T

R
(8.71)

The expression shows that the fundamental unit of conductance is 2e2/h which will be
modified by the values of T/R. In general in the Landauer formalism one has to sum
the electron contributions from all different paths the electron could take in going from
one contact to another. It may appear that when such an averaging is carried out the
conductance fluctuations arising from different paths would average out, especially as
the sample size is increased. However, it turns out that there is a remarkable universality
in the magnitude of the fluctuations independent of the sample size, dimensionality and
extent of disorder, provided the disorder is weak and the temperature is low (a few
Kelvin). Such universal conductance fluctuations have been measured in a vast range of
experiments involving magnetic field and Fermi level position (voltage).

In Fig. 8.15 we show experimental results of Wees, et al., carried out on a
GaAs/AlGaAs MODFET at low temperatures. As shown, a pair of contacts are used
to create a short channel of the high mobility region, and conductance is measured.
The gates form a 1-dimensional channel in which the Fermi level and thus the electron
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Figure 8.15: Experimental studies on conductance fluctuations arising in a GaAs/AlGaAs
channel constricted by the structure shown. The results are for the channel conductance in
units of e2/πh̄ (= 2e2/h). (From the paper by B. J. van Wees, et al., Phys. Rev. Lett., 60, 848
(1988).)

wavefunctions can be altered. As can be seen from the Fig. 8.15, there are oscillations
in the conductance as suggested by the Landauer formalism.

There is a great deal of ongoing work in mesoscopic systems and improvements
in fabrication technology have allowed demonstrations of mesoscopic effects at temper-
atures larger than liquid nitrogen temperatures. As traditional semiconductor devices
shrink further their physics will increasingly be described by mesoscopic effects.

8.6.2 Coulomb Blockade Effects
In addition to coherent transport effects that can occur in very small systems, electron
charging energy effects can become significant in small structures. An interesting and
potentially important phenomenon manifests itself when structures have very small
capacitance. This is called the Coulomb blockade effect. We are familiar with the parallel
plate capacitor with capacitance C and the relation between a charge increment ∆Q
and the potential variation ∆V

C =
∆Q

∆V
or ∆V =

∆Q

C
(8.72)

The capacitance is given by the spacing of the plates (d) and the area (A)

C =
εA

d
(8.73)

Now consider a case where the capacitance becomes smaller and smaller until a single
electron on the capacitor causes a significant change in the voltage. The charging energy
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to place a single electron on a capacitor is

∆E =
e2

2C
(8.74)

and the voltage needed is
e

2C
=
80 mV

C(aF )
(8.75)

where the capacitance is in units of 10−18 F(aF ). If we write the charging energy as a
thermal energy, kBT0, the temperature associated with the charging energy is

T0 =
e2

2kBC
=
928.5 K

C(aF )
(8.76)

Coulomb blockade effects will manifest themselves if the sample temperature T is smaller
than this effective charging temperature T0. Here are the implications of the simple
equations described above:
• Once a capacitor reaches values approaching ∼ 10−18 F, each electron causes a shift
in voltage of several 10s of millivolts.
• The charging energy of the capacitor, i.e., the energy needed to place a single extra
electron becomes comparable to or larger than kBT with T reaching 10 K or even 100 K
if the capacitance becomes comparable to 10−18 F.

These observations which arise from “Coulomb blockade” can be exploited to
design very interesting devices that have the potential for low power/high density elec-
tronic devices. To get the small capacitors needed to generate Coulomb blockade effects
at reasonable temperatures one has to use areal dimensions of <∼ 1000 Å× 1000 Å with
spacing between the contacts reaching ∼ 50–100 Å. With such dimensions (using a
relative dielectric constant of ∼ 10) we get capacitors with capacitances of the order
of ∼ 10−16 F. The charging voltages are then ∼1 mV and T0 ∼10 K. If the area of
the capacitor is reduced further these values increase. It is possible to fabricate small
capacitors with capacitance approaching 10−18 F.

In Fig. 8.16 we show the band profile of a typical tunnel junction capacitor which
consists of two metal contacts separated by a thin tunneling barrier. In the absence of
any Coulomb blockade (i.e., for a large capacitor) as the bias is applied electrons tunnel
across the barrier and we simply get an ohmic behavior as shown in Fig. 8.16a.

In Fig. 8.16b we show the behavior for a structures where the charging energy
is large enough to have measurable effects. At zero bias there is no net flow of electrons
as usual. However at small biases smaller than the charging energy, an electron cannot
move from the left to the right because that would raise the energy of the right side
by e2/2C as shown. Once the voltage level (times electron charge) exceeds the charging
energy, electrons can flow across the junction and we have ohmic behavior. The current–
voltage relation shows a highly non-linear behavior as shown in Fig. 8.16b and has been
exploited to demonstrate interesting devices with applications in logic, storage, etc.

The effects sketched in Fig. 8.16b have a strong temperature dependence. As the
temperature rises, the distribution of carriers in the contact is smeared by ∼ kBT . As a
result the temperature dependence of the current–voltage curves is shown schematically
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Figure 8.16: (a) A normal tunnel junction with large capacitance shows ohmic I–V charac-
teristics. (b) In very small capacitance tunnel junctions the presence of a Coulomb blockade
ensures no current flows until the voltage reaches a certain point.
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Figure 8.17: A schematic of how current voltage relations change as temperature is raised.
Above T0, defined in the figure, normal ohmic conduction occurs.

in Fig. 8.17. The temperature, T0 defined above gives the upper temperature up to
which Coulomb blockade effect can be observed in the I–V characteristics.

8.7 TECHNOLOGY ISSUES

Semiconductor electronic devices have been driven by miniturization and (to a smaller
extent) new materials. Silicon MOSFET is, by far, the dominant device and is used
for memory cells, transistor, and capacitors. The saga of semiconductor technology is
captured by two laws observed by Gordon Moore, the co-founder of Intel. According
to Moore’s fist law, the number of active elements on a chip double every 18 months!
The second law says the cost of a fabrication facility grows on a semi-log scale! With
lab facilities already approaching the cost of well over a billion dollars, technologists are
desperate to violate the second law! And the first law is also getting close to hitting a
wall.

In Table 8.1 we show how semiconductor technology is expected to develop
according to the roadmap prepared by Semiconductor Industry Associates (SIA). We
can see from the SIA roadmap that gate length of MOSFETs will approach ∼ 500 Å by
∼2010. Of course, numerous material and technology challenges (two important ones
are listed in Table 8.1) will have to be overcome for this to happen.

At channel lengths below 50 nm (500 Å) electrons will move from the source to
drain without scattering. Also Coulomb blockade effects will become increasingly im-
portant. Thus physics considerations discussed in this chapter will become increasingly
important.
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YEAR 1997 1999 2001 2003 2006 2009 2012

DRAM cell 250 180 150 130 100 70 50
half-pitch
(nm)

Gate length 200 140 120 100 70 50 35
for MPU
(nm)

Maximum 200 300 300 300 300 450 450
substrate

diameter (mm)

Acceptable 2080 1455 1310 1040 735 520 370
defect density
at 60% yield
for DRAM

Defect density 1940 1710 1510 1355 1120 940 775
for MPU

Power supply 1.8-2.5 1.5-1.8 1.2-1.5 1.2-1.5 0.9-1.2 0.6-0.9 0.5-0.6
(V)

Power dissipation 70 90 110 130 160 170 175
with heat sink

(W)

Power dissipation 1.2 1.4 1.7 2.0 2.4 2.8 3.2
without heat sink

(for portable electronics)
(W)

Cost per function 120 60 30 15 5.3 1.9 0.66
DRAM (µcents/function)

Cost per function 3000 1735 1000 580 255 110 49
MPU (µcents/function)

108
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MOORE'S LAW

Challenges:.High gate leakage for devices
with gate length < 70 nm.Power dissipation problems

Table 8.1: An overview of semiconductor device roadmap prepared by the Semiconductor
Industry Associates.
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8.8 PROBLEMS
Section 8.2
8.1 Consider a GaAs sample in which a field of 10 kV/cm is applied. Discuss the
conditions under which Bloch oscillations can occur. Also calculate the frequency of
oscillations.
8.2 Design a GaAs/AlAs superlattice structure in which Bloch oscillations could occur
when the scattering rate is 1013 s−1 and the applied field is 10 kV/cm. Discuss possible
effects that could prevent the observation of the oscillations.
8.3 Consider a Si crystal in which a field of 104 V/cm is applied. Calculate the Bloch
oscillation period if the field is applied along the i) [100]; ii) [110], and iii) [111] directions.

Section 8.3
8.4 In the resonant tunnel structure the transmission probability vs. energy plot has
resonances with a linewidth ∆En. Show that if En is the energy of the nth resonance,

∆En ∼ EnT1B

πn

where T1B is the transmission through a single barrier.
8.5 Estimate the time an electron will take to tunnel through a resonant tunnel double
barrier structure. You can use the Heisenberg relation ∆t∆E ∼ h̄, where ∆E is the
energy linewidth of the transmission resonance.
8.6 Consider a resonant tunneling structure with the following parameters:

Barrier height, V0 = 0.3 eV
Well size,W = 60 Å

Barrier width, a = 25 Å
Effective mass ,m∗ = 0.07 m0

Calculate and plot the tunneling probability of electrons as a function of energy for
0 < E < V0.

Section 8.4
8.7 Consider a 0.1 µm AlGaAs/GaAs device in which a 2-dimensional gas is formed
with a density of n2D = 1012 cm−2. A split gate device is made from the structure.
Calculate the gate voltage needed (assume this is ∆EF /e) to switch a quantum inter-
ference transistor.
8.8 In normal transistors the ON and OFF states of the device are produced by in-
jecting and removing electrons in the device. Consider a Si device with an area of
2.0 µm×0.1 µm in which a 1 V gate bias changes the electron density in the channel
from 1012 cm−2 to 108 cm−2, thus switching the device from ON to OFF. What is the
switching energy?

Estimate the switching energy if quantum interference effects were used in the
same device.
8.9 Discuss what kinds of scattering processes will destroy quantum interference effects
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in devices and what kinds will not. Consider the various scattering mechanisms consid-
ered in Chapters 5 and 6.

Section 8.5
8.10 In a perfect crystalline material indirect gap materials have very weak interaction
with photons. Explain why. Discuss why amorphous Si has a strong interaction with
photons.
8.11 The room temperature mobility in amorphous silicon is in the range of 0.1 to
1.0 cm2/V·s. What is the phase coherence distance for electrons?

Section 8.6
8.13 Consider a 2-dimensional electron channel in a AlGaAs/GaAs device. The gate
length is 0.1 µm and gate width is 2.0 µm. The device is biased so that the electron
density in the channel is 1012 cm−2. How much will the electron number in the channel
change if ∆σ = e2/h? Use a semi-classical model with mobility 105 cm2/V·s.
8.14 Consider a metal-oxide-silicon capacitor. At what areal dimensions will it display
Coulomb blockade effects at 300 K? The relative dielectric constant of SiO2 is 3.9 and
the oxide thickness is 50 Å.
8.15 Consider a MOSFET in which the capacitance is 10−18 F. The gate capacitor
state is altered by a single electron (at very low temperatures). Calculate the change in
the device channel current if the device transconductance is

gm =
δI

δVG
= 1.0 S

Such devices are called single electron transistors.
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Chapter
9

OPTICAL PROPERTIES
OF SEMICONDUCTORS

9.1 INTRODUCTION
Interactions of electrons and photons in semiconductors form the basis of technologies
such as optical communications, display, and optical memories. In this and the next
chapter we will discuss how electrons in a semiconductor interact with light. To de-
scribe this interaction, light has to be treated as particles (i.e., photons). The problem
is mathematically quite similar to the electron-phonon (lattice vibration) scattering
problem discussed in Chapter 6. Electron-photon interactions are described via scatter-
ing theory through an absorption or emission of a photon. Both intraband and interband
processes can occur as shown in Fig. 9.1. Intraband scattering in semiconductors is an
important source of loss in lasers and can usually be described by a Drude-like model
where a sinusoidal electric field interacts with electrons or holes. Monte Carlo methods
or other transport models can account for it quite adequately. The interband scattering
involving valence and conduction band states is, of course, most important for optical
devices such as lasers and detectors. In addition to the band-to-band transitions, in-
creasing interest has recently focussed on excitonic states especially in quantum well
structures. The exciton-photon interaction in semiconductor structures contains impor-
tant physics and is also of great technical interest for high speed modulation devices
and optical switches. Excitonic effects will be discussed in the next chapter.

We will briefly review some important concepts in electromagnetic theory and
then discuss the interactions between electrons and photons. We will focus on the special
aspects of this interaction for semiconductor electrons, especially those relating to selec-
tion rules. Both 3-dimensional and lower-dimensional systems will be covered. We will
also focus on the selection rules and “gain” in semiconductor structures, considerations
which are extremely important in solid state lasers.

While the single electron picture which gives us the E vs. k relation provides a
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Figure 9.1: Intraband and interband scattering of an electron from an initial state ki to a
final state kf .

good description of optical processes for photon energies above the bandgap, just below
the bandgap there are extremely important optical interactions involving the electron-
hole system. These processes, known as excitonic processes, are becoming increasingly
important for technological applications such as high speed switches and modulators.
We will discuss the exciton related effects in Chapter 10.

9.2 MAXWELL EQUATIONS AND VECTOR POTENTIAL
The properties of electromagnetic fields in a medium are described by the four Maxwell
equations. Apart from the electric (F ) and magnetic (B) fields and velocity of light,
the effects of the material are represented by the dielectric constant, permeability (we
will assume that the permeability µ = µo), electrical conductivity, etc., We start with
the four Maxwell equations

∇× F +
∂B

∂t
= 0

∇×H − ∂D

∂t
= J

∇ ·D = ρ

∇ ·B = 0 (9.1)

where F and H are the electric and magnetic fields, D = εF , B = µH, J , and ρ are
the current and charge densities. In dealing with the electron-photon interactions, it is
convenient to work with the vector and scalar potentials A and φ respectively, which
are defined through the equations

F = −∂A

∂t
−∇φ

B = ∇×A (9.2)
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The first and fourth Maxwell equations are automatically satisfied by these
definitions. The potentials A and φ are not unique, but can be replaced by a new set
of potentials A

′
and φ

′
given by

A
′
= A+∇χ

φ
′
= φ− ∂χ

∂t
(9.3)

The new choice of potentials does not have any effect on the physical fields F
and B. To at least partially remove the arbitrariness of the potentials A and φ, we
define certain transformations called the gauge transformations which restrict them.
Before considering these transformations let us rewrite the Maxwell equations in terms
of A and φ.

The second and third Maxwell equations become

1
µo

∇×∇×A+ ε
∂2A

∂t2
+ ε∇∂φ

∂t
= J

∂

∂t
∇ ·A+∇2φ =

ρ

ε

Now
∇×∇×A = ∇(∇ ·A)−∇2A

giving us

∇
(
1
µo

∇ ·A+ ε
∂φ

∂t

)
− 1

µo
∇2A+ ε

∂2A

∂t2
= J

∂

∂t
(∇ ·A) +∇2φ = −ρ

ε

We will now impose certain restrictions on A and φ to further simplify these equations.
Note that these restrictions have no implications on F and B fields as can be easily
verified from their descriptions in terms of A and φ. The purpose of working in different
gauges is mathematical elegance and simplicity.

Since the vector potential A is defined in terms of its curl: B = ∇ × A, its
divergence (∇ ·A) is arbitrary. Choice of a particular gauge is equivalent to the choice
of the the value of ∇ ·A.

In a gauge known as the Lorentz gauge, widely used in relativistic electrody-
namics, we choose

∇ ·A′
+

∂φ
′

∂t
= 0

This is equivalent to imposing the following restriction on the arbitrary quantity χ

∇2χ− ∂2χ

∂t2
= −

(
∇ ·A+

∂φ

∂t

)
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With this choice of χ we get for the Maxwell equations

1
µo

∇2A− ε
∂2A

∂t2
= J

∇2φ− ∂2φ

∂t2
= −ρ

ε
(9.4)

This form of Maxwell’s equations is extremely useful for generalizing to rel-
ativistic electrodynamics. In dealing with electron-photon interactions, a most useful
gauge is the radiation or Coulomb gauge. If J = 0 and ρ = 0, we can choose the con-
stant background potential φ

′
= 0. In addition we can choose ∇ ·A′

= 0. In this case
the solutions for the vector potential are represented by plane wave transverse electro-
magnetic waves. We will be working in this gauge. It is useful to establish the relation
between the vector potential A and the photon density which represents the optical
power. The time dependent solution for the vector potential solution of Eqn. 9.10 with
J = 0 is

A(r, t) = A0 {exp [i(k · r − ωt)] + c.c.} (9.5)

with
k2 = εµoω

2

Note that in the MKS units (εoµo)1/2 is the velocity of light c (3 × 108 ms−1). The
electric and magnetic fields are

F =
∂A

∂t
= −2ωA0 sin(k · r − ωt)

B = ∇×A

= −2k ×A0 sin(k · r − ωt) (9.6)

The Poynting vector S representing the optical power is

S = (F ×H)

=
4
µo

vk2 |A0|2 sin2(k · r − ωt)k̂ (9.7)

where v is the velocity of light in the medium (= c/
√
ε̃) and k̂ is a unit vector in the

direction of k. Here ε̃ is the relative dielectric constant. The time averaged value of the
power is

< S >time = k̂
2vk2 |A0|2

µo

= 2vεµoω2 |A0|2 k̂ (9.8)

since
|k| = ω/v (9.9)
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The energy density is then∣∣∣∣Sv
∣∣∣∣ = 2ε ω2 |A0|2

c2
(9.10)

Also, if the photon mode occupation is nph, the energy density is (for a volume V )

nphh̄ω

V
(9.11)

Equating these two, we get

|A0|2 = nphh̄

2εωV
(9.12)

Having established these basic equations for the electromagnetic field, we will
now develop a macroscopic picture of the photon-material interactions. Going back to
the Maxwell’s equations and writing J = σF , we get the wave equation for the electric
field (after eliminating the B-field)

∇2F = εµo
∂2F

∂t2
+ σµo

∂F

∂t
(9.13)

This represents a wave propagating with dissipation. The general solution can be chosen
to be of the form

F = F 0 exp {i(k · r − ωt)} (9.14)

so that k is given by
−k2 = −εµoω

2 − σµoiω

or
(
c = (εoµo)−1/2

)
k =

ω

c

(
ε̃+

σµoi

ω

)1/2

(9.15)

In general, k is a complex number. In free space where σ = 0 we simply have
(ε̃ = 1)

k = ω/c

In a medium, the phase velocity is modified by dividing c by a complex refractive
index given by

nr =
(
ε̃+

σµoi

ω

)1/2

(9.16)

We can write the complex refractive index in terms of its real and imaginary
parts

nr = n′
r + in′′

r (9.17)

so that

k =
n′
rω

c
+ in′′

r

ω

c
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The electric field wave Eqn. 9.14 now becomes (for propagations in the +z direction)

F = F 0 exp
{
iω

(
n′
rz

c
− t

)}
exp

(−n′′
rωz

c

)
(9.18)

The velocity of the wave is reduced by n′
r to c/n′

r and its amplitude is damped
exponentially by a fraction exp (−2πn′′

r/n
′
r) per wavelength. The damping of the wave is

associated with the absorption of the electromagnetic energy. The absorption coefficient
α is described by the absorption of the intensity (i.e., square of Eqn. 9.18)

α =
2n′′

rω

c
(9.19)

Note that in the absence of absorption, n′
r = nr, and the refraction index will simply

be denoted by nr. The absorption coefficient can be measured for any material system
and it provides information on n′′

r .
In the above formalism we have seen that the response of the medium to the

outside world is represented by a complex dielectric constant or a complex refractive
index. The real and imaginary parts of the relative dielectric constants are related to
the refractive index components by the following relations (from Eqns. 9.16 and 9.17)

ε̃1 = n′2
r − n′′2

r

ε̃2 = 2n′
rn

′′
r (9.20)

where ε̃1 and ε̃2 are the real and imaginary parts of the relative dielectric constant. An
important relation is satisfied by the real and imaginary parts of all response functions
provided the causality principle is obeyed (effect follows the cause in time). The relation
is given by an expression known as the Kramers Kronig relation which when applied to
the refractive index and absorption coefficient gives the relation

n(ωo)− 1 = c

π
P

∫ ∞

o

α(ω)dω
ω2 − ω2

o

(9.21)

This relation is extremely useful since it allows one to calculate the refractive
index if the absorption coefficient is known. In particular, if the absorption spectra is
modulated by some external means (say, an electric field), the effect on the refractive
index can be calculated.

EXAMPLE 9.1 An electromagnetic radiation with a power density of 1 µW/m2 impinges
upon a receiver. Calculate the electric field amplitude of this radiation if the photon energy is
0.8 eV.

The power density is extremely small, but low noise detectors available in today’s
technology can detect such levels.

The photon density is related to the power density by

Power density = nphh̄wc

Thus,

nph
V

=
(10−6 Wm−2)

(0.8× 1.6× 10−19 J)(3× 108 m/s)
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= 2.6× 104 m−3

From Eqn. 9.12 we have

|Ao|2 =
(2.6× 104 m−3)(1.05× 10−34 Js)

2× (8.84× 10−12 F/m)(1.22× 1015 rad/s)
The electric field amplitude is

|Fo| = 2ωAo = 2.745× 10−2 V/m

= 2.745× 10−4 V/cm

9.3 ELECTRONS IN AN ELECTROMAGNETIC FIELD
The electron carries a negative charge which interacts with the electric and magnetic
fields of the electromagnetic radiation. The force on the electron due to the electric
field is simply the charge times the field and that due to the magnetic field is the
Lorentz force determined by the cross product of the electron velocity and the field.
The energy associated with this interaction determines the interaction Hamiltonian
that is responsible for electron scattering. The Hamiltonian describing the interactions
between a charge, e, and the electromagnetic field is

H =
1
2m0

(p− eA)2 + eφ+ V (r)

=
p2

2m0
− e

2m0
(p ·A+A · p) + e2

2m0
A2 + eφ+ V (r) (9.22)

Here A is the vector potential and V (r) is any background crystal potential.
In quantum mechanics the momentum p is a differential operator so we have

e

2m0
p ·A =

eA · p
2m0

− ieh̄

2m0
∇ ·A

The Hamiltonian becomes

H =
p2

2m0
− e

m0
A · p+ ieh̄

2m0
∇ ·A+

e2

2m0
A2 + eφ+ V (r)

We will now use the perturbation theory to study the effect of the electromagnetic
radiation on the electron. In the quantum theory of radiation, the electromagnetic field
is written in terms of creation and destruction operators, in analog with the harmonic
oscillator problem. In Chapter 6 we have applied the same approach to the electron-
phonon interaction.

The Schrödinger equation to be solved is

ih̄
∂ψ

∂t
=

[
− h̄2

2m0
∇2 +

ieh̄

m0c
A · ∇+

ieh̄

2m0
(∇ ·A)

+
e2

2m0
A2 + eφ+ V (r)

]
ψ (9.23)
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We will work in the radiation gauge (∇·A = φ = 0), and use the time dependent
theory which results in scattering rates given by the Fermi golden rule. We assume that
the optical power and consequently A is small, so that∣∣∣∣ ieh̄m0

A · ∇
∣∣∣∣ :
∣∣∣∣ h̄2

2m0
∇2

∣∣∣∣ ≈
∣∣∣∣e2A2

2m2
0

∣∣∣∣ :
∣∣∣∣ ieh̄m A · ∇

∣∣∣∣
≈ eA

p

For an optical power of 1 W/cm2 the photon density of a 1 eV energy beam is
∼ 109 cm−3. Using an electron velocity of 106 cm/s, one finds that

eA

p
∼ 10−5

Thus, even for an optical beam carrying 1 MW/cm2, the value of eA/p is small
enough that perturbation theory can be used. We will, therefore, only retain the first
order term in A.

The Schrödinger equation is now written as

ih̄
∂ψ

∂t
= (H0 +H

′
)ψ (9.24)

where
H0 = − h̄

2m0
∇2 + V (r) (9.25)

and
H

′
=

ieh̄

m0
A · ∇ (9.26)

The scattering problem is schematically represented in Fig. 9.2 where the per-
turbation due to the electromagnetic field causes a scattering of the electron. The vector
potential A represents the electromagnetic field which in the “second quantization” is
represented by an operator. This operator can be written in terms of creation and
destruction operators b† and b as discussed for the harmonic oscillator in Chapter 6.

From the Fermi golden rule the scattering rate from the initial electron state
|i〉 to the final state |f〉 is

W (i) =
2π
h̄

∑
f

∣∣∣〈f |H ′ |i〉
∣∣∣2 δ (Ef −Ei ∓ h̄ω)

where the upper sign is for photon absorption and the lower one is for emission.
Note that the initial and final electron and photon states can be represented

by the momentum states of the electron, along with the photon densities as shown in
Fig. 9.3. The initial and final electron-photon states are represented by the following:
Absorption:

|i〉 = |ki, nph〉
|f〉 = |kf , nph − 1〉
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−hki

−

Electromagnetic Field

H' = ieh A.
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destruction operator

∆

hkf

Figure 9.2: A schematic of the scattering of an electron by the electromagnetic field.

Emission:

|i〉 = |ki, nph〉
|f〉 = |kf , nph + 1〉

where ki and kf are the electron’s initial and final wave vectors and nph is the photon
density in the initial state. The vector potential is written as

Ao =

√
h̄

2ωεV

(
b† + b

)
(9.27)

Here b† and b are the photon creation and destruction operators. Note that this choice
gives the value for |Ao|2 given in Eqn. 9.12.

The creation and destruction operations have the matrix elements (focusing
only on the photon term of the matrix element; a is the polarization unit vector).
Absorption:

〈i | A · ∇ | f〉 ⇒
√

h̄

2ωε

〈
kf , nph − 1

∣∣∣(b† + b) · a · ∇
∣∣∣ ki, nph〉

=

√
h̄

2ωε
(nph)1/2 〈kf |a · ∇| ki〉

Emission:

〈i |A · ∇| f〉 ⇒
√

h̄

2ωε

〈
kf , nph + 1

∣∣∣(b† + b)a · ∇
∣∣∣ ki, nph〉

=

√
h̄

2ωε
(nph + 1)1/2 〈kf |a · ∇| ki〉

Notice the prefactors (nph)1/2 for the absorption process and (nph + 1)1/2 for
the emission process. This difference is extremely important, as will be discussed later.

Let us consider the photon absorption process where a photon with momentum
h̄kph and energy h̄ω is absorbed by an electron system. To calculate this rate we need
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Initial state Final state

electron

+ nph photons

ki

+ (nph −1) photons
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kf

kf

ki

+ nph photons

electron

"Destroy"
a photon

"Create"
a photon

ABSORPTION

Initial state Final state

EMISSION

Figure 9.3: (a) A schematic of an absorption process where a photon is absorbed (destroyed)
and the energy and momentum of the electron is altered; (b) the emission of a photon where
a photon is created.
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to sum over all possible electron states which can allow such a process to occur. The
photon energy h̄ω is transferred to the electron. To find the total scattering rate we
integrate over the final electron density of states

Wabs =
2π
h̄

e2

m2
0

(
h̄nph
2ωε

) ∑
final states

∣∣∣∣
∫

ψ∗
f (a · p)eikph·rψid3r

∣∣∣∣2 · δ(Ei−Ef + h̄ω) (9.28)

In the above expression, if we are considering the rate at which a photon is
absorbed, this involves summing over any possible electronic levels, as long as the energy
conservation is obeyed. One may, instead, be interested in the problem where a single
electron with momentum ki is scattered into a final state with momentum kf . In this
case the final states sum would be over all photon states that can cause such transitions
and would involve the photon density of states. These two approaches are illustrated
in Fig. 9.4 These issues will become apparent when we calculate the absorption and
emission rates.

The rate of an electron h̄ki to emit any photon and reach a state with momen-
tum h̄kf is similarly

Wem =
2π
h̄

e2

m2
o

(
h̄(nph + 1)

2ωε

) ∑
final states

∣∣∣∣
∫

ψ∗
f (a · p)e−ikph·rψid3r

∣∣∣∣2 · δ(Ei − Ef − h̄ω)

(9.29)
we notice that the emission term can be rewritten as stimulated and spontaneous emis-
sion terms

Wem =Wst +Wspon

where

Wst =
2π
h̄

e2

m2
0

h̄nph
2ωε

∑
final states

∣∣∣∣
∫

ψ∗
fe

−ikph·r(a · p)ψid3r

∣∣∣∣2
· δ(Ei − Ef − h̄ω) (9.30)

Wspon =
2π
h̄

e2

m2
0

h̄

2ωε

∑
final states

∣∣∣∣
∫

ψ∗
fe

−ikph·rψid3r

∣∣∣∣2 (9.31)

· δ(Ei − Ef − h̄ω)

The stimulated emission is due to the initial photons present in the system and
the emitted photons maintain phase coherence with the initial photons. The spontaneous
emission comes from the perturbations due to the vacuum state (i.e., nph = 0) energy
fluctuations and the emitted photons are incoherent with no phase relationship. The dif-
ference between these two kinds of processes is the key to understanding the differences
between a light emitting diode and the laser diode (Section 9.10).

Let us now focus on the semiconductor electronic states involved in the ab-
sorption or emission process. The photon momentum h̄kph for most energies of interest
in solid state devices (h̄ω ∼ 0.1 - 2.0 eV) is extremely small compared to the electron
momentum so that momentum conservation requires that

ki = kf
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ELECTRON-PHOTON SYSTEM

Integrate over any electronic
states which might participate

Final electronic density of states
to be used

Used for absorption coefficient
calculations

Rates for a particular electronic state

Integrate over any photon states
which might participate

Final photon density of states to
be used

Used for emission rates calculations

Rates for a particular photon state

Approaches are linked by ρ(hω) and N(E)

Figure 9.4: Final states used in scattering rates in the Fermi golden rule. Depending upon
the process being considered one may sum over final photon density of states or final electron
density of states.

Thus, in first order perturbation theory, the electronic transitions due to photons are
“vertical” in the E-k description. An example for interband transitions is shown in Fig.
9.5. The approximation of neglecting kph is called the dipole approximation. In the
dipole approximation the momentum matrix element, (the integral within the vertical
bars in Eqns. 9.28 and 9.29) which we denote by pif becomes quite simple.

Let us consider the initial and final states which have the Bloch function form.
The momentum matrix element is in the dipole approximation

pif = −ih̄

∫
ψ∗

kf &
′ ∇ψki& d

3r
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Figure 9.5: The positions of the electron and hole energies at vertical k-values. The electron
and hole energies are determined by the photon energy and the carrier masses. Since the photon
momentum is negligible the transitions are vertical.

where we choose

|i〉 = ψki&

= eiki·ruki&

|f〉 = ψkf &
′

= eikf ·rukf &
′

where uk& is the cell periodic part of the Bloch state and &, &
′
are the band indices.

Carrying out the differentiation we can write

pif = h̄ki

∫
ψ∗

kf &
′ ψki& d

3r − ih̄

∫
u∗
kf &

′ (∇uki&) e
i(ki−kf )·r d3r (9.32)

In the next section, we will examine the selection rules explicitly, for semiconductor
systems of interest.
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9.4 INTERBAND TRANSITIONS

9.4.1 Interband Transitions in Bulk Semiconductors
Let us consider the selection rules for band-to-band transitions in direct gap semicon-
ductors as shown in Fig. 9.5. We will focus on direct gap materials based on the zinc
blende structures (GaAs, InAs, InP, etc.) and will now use our understanding of the
nature of conduction and valence band state central cell functions. The first term on
the right-hand side of the momentum matrix element (Eqn. 9.32) is zero because of
orthogonality of Bloch states. The second term requires (u∗

k
′
&′
∇uk& is periodic)

ki − kf = 0

so that the interband transitions are “vertical” transitions. The interband matrix ele-
ment is, therefore (ki = kf = k)

〈uck|pa|uvk〉
where uck and uvk represent the conduction band and valence band central cell states.

For near bandedge transitions we will assume that uck and uvk are given by
their zone center values. We remind ourselves that in this case the central cell states are
(See Chapter 2 for a discussion on the central cell states in the conduction and valence
band states),

• Conduction band:
uc0 = |s〉 (9.33)

where |s〉 is a spherically symmetric state.
• Valence band:

Heavy hole states: |3/2, 3/2〉 = −1√
2
(|px〉+ i|py〉) ↑

|3/2,−3/2〉 = 1√
2
(|px〉 − i|py〉) ↓

Light hole states: |3/2, 1/2〉 = −1√
6
[(|px〉+ i|py〉) ↓ −2|pz〉 ↑]

|3/2,−1/2〉 = 1√
6
[(|px〉 − i|py〉) ↑ +2|pz〉 >↓]

(9.34)

From symmetry we see that only the matrix elements of the form

〈px|px|s〉 = 〈py|py|s〉 = 〈pz|pz|s〉 = pcv

are nonzero. Thus, for band-to-band transition, the only allowed transitions have the
following matrix elements

〈HH|px|s〉 = 〈HH|py|s〉 = 1√
2
〈px|px|s〉

〈LH|px|s〉 = 〈LH|py|s〉 = 1√
6
〈px|px|s〉
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and
〈LH|pz|s〉 = 2√

6
〈px|px|s〉 = 2√

6
pcv

It is important to note that
〈HH|pz|s〉 = 0

It is very useful to examine the matrix element square for light polarized along
various orientations. This polarization dependence is accentuated in quantum wells be-
cause the HH and LH states are no longer degenerate in that case.

z-polarized light: HH → c-band: No coupling

LH → c-band: |pif |2 = 2
3 |〈px|px|s〉|2

x-polarized light: HH → c-band: |pif |2 = 1
2 |〈px|px|s〉|2

LH → c-band: |pif |2 = 1
6 |〈px|px|s〉|2

y-polarized light: HH → c-band: |pif |2 = 1
2 |〈px|px|s〉|2

LH → c-band: |pif |2 = 1
6 |〈px|px|s〉|2

(9.35)

We see that the z-polarized light has no coupling to the HH states. Of course,
the states have the pure form only at k = 0. Away from k = 0, the HH state and
LH states have some mixture. For x-y polarized light the light couples three times as
strongly to the HH states as to the LH states. In quantum well structures where the
HH, LH degeneracy is lifted, the selection holes have important consequences for lasers
and detectors and their polarization dependent properties.

It is convenient to define a quantity

Ep =
2
m0

|〈px|px|s〉|2 (9.36)

The values of Ep for several semiconductors are given in Table 9.1.
As a result of the vertical transitions we have, as shown in Fig. 9.5 the equality

(using the parabolic band approximation)

h̄ω − Eg =
h̄2k2

2

(
1
m∗
e

+
1
m∗
h

)

=
h̄2k2

2m∗
r

(9.37)

where m∗
r is the reduced mass of the e-h system. The final state density of states in the

summation are thus the reduced density of states given by

Ncv(h̄ω) =
√
2
(m∗

r)
3/2(h̄ω − Eg)1/2

π2h̄3 (9.38)

and we have from Eqn. 9.28

Wabs =
πe2h̄nph
εm2

oh̄ω
| (a · p)cv |2 Ncv(h̄ω) (9.39)
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Semiconductor Ep (eV)
GaAs 25.7
InP 20.9
InAs 22.2
CdTe 20.7

Table 9.1: Values of Ep for different semiconductors. (After P. Lawaetz, Physical Review, B,
4, 3460 (1971).)

In bulk semiconductors the expression for unpolarized light becomes (from
Eqns. 9.35 and 9.39)

Wabs =
πe2h̄nph
2εm0h̄ω

(
2p2
cv

m0

)
2
3

Ncv(h̄ω) (9.40)

Before summarizing and comparing the results for the optical absorption and
electron-hole recombination in bulk and quantum well structures, we will briefly relate
the absorption coefficient to the absorption rate. It is useful to talk about absorption
coefficient rather than the rate at which a photon is absorbed. If we consider a beam of
photons traveling along the x-axis, we can write the continuity equation for the photon
density

dnph
dt

=
∂nph
∂t

∣∣∣∣
vol

+
∂(vnph)

∂x
(9.41)

where the first term represents the absorption rate of photons and the second term
represents the photons leaving due to the photon current. Here v is the velocity of light.
In steady state we have, in general

nph(x) = n0 exp(−αx)

which defines the absorption coefficient. Also

∂nph
∂t

=Wabs

and in steady state we have
Wabs = αvnph

or
α =

Wabs

vnph
(9.42)

The absorption coefficient is now given from Eqns. 9.40 and 9.42. In Fig. 9.6 we show
absorption coefficients for several semiconductors.

We now come to e-h recombination time. As discussed earlier, if we are inter-
ested in calculating the recombination rate of an electron with a hole at the same k
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Figure 9.6: Absorption coefficient for several semiconductors.

value, we integrate over all possible photon states into which emission could occur. For
total emission, we have

Wem =
πe2h̄

m2
oh̄ωε

(nph + 1) |a · pif |2 ρa(h̄ω) (9.43)

where ρa is the photon density of states for the polarization a. The total photon density
of states is given by (there are 2 transverse modes for each k value)

ρ(h̄ω) =
2ω2

2π2h̄v3 (9.44)

for photons emitted in the 3-dimensional space. For nph = 0, the emission rate is called
the spontaneous emission rate Wspon and it’s inverse is the e-h recombination time τo.
The time τo represents the time taken by an electron in a state k to recombine with an
available hole in the state k.

9.4.2 Interband Transitions in Quantum Wells
The formalism developed so far can be extended in a straightforward manner to the
case of the quantum well structures. The central cell functions in the quantum wells are
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relatively unaffected by the presence of the confining potential. The two changes that
occur are the nature of the wavefunctions, which for the low lying states are confined
to the well region, and the density of states which have the usual step-like form for
parabolic 2-dimensional bands.

The absorption rates are calculated only for the well region since the barrier
material has a higher bandgap and does not participate in the optical process till the
photon energies are much higher. The quantum well conduction and valence band states
are given in the envelope function approximation by

ψnc =
1√
AW

eike·ρ gnc (z) u
n
cke

ψmv =
1√
AW

eikh·ρ
∑
ν

gνmv (z) uνmvkh
(9.45)

Here W is the well size and A is the area considered and we have used (as discussed
in Chapter 2) the scalar description of the conduction band states and a multiband
(indexed by ν) description of the valence band. The envelope functions gnc and gνmv
correspond to the n and m subband levels in the conduction and valence bands respec-
tively. If we ignore the band mixing effects between the HH and LH states, i.e., ignore
the off-diagonal terms in the Kohn-Luttinger Hamiltonian, we obtain simple analytic
results for the absorption and emission rates. Note that the momentum matrix element
now undergoes the following change when we go from our 3-dimensional calculation to
a quasi-2-dimensional one

p3D
if =

1
V

∫
ei(ke−kh)·r〈uνv |pa|uc〉 d3r

→ p2D
if =

1
AW

∑
ν

〈gνmv |gnc 〉
∫

ei(ke−kh)·ρ 〈uνmv |pa|uc〉 d2ρ (9.46)

where 〈gνmv |gnc 〉 denotes the overlap between the z-dependent envelope functions of the
conduction and valence bands. For symmetrical potentials one has the approximate
condition that ∑

ν

〈gνmv |gnc 〉 ≈ δnm (9.47)

This condition is not exact and can be changed if there is any asymmetry present (e.g.,
if there is a transverse electric field present).

The final state reduced density of states (Eqn. 9.38) has to be replaced by the
2-dimensional reduced density of states.

N2D
cv (h̄ω)
W

=
m∗
r

πh̄2W

∑
nm

〈gmv |gnc 〉 θ(Enm − h̄ω) (9.48)

and
Enm = Egap +En

c +Em
v
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Figure 9.7: Calculated absorption coefficient in a 100 Å GaAs/Al0.3Ga0.7As quantum well
structure for in-plane polarized light. The HH transition is about three times stronger than
the LH transition in this polarization. In a real material excitonic transition dominate near the
bandedges as disucssed in the next chapter.

Heremr is the reduced electron hole mass. The θ-function is the Heaviside step function.

α(h̄ω) =
πe2h̄

m2
ocnrεo

1
(h̄ω)

|a · pif |2
N2D(h̄ω)

W

∑
n,m

fnm θ(Enm − h̄ω) (9.49)

where the overlap integral fnm is

fnm =

∣∣∣∣∣∑
ν

〈gνmν | gnc 〉
∣∣∣∣∣
2

(9.50)

It is useful to examine some numerical values of the absorption coefficient and
the recombination time for, say, a common system like GaAs. In Fig. 9.7 we show
the absorption coefficient for a 100 Å GaAs /Al0.3Ga0.7As quantum well structure.
In the bulk semiconductor the absorption coefficient starts at h̄ω = Eg, with a zero
value and initially increases as (h̄ω − Eg)1/2. It also has a 1/h̄ω behavior which only
influences the absorption coefficients at high energies where the density of states is
not parabolic anymore. Because of the degeneracy of the HH and LH states, there is
no polarization dependence of the absorption coefficient near the bandgap region. The
absorption coefficient in the quantum well structure is quite distinct from the bulk case
mainly because of the density of states function. Another difference arises because of
the lifting of the HH, LH degeneracy which makes the absorption coefficient strongly
polarization dependent as discussed earlier.
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Figure 9.8: Schematic representation of the effect of well size on electron and hole wave-
functions and the associated overlap integrals. The overlap integral decreases at very narrow
quantum well sizes.

In quantum wells, the 1/W dependence of the absorption coefficient is quite
interesting and somewhat misleading. We note that this dependence came from our
assumption that the wavefunction is localized a distance equal to the well size. The
1/W dependence suggests that the absorption coefficient can be increased indefinitely
by decreasing W , the well size. This is, however, not true. As shown schematically in
Fig. 9.8, as the well size is narrowed, the wavefunctions of the electron and hole no longer
are confined to the well size. The region of interest for the electrons starts increasing
beyond W . Also, because of the different masses of the electron and hole, the electron
function starts spreading beyond the well at a larger well size making the overlap from
less than unity. For most semiconductor systems the optimum well size is ∼ 80 to 100 Å.

9.5 INDIRECT INTERBAND TRANSITIONS
In materials such as Si, Ge, AlAs, i.e., indirect semiconductors, near-bandedge optical
transitions require photons and phonons to satisfy k-concentration. As a result, optical
absorption is observed in Si and Ge although the absorption rate is far weaker than for
GaAs.

Typical processes in the interband transition are shown in Fig. 9.9. The process
is second order in which the electron is first scattered by a photon to the direct band
conserving momentum and then scattering to the indirect band by a phonon. While
momentum is conserved in the intermediate process, the energy is not conserved since
this process is virtual and the time–energy uncertainty ensures that there is no energy
conservation requirement. The overall process, however, does conserve energy. The scat-
tering rate is again given by the Fermi golden rule except that the matrix element is
second order

Wif =
2π
h̄

∫ ∣∣∣∣
∑ 〈f |Hper|n〉〈n|Hper|i〉

Ei −En

∣∣∣∣2 δ(Ef −Ei)
d3k

(2π)3
(9.51)



9.5. Indirect Interband Transitions 365

phonon
transition

|i > Ek

Ev L

L X

EvX

| f >, Egk

Γ

EgΓ

EgΓ

photon
transition

photon
transition

phonon
transition

Figure 9.9: Two processes showing how a photon and a phonon can take an electron from
state |i〉 to state |f〉. The photon energy need not be equal to the vertical energy, since the
intermediate transitions are “virtual,” i.e., the electron does not reside there for any length of
time.

where |n〉 is an intermediate state, and the perturbation is

Hper = Hph +Hep

Here Hph is the electron-photon interaction discussed so far and Hep is the electron-
phonon interaction discussed in Chapter 6. In general, the two processes shown in Fig.
9.9 can contribute to the scattering process. However, the process which first involves
a photon interaction are stronger since the denominator is smaller (denominator is ∼
direct bandgap), than for the processes involving the phonon first (denominator is ∼
|EvΓ −EvX | or |EvΓ −EvL| which are larger than the direct bandgap). The scattering
rate is then

Wif (k) =
2π
h̄

∫
f

{
|Mem|2 + |Mabs|2

}
δ(Ef −Ei)

d3k

(2π)3

The matrix elementsMem andMabs correspond to the cases where first a photon
is absorbed and then a phonon is either emitted or absorbed. Note that the photon
energy h̄ω is smaller than the direct bandgap, but the intermediate transition can occur
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since energy need not be conserved. The form of the matrix elements is

Mabs =

∣∣〈c,k + q|Habs
ep |c,k〉∣∣2 ∣∣∣〈c,k|Habs

ph |v,k〉
∣∣∣2

(EgΓ − h̄ω)2

Mem =

∣∣〈c,k − q|Hem
ep |c,k〉∣∣2 ∣∣∣〈c,k|Hem

ph |v,k〉
∣∣∣2

(EgΓ − h̄ω)2
(9.52)

The phonon scattering is due to the optical phonon intervalley scattering with
a matrix element (as discussed in Chapter 6)

M2
q =

h̄D2
ij

2ρV ωij

{
n(ωij)
n(ωij) + 1

}

for the absorption and emission processes respectively. Here Dij is the deformation
potential, ρ is the mass density, and ωij is the phonon frequency which connects the Γ
valley to the zone edge valley. It is useful to point out that due to the indirect nature of
the transition, the rates calculated earlier for direct gap semiconductors are essentially
lowered by a factor equal to

M2
q

(EgΓ − h̄ω)2
(9.53)

This factor is typically 10−2 to 10−3 and has a temperature dependence due
to the temperature dependence of the phonon occupation n(ωij). In case of indirect
transitions, for a given initial states |v,k〉, there is a spread in the final states due to
the phonon scattering. The scattering rate sums over this spread, giving

Wij(k) =
2π
h̄

M2
ph

(EgΓ − h̄ω)2
h̄D2

ij

2ρωij
Jv

× [n(ωij) Nc(E1 + h̄ωij)
+ {n(ωij) + 1} Nc(E1 − h̄ωij)]

where Jv is the number of equivalent valleys, Nc is the density of states for a given spin
in a valley, and

E1 = h̄ω −Egk
′ −Ek

where Egk
′ is the indirect gap and the Ek is the energy of the initial electron measured

from the top of the valence band.
To find the absorption coefficient we need to sum the above rate over all possible

starting states which could absorb a photon with energy h̄ω. This means we must sum
over all possible initial states from Ek = 0 to Ekmax where

Ekmax = h̄ω −Egk
′ + h̄ωij (phonon absorption)

Ekmax = h̄ω −Egk
′ − h̄ωij (phonon emission)
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We multiply W(k) by 2V Nv(Ek)dEk where Nv is the single spin density of
states in the valence band and integrate from 0 to Ekmax. For parabolic bands the
integral is simple and we get

Wabs(h̄ω) =
M2

ph D2
ij Jv (mcmv)3/2

8π2(EgΓ − h̄ω)2 h̄6 ρ ωij

×
[
n(ωij)

(
h̄ω −Egk

′ + h̄ωij

)2

+ {n(ωij) + 1}
(
h̄ω −Egk

′ − h̄ωij

)2
]

(9.54)

with the photon related matrix element as before,

M2
ph =

e2h̄nph |a · pif |2
2m2

oεω
(9.55)

The absorption coefficient is then given by Wabs/(nphvph). Once the threshold
photon energy is reached, the absorption coefficient increases as (h̄ω −Eth)

2, in contrast
to the direct gap case where the energy dependence was (h̄ω −Eg)

1/2.
In Fig. 9.10 we show typical absorption measurements for Si and Ge. We note

the low absorption coefficient at near the bandgap in Si when compared to the results for
a direct gap material like GaAs. Once the photon energies reach the direct gap region, the
absorption coefficient increases rapidly, since direct transitions are possible. Notice that
here we have only considered phonons as a scattering process. Other scattering processes
such as alloy scattering, impurity scattering, etc., can also cause optical absorption in
indirect semiconductors. As a result, “poor” quality indirect semiconductors have a
better absorption coefficient than pure indirect materials. An example of absorption
in amorphous silicon (a-Si) is shown in Fig. 9.10. In an amorphous material the k-
vector is not a “good” quantum number (there is no periodic lattice) and effectively
k-conservation is not required. As a result, the absorption coefficient is quite strong.

EXAMPLE 9.2 A 1.6 eV photon is absorbed by a valence band electron in GaAs. If the
bandgap of GaAs is 1.41 eV, calculate the energy of the electron and heavy hole produced by
the photon absorption.

The electron, heavy-hole, and reduced mass of GaAs are 0.067 m0, 0.45 m0, and
0.058 m0, respectively. The electron and the hole generated by photon absorption have the
same momentum. The energy of the electron is

Ee = Ec +
m∗

r

m∗
e
(h̄ω − Eg)

Ee − Ec =
0.058

0.067
(1.6− 1.41) = 0.164 eV

The hole energy is

Eh − Ev = −m∗
r

m∗
h

(h̄ω − Eg) = −0.058
0.45

(1.6− 1.41)
= −0.025 eV
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Figure 9.10: Absorption coefficient of Si and Ge. Also shown is absorption coefficient for
amorphous silicon which is almost like a direct gap semiconductor, since k-selection is not
applicable.

The electron by virtue of its lower mass is created with a much greater energy than the hole.

EXAMPLE 9.3 In silicon, an electron from the top of the valence band is taken to the
bottom of the conduction band by photon absorption. Calculate the change in the electron
momentum. Can this momentum difference be provided by a photon?

The conduction band minima for silicon are at a k-value of 2π
a
(0.85, 0, 0). There are

five other similar bandedges. The top of the valence band has a k-value of 0. The change in
the momentum is thus

h̄∆k = h̄
2π

a
(0.85) = (1.05× 10−34)

(
2π

5.43× 10−10

)
(0.85)

= 1.03× 10−24 kg m s−1

A photon which has an energy equal to the silicon bandgap can only provide a mo-
mentum of

h̄kph = h̄ · 2π
λ

The λ for silicon bandgap is 1.06 µm and thus the photon momentum is about a factor
of 600 too small to balance the momentum needed for the momentum conservation. The lattice
vibrations produced by thermal vibration are needed for the process.
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EXAMPLE 9.4 The absorption coefficient near the bandedges of GaAs and Si are∼ 104 cm−1

and 103 cm−1 respectively. What is the minimum thickness of a sample in each case which can
absorb 90% of the incident light?

The light absorbed in a sample of length L is

Iabs
Iinc

= 1− exp (−αL)

or L = =
1

α
"n

(
1− Iabs

Iinc

)
Using Iabs

Iinc
equal to 0.9, we get

L(GaAs) = − 1

104
"n (0.1) = 2.3× 10−4 cm

= 2.3 µm

L(Si) = − 1

103
"n (0.1) = 23 µm

Thus an Si detector requires a very thick active absorption layer to function.

EXAMPLE 9.5 Calculate the absorption coefficient of GaAs as a function of photon fre-
quency.

The joint density of states for GaAs is (using a reduced mass of 0.065m0)

Ncv(E) =

√
2(m∗

r)
3/2(E − Eg)

1/2

π2h̄3

=
1.414× (0.065× 0.91× 10−30 kg)3/2(E − Eg)

1/2

9.87× (1.05× 10−34)3

= 1.78× 1054(E − h̄ω)1/2 J−1 m−3

The absorption coefficient is for unpolarized light

α(h̄ω) =
πe2h̄

2nrcεom0

(
2p2

cv

m0

)
Ncv(h̄ω)

h̄ω
· 2
3

The term
2p2cv
m0

is ∼23.0 eV for GaAs. This gives

α(h̄ω) =
3.1416× (1.6× 10−19 C)2(1.05× 10−34 Js)

2× 3.4× (3× 108 m/s)(8.84× 10−12 (F/m)2)

· (23.0× 1.6× 10
−19 J)

(0.91× 10−30 kg)

(h̄ω − Eg)

h̄ω

1/2

× 1.78× 1054 × 2

3

α(h̄ω) = 2.25× 10−3 (h̄ω − Eg)
1/2

h̄ω
m−1

Here the energy and h̄ω are in units of Joules. It is usual to express the energy in eV,
and the absorption coefficient in cm−1. This is obtained by multiplying the result by[

1

(1.6× 10−19)1/2
× 1

100

]

α(h̄ω) = 5.6× 104 (h̄ω − Eg)
1/2

h̄ω
cm−1
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For GaAs the bandgap is 1.5 eV at low temperatures and 1.43 eV at room tempera-
tures. From the value of α, we can see that a few microns of GaAs are adequate to absorb a
significant fraction of light above the bandgap.

EXAMPLE 9.6 Calculate the electron-hole recombination time in GaAs.

The recombination rate is given by

Wem =
e2nr

6πεom0c3h̄
2

(
2p2

cv

m0

)
h̄ω

with
2p2cv
m0

being 23 eV for GaAs.

Wem =
(1.6× 10−19 C)2 × 3.4× (23× 1.6× 10−19 J)h̄ω

6× 3.1416× (8.84× 10−12 F/m)× (0.91× 10−30 kg)

· 1

(3× 108 m/s)3 × (1.05× 10−34 Js)2

= 7.1× 1027h̄ω s−1

If we require the value of h̄ω in eV instead of Joules we get

Wem = 7.1× 1027 × (1.6× 10−19)h̄ω s−1

= 1.14× 109 h̄ω s−1

For GaAs, h̄ω ∼ 1.5 eV so that

Wem = 1.71× 109 s−1

The corresponding recombination time is

τo =
1

Wem
= 0.58 ns

Remember that this is the recombination time when an electron can find a hole to recombine

with. This happens when there is a high concentration of electrons and holes, i.e., at high

injection of electrons and holes or when a minority carrier is injected into a heavily doped

majority carrier region.

9.6 INTRABAND TRANSITIONS

When we consider intraband transitions (i.e., either within the conduction band or
valence band), it is not possible to have first order “vertical” transitions in k-space.
Thus intraband transitions cannot be first order processes for bulk semiconductors.
However, in quantum wells we have seen that one forms subbands due to quantum
confinement. It is possible to have inter-subband transitions. Such intraband (or inter-
subband) transitions make quantum well structures quite exciting for long wavelength
optical devices.
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9.6.1 Intraband Transitions in Bulk Semiconductors
As noted above, in bulk semiconductors, the intraband transitions must involve a phonon
or some other scattering mechanism (ionized impurity, defects, etc.,) to ensure momen-
tum conservation. The second order process is essentially similar to the one we dealt
with for indirect processes. The intraband transitions, also known as free carrier ab-
sorption, is quite important particularly for lasers, since it is responsible for losses in
the cladding layers of the laser.

Free carrier absorption is described quite well by the Drude model of transport.
The optical radiation is represented by a sinusoidal electric field which causes the elec-
tron to oscillate in the energy band. If there is no scattering the electron will simply
gain and lose energy, and there will be no net absorption of energy. However, because
of scattering mechanisms present, the electron absorbs net energy from the field and
then emits phonons so that optical absorption occurs. The absorption coefficient has
the dependence

∝ (h̄ω) ∝ 1
ω2

∝ 1
µ

(9.56)

i.e., the absorption coefficient falls as 1/ω2 and is inversely proportional to the carrier
mobility. If the mobility is large (i.e., scattering is weak) the absorption coefficient
becomes very small.

9.6.2 Intraband Transitions in Quantum Wells
We have seen in Chapter 3 that quantum well structures can produce remarkable changes
in the electronic properties of semiconductor structures. In quantum well structures, the
electronic states are no longer of the plane wave form in the growth direction making
it possible to have intraband transitions for certain polarizations of light. Since the
intraband (or inter-subband) transition energy can be easily varied by changing the
well size, these transitions have great importance for far infrared detectors.

Let us consider the intraband (inter-subband) transitions for a quantum well
grown along the z-direction. Due to the confinement in the z-direction, the subband
functions can be written as (say, the first two functions)

ψ1(k, z) = g1(z) eik·ρ u1
nk(r)

ψ2(k, z) = g2(z) eik·ρ u2
nk(r) (9.57)

In first order we have to examine vertical transitions. The functions g1 and g2 are
orthogonal and to a good approximation the central cell functions are same for the
different subbands (this especially true for the conduction band). Thus, the momentum
matrix element is given by

pif = − ih̄

W

∫
g2∗(z) e−ik·ρ a · ∇g1(z) eik·ρ d2ρ dz
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where W is the well width.
As in the case of the 3-dimensional system, the momentum matrix element is

zero if the polarization vector (or the ∇ function) is in the ρ-plane. Thus, for the x-y
polarized light, the transitions rate is still zero. (Note that if there is strong mixing
of the central cell functions as in the valence bands, this condition can be relaxed.)
However, if the light is z-polarized we get

pif =
−ih̄

W

∫
g2∗(z) ẑ

∂

∂z
g1(z) dz (9.58)

Since g1(z) and g2(z) have even and odd parities respectively, as shown in Fig.
9.11, g2(z) and ∂g1(z)/∂z both have odd parity. The momentum matrix element for
z-polarization is then approximately

|pif | ≈
h̄

W
(9.59)

This result is reasonably accurate if both the ground and excited states are confined to
the well size. Often the excited state may have less confinement than the ground state
in which case one has to explicitly evaluate the integral.

In the simple parabolic approximation, we see that the dispersion relations of
the two subbands are parallel and shifted by the subband energy levels differenceE2−E1

as shown in Fig. 9.11b. Therefore the joint density of states is a δ-function with infinite
density of states at the transition energy. However, we must include the occupation
function and broadening into the problem. In the inter-subband transitions, the electrons
have to be introduced by doping the material. Ideally, for maximum absorption, the
electrons are present in the first subband and, hopefully, not present in the second
subband. Introducing the Fermi factors, we get for the absorption process

Wabs =
πe2nph
m2
oωε

1
W

∑
f

|pif |2 δ (E2 −E1 − h̄ω) f(E1) [1− f(E2)] (9.60)

If we assume that the second subband is empty, the sum over the final states is
zero except at resonance where we have∑

2nd subband

δ(E2 −E1 − h̄ω) f(E1) = N1 (9.61)

where N1 is the electron concentration in the first subband. The density of states at res-
onance is infinite for the simple parabolic band giving an infinite absorption rate. How-
ever, in reality the nonparabolicity and scattering mechanisms introduce some broaden-
ing in the density of states. According to the uncertainty principle levels 1 and 2 have a
broadening in their energy position due to the finite time an electron can spend before
being scattered. If we assume a Gaussian broadening, the two-dimensional density of
states becomes

N(E) =
N1 exp

(
− (E−E12)2

1.44σ2

)
√
1.44πσ
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Figure 9.11: A schematic presentation of the (a) envelope functions for two levels in a quantum
well, (b) subband structure in the well, and (c) absorption rate for z-polarized light in a
quantum well.

where σ is the linewidth of the transition. The linewidth may have contributions from
both homogeneous (phonon related) and inhomogeneous (structural imperfections) ef-
fects.

The absorption coefficient for the z-polarized light now becomes

α(h̄ω) =
πe2h̄

m2
ocnrεo h̄ω

|pif |2
W

N1 exp
(
− (h̄ω − E12)2

1.44σ2

)
√
1.44πσ

(9.62)

The absorption coefficient increases rapidly with decreasing well size although
it is important to note again that as the well size becomes very small, the electronic
states are no longer confined to the well size as assumed by us. For a transition which



374 Chapter 9. Optical Properties of Semiconductors

is only 1–2 meV wide, the absorption coefficient could reach 104 cm−1, making such
transitions useful for detectors or modulators.

We note that z-polarized light for a z-confinement quantum well implies that
light is traveling in the plane of the substrate. Thus there is no absorption for vertical
incident light. As noted above, for valence band quantum wells there is strong band
mixing which allows vertical incident absorption also. However, for conduction band
quantum wells this is a drawback for applications in detectors. In imaging arrays usually
mirrors are etched into detector chips so that vertical incident light can be reflected to
make it incident along the x-y plane.

9.6.3 Intraband Transitions in Quantum Dots
In Chapter 1, Section 1.4, we have discussed how high strain epitaxy causes growth
to occur by island growth mode, which can then be exploited to make self-assembled
quantum dots. Such structures can be used in optoelectronic devices such as lasers and
detectors. One area which has drawn considerable attention is intersubband detectors.
As in quantum well intersubband photo-detectors (QWIPs) intersubband separations
can be controlled for applications in long wavelength detection. Thus applications such
as night vision, thermal imaging for medical diagnosis, etc., can benefit from such de-
vices. There is an important advantage to the use of quantum dot intersubband pho-
todetectors (QDIPs) as opposed to QWIPs. Due to 3D confinement of the electrons
vertical incident transitions are very strong in QDIPs. As noted above, in QWIPs these
transitions are forbidden for the conduction band and are only allowed in the valence
band where hole mixing effects make them possible. Thus it is possible to use QDIPs
for imaging applications without the use of mirrors to convert vertical incidence light
into in-plane incidence light.

As discussed in Chapter 1, Section 1.4, self-assembled quantum dots have a
very large built-in strain. As a result of this strain the electronic properties of the
dot is influenced more by strain than by quantization. For example in the InAs/GaAs
self-assembled dot the bandgap of InAs is only ∼0.4 eV, while the dot effective gap is
∼1.0 eV. As a result of the large strain the problem of the self-assembled dot cannot be
solved by a simple effective mass description where the conduction and valence bands are
decoupled. Use has been made of the 8 band k ·p method as well as the psuedopotential
method to examine the electronic properties of dots.

In the previous subsection we considered the intersubband absorption for quan-
tum wells. In the conduction band the strength of the transition is due to the overlap
integral between the envelope functions, since the character of the central cell function
is assumed to be the same (s-type) for the ground and excited states. In the case of the
self-assembled dots this is not the case, since there is a strong p-type mixture in the
conduction band states. If an 8 band model is used we can write the wavefunction for
the electronic levels in the dot as

ψn(x) =
8∑
j=1

φnj(r)uj(x) (9.63)

where φnj is the envelope function part and uj is the central cell part.
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Figure 9.12: Intersubband absorption spectra for the InAs/GaAs dot with base width
124 Å and height 62 Å. The linewidth is taken to be 30 meV. It is assumed there is only
one electron in the ground states of the dot.

The transition matrix element between initial state |ψi〉 and final state |ψf 〉 has
the form

pfi =
∑
jj′
(〈φfj′ |p|φij〉δj′j + 〈uj′ |p|uj〉 〈φfj′ |φij〉) (9.64)

An important point to note is that the very strong transition is due to the bandedge
Bloch part of the state and not due to the envelope part. As noted above this is unlike
the wide quantum well case, where in the conduction band the intersubband transition
is due to the envelope function part.

The intersubband absorption coefficient is

α(h̄ω) =
πe2h̄

ε0n0cm2
0Vav

∑
f

1
h̄ω

∣∣ε · pfi∣∣2 1√
2πσ

exp
(
(Efi,av − h̄ω)2 /2σ2

)
(9.65)

The optical absorption between the ground and excited levels is found to have a value

α ∼ 3.5× 105

σ
cm−1 (9.66)

where σ is the linewidth of the transition in meV. It must be noted that while this is
a very large value, the absorbing region is quite small (a few hundred Angstroms in
length). As a result, the uniformity in dot sizes is quite critical. In Fig. 9.12 we show the
intersubband absorption calculated for the InAs/GaAs QD. The transition between the
first excited states and the ground states is dominantly in-plane polarized. This makes
possible to detect the light impinging vertically on the surface.
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9.7 CHARGE INJECTION AND RADIATIVE RECOMBINATION
Under equilibrium conditions, electron occupation in the valence band is close to unity
while the occupation in the conduction band is close to zero. In actual experimental
situations this may, of course, not be true. In this section we will discuss charge injection
which plays a key role in the performance of light emitting diodes and laser diodes.

9.7.1 Spontaneous Emission Rate
When electrons and holes are injected into the conduction and valence bands of a semi-
conductor, they recombine with each other as we have discussed earlier. In then absence
of any photon density in the cavity (i.e., nph = 0), the emission rate is the spontaneous
emission rate which has a value of ∼ 1/(0.5 ns), provided an electron is present in the
state k and a hole is present in the same state k in the valence band. In reality, however,
the rate depends upon the occupation probabilities of the electron and hole with the
same k-value. Therefore, we have to include the distribution functions for electrons and
holes and integrate over all possible electronic states. Thus, the recombination rate is
(units are cm−3s−1)

Rspon =
2
3

∫
d(h̄ω)

2e2nrh̄ω

m2
0c

3h̄2


∫ 1

(2π)3
d3k |pif |2

× δ(Ee(k)−Eh(k)− h̄ω)

× fe(Ee(k))fh(Eh(k))


 (9.67)

The integral over d(h̄ω) is to find the rate for all photons emitted and the integration
over d3k is to get the rate for all the occupied electron and hole states. The prefactor
2/3 comes about since we are considering emission into any photon polarization so that
we average the matrix element square |a · pif |2.

The extension to quantum well structures is obtained by converting the 3D
density of states to the 2D density of states (units are cm−2s−1)

Rspon =
2
3

∫
d(h̄ω)

2e2nrh̄ω

m2
0c

3h̄2

∑
nm


∫ d2k

(2π)2
|pif |2

× δ(Ee
n(k)−Eh

m(k)− h̄ω)

× fe(Ee
n(k))fh(E

h
m(k))


 (9.68)

Using the definition of the time τo we have (τo = 1
Wspon)

Rspon =
1
τo

∫
d(h̄ω)Ncv{fe(Ee)}{fh(Eh)} (9.69)
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The spontaneous recombination rate is quite important for both electronic and
optoelectronic devices. It is important to examine the rate for several important cases.
We will give results for the electron hole recombination for the following cases:

i) Minority carrier injection: If n � p and the sample is heavily doped, we
can assume that fe(Ee) is close to unity. We then have for the rate at which holes will
recombine with electrons,

Rspon ∼= 1
τo

∫
d(h̄ω)Ncvf

h(Eh) ∼= 1
τo

∫
d(h̄ω)Nhf

h(Eh)
(
m∗
r

m∗
h

)3/2

∼= 1
τo

(
m∗
r

m∗
h

)3/2

p (9.70)

Thus the recombination rate is proportional to the minority carrier density
(holes in this case).

ii) Strong injection: This case is important when a high density of both
electrons and holes is injected and we can assume that both fe and fh are step functions
with values 1 or zero. We get for this case

Rspon =
n

τo
=

p

τo
(9.71)

iii) Weak injection: In this case we can use the Boltzmann distribution to
describe the Fermi functions. We have

fe · fh ∼= exp
{
− (Ec − EFn)

kBT

}
exp

{
− (EFp − Ev)

kBT

}
· exp

{
− (h̄ω − Eg)

kBT

}

The spontaneous emission rate now becomes

Rspon =
1
2τo

(
2πh̄2m∗

r

kBTm∗
em

∗
h

)3/2

np (9.72)

If we write the total charge as equilibrium charge plus excess charge,

n = no +∆n; p = po +∆n (9.73)

we have for the excess carrier recombination (note that at equilibrium the rates of
recombination and generation are equal)

Rspon ∼= 1
2τo

(
2πh̄2m∗

r

kBTm∗
em

∗
h

)3/2

(∆npo +∆pno) (9.74)

If ∆n = ∆p, we can define the rate of a single excess carrier recombination as

1
τr
=

Rspon
∆n

=
1
2τo

(
2πh̄2m∗

r

kBTm∗
em

∗
h

)
(no + po) (9.75)
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At low injection τr is much larger than τo, since at low injection, electrons have a low
probability to find a hole with which to recombine.

iv) Inversion condition: Another useful approximation occurs when the elec-
tron and hole densities are such that fe + fh = 1. This is the condition for inversion
when the emission and absorption coefficients become equal. If we assume in this case
fe ∼ fh = 1/2, we get the approximate relation

Rspon ∼= n

4τo
∼= p

4τo
(9.76)

The recombination lifetime is approximately 4τo in this case. This is a useful
result to estimate the threshold current of semiconductor lasers.

The gain and recombination processes discussed here are extremely important
in both electronic and optoelectronic devices that will be discussed later. We point out
from the above discussion that the recombination time for a single excess carrier can be
written in many situations in the form

τr =
∆n

Rspon
(9.77)

For minority carrier injection or strong injection τr ∼= τo. In general, Rspon has a
strong carrier density dependence as does τr. A typical curve showing the dependence of
τr on the carrier density is shown in Fig. 9.13 for GaAs. Note that the radiative lifetime
in GaAs can range from microseconds to nanoseconds, depending upon the injection
density.

9.7.2 Gain in a Semiconductor
If electrons are injected into the conduction band and holes into the valence band (as
happens for light emitting devices discussed later) the electron-hole pairs could recombine
and emit more photons than could be absorbed. Thus one must talk about the emission
coefficient minus the absorption coefficient. This term is called the gain of the material.
If the gain is positive, an optical beam will grow as it moves through the material
instead of decaying. In the simple parabolic bands we have the gain g(h̄ω) given by the
generalization of our result for the absorption coefficient (gain = emission coefficient −
absorption coefficient)

g(h̄ω) =
πe2h̄

nrcm
2
0ε0(h̄ω)

| a · pif |2 Ncv(h̄ω)[fe(Ee)− (1− fh(Eh))] (9.78)

The term in the square brackets arises since the emission of photons is propor-
tional to fe · fh, while the absorption process is proportional to (1− fe) · (1− fh). The
difference of these terms appears in the equation above.

The energies Ee and Eh are as shown in Fig. 9.14

h̄ω − Eg =
h̄2k2

2m∗
r
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Figure 9.13: The dependence of the radiative lifetime in GaAs as a function of carrier injection
(n = p) or minority carrier injection into a doped region with doping density as shown.

Ee = Ec +
h̄2k2

2m∗
e

= Ec +
m∗
r

m∗
e

(h̄ω − Eg)

Eh = Ev − h2k2

2m∗
h

= Ev − m∗
r

m∗
h

(h̄ω − Eg)

The occupation of electrons and holes in equilibrium is given by the Fermi level
EF . As excess electrons and holes are injected into the conduction and valence bands,
respectively, occupation is given by quasi-Fermi levels, EFn and EFp. As shown in Fig.
9.14, at high injection the quasi-Fermi levels start to penetrate the conduction band
and the valence band. If fe(Ee) = 0 and fh(Eh) = 0, i.e., if there are no electrons in
the conduction band and no holes in the valence band, we see that the gain is simply
−α(h̄ω) which we had discussed earlier. A positive value of gain occurs for a particular
energy when

fe(Ee) > 1− fh(Eh) (9.79)

a condition that is called inversion. In this case the light wave passing in the material
has the spatial dependence

I(z) = Io exp (gz) (9.80)

which grows with distance instead of diminishing as it usually does if g(h̄ω) is negative.
The gain in the optical intensity is the basis for the semiconductor laser.



380 Chapter 9. Optical Properties of Semiconductors

equilibrium

High injection: EFn

k

Ee

Eh

Ec

Eg

Ev

hω = Photon energy

k=0

−
−

−− − − − − −
−

++++
++ ++

High injection: EFp

EFn = EFp = EF

Figure 9.14: The positions of the quasi-Fermi levels, the electron and hole energies at vertical
k-values. The electron and hole energies are determined by the photon energy and the carrier
masses. At high injection the quasi-Fermi levels start to penetrate the conduction and valence
bands.

EXAMPLE 9.7 According to the Joyce-Dixon approximation, the relation between the Fermi
level and carrier concentration is given by

EF − Ec = kBT

[
"n

n

Nc
+

1√
8

n

Nc

]
where Nc is the effective density of states for the band. Calculate the carrier density needed for
the transparency condition in GaAs at 300 K and 77 K. The transparency condition is defined
at the situation where the maximum gain is zero (i.e., the optical beam propagates without
loss or gain).

At room temperature the valence and conduction band effective density of states is

Nv = 7× 1018 cm−3

Nc = 4.7× 1017 cm−3

The values at 77 K are

Nv = 0.91× 1018 cm−3

Nc = 0.61× 1017 cm−3
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In the semiconductor laser, an equal number of electrons and holes are injected into
the active region. We will look for the transparency conditions for photons with energy equal
to the bandgap. The approach is very simple: i) choose a value of n or p; ii) calculate EF from
the Joyce-Dixon approximation; iii) calculate fe + fh − 1 and check if it is positive at the
bandedge. The same approach can be used to find the gain as a function of h̄ω.

For 300 K we find that the material is transparent when n ∼ 1.1×1018 cm−3 at 300 K

and n ∼2.5 ×1017 cm−3 at 77 K. Thus a significant decrease in the injected charge occurs as

temperature is decreased.

9.8 NONRADIATIVE RECOMBINATION
In this chapter we have focused on optical interactions in semiconductors. We have dis-
cussed how electrons and holes recombine to produce photons. Such radiative processes
compete with nonradiative processes in which electron-hole recombination does not cre-
ate photons. Nonradiative processes produce phonons (or heat) instead of light and can
occur through defect levels or through the Auger processes (discussed in Chapter 5).

9.8.1 Charge Injection: Nonradiative Effects
According to Bloch’s theorem, in perfect semiconductors, there are no electronic states
in the bandgap region. However, in real semiconductors there are always intentional
or unintentional impurities which produce electronic levels which are in the bandgap.
These impurity levels can arise from chemical impurities or from native defects such
as a vacancies. The bandgap levels are states in which the electron is “localized” in a
finite space near the defect unlike the usual Bloch states which represent the valence and
conduction band states, and which are extended in space. As the “free” electrons move in
the allowed bands, they can be trapped by the defects as shown in Fig. 9.15. The defects
can also allow the recombination of an electron and hole without emitting a photon as
was the case in the previous section. This nonradiative recombination competes with
radiative recombination. We will briefly discuss the non-radiative processes involving a
midgap level with density Nt.

An empty state can be assigned a capture cross-section σ so that physically
if an electron comes within this area around a trap, it will be captured. If vth is the
velocity of the electron we can define a nonradiative time τnr(e) and τnr(p) through the
following relations

τnr(e) =
1

Ntvthσn
and τnr(p) =

1
Ntvthσp

(9.81)

where σn and σp are the cross-sections for electrons and holes. Based on this time
constant a theory for nonradiative recombination has been given by Shockley, Read,
and Hall. This treatment is greatly simplified if we make the following assumptions: i)
τnr = τnr(e) = τnr(p); ii) Et = EFi, i.e., the trap levels are essentially at midgap level;
iii) np � n2

i under the injection conditions. This gives, for the nonradiative rate,

Rt =
np

τnr(n+ p)
(9.82)
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Figure 9.15: Various processes that lead to trapping and recombination via deep levels in the
bandgap region (dashed line). The processes 1 and 2 in (a) represent trapping and emission of
electrons while 3 and 4 represent the same for holes. The e-h recombination is shown in part
(b).

The time constant τnr depends upon the impurity density, the cross-section associated
with the defect and the electron thermal velocity. Typically the cross-sections are in the
range 10−13 to 10−15 cm2.

EXAMPLE 9.8 A silicon sample has an impurity level of 1015 cm−3. These impurities
create a midgap level with a cross-section of 10−14 cm−2. Calculate the electron trapping time
at 300 K and 77 K.

We can obtain the thermal velocities of the electrons by using the relation

1

2
m∗v2

th =
3

2
kBT

This gives

vth(300 K) = 2× 107 cm/s
vth(77 K) = 1× 107 cm/s

The electron trapping time is then

τnr(300 K) =
1

1015 × 2× 107 × 10−14
= 5× 10−9 s

τnr(77 K) = 1015 × 1× 107 × 10−14 = 10−8 s

In silicon the e-h recombination by emission of photon is of the range of 1 ms to 1 µs

so that the non-radiative (trap related) lifetime is much shorter.

9.8.2 Non-Radiative Recombination: Auger Processes
In Chapter 5 we have discussed the Auger process in which an electron and hole recom-
bine and the excess energy is transferred to either an electron or a hole as shown in Fig.
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9.16. The important point to note is that no photons are produced in this process so
that an electron-hole pair is lost without any photon output.

In Fig. 9.16a, we show a process called conduction-conduction-heavy hole-
conduction or CCHC, the individual letters representing the state of the carriers in-
volved in the Auger process. After the scattering, an electron-hole pair is lost and one is
left with a hot electron. The hot electron subsequently loses its excess energy by emit-
ting phonons as discussed in Chapter 6. In Fig. 9.16b we show a different process called
CHHS (standing for conduction-heavy hole-heavy hole-split off) in which two holes and
an electron interact to produce a hot hole in the split-off band. Depending upon the
nature of the semiconductor bandstructure, one or both of these processes can dominate
the Auger process.

In Chapter 5 we have discussed many of the details of the Auger process. The
process involves 3 particles (2 electrons + 1 hole, or 2 holes + 1 electron) and is propor-
tional to n2p or p2n. If the electron and hole injection is equal, the Auger rate is often
written in the form

W = RAuger

= Fn3 (9.83)

where F is the Auger coefficient.
The Auger rates increase exponentially as the bandgap is decreased. They

also increase exponentially as the temperature increases. These are direct results of
the energy and momentum conservation constraints and the carrier statistics. Auger
processes are more or less unimportant in semiconductors with bandgaps larger than
approximately 1.5 eV (e.g., GaAs, AlGaAs, InP). However, they become quite impor-
tant in narrow bandgap materials such as In0.53Ga0.47As (E = 0.8 eV) and HgCdTe
(E < 0.5 eV), and are thus a serious hindrance for the development of long wavelength
lasers.

EXAMPLE 9.9 Consider an Auger process that involves the scattering shown in Fig. 9.16b.
This process denoted by CHHS is a dominant process for long distance communication lasers.
The masses of the conduction, heavy hole and split off band are mc,mh,ms, respectively, and
the bands are parabolic. Calculate the threshold energy for the initial electron and hole states
for such a transition using momentum and energy conservation.

Let k1 and k
′
1 be the initial k-vectors for the electron and hole, respectively, and k2

and k
′
2 be the vectors corresponding to the split-off hole and the heavy hole, respectively (as

shown in Fig. 9.16b). Momentum conservation gives us

k2 = k1 + k
′
1 + k

′
2

Energy conservation give us

Ek1 + Eg − Ek2 −∆ = −E
k
′
1
− E

k
′
2

We choose k
′
1 = k

′
2, and define a variational parameter α, where

k
′
1 = αk1
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Figure 9.16: (a) The Auger process involving 2 electrons and 1 hole in the initial state and
1 hot electron after the scattering. (b) The process where two holes and an electron suffer an
Auger process and give a hot hole in the split-off band.
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We have
k2 = k1(2α+ 1)

Also, from energy conservation, we get

h̄2k2
1

2mc
+
α2h̄2k2

1

mh
+ (Eg −∆) = h̄2k2

2

2ms
=

h̄2k2
1

2ms
(1 + 4α2 + 4α)

Solving for k2
1, we get

k2
1 =

(Eg −∆)(2ms/h̄
2)

1 + 4α2 + 4α− ms
mc

− 2α2ms
mh

To minimize E
′
k2
we must minimize

k2
1

2mc
+

k
′2
2

mh
=

k2
1

2mh

(
2α2 +

mh

mc

)
Substituting for k2

1, we find that the function to be maximized is

f(α) =

(
2α2 + mh

mc

)
1 + 4α2 + 4α− ms

mc
− 2α2ms

mh

Equating ∂f
∂α

= 0, we get(
1 + 4α2 + 4α− ms

mc
− 2α2 ms

mh

)
4α =

(
2α2 +

mh

mc

)(
8α+ 4− 4αms

mh

)
so that

2α2 + α
(
1− 2mh

mc

)
− mh

mc
= 0

or,

α =
mh

mc
= µ

We can now calculate the energy of the initial electron (i.e., the threshold energy)

h̄2k2
1

2mc
=

(Eg −∆)ms/mc

1 + 4µ2 + 4µ− ms
mc

− 2µ2 ms
mh

An important outcome of this result is that as Eg approaches ∆, the threshold for the Auger

process goes to zero. This causes an extremely high Auger recombination in materials where

the bandgap and the split-off energy are comparable.

9.9 SEMICONDUCTOR LIGHT EMITTERS
Radiative-recombination is the basis of light emitters, like light emitting diodes (LEDs)
and laser diodes (LDs). The LEDs and LDs are both very important technology devices
with application in displays and communications. The LED operates on the basis of
spontaneous emission while the LD operates on the basis of stimulated emission. As
discussed in Section 9.3 stimulated emission depends upon the “photon number” present
in the material. In spontaneous emission the photons that energy from e-h recombination
are incoherent, i.e., each one has a random phase. However, in stimulated emission the
photons that energy have the same phase as the ones already present. This difference
highlighted in Fig. 9.17 is responsible for coherent light emission in laser diodes. In this
section we will review the two important devices.
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Figure 9.17: (a) In the absence of any photons, electron-hole recombination produces photons
with no phase coherence. (b) In the presence of photons, electron-hole recombination produces
photons which are coherent with the previously existing photons.

9.9.1 Light Emitting Diode

The LED is essentially a forward biased p-n diode as shown in Fig. 9.18. Electrons and
holes are injected as minority carriers across the diode junction and they recombine
either by radiative recombination or non-radiative recombination. The diode must be
designed so that the radiative recombination can be made as strong as possible.

In the forward bias conditions the electrons are injected from the n-side to the
p-side while holes are injected from the p-side to the n-side as shown in Fig. 9.18. The
LED is designed so that the photons are emitted close to the top layer and not in the
buried layer as shown in Fig. 9.18. The reason for this choice is that photons emitted
deep in the device have a high probability of being reabsorbed. Thus one prefers to have
only one kind of carrier injection for the diode current. Usually the top layer of the LED
is p-type, and for photons to be emitted in this layer one must require the diode current
to be dominated by the electron current. From diode theory this requires asymmetric
doping on the n and p sides.



9.9. Semiconductor Light Emitters 387

Electron injection

Photons
will
emerge
from
the device

Photons will
be absorbed
in the device

+ + + + + +
+ + + + + + + +

_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _

+ + +

− − − −

+

Hole injection

p nPhotons
Buried
region

BURIED
LAYER

TOP LAYER

EFn
EFp

Figure 9.18: In a forward biased p-n junction, electrons and holes are injected as shown. In
the figure, the holes injected into the buried n region will generate photons which will not
emerge from the surface of the LED. The electrons injected will generate photons which are
near the surface and have a high probability to emerge.

9.9.2 Laser Diode
The laser diode, like the LED, uses a forward biased p-n junction to inject electrons and
holes to generate light. However, the laser structure is designed to create an “optical
cavity” which can “guide” the photons generated. The optical cavity is essentially a
resonant cavity in which the photons have multiple reflections. Thus, when photons are
emitted, only a small fraction is allowed to leave the cavity. As a result, the photon
density starts to build up in the cavity. For semiconductor lasers, the most widely used
cavity is the Fabry-Perot cavity shown in Fig. 9.19a. The important ingredient of the
cavity is a polished mirror surface which assures that resonant modes are produced
in the cavity as shown in Fig. 9.19b. These resonant modes are those for which the
wavelengths of the photon satisfy the relation

L = qλ/2 (9.84)

where q is an integer, L is the cavity length, and λ is the light wavelength in the material

λ =
λo
nr

(9.85)

where nr is the refractive index of the cavity. As can be seen from Fig. 9.19a, the Fabry-
Perot cavity has mirrored surfaces on two sides. The other sides are roughened so that
photons emitted through these sides are not reflected back.
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Figure 9.19: (a) A typical laser structure showing the cavity and the mirrors used to confine
photons. The active region can be quite simple as in the case of double heterostructure lasers or
quite complicated as in the case of quantum well lasers. (b) The stationary states of the cavity.
The mirrors are responsible for these resonant states. (c) The variation in dielectric constant
is responsible for the optical confinement.
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If a planar heterostructure of the form shown in Fig. 9.19c is used to confine
the optical wave in the z-direction, the optical equation has the form

d2Fk(z)
d2z

+
(
ε(z)ω2

c2
− k2

)
Fk(z) = 0 (9.86)

where F is the electric field representing the optical wave. The dielectric constant ε(z)
is chosen to have a z-direction variation so that the optical wave is confined in the
z-direction as shown in Fig. 9.19c. This requires the cladding layers to be made from a
large bandgap material.

An important parameter of the laser cavity is the optical confinement factor
Γ, which gives the fraction of the optical wave in the active region (i.e., where e-h
recombination occurs)

Γ =

∫
active region |F (z)|2dz∫ |F (z)|2dz (9.87)

This confinement factor is almost unity for “bulk” double heterostructure lasers
where the active region is >∼ 1.0 µm, while it is as small as 1% for advanced quantum
well lasers. However, in spite of the small value of Γ, quantum well lasers have superior
performance because of their superior electronic properties owing to their 2- dimensional
density of states.

Optical Absorption, Loss and Gain
As excess electrons and holes are injected into the active region of a laser (either through
forward biasing the p-n diode or by optically pumping) the gain in the laser turns from
negative to positive over some region of energy. Typical gain versus injection curves are
shown in Fig. 9.20.

The gain comes only from the active region where the recombination is occur-
ring. Often this active region is of very small dimensions. In this case, one needs to
define the cavity gain which is given by

Cavity gain = g(h̄ω)Γ (9.88)

where Γ is the fraction of the optical intensity overlapping with the gain medium. The
value of Γ is almost unity for double heterostructure (or bulk) lasers and ∼0.01 for
quantum well lasers. In quantum well lasers, the overall cavity gain can still be very
high, since the gain in the quantum well is very large for a fixed injection density when
compared to bulk semiconductors.

In order for the laser oscillations to start, it is essential that when photons are
emitted in the laser cavity, the gain associated with the cavity is able to surmount the
loss suffered by the photons. The photon loss consists of two parts: i) loss because of
absorption of the photons in the cladding regions and contacts of the laser; ii) loss due
to the photons emerging from the cavity.

The cavity loss αloss is primarily due to free carrier absorption of the light.
This is a second order process and in high quality materials this loss can be as low as
10 cm−1. It must be noted that the loss is dependent upon doping and defects in the
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Figure 9.20: Gain vs. photon energy curves for a variety of carrier injections for GaAs at 300 K.
The electron and hole injections are the same. The injected carrier densities are increased in
steps of 0.25× 1018 cm−3 from the lowest value shown.

material and, therefore, the material quality should be very good, especially in regions
where the optical wave is confined.

An additional loss of photons is due to the escape from the cavity. Thus loss is
given by

αcavity =
−1
L

&nR (9.89)

where R is the reflectivity of the mirror. For a semiconductor-air interface, the value of
the reflection coefficient is

R =
(nr − 1)2
(nr + 1)

2 (9.90)

where nr is the refractive index of the semiconductor.

Laser Below and Above Threshold
In Fig. 9.21 we show the light output as a function of injected current density in a laser
diode. This is the light output in the lasing mode. If we compare this with the output
from an LED we notice an important difference. The light output from a laser diode
in the lasing modes displays a rather abrupt change in behavior below the “threshold”
condition and above this condition. The threshold condition is defined as the condition
where the cavity gain overcomes the cavity loss for any photon energy, i.e., when

Γg(h̄ω) = αloss − &nR

L
(9.91)
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Figure 9.21: The light output in the lasing modes as a function of current injection in a
semiconductor laser. Above threshold, the presence of a high photon density causes stimulated
emission to dominate.

In high quality lasers αloss ∼ 10 cm−1 and the reflection loss may contribute a similar
amount. Another useful definition in the laser is the condition of transparency when the
light suffers no absorption or gain, i.e.,

Γg(h̄ω) = 0 (9.92)

When the laser diode is forward biased, electrons and holes are injected into the active
region of the laser. These electrons and holes recombine to emit photons. It is important
to identify two distinct regions of operation of the laser. Referring to Fig. 9.22, when
the forward bias current is small, the number of electrons and holes injected are small.
As a result, the gain in the device is too small to overcome the cavity loss. The photons
that are emitted are either absorbed in the cavity or lost to the outside. As the forward
bias increases, more carriers are injected into the device until eventually the threshold
condition is satisfied for some photon energy. As a result, the photon number starts
to build up in the cavity. As the device is further biased beyond threshold, stimulated
emission starts to occur and dominates the spontaneous emission. The light output in
the photon mode for which the threshold condition is satisfied becomes very strong.

If nth is the carrier density at which the gain reaches the threshold value the
radiative part of the threshold current density is

Jr(th) =
enthdlas

τr
=

enth(2D)
τr

(9.93)

where dlas is the thickness of the active region and nth(2D) is the areal carrier density
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(appropriate in quantum wells). The radiative lifetime is τr which is given by (see Eqn.
9.76)

τr ∼ τ0

4
(9.94)

under lasing conditions.
In addition to the radiative current we also have nonradiative current Jnr. For

Auger processes we have
Jnr = eFn3dlas

The total threshold current density is then

Jth =
enth(2D)

τr
+ eFn3

thdlas (9.95)

EXAMPLE 9.10 In two n+p GaAs LEDs, n+ � p so that the electron injection dominates
the diode current. If the non-radiative recombination time is 10−7s, calculate the 300 K inter-
nal radiative efficiency for the diodes when the doping in the p-region for the two diodes is
1016 cm−3 and 5× 1017 cm−3.

When the p-type doping is 1016 cm−3, the hole density is low and the e-h recombina-
tion time for the injected electrons is given by (see Section 9.7)

1

τr
=

1

2τo

(
2πh̄2m∗

r

kBTm∗
em∗

h

)3/2

p

We see that for p equal to 1016 cm−3, we have

τr = 5.7× 10−7 s

In the case where the p doping is high, the recombination time is given by the high
density limit (see Eqn. 9.70) as

1

τr
=

Rspon

n
=
1

τo

(
m∗

r

m∗
h

)3/2

τr =
τo
0.05

∼ 20τo ∼ 12 ns

For the low doping case, the internal quantum efficiency for the diode is

ηQr =
1

1 + τr
τnr

=
1

1 + (5.7)
= 0.15

For the heavier doped p-region diode, we have

ηQr =
1

1 + 10−7

20×10−9

= 0.83

Thus, there is an increase in the internal efficiency as the p doping is increased.

EXAMPLE 9.11 Calculate the carrier density needed for the transparency condition in
GaAs at 300 K and 77 K. The transparency condition is defined at the situation where the
maximum gain is zero (i.e., the optical beam propagates without loss or gain). Calculate the
transparency condition at h̄ω = Eg.
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At room temperature the valence and conduction band effective density of states is

Nv = 7× 1018 cm−3

Nc = 4.7× 1017 cm−3

The values at 77 K are

Nv = 0.91× 1018 cm−3

Nc = 0.61× 1017 cm−3

In the semiconductor laser, an equal number of electrons and holes are injected into
the active region. We will look for the transparency conditions for photons with energy equal
to the bandgap. The approach is very simple: i) choose a value of n or p; ii) calculate EFn and
EFp from the Joyce-Dixon approximation; iii) calculate fe + fh − 1 and check if it is positive
at the bandedge. The same approach can be used to find the gain as a function of h̄ω.

For 300 K we find that the material is transparent when n ∼ 1.1×1018 cm−3 at 300 K
and n ∼2.5 ×1017 cm−3 at 77 K. Thus a significant decrease in the injected charge occurs as
temperature is decreased.

EXAMPLE 9.12 Consider a GaAs double heterostructure laser at 300 K. The optical con-
finement factor is unity. Calculate the threshold carrier density assuming that it is 20% larger
than the density for transparency. If the active layer thickness is 2.0 µm, calculate the threshold
current density.

From the previous example we see that at transparency

n = 1.1× 1018 cm−3

The threshold density is then

nth = 1.32× 1018 cm−3

The radiative recombination time is approximately four times τo, i.e., ∼2.4 ns. The current
density then becomes

Jth =
e · nth · dlas

τr
=

(1.6× 10−19 C)(1.32× 1018 cm−3)(2× 10−4 cm)

2.4× 10−9 s

= 1.76× 104 A/cm2

EXAMPLE 9.13 Consider two double heterostructure GaAs/AlGaAs lasers at 300 K. One
laser has an undoped active region while the other one is doped p-type at 8 × 1017 cm−3.
Calculate the threshold current densities for the two lasers if the cavity loss is 50 cm−1 and
the radiative lifetime at lasing is 2.4 ns for both lasers. The active region width is 0.1 µm.

This example is chosen to demonstrate the advantages of p-type doping in threshold
current reduction. Since holes are already present in the active region, one does not have to
inject as much charge to create gain. However, it must be noted that too much p-doping can
cause an increase in cavity loss and even non-radiative traps (some dopants can be incorporated
on unintended sites in the crystal).

To solve this problem, a computer program should be written. This program should
calculate the quasi-Fermi levels for the electrons and holes and then evaluate the gain.
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We have

EFn = Ec + kBT

[
"n

n

Nc
+

1√
8

n

Nc

]

EFp = Ev − kBT

[
"n

ptot
Nv

+
1√
8

ptot
NV

]
where n is the electron (and hole) density injected and

ptot = p+ pA

where pA is the acceptor density. For the undoped laser, one finds that at approximately
1.1× 1018 cm−3 the laser reaches the threshold condition. For the doped laser we get a value
of n = p = 8.5× 1017 cm−3. The threshold current densities in the two cases are

J(undoped) =
(1.1× 1018 cm−3)(0.1× 10−4 cm)(1.6× 10−19 C)

(2.4× 10−9 s)

= 733 A/cm2

J(doped) =
(8.5× 1017 cm−3)(0.1× 10−4 cm)(1.6× 10−19 C)

(2.4× 10−9 s)

= 566 A/cm2

9.10 CHARGE INJECTION AND BANDGAP RENORMALIZATION
In our discussions of the semiconductor bandstructure we have not discussed whether
the E vs. k relation will change if one introduces extra electrons in the conduction band
or holes in the valence band. In fact, without explicitly stating this, the bandstructure
we have discussed so far is for the case where all the electrons are in the valence band
and the conduction band is empty. What happens when the situation is changed, either
by doping or by e-h injection? An e-h pair will have a Coulombic interaction with each
other. A manifestation of this interaction is the exciton, which will be discussed in the
next chapter. However, the presence of the excess electrons in the conduction band or
holes in the valence band also shifts the bandgap energy, decreasing it slightly. This
phenomenon is often called bandgap renormalization.

The bandgap renormalization effect has to be treated by the many body theory,
since the energy seen by a carrier depends upon the presence of other electrons and
holes. Extensive experimental and theoretical work has been done to study how the
bandgap changes with carrier density for both bulk and quantum well systems. We will
not discuss the many body treatment here, but simply provide an approximate result
for the bandgap shrinkage. In bulk materials, the bandgap shrinkage is given by

∆Eg = −K(n1/3 + p1/3) (9.96)

For GaAs, the constant K is such that we have (expressing n and p in cm−3)

∆Eg = −1.6× 10−8(n1/3 + p1/3) eV (9.97)
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SEMICONDUCTOR OPTOELECTRONICS

Optical
communications

Very low threshold strained quantum well lasers,
(+ detectors + modulators)

1.55 µm long haul communication
1.3 µm InGaAsP/InP quantum wells

0.8 µm GaAs/AlGaAs for local area network

Red, Green, Blue light emitters
GaAs/AlGaAs + InGaN/GaN

Display/lighting

GaN based short wavelength devicesOptical memories/
High resolution printing

Exciton based quantum well devices (Chapter 10)Optical logic/switches

}

Table 9.2: An overview of important optoelectronic technologies based on semiconductors.

From this equation we see that if n = p = 1018 cm−3, the change in the bandgap is
∼ −32 meV. While this is a small quantity, it can have an important effect on devices
such as laser diodes, since the light emission will shift due to the bandgap change.

9.11 TECHNOLOGY ISSUES
Semiconductor optoelectronics is now an important enabling technology in the informa-
tion processing age. Communication, storage, printing, and display are dependent on
high performance semiconductor devices as shown in Table 9.2. Advances in these areas
are coming from low-dimensional systems (quantum wells and quantum dots) and new
materials (GaN, InN, for example).

Semiconductor optoelectronics devices have been used to demonstrate all of
the important logic functions needed for computation. These devices have not produced
“optical computers” as yet and it is unlikely they will do so in near future. However,
these devices have resulted in high speed modulators and switches, as will be discussed
in the next chapter.

9.12 PROBLEMS
Sections 9.4-9.5
9.1 Identify the various semiconductors (including alloys) that can be used for light
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emission at 1.55 µm. Remember that light emission occurs at an energy near the band-
gap.
9.2 Calculate and plot the optical absorption coefficients in GaAs, InAs, and InP as a
function of photon energy assuming a parabolic density of states.
9.3 Consider a 100 Å GaAs/Al0.3Ga0.7As quantum well structure. Assuming that the
problem can be treated as that with an infinite barrier, calculate the absorption spectra
for in-plane and out-of-plane polarized light for E ≤ 100 meV from the effective band-
edge. Assume the simple uncoupled model for the HH and LH states.
9.4 Calculate and plot the overlap of an electron and heavy hole ground state envelope
function in a GaAs/Al0.3Ga0.7As quantum well as a function of well size from 20 Å to
200 Å. Assume a 60:40 value for ∆Ec:∆Ev. At what well size does the overlap signifi-
cantly differ from unity?
9.5 Calculate the gain in a GaAs region as a function of injected carrier density at
room temperature. Plot your results in the form of gain vs. energy.
9.6 Estimate the strength of the intraband transitions in a quantum well structure of
100 Å GaAs/Al0.3Ga0.7As at an electron carrier concentration of 1012 cm−2. Assume
an infinite barrier model and a linewidth (full width at half maximum) of 1 meV for
the transition.
9.7 Calculate the e-h radiative recombination time τ0 (i.e., for fe = 1 = fh) for carri-
ers in Hg1−xCdxTe (Eg(eV)= −0.3 + 1.9x) for x between 0.5 and 1.0. The momentum
matrix element is given by

2p2
cv

m0
= 22 eV

Assume that the refractive index is 3.7 and is independent of composition.

Section 9.7
9.8 In a GaAs sample at 300 K, equal concentrations of electrons and holes are injected.
If the carrier density is n = p = 1017 cm−3, calculate the electron and hole Fermi levels
using the Boltzmann and Joyce-Dixon approximations.
9.9 In a p-type GaAs doped at Na = 1018 cm−3, electrons are injected to produce
a minority carrier concentration of 1015 cm−3. What is the rate of photon emission
assuming that all e-h recombination is due to photon emission ? What is the optical
output power? The photon energy is h̄ω = 1.41 eV.
9.10 Calculate the electron carrier density needed to push the electron Fermi level to
the conduction bandedge in GaAs. Also calculate the hole density needed to push the
hole Fermi level to the valence bandedge. Calculate the results for 300 K and 77 K.
9.11 Calculate and plot the 300 K recombination rate in GaAs as a function of elec-
tron (hole) carrier density. Cover the electron (hole) density range from 1014 cm−3 to
1018 cm−3 in your calculations. Estimate the carrier density dependence of the recom-
bination rate in the low carrier density and high carrier density regime.
9.12 Consider an In0.53Ga0.47As sample at 300 K in which excess electrons and holes are
injected. The excess density is 1015 cm−3. Calculate the rate at which photons are gener-
ated in the system. The bandgap is 0.8 eV and carrier masses are m∗

e = 0.042 m0;m∗
h =

m0. Also calculate the photon emission rate if the same density is injected at 77 K. (Use
the low injection approximation.) Assume that the refractive index and the momentum
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matrix element is the same as in GaAs (given in the text).

Section 9.8
9.13 The radiative lifetime of a GaAs sample is 1.0 ns. The sample has a defect at
the midgap with a capture cross-section of 10−15 cm2. At what defect concentration
does the non-radiative lifetime become equal to the radiative lifetime at i) 77 K and ii)
300 K?
9.14 Consider a semiconductor with a bandgap of 0.75 eV and Auger coefficient of
10−28 cm−6s−1 at 300 K. The material is used for 0.1 µm active region laser where
n2D = p2D = 1012 cm−2. Calculate the non-radiative current density.

Section 9.9
9.15 Consider the semiconductor alloy InGaAsP with a bandgap of 0.8 eV. The electron
and hole masses are 0.04 m0, and 0.35 m0, respectively. Calculate the injected electron
and hole densities needed at 300 K to cause inversion for the electrons and holes at the
bandedge energies. How does the injected density change if the temperature is 77 K?
Use the Joyce-Dixon approximation.
9.16 Consider a GaAs based laser at 300 K. Calculate the injection density required
at which the inversion condition is satisfied at i) the bandedges; and ii) at an energy of
h̄ω = Eg + kBT . Use the Joyce-Dixon approximation.
9.17 Consider a GaAs based laser at 300 K. A gain of 30 cm−1 is needed to overcome
cavity losses at an energy of h̄ω = Eg + 0.026 eV. Calculate the injection density re-
quired. Also, calculate the injection density if the laser is to operate at 400 K.
9.18 Two GaAs/AlGaAs double heterostructure lasers are fabricated with active re-
gion thicknesses of 2.0 µm and 0.5 µm. The optical confinement factors are 1.0 and 0.8,
respectively. The carrier injection density needed to cause lasing is 1.0× 1018 cm−3 in
the first laser and 1.1 ×1018 cm−3 in the second one. The radiative recombination times
are 1.5 ns. Calculate the threshold current densities for the two lasers.
9.19 Consider a 1.55 µm laser operating at 77 K and 300 K. A cavity loss of 40 cm−1

exists in this laser. The other laser parameters are:

Γ = 0.1
m∗
e = 0.04 m0

m∗
h = 0.4 m0

Auger coefficient

F = 10−28 cm6 s−1 at 300 K
F = 10−30 cm6 s−1 at 77 K

dlas = 0.1 µm

Calculate the threshold carrier density needed at 77 K and 300 K. If the radiative life-
time at threshold is 2ns calculate the radiative and non-radiative current densities at
threshold.
9.20 Calculate the carrier density needed to reach a peak TE gain of 1000 cm−1 in a
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100 Å GaAs/AlGaAs quantum well at 300 K. Assume the following parameters:
(m∗

e = 0.067 m0;m∗
HH = 0.45 m0;m∗

LH = 0.45 m0):

Ee1 − Ec(GaAs) = 33 meV
Ee2 − Ec(GaAs) = 120 meV

Ev(GaAs)− EHH1 = 8 meV
Ev(GaAs)− ELHI = 20 meV

Use a Gaussian broadening function of halfwidth 1.3 meV. What is the peak TM gain
at the same injection?
9.21 Consider a 80 Å GaAs/Al0.3Ga0.7As quantum well laser with Γ = 0.02. Calculate
the threshold carrier density and threshold current for the following device parameters.

Ee1 − Ec(GaAs) = 40 meV
Ev(GaAs)− EHH1 = 12 meV
Ev(GaAs)− ELH = 20 meV

m∗
e = 0.067 m0

m∗
HH = 0.45 m0

m∗
LH = 0.4 m0

αc = 50 cm−1

The radiative lifetime is 2.5 ns. Assume a halfwidth of 1.0 meV for a Gaussian broad-
ening for the gain.
9.22 Consider a 100 Å GaAs/Al0.3Ga0.7As quantum well laser and a 100 Å
In0.3Ga0.7As/Al0.3Ga0.7As laser. Compare the gain curves for the two lasers near thresh-
old. The devices are defined by the following parameters.
GaAs well (cavity loss for both lasers is 40 cm−1 and confinement factor is 0.002):

m∗
e = 0.067 m0

m∗
HH = 0.5 m0

m∗
LH = 0.5 m0

E1
e − Ec(GaAs) = 33 meV

Ev(GaAs)− E1
HH = 8 meV

Ev(GaAs)− E1
LH = 20 meV

InGaAs well:

m∗
e = 0.067 m0

m∗
HH = 0.2 m0

E1
e − Ec(InGaAs) = 33 meV

Ev(InGaAs)− E1
HH = 8 meV

Ev(InGaAs)− E1
LH = 120 meV



400 Chapter 9. Optical Properties of Semiconductors

Assume that the gain is broadened by a Gaussian function with halfwidth of 1.5 meV.
Temperature is 300 K.

Egap(GaAs) = 1.43 eV
Egap(In0.3Ga0.7As) = 1.25 eV
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Chapter
10

EXCITONIC EFFECTS
AND MODULATION OF
OPTICAL PROPERTIES

10.1 INTRODUCTION
The bandstructure and optical properties of semiconductors we have discussed so far
are based on the assumption that the valence band is filled with electrons and the
conduciton band is empty. The effect of electrons in the conduction band and holes in the
valence band is only manifested through the occupation probabilities without altering
the bandstructure. In reality, of course, there is a Coulombic interaction between an
electron and another electron or hole. Some very important properties are modified by
such interactions. The full theory of the electron-electron interaction depends upon many
body theory, which is beyond the scope of this text. However, there is one important
problem, that of excitonic effects in semiconductors, that can be addressed by simpler
theoretical techniques.

In Fig. 10.1 we show how exciton effects arise. On the left-hand side, we show
the bandstructure of a semiconductor with a full valence band and an empty conduction
band. There are no allowed states in the bandgap. Now consider the case where there is
one electron in the conduction band and one hole in the valence band. In this new con-
figuration, the Hamiltonian describing the electronic system has changed. We now have
an additional Coulombic interaction between the electron and the hole. The electronic
bandstructure should thus be modified to reflect this change. The electron-hole system,
coupled through the Coulombic interaction, is called the exciton and will be the subject
of this chapter.

We will discuss the exciton problem in bulk semiconductors and in heterostruc-
tures. The study of excitonic transitions in quantum wells has become an extremely
important area, both from the point of view of new physics and of new technology. We
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c-band
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c-band

v-band
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_
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Figure 10.1: (a) The bandstructure in the independent electron picture and (b) the Coulombic
interaction between the electron and hole which would modify the band picture.

will see in this chapter that due to quantum confinement, the exciton binding energy is
greatly increased. This, and improved optical transition strength, allows one to observe
extremely sharp resonances in quantum well optical spectra. Moreover, the energy, or
strength, of these resonances can be controlled easily by simple electronics or optics.
This ability allows one to use the excitonic transitions for high speed modulation of opti-
cal signals, as well as for optoelectronic switches, which could serve important functions
in future information processing systems.

The modulation of optical properties is an essential ingredient for advanced
optoelectronic systems. While a number of different stimulii can modulate the optical
properties of a material (electric field, magnetic field, strain field ) only electric field or
electromagnetic field-induced modulation can produce high speed operation. In the bulk
form, most semiconductors do not have very good modulation properties. However, these
properties can be greatly enhanced in quantum wells. In this chapter we will examine
the physics behind various optical modulation approaches.

10.2 EXCITONIC STATES IN SEMICONDUCTORS
The electron-hole pair shown in Fig. 10.1 forms a bound state which is described by
an envelope function. The form of the envelope function describing the bound state
can be calculated using the Coulombic interaction as a perturbation. Two important
classes of excitons exist depending upon the extent of the periodic envelope function
as shown in Fig. 10.2. When the envelope function is confined to just a few unit cells,
the excitons are classified as Frenkel excitons. Due to their restricted spatial extent,
the Heisenberg uncertainty principle indicates that their treatment necessitates dealing
with the full bandstructure of the semiconductors. On the other hand, if the envelope
function extends over several hundred Angstroms, near bandedge electron and hole
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+

Mott Exciton Frenkel Exciton

Figure 10.2: A conceptual picture of the periodic envelope function extent of the Frenkel and
Mott excitons. The Frenkel exciton periodic function is of the extent of a few unit cells while
the Mott exciton function extends over many unit cells.

states can be used to describe them. Such excitons are called Mott excitons and are
responsible for the excitonic physics in semiconductors. The effective mass theory can
be used to describe these excitons and accordingly the problem is represented by the
following Schrödinger equation[

− h̄2

2m∗
e

∇2
e −

h̄2

2m∗
h

∇2
h −

e2

4πε |re − rh|
]
ψex = Eψex (10.1)

Here m∗
e and m∗

h are the electron and hole effective masses and |re−rh| is the difference
in coordinates defining the Coulombic interaction between the electron and the hole.
We will shortly discuss in more detail the makeup of the exciton wavefunction ψex. The
problem is now the standard two-body problem, which can be written as a one-body
problem, by using the following transformation

r = re − rh

k =
m∗
eke +m∗

hkh
m∗
e +m∗

h

R =
m∗
ere +m∗

hrh
m∗
e +m∗

h

K = ke − kh (10.2)

The Hamiltonian then becomes

H =
h̄2K2

2(m∗
e +m∗

h)
+
{
h̄2k2

2m∗
r

− e2

4πε |r|
}

(10.3)
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where m∗
r is the reduced mass of the electron-hole system. The Hamiltonian consists

of two parts, the first term giving the description for the motion of center of mass of
the electron-hole system, while the second term describing the relative motion of the
electron-hole system. The first term gives a plane wave solution

ψcm = eiK·R (10.4)

while the solution to the second term satisfies(
h̄2k2

2m∗
r

− e2

4πε |r|
)
F (r) = EF (r) (10.5)

This is the usual hydrogen atom problem and F (r) can be obtained from the
mathematics of that problem. The general exciton solution is now (writing Kex =K)

ψnKex = eiKex·R Fn(r) φc(re) φv(rh) (10.6)

where φc and φv represent the central cell nature of the electron and hole bandedge
states used in the effective mass theory. The excitonic energy levels are then

EnKex = En +
h̄2

2(m∗
e +m∗

h)
K2

ex (10.7)

with En being the eigenvalues of the hydrogen atom-like problem

En = − m∗
re

4

2(4πε)2h̄2

1
n2

(10.8)

and the second term in Eqn. 10.7 represents the kinetic energy of the center of mass of
the electron-hole pair.

The energy of the excitonic state is measured with respect to the energy of
the state without the Coulomb interaction, i.e., the bandgap. Thus, excitonic levels
appear slightly below the bandgap since typical values for E1 are ∼2-6 meV for most
semiconductors. The dispersion then looks as shown in Fig. 10.3.

This dispersion relation looks quite different from the usual E vs k relation we
are used to. This is because we are describing the system not in terms of the electron
crystal momentum, but the electron-hole crystal momentum Kex. This is obviously the
appropriate quantum number to describe the problem once the electron-hole Coulombic
interaction is turned on. If the Coulombic interaction is turned off, the parabolas below
the bandgap (bond states) all disappear and we simply have the free electron-hole
dispersion which is the same as the bandstructure discussed in earlier chapters except
that we plot the dispersion in a ke − kh description.

We notice now that unlike the cases discussed in Chapter 9 where the electron-
hole joint density of states started at the bandedge position, we now have a density
of states below the bandedge energies. However, not all these states will couple to the
photon because of momentum conservation.

In order to examine the absorption spectra of excitonic transitions in semi-
conductors, it is useful to examine the problem in a little greater detail. As discussed
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Figure 10.3: Dispersion curves for the electron-hole system in the exciton framework.

earlier, the independent electron picture provides us the conduction and valence band
states. The Coulombic interaction of the electron-hole pairs will now be treated as a
perturbation, and the new wavefunction can be expressed in terms of the independent
electron wavefunction basis. The general form of the excitonic problem is given by the
Hamiltonian

He = H0 +
1
2

∑
i �=j

e2

4πε |ri − rj | (10.9)

whereH0 is the independent electron Hamiltonian giving rise to the usual bandstructure.
The indices i and j represent the different electron pairs, with the factor 1/2 to prevent
double counting.

Since the Hamiltonian has the symmetry of the crystal, the Bloch theorem
applies to the wavefunction, which must satisfy the condition

ψex(r1 +R, r2 +R, r3 +R, . . .) = eiKex·R ψex(r1, r2, r3, . . .) (10.10)

where R is a lattice vector of the crystal.
The exciton state can be written in terms of a basis function Φc,ke,Se;v,kh,Sh

which represents a state where an electron, with momentum ke and spin Se, is in the
conduction band and a hole, with momentum and spin kh and Sh, is in the valence band,
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Figure 10.4: Schematic picture of an exciton in the Bloch representation. The state
Φc,ke,Se;v,kh,Sh

represents an extra electron of wave vector ke and spin Se in the conduction
band and a hole of wave vector kh and spin Sh in the valence band.

as shown in Fig 10.3. The difference ke − kh represents the momentum of the exciton
state. The exciton state is made up of a proper expansion of the Φ states. However,
because of the Bloch theorem, the combination ke − kh in the expansion must be
constant for any given excitonic state. This greatly simplifies our exciton wavefunction,
which can now be written as

ψn&mex =
∑
k

An&m(k) Φn&mc,k+Kex/2,Se;v,k−Kex/2,Sh
(10.11)

Here n is the energy eigenvalue index, & andm are angular momentum indices represent-
ing the multiplicity of the excitonic state and An&m(k) are the expansion coefficients.
The exciton solution is given with the determination of An&m(k). Since we are dealing
with large envelope functions (order of ∼100 Å), the coefficients An&m(k) are expected
to be localized sharply in k-space. We can define the Fourier transform of An&m(k) as

Fn&m(r) =
∑
k

An&m(k) eik·r (10.12)

This real space envelope function Fn&m(r) is the same as we introduced in our
simple derivation earlier and which obeys the hydrogen atom-like equation (ignoring
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exchange interactions):[
Ecv(−i∇,Kex)− e2

4πεr

]
Fn&m(r) = EexFn&m(r) (10.13)

Here Ecv(−i∇,Kex) represents the operator obtained by expanding Ec(k +
Kex/2) − Ev(k −Kex/2) in powers of k and replacing k by −i∇. The exchange term
is usually very small and will be ignored. The dielectric constant, in general, can be
quite complicated, especially if the free carrier density is large. At low carrier densities
(n < 1014 cm−3), the static dielectric constant is a good approximation to ε. It is
important to note that this effective mass like equation is valid only if Fn&m(r) is
extended in space, i.e., An&m(k) is peaked in k-space.

For a simple parabolic band, we have already discussed the solution of the
exciton problem. The exciton energy levels are

Eex
n = Eg − m∗

re
4

2h̄2(4πε)2
1
n2

= Eg − Rex

n2
(10.14)

where Rex denotes the exciton Rydberg. The kinetic energy of the electron-hole pair is
to be added to Eqn. 10.14 for the total exciton energy.

The exciton envelope functions are the hydrogen atom-like functions, e.g., the
ground state is

F100(r) =
1√
πa3

ex

e−r/aex (10.15)

with aex = (εm0/ε0m
∗
r) aB (aB = Bohr radius = 0.529 Å). The exciton radius aex is

∼100 Å for most semiconductors. Thus, the exciton is spread over a large number of
unit cells, and the use of the effective mass equation is justified.

10.3 OPTICAL PROPERTIES WITH INCLUSION OF EXCITONIC
EFFECTS

Excitonic effects have very dramatic consequences for the optical properties of semicon-
ductors, especially near the bandedges. Below the bandedge, there is a strong and sharp
excitonic absorption/emission transition. Also just above the bandgap, there is a strong
enhancement of the absorption process especially in 3D systems.

As discussed in Chapter 9, in the absence of excitonic effects, the absorption
coefficient can be written as

α(h̄ω) =
πe2

m2
0cnrε0

h̄

h̄ω

∫
2 d3k

(8π3)
|a · pif(k)|2 δ(Ec(k)− Ev(k)− h̄ω) (10.16)

For allowed transitions we can assume that pif is independent of k giving us the ab-
sorption coefficient

α(h̄ω) = 0 if h̄ω < Eg

=
πe2

m2cnrε0

h̄

h̄ω
|a · pif |2 ·Ncv(h̄ω) if h̄ω ≥ Eg (10.17)
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where Ncv(h̄ω) is the joint density of states.
If the excitonic effects are accounted for, these expressions are modified. We

will again work in the dipole approximation and consider a transition from the ground
state (all electrons are in the valence band) to the excited exciton state. This transition
rate is, according to the Fermi golden rule

W (ψ0 → ψKex) =
2π
h̄

(
eA

m0

)2

δKex

∣∣∣∣∣∣
∑
k

A(k) a · pcv(k)

∣∣∣∣∣∣
2

δ(Eex − E0 − h̄ω) (10.18)

where E0 is the energy corresponding to the ground state.
Once again, if we assume pcv(k) is independent of k

W (ψ0 → ψKex) =
2π
h̄

(
eA

m0

)2

δKex |a · pif(0)|2
∣∣∣∣∣∣
∑
k

A(k)

∣∣∣∣∣∣
2

δ(Eex − E0 − h̄ω) (10.19)

From the definition of the Fourier transform Fn&m, we see that from Eqn. 10.12

Fn&m(0) =
∑
k

An&m(k) (10.20)

We also know from the theory of the hydrogen atom problem that Fn&m(0) is nonzero
only for s-type states, and, in general

Fn&m(0) =
1√

πa3
exn

3
δ&,0δm,0 (10.21)

Thus, the absorption rate is given by

W (ψ0 → ψKex) =
2π
h̄

(
eA0

m0

)2

δKex |a · pif(0)|2
δ(En

ex − E0 − h̄ω)
πa3

exn
3

(10.22)

Comparing this result with the case for free band-to-band transitions, we note
that the density of states in the free case is replaced by the term

Ncv(h̄ω)→ δ(En
ex − E0 − h̄ω)
πa3

exn
3

(10.23)

with the δ-function eventually being replaced by a broadening function. If, for example,
we assume a Gaussian broadening, we have (σ is the half width)

δ(h̄ω − E)→ 1√
1.44π σ

exp
(−(h̄ω − E)2

1.44 σ2

)
For the ground state n = 1 exciton, the absorption coefficient becomes, after using the
Gaussian form for the δ-function,

α(h̄ω) =
πe2h̄

2nrε0cm0(h̄ω)
2 |pcv|2
m0

ap

(
1√
1.44π

1
σ

1
πa3

ex

exp
(−(h̄ω − Eex)2

1.44σ2

))
(10.24)
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Figure 10.5: The effect of the electron-hole Coulombic interaction is to create exciton bands
as shown. Only Kex = 0 states are optically active.

This result suggests that the excitonic transitions occur as if each exciton has a spatial
extent of 1/(πa3

exn
3). However, we note that this is not really the correct picture, since

the excitons are extended states. We also note that since only the Kex = 0 state of the
exciton is optically active, the transitions are discrete, even though the exciton density
of states is continuous. The strength of the successive transitions decreases as 1/n3, so
that the n = 2 resonance has one-eighth the strength of the n = 1 transition.

It is useful to examine again the independent electron picture and the exciton
picture. This is done in Fig. 10.5. On the left-hand side we show the usual bandstructure
with the valence and conduction band. The presence of the Coulomb interaction causes
us to use ke − kh = Kex as an appropriate quantum number for the description. As
discussed earlier, this leads to the exciton bands below the bandgap and free states above
the bandgap. Due to the momentum conservation, only the Kex = ke − kh = 0 states
are optically active. Above the bandgap, these states are just the ones we considered
earlier, in the band-to-band transitions. However, below the bandgap, these are the
discrete excitonic resonances. Strong changes in the optical properties occur near the
bandedge.

As one approaches the bandedge, the exciton lines become closer and closer and
(see Eqn. 10.8), even though each transition becomes weaker, the absorption over an
infinitesimal energy range reaches a finite value. In fact, the concept of the density of
states of Kex = 0 states becomes a meaningful concept. This density of states is from
Eqn. 10.8

Dex(E) = 2
∂n

∂E
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=
n3

Rex
(10.25)

Extending the expression for the transition rates (Eqn. 10.22), by including a final state
density of excitonic states we get

W (ψ0 → ψex) =
2π
h̄

(
eA0

m0

)2

δKex |a · pif(0)|2

×
∑
n

∣∣∣∣∣∑
k

A(k)

∣∣∣∣∣
2

δ (En
ex − E0 − h̄ω)

=
2π
h̄

(
eA0

m0

)2

|a · pif(0)|2
1

πa3
ex

1
Rex

(10.26)

This expression is valid near the bandedge. If we compare this expression with
the free electron-hole absorption rate near the bandedge, we see that the difference is
that the density of states has been replaced by 1/(πa3

exRex) or, near the bandedge, the
absorption coefficient is

αex(h̄ω ≈ Eg) = αF · 2π R
1/2
ex

(h̄ω − Eg)1/2
(10.27)

where αF is the absorption without excitonic effects. Thus, instead of α going to zero
at the bandedge, it becomes a constant. By examining the nature of the “free” hydrogen
atom-like states for the exciton above the bandedge, it can be shown that the absorption
coefficient is given by the relation

αex(h̄ω > Eg) = αF · πx eπx

sinhπx
(10.28)

where
x =

Rex

(h̄ω − Eg)1/2

When Eg − h̄ω � Rex, the results reduce to the band-to-band transitions calculated in
Chapter 9. These effects are shown in Fig. 10.6.

From these discussions it is clear that the excitonic transitions greatly modify
the independent electron absorption spectra, especially near the bandedges. In Fig. 10.7,
we show a low temperature measurement of the excitonic and band-to-band absorption
in GaAs. The excitonic peak is clearly resolved here. The binding energy of the exciton
in GaAs is ∼ 4 meV. Since the exciton line is broadened by background impurity
potential fluctuations, as well as phonons, it is possible to see such transitions only in
high purity semiconductors, at low temperatures. In fact, the observation of excitons in
bulk semiconductors is a good indication of the quality of the sample.

In Fig. 10.7 we show how the excitonic structure in high quality GaAs is altered
as temperature is increased. For narrow bandgap semiconductors like In0.53Ga0.47As,
the excitons are difficult to observe, because of the very small binding energy. In such
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Figure 10.6: A schematic picture of the absorption spectra with (solid line) and without
(dashed line) excitonic effects.

materials, the exciton-related transitions are seen better in low temperature lumines-
cence experiments. In Appendix B we discuss these experiments.

EXAMPLE 10.1 Consider a ground state exciton in GaAs having a halfwidth of σ =1.0 meV.
Calculate the peak absorption coefficient for the excitonic resonance.

The optical absorption coefficient is given for excitonic transitions by

α(h̄ω) =
πe2h̄

2nrε0cm0(h̄ω)
2 |pcv|2
m0

ap

(
1√
1.44π

1
σ

1
πa3

ex

exp

(−(h̄ω − Eex)2

1.44σ2

))
We have for GaAs (we will express σ in units of meV for convenience)

2p2
cv

m0

∼= 25 eV

Using ap =
2
3
for unpolarized light, we get (aex = 120 Å)

α(h̄ω) =
π(1.6× 10−19 C)2(1.05× 10−34 Js)

2× 3.4(8.85× 10−12 F/m)(3× 108 m/s)(0.91× 10−30 kg)

(
25
1.5

)(
2
3

)
· 1√

1.44π
1

σ(meV )(10−3 × 1.6× 10−19 J)
1

(π × 120× 10−10 m)3

exp

(−(h̄ω − Eex)2

1.44σ2

)

=
1.45× 106

σ(meV )
exp

(−(h̄ω − Eex)2

1.44σ2

)
m−1

For our case, where σ = 1 meV , we get, for the peak absorption coefficient

α(peak) = 1.45× 106 m−1

= 1.45× 104 cm−1
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Figure 10.7: Typical optical transitions GaAs. As can be seen, the excitonic peak essentially
merges with the band-to-band absorption onset at room temperature. (see M.D. Sturge, Phys-
ical Review, 127, 768 (1962).)

The strong dependence upon σ is quite evident and significant, since it is very difficult

to control σ.

10.4 EXCITONIC STATES IN QUANTUM WELLS
The ability to make heterostructures has made a tremendous impact in the area of ex-
citons in quantum wells. The ability to fabricate quantum well structures, where the
electrons and holes can be strongly confined in the growth direction, has allowed exci-
tonic resonances to assume an important technological aspect. The highly controllable
nature of the excitonic resonances lends itself to many versatile devices. The main reason
for the interest in excitonic resonances in quantum well structures is the enhanced bind-
ing energy of the confined electron-hole system. Simple variational calculations show
that the binding energy of a 2-dimensional electron-hole system with Coulombic inter-
action is four times that of the 3-dimensional system. In reality, of course, a quantum
well system is not a 2-dimensional system, but is a quasi-2-dimensional system. The
actual binding energy is, therefore, somewhat smaller than the 4 Rex value. Neverthe-
less, the increased binding energy allows the excitonic transitions to persist up to high
temperatures.

In a quantum well system grown along the z-axis the exciton problem can be
written as

H =
−h̄2

2m∗
r

(
1
ρ

∂

∂p
ρ

∂

∂p
+
1
ρ2

∂2

∂φ2

)
− h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

_
3 )
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− e2

4πε |re − rh| + Vew(ze) + Vhw(zh) (10.29)

Here Vew, Vhw are the confining potentials, me and mh are the in-plane effective masses
of the electron and the hole, and µ is the reduced mass. The first term is the kinetic
energy operator in the plane of the quantum well. The dielectric constant ε is the static
dielectric constant, if there are no free carriers present. Otherwise, it is the screened
dielectric constant, of the form used in the ionized impurity scattering problem. We will
return to the screening problem later.

The Hamiltonian for the finite quantum well exciton problem has no simple
analytical solution, even if one assumes that the electron and hole states have a parabolic
bandstructure. The function F (ρ), describing the relative motion envelope, cannot be
directly obtained. This function is usually obtained by assuming its form to be an
exponential, or Gaussian or some combination of Gaussian functions, etc., with some
variational constants which are then adjusted to minimize the energy

E =
∫
ψ∗

ex H ψex dze dzn ρ dρ dφ∫
ψ∗

ex ψex dze dzn ρ dρ dφ
(10.30)

This approach gives quite reliable results, with the effects of choosing different
forms of variational functions being no more than ∼10% of the exciton binding ener-
gies. In Fig. 10.8 we show the effect of well size on the ground state excitonic states
in GaAs/Al0.3Ga0.7As quantum well structures. As can be seen, the exciton binding
energies can increase by up to a factor of ∼2.5 in optimally designed quantum well
structures.

10.5 EXCITONIC ABSORPTION IN QUANTUM WELLS
We can now generalize our absorption coefficient results for bulk to a quantum well of
size W . The absorption coefficient is given by

αex
nm(h̄ω) =

πe2h̄

nrm2
0cWh̄ω

∣∣∣∣∣∣
∑

k,n,m

Gnm(k) a · pnm(k)
∣∣∣∣∣∣
2

δ (h̄ω − Eex
nm) (10.31)

The matrix elements pnm(k) are given by the central cell part used for the 3-dimensional
problem, as well as the overlap of the envelope function as used in the Chapter 9 for
band-to-band absorption

pnm(k) =
∑
ν,µ

∫
d2r Uν

0 (r) p Uµ
0 (r)

∫
dz fµn (z) g

ν
m(k, z)

The selection rules and polarization dependencies discussed in Chapter 9 for band to
band transitions, still hold for the excitonic transitions.

The absorption coefficient is often also written in terms of oscillator
strengths fnm as

αnm(h̄ω) =
∑
nm

πe2h̄

nrε0m0cW
fnm δ (Eex

nm − h̄ω) (10.32)
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Figure 10.8: Variation of the heavy-hole exciton binding energy as a function of well size in
GaAs/Al0.3Ga0.7As wells. The binding energy of the infinite barrier well should approach four
times the 3D exciton binding energy as the well size goes to zero.

where the oscillator strength per unit area is defined by (h̄ω = Eex
nm)

fnm =
2

m0Eex
nm(2π)2

∣∣∣∣
∫

d2k Gnm(k) a · pnm(k)
∣∣∣∣2 (10.33)

The oscillator strength is a better measure of the excitonic absorption because
it does not involve the δ-function. The δ-function will eventually be replaced by a broad-
ening function whose value will be sample and temperature dependent as we will see
below. Since quantum confinement decreases the spatial extent of the exciton function,
the oscillator strength increases as the exciton is confined.

If the 2D exciton function can be represented by an exciton radius aex, then as
in the 3D case, the absorption coefficient becomes

α(h̄ω) =
πe2h̄

2nrε0cm0h̄ω

(
2|pcv|2
m0

)
ap

(
1√
1.44π

1
σ

1
Wπa2

ex

exp
(−(h̄ω − Eex)2

1.44σ2

))
(10.34)

A
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In a quantum well as the exciton binding energy increases, the exciton radius decreases
(by up to a factor of 2) and the exciton peak becomes stronger.

EXAMPLE 10.2 Consider a 100 Å GaAs/Al0.3Ga0.7As quantum well structure grown along
(001) with a halfwidth of 1 meV. The exciton radius is 2

3
the bulk value in GaAs. Calculate

the peak of the HH ground state exciton resonance for x-polarized light.
The excitonic absorption coefficient is

α(h̄ω) =
πe2h̄

2nrε0cm0h̄ω

(
2|pcv|2
m0

)
ap

(
1√
1.44π

1
σ

1
Wπa2

ex

exp

(−(h̄ω − Eex)2

1.44σ2

))
Notice from Example 10.1 that the effect of quantization has been essentially the replacement

1
πaex(3D)3

−→ 1
Wπaex(QW )3

Thus, the excitonic absorption becomes
(
usingaex(QW ) ∼= 2

3 aex(3D)
)
for light po-

larized along the x-axis where ap =
1
2

α(h̄ω) =
2.9× 106

σ(meV )
exp

(−(h̄ω − Eex)2

1.44σ2

)
For σ = 1 meV , we get the peak value of

α(peak) = 2.9× 106 m−1

= 2.9× 104 cm−1

10.6 EXCITON BROADENING EFFECTS
In an ideal system the exciton resonance is represented by a δ-function due to momen-
tum conservation. However, in a real system inhomogeneous (structural effects) and
homogeneous (finite lifetime effects) sources cause the δ-function to broaden. This line
broadening or linewidth is extremely important from both a physics and a technological
point of view. In general, the peak of the exciton absorption is inversely proportional
to the linewidth of the resonance. This puts a tremendous premium on reducing the
exciton linewidth (in a reliable manner). Unfortunately, small variations in growth of
quantum wells can change the exciton linewidth by as much as 100%!

As noted above excitonic transitions are broadened by two important kinds of
fluctuations: inhomogeneous and homogeneous. The main inhomogeneous broadening
sources are:

1. Interface roughness.

2. Alloy potential fluctuations.

3. Well to well fluctuations in multiquantum well spectra.

4. Background impurity broadening.
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In high purity materials the impurity broadening is usually negligible (if background
density < 1015cm−3). The homogeneous broadening mechanisms are:

1. Acoustic phonon scattering.

2. Optical phonon scattering.

3. Other mechanisms which may affect the exciton lifetime such as tunneling, recom-
bination, etc.

The treatment of inhomogeneous broadening usually follows the approach de-
veloped to study electronic states in disordered materials. Line broadening arises due
to spatially localized fluctuations which are capable of shifting the excitonic emission
energy. In general, one may describe these fluctuations by concentration fluctuations
in the mean compositions C0

A and C0
B of the structure. For example C0

A and C0
B may

represent the fraction of the islands and the valleys representing interface roughness in a
quantum well, or the mean composition of the alloy in the treatment of alloy broadening.
The width of the concentration fluctuation occurring over a region β (which is an area
for interface roughness treatment and a volume for the treatment of alloy broadening)
is given by (Lifshitz, 1969):

δP = 2

√
1.4 C0

A C0
B α

β
(10.35)

where α is the smallest extent over which the fluctuation can take place. Again for the
treatment of interface roughness, α is the average area of the two-dimensional islands
representing the interface roughness and for alloy broadening, α is the volume of the
smallest cluster in the alloy. For a perfectly random alloy, this is the volume per cation.

The shift in the excitonic energy due to this fluctuation is then

2σ(β) = δP |Ψ|2β
∂Eex

∂C
(10.36)

where |Ψ|2β is the fraction of the exciton sensing the region β, and ∂Eex/∂C represents
the rate of change in the exciton energy with change in the concentration. To obtain the
linewidth of the absorption, one needs to identify the volume (or area) β. For interface
roughness broadening, this area is ∼ 3r2

ex and the linewidth is given by

2σIR = 2

√
1.4 C0

A C0
B a2D

3r2
exπ

· ∂Eex

∂W

∣∣∣∣
W0

· δ0 (10.37)

where a2D is the real extent of the two-dimensional islands representing the interface
roughness, δ0 their height, and rex is the exciton Bohr radius in the lateral direction
parallel to the interface. ∂Eex/∂W is the change of the exciton energy as a function of
well size.

Apart from interface roughness fluctuations in the same well, often one has to
contend with intra-well fluctuations. Most optical devices using excitonic transitions
use more than one well, i.e., use multiquantum wells that are produced by opening
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and shutting off fluxes of one or other chemical species. There is invariably a mono-
layer or so of variation in the well sizes across a stack of quantum wells. For a 100 Å
GaAs/Al0.3Ga0.7As quantum well, a monolayer fluctuation can produce ∼ 1.5 meV
change in the exciton resonance energy. This change arises almost entirely from the
changes in subband levels since the exciton binding energy does not vary significantly
with a monolayer change in the well size. In high quality GaAs/AlGaAs multiquantum
well samples, an absorption linewidth of 3–4 meV is achievable.

In the GaAs based system, the well material is a binary material with no alloy
scattering. In cases like In0.53Ga0.47As/InP or In0.53Ga0.47As/In0.52Al0.48As, one addi-
tionally has alloy broadening effects. These effects can also be of the order of 3–5 meV
and are given by similar treatments. If C0

A and C0
B are the mean concentrations of the

two alloy components and VC is the average alloy cluster size (= unit cell for random
alloy), the linewidth is given approximately by

2σinternal
alloy = 2

√
1.4 C0

A C0
B VC

3πr2
exW0

· ∂Eex

∂CA

∣∣∣∣
C0

A

(10.38)

where ∂Eex/∂CA represents the change in the exciton resonance with changes in com-
position. If the barrier material is also an alloy, there is a contribution to the linewidth
from the barrier as well

2σexternal
alloy = 2

√
1.4 C0

A C0
B VC

3πr2
exLeff

· ∂Eex

∂CA

∣∣∣∣
C0

A

(10.39)

where Leff is an effective length to which the exciton wavefunction penetrates in the
barrier and has to be calculated numerically. Leff is approximately equal to twice the
distance over which the exciton wavefunction falls to 1/e of its initial value. Typically
this is on the order of a few monolayers. The well size dependence of the exciton linewidth
is quite apparent from the results of Fig. 10.9 and are due to the increase in ∂Eex/∂W
with decreasing well size.

Finally, to examine the homogeneous broadening note that the exciton state is
optically created at the Kex = 0 state. The acoustic and optical phonons interact with
the exciton causing either a transition to a Kex �= 0 state in the same quantum level or
even ionization of the exciton. This homogeneous broadening effect can be calculated in
a manner similar to the one used for electron-phonon scattering. The linewidth is given
through the particle lifetime ∆T by the relation

2σ ∼ h̄

∆T
= h̄

∑
Wi (10.40)

where Wi is the scattering rate due to processes such as acoustic phonon scattering and
optical phonon scattering. The linewidth can be shown to have the form

2σ = αT +
β

exp (h̄ω0/kBT )− 1 (10.41)
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Figure 10.9: Variation of exciton linewidth as a function of well size for a one monolayer
interface roughness. The half width σ is given for island size extents of (a) 20 Å; (b) 80 Å;
(c) 100 Å for the GaAs/Al0.3Ga0.7As system.

where the first term is due to acoustic phonon scattering and the second is due to
optical phonons. At room temperature, the homogeneous linewidth due to phonons is
∼3–4 meV, implying that the exciton lifetime is ∼ 0.2 ps.

In Fig. 10.10 we show the comparison of typical excitonic spectra in a 100 Å
GaAs/Al0.3Ga0.7As and 100 Å In0.53Ga0.47As/In0.52Al0.48As quantum well structure.
The large reduction in the InGaAs spectra is primarily due to the alloy broadening of
the exciton peak.

EXAMPLE 10.3 A multiquantum well (MQW) stack is used in an exciton absorption
measurement. The nominal thickness of the GaAs/Al0.3Ga0.7As wells is 100 Å. Consider two
cases: i) There is no structural disorder and the exciton halfwidth is given by a homogeneous
width σ = 1 meV ; ii) In addition to the above broadening, there is a structural disorder in the
MQW stack described by a one monolayer rms fluctuation in the well size. Calculate the peak
absorption coefficients in the two cases.

A one monolayer charge in the well size at 100 Å produces a shift in the HH exciton
energy of ∼ 1.5 meV , due to the shift in the subband energies (there is essentially no change
in the binding energies). For simplicity, we assume that the linewidths from the homogeneous
and inhomogeneous contributions simply add (in reality, the homogeneous broadening may be
better described by a Lorentzian function, rather than a Gaussian function; also one has to use

A
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Figure 10.10: A comparison of the absorption spectra in (a) 100 Å GaAs /Al0.3Ga0.7As
and (b) In0.53Ga0.47As /In0.52Al0.48As quantum wells. The excitons in InGaAs suffer alloy
broadening which reduces their sharpness. (After D.S. Chemla, Nonlinear Optics: Materials
and Devices, eds. C. Flytzanis and J.L. Oudar, Springer-Verlag, New York (1986).)

a convoluted linewidth).

From Example 10.2 we get, for the two cases,

i) α(peak) = 2.9 ×104 cm−1

i) α(peak) = 1.2 ×104 cm−1

This example shows the extreme sensitivity of excitonic resonances on minute struc-

tural imperfections.

10.7 MODULATION OF OPTICAL PROPERTIES
We have seen that excitonic effects in semiconductors produce sharp resonances. These
resonances can be exploited for information processing applications if they can be con-
trolled (or modulated) by electrical or optical signals. The modulation of the optical
properties of a semiconductor can be exploited for a number of “intelligent” optoelec-
tronic devices such as switches, logic gates, memory elements, etc.

When the optical properties of a material are modified, the effect on a light
beam propagating in the material can be classified into two categories, depending upon
the photon energy. As shown in Fig. 10.11, if the photon energy is in a region where the
absorption coefficient is zero (beam with frequency ω1), the effect of the modification of
the refractive index is to alter the velocity of propagation of light. On the other hand, if
the photon energy is in a region where the absorption coefficient is altered (beam with
frequency ω2), the intensity of light emerging from the sample will be altered. These
two approaches for the modification of the optical properties by a applied electric field
are called the electro-optic and the electro-absorption approaches, respectively.

In the electro-optic effect, an applied electric field is used to alter the phase

_ _
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Figure 10.11: A schematic of the effect of a change in optical properties of a material on
an optical beam. For energy h̄ω1, the main effect of the change in the optical properties is a
change in propagation velocity. For h̄ω2, the effect is a change in intensity.

velocity of a propagating signal and this effect can be exploited in an interference scheme
to alter the polarization or intensity of the light. We will first discuss this approach.

10.7.1 Electro-Optic Effect

The electro-optic effect depends upon the modification of the refractive index of a ma-
terial by an applied electric field. Before discussing the electro-optic effect, let us review
some important optical properties of crystalline materials.

We know from electromagnetic theory that Maxwell’s equations and the mate-
rial properties (ε, µ) determine the propagation of light in a material. In general, the
medium can be anisotropic and the material properties are described by the relations
between displacement field and electric field

Dx = εxxFx + εxyFy + εxzFz

Dy = εyxFx + εyyFy + εyzFz

Dz = εzxFx + εzyFy + εzzFz (10.42)
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or in the short form
Di =

∑
j

εijFj (10.43)

If one examines the energy density of the optical wave and imposes the conditions that
the energy must be independent under the transformation i → −i, we get

εij = εji (10.44)

Further reduction in the number of the independent εij can be achieved, depending upon
the symmetry of the crystal structure. A most useful way to describe the propagation
of light in the medium is via the index ellipsoid. The equation for the index ellipsoid is

x2

εx
+

y2

εy
+

z2

εz
= 1 (10.45)

or in terms of the refractive indices,

3∑
i=1

x2
i

n2
i

= 1 (10.46)

Here εx, εy and εz are the principal dielectric constants, expressed along the principle
axes of the ellipsoid.

Now consider a situation where an electric field is applied to the crystal. The
applied electric field modifies the bandstructure of the semiconductor through a number
of interactions. These interactions may involve:

i) Strain: In a piezoelectric material where there is no inversion symmetry (e.g.,
GaAs, CdTe, etc.) the two atoms in the basis of the crystal have different charges. The
electric field may cause a distortion in the lattice and, as a result, the bandstructure
may change. This may cause a change in the refractive index.

ii) Distortion of the excitonic features: In the previous sections we discussed
the optical properties of the exciton. The presence of an electric field can modify the
excitonic spectra and thus alter the electronic spectra and, hence, the optical spectra
of the material.

In general, the change in the refractive index may be written as

nij(F )− nij(0) = ∆nij = rijkFk + sijk&FkF& (10.47)

where Fi is the applied electric field component along the direction i and rijk and
sijk& are the components of the electro-optic tensor. In materials like GaAs where the
inversion symmetry is missing, rijk is non-zero and one has a linear term in the electro-
optic effect. The linear effect is called the Pockel effect. In materials like Si where one
has inversion symmetry rijk = 0 and the lowest order effect is due to the quadratic
effect (known as the Kerr effect).

In general, rijk has 27 elements, but since the tensor is invariant under the
exchange of i and j, there are only 18 independent terms. It is common to the use of
contracted notation r&m where & = 1, . . . 6 and m = 1, 2, 3. The standard contraction
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MATERIAL λ(µm) rij(10
−12 m/V)

GaAs 0.8 −10 r41 = 1.2

Quartz 0.6 r11 = −0.47
r41 = −0.2

LiNb03 0.5 r13 = 9.0; r22 = 6.6

r42 = 30

KDP 0.5 r41 = 8.6; r63 = 9.5

Table 10.1: Electro-optic coefficients for some materials. (After P.K Cheo, Fiber Optics, De-
vices and Systems, Prentice-Hall, New Jersey (1985).)

arises from the identification of i, j = 1,1; 2,2; 3,3; 2,3; 3,1;1,2 by & = 1, 2, 3, 4, 5, 6,
respectively. The 18 coefficients are further reduced by the symmetry of the crystals. In
semiconductors such as GaAs, it turns out that the only non-zero coefficients are

r41

r52 = r41

r63 = r41 (10.48)

Thus, a single parameter describes the linear electro-optic effect. The value of GaAs is
r41 = 1.2 × 10−12 m/V. An important class of electro-optic materials are ferroelectric
perovskites such as LiNbO3 and LiTaO3 which have trigonal symmetry and materials
such as KDP (potassium dihydrogen phosphate) which have tetragonal symmetry). For
the trigonal materials the non-zero tensor components are

r22 = −r12 = −r61

r51 = r42 = r33

r13 = r23 (10.49)

For KDP the non-zero elements are

r41 = r52

r63 (10.50)

In Table 10.1, we give the values of the electro-optic coefficients for some ma-
terials. The second order electro-optic coefficients sijk& are usually not important for
materials unless the optical energy h̄ω is very close to the bandgap. In materials like
GaAs, the second order coefficients that are non-zero from symmetry considerations are
in the contracted form spq, p = 1 . . . 6, q = 1 . . . 6,

s11 = s22 = s33
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s12 = s13

s44 = s55 = s66 (10.51)

The electro-optic effect is used to create a modulation in the frequency, intensity
or polarization of an optical beam. To see how this occurs, consider a material like GaAs.

Let us first consider the linear electro-optic effect where a field F is applied to
the crystal. The index ellipsoid is(

1
n2
x

+ r1kFk

)
x2 +

(
1
n2
y

+ r2kFk

)
y2 +

(
1
n2
z

+ r3kFk

)
z2

+ 2yzr4kFk + 2zxr5kFk + 2xyr6kFk = 1 (10.52)

where Fk (k = 1,2,3) is the component of the electric field in the x, y, and z directions.
Using the elements of the electro-optic tensor for GaAs, we get

x2

n2
x

+
y2

n2
y

+
z2

n2
z

+ 2yzr41Fx + 2zxr41Fy + 2xyr41Fz = 1 (10.53)

Let us now simplify the problem by assuming that the electric field is along the
< 001 > direction

Fx = Fy = 0, Fz = F (10.54)

We now rotate the axes by 45o so that the new principal axes are

x′ =
x√
2
− y√

2

y′ =
x√
2
+

y√
2

z′ = z (10.55)

In terms of this new set of axes, the index of ellipsoid is written as

x
′2

n′2
x

+
y

′2

n′2
y

+
z

′2

n′2
z

= 1 (10.56)

where the new indices are

n
′
x = no +

1
2
n3
or41F

n
′
y = no − 1

2
n3
or41F

n
′
z = no (10.57)

where no is the index in absence of the field (= nx = ny = nz). As a result of this change
in the indices along the x

′
and y

′
axes, for light along < 011̄ > (x

′
) and < 011 > (y

′
)
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directions, a phase retardation occurs due to the field. The phase retardation for a wave
that travels a distance L is, (n

′
z = no)

∆φ(x′) =
ω

c

(
n

′
z − n

′
x

)
Lξ1 = −π

λ
n3
or41FLξ1

∆φ(y′) =
ω

c

(
n

′
z − n

′
y

)
Lξ1 =

π

λ
n3
or41FLξ1 (10.58)

The quantity ξ1 represents the overlap of the optical wave with the region where
the electric field is present:

ξ1 =
1
F

∫ ∫
F | Fphoton |2 dA (10.59)

where Fphoton is the photon field. For bulk devices ξ1 ∼ 1.
Let us now extend our study to the second order term in the elctro-optic effect.
Using the contracted notiation, for quadratic electro-optic coefficients, the index

ellipsoid can be written as (
1
n2
x

+ s11F
2
x + s12F

2
y + s12F

2
z

)
x2

+
(
1
n2
y

+ s12F
2
x + s11F

2
y + s12F

2
z

)
y2

+
(
1
n2
z

+ s12F
2
x + s12F

2
y + s11F

2
z

)
z2

+2yz(2s44FyFz) + 2zx(2s44FxFz) + 2xy(2s44FyFx) = 1 (10.60)

In the presence of an electric field, F , in the z direction, Eqn. 10.60 can be rewritten as(
1
n2
x

+ s12F
2

)
x2 +

(
1
n2
y

+ s12F
2

)
y2

+
(
1
n2
z

+ s11F
2

)
z2 = 1 (10.61)

This index ellipsoid can be rewritten as

x2 + y2

n2
o

+
z2

n2
e

= 1 (10.62)

with
no = n− 1

2
n3s12F

2 (10.63)

and
ne = n− 1

2
n3s11F

2 (10.64)

The phase retardation due to the applied field is thus given by

∆Φ =
ω

c
(ne − no)Lξ2 =

π

λ
n3(s12 − s11)F 2Lξ2
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where ξ2 is an overlap of the square of the electric field and the optical field given by

ξ2 =
1
F 2

∫ ∫
F 2 | Fphoton |2 dA (10.65)

The total phase change between waves travelling along x′ and y′ then becomes
after adding the effects of the linear and quadratic electro-optic effects

∆φ(x′) = −πL

λ
n3
o

[
r41Fξ1 + (s12 − s11)F 2ξ2

]
∆φ(y′) =

πL

λ
n3
o

[
r41Fξ1 + (s12 − s11)F 2ξ2

]
(10.66)

The phase changes produced by the electric field can be exploited for a number of
important switching or modulation devices. From Table 10.1 we see that the electro-
optic coefficients in materials like LiNbO3 are much larger than those in traditional
semiconductors. As a result LiNbO3 is widely used in optical directional couplers and
switches.

EXAMPLE 10.4 A bulk GaAs device is used as an electro-optic modulator. The device
dimension is 1 mm and a phase change of 90◦ is obtained between light polarized along < 011̄ >
and < 011 >. The wavelength of the light is 1.5 µm. Calculate the electric field needed if ξ1 = 1.

The phase change produced is (ξ = 1)

∆φ =
2π
λ

n3
or41FL =

π
4

F =
λ

8n3
or41L

=
(1.5× 10−6 m)

8(3.3)3(1.2× 10−12 m/V)(10−3 m)
= 4.35× 106 V/m

If the field is across a 10 µm thickness, the voltage needed is 4.35 V.

10.7.2 Modulation of Excitonic Transitions: Quantum Confined Stark Effect
Quantum confined stark effect (QCSE) refers to the changes that occur in the electronic
and optical spectra of a quantum well when an electric field is applied. In Fig. 10.12 we
show schematically a quantum well without and with an electric field in the confinement
direction. There are several effects that occur in the presence of the transverse electric
field:

1. The intersubband separations change. The field pushes the electron and hole func-
tions to opposite sides making the ground state intersubband separation smaller.
This effect is the dominant term in changing the exciton resonance energy. This
effect is shown in Fig. 10.13.

2. Due to the separation of the electron and hole wavefunction, the binding energy
of the exciton decreases. This effect is shown in Fig. 10.14.
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Figure 10.12: A schematic showing how an electric field alters the quantum well shape and
the electron and hole wavefunctions.
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Figure 10.13: Calculated variation of the ground state HH and LH (to conduction band
ground state) intersubband transition energies as a function of electric field. The well is a
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Figure 10.14: Calculated variation in the exciton binding energy in a 100 Å
GaAs/Al0.3Ga0.7As quantum well as a function of electric field. The ground state HH and
LH exciton results are shown.

As can be seen from Figs. 10.13 and 10.14, the change in the exciton binding energy
is only ∼2–3 meV while the intersubband energies are altered by up to 20 meV. The
QCSE is, therefore, primarily determined by the intersubband effect.

While the exact calculation of the intersubband separation requires numerical
techniques, one can estimate these changes by using perturbation theory. This approach
gives reasonable results for low electric fields. The problem can be defined by the Hamil-
tonian

H = H0 + eFz (10.67)

where H0 is the usual quantum well Hamiltonian. The eigenfunctions of H0 are ψn and
in the square quantum well, the ground state function ψ1 has an even parity so that the
first order correction to the subband energy is

∆E(1) = 〈ψ1|eFz|ψ1〉 (10.68)

which is zero. Thus, one has to calculate the second order perturbation by using the
usual approach. For the infinite barrier quantum well, the states ψn are known and it is,
therefore, possible to calculate the second order correction. If the field is small enough
such that

|eFW | � h̄2π2

2m∗W 2
(10.69)

i.e., the perturbation is small compared to the ground state energy then it can be shown
that the ground state energy changes by

∆E
(2)
1 =

1
24π2

(
15
π2

− 1
)

m∗e2F 2W 4

h̄2 (10.70)
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Figure 10.15: Calculated absorption coefficients for TE and TM modes in a 100 Å
GaAs/AlGaAs quantum well structure at (a) F = 0 and (b) F = 70 kV/cm.

One sees that the second order effect increases with m∗ and has a strong well size
dependence. This would suggest that for best modulation one should use a wide well.
However, in wide wells the exciton absorption decreases and also the HH, LH separation
becomes small. Optimum well sizes are of the order of ∼100 Å for most quantum well
structures.

We note that the matrix element in the excitonic absorption obeys the same
polarization selection rules as the ones we discussed in Chapter 9 for band to band
transitions. In Fig. 10.15, we show the TE and TM absorption spectra calculated for
a 100 Å GaAs/Al0.3Ga0.7As quantum well. As can be seen, in the TE mode, the LH
exciton strength is approximately a third of the HH exciton strength. In the TM mode
on the other hand, there is no HH transition allowed in accordance with our discussions
in Chapter 9. Polarization-dependent optical spectra measured in similar structures is
shown in Fig. 10.16.

A
A

AA



430 Chapter 10. Excitonic Effects and Modulation of Optical Properties

4

2

0

2

0

(a)

(b)

(iv)
(iii)

(ii)

(i)

(i)

(ii)

(iii)

(iv)
(v)

1.42 1.46 1.5

− L
n
(T
R
A
N
SM

IS
SI
O
N
)

PHOTON ENERGY (eV)

(i): F = 1.6 x 104 V/cm
(ii): F = 1.0 x 105 V/cm
(iii): F = 1.3 x 105 V/cm
(iv): F = 1.8 x 105 V/cm
(v): F = 2.2 x 105 V/cm

Figure 10.16: Measured polarization dependent transmittances in GaAs/AlGaAs (100 Å)
multiquantum well structures when light is coming in the waveguide geometry. (a) Incident
polarization parallel to the plane of the layers . (b) Incident polarization perpendicular to the
plane of the layers. (After D.A.B. Miller, et al., IEEE J. Quantum Electronics, QE-22, 1816
(1986).)

In the context of polarization dependence of the absorption spectra, it is very
interesting to see the effect of strain on the spectra. We noted in Chapter 3 that epitaxial
strain can lift the degeneracy between the HH and LH states. In fact, a compressive in-
plane strain pushes the LH below the HH state while a tensile strain does the opposite.
Now the quantum confinement also pushes the LH state below the HH state. Thus, in
principle a properly chosen tensile strain can cause a merger of the HH and LH states
at the zone center in a quantum well.

EXAMPLE 10.5 A 100 Å GaAs/Al0.3Ga0.5As MQW structure has the HH exciton energy
peak at 1.51 eV. A transverse bias of 80 kV/cm is applied to the MQW. Calculate the change
in the transmitted beam intensity (there is no substrate absorption) if the total width of the
wells is 1.0 µm and the exciton linewidth is σ = 2.5 meV. The photon energy is h̄ω = 1.49 eV.

The transmitted light is

I = Io exp (−αd)

At zero bias, we have (see Example 10.2)

α(V = 0) =
2.9× 104

2.5
exp

( −(1.49− 1.51)2
1.44(2.5× 10−3)2

)
∼ 0
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At a bias of 80 kV/cm, the exciton peak shifts by ∼20 meV, as can be seen from Fig. 10.17.
The absorption coefficient is

α(F = 80 kV/cm) =
2.9× 104

2.5
exp

( −(1.49− 1.49)2
1.44(2.5× 10−3)2

)
= 1.2× 104 cm−1

The ratio of the transmitted intensity is

I(F = 80 kV/cm)
I(F = 0)

= 0.3

Thus, an ON/OFF ratio is 3.3:1 for this modulator.

EXAMPLE 10.6 A small tensile strain is used to cause the HH and LH excitonic states to
merge in a 100 Å GaAs/Al0.3Ga0.7As well. The quantum well is grown along the (001) direction.
Calculate the absorption coefficient for light polarized along the z-direction and along the x
(or y) direction. The exciton linewidth is σ = 1.0 meV.

When the HH and LH states are coincident, the total coupling of the z-polarized light
gives, for the momentum matrix element, (see Chapter 9)

2
3

P 2
cv

and for the x-polarized light,
1
2
P 2
cv +

1
6
P 2
cv =

2
3

P 2
cv

In Example 10.2, we calculated the excitonic transition strength using ap =
1
2 for

x-polarized light, coupling only to the HH state. The absorption strength thus increases to 3.9

×104 cm−1 for the peak value.

10.7.3 Optical Effects in Polar Heterostructures
We have noted that in the “square” quantum well the first order Stark effect is zero
due to the inversion symmetry of the well. It is possible to design quantum wells that
are not “square” by choosing a variable composition. Also in polar heterostructures
there is a a strong built-in electric field which can remove the inversion symmetry. In
Chapter 1 we have discussed semiconductors in which there is a net polarization due
to a shift between the cation and anion sublattices. Heterostructures made from such
polar materials can yield very interesting band profiles with built-in fields due to the
differences in polarizations in two materials. A very important heterostructure which
has large polarization (and built-in electric fields) is based on InN, GaN, and AlN.

In Chapter 1 (see Eqns. 1.25 and 1.26) we have described the electric fields
produced at the interfaces of AlGaN on GaN and InGaN on GaN heterostructures
grown along the commonly used (0001) direction. As a result of the large built-in field
(which can be ∼ 106 V/cm) the electron and hole wavefunctions on a quantum well are
pushed apart in a quantum well. This is shown in Fig. 10.17 for a In0.18Ga0.82N/GaN
quantum well. It is important to note that such quantum wells are used for emission of
blue (and green) light. As a result this is a very important material system for display
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Figure 10.17: Band profile for 30 Å In0.18Ga0.82N/GaN quantum well grown lattice-matched
to GaN in the (0001) orientation.

technology and high resolution optical memory (due to the short wavelength of blue
light).

Due to the built-in electric field in the well, electron and hole wavefunctions are
pushed towards opposite sides making the electron-hole overlap very small. The overlap
depends on the well width and the InGaN composition (which controls the built-in
electric field). Since the electron-hole overlap is small, the absorption coefficient and
gain is suppressed in these quantum wells. On the other hand the radiative lifetime
becomes correspondingly large. The small overlap also results in a very small exciton
biding energy. The design of optoelectronic devices based on the InGaN quantum well
must take into consideration the built-in electric field.

As electrons and holes are injected into the well, the built-in electric field is
shielded due to the injected charge, and the quantum well becomes more “square” as
shown in Fig. 10.18b. As a result of this the electron-hole overlap increases with injection
and the radiative lifetime decreases. Note that even in “normal” square quantum wells
the radiative time decreases with injection due to higher occupation factors.

As a result of the large built-in electric field in the nitride heterostructures
there is a strong Stark effect in the optical transitions. This effect is linear, since at zero
applied bias the quantum well does not have inversion symmetry.

10.8 EXCITON QUENCHING
In the previous section we discussed an approach used to modulate the excitonic transi-
tions in quantum wells. There are several other approaches which can also modulate the
exciton spectra and have been used to design various devices. Two important techniques
are:

1. Quenching of the exciton by free carriers.
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2. Quenching of the exciton by creation of a high density of excitons by high optical
intensity.

In the first approach, a high density of free electrons (or holes) is introduced into the
quantum well. The free carriers screen the Coulombic interaction between the electron
and hole, weakening the exciton binding energy and reducing the exciton oscillator
strength. The physics behind the second approach is quite complex and a number of
important phenomenon including bandgap renormalization, exciton phase space filling,
and screening effects participate to cause the modulation of the exciton resonance. Since
we are not fully equipped to treat these phenomenon which require many body theory
we will only summarize the current state of knowledge.

The screening of the exciton is relatively simple to understand and has been
used to design high speed modulators. In the simple theory of the effect of free carriers
on Coulombic interaction, the Coulombic interaction is modified and is given by the
screened Coulombic potential (see Chapter 5, Section 5.1)

V (r) =
e2

4πεr
e−λr (10.71)

where for a nondegenerate electron gas with doping density n,

λ2 =
ne2

εkBT

and N(EF ) is the density of states at the Fermi energy EF . In a quantum well, one has
to carry out a proper 2D treatment of the dielectric response, but the overall effect on
the excitons can be understood on similar physical grounds.
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As the background carrier density increases, the electron-hole attractive po-
tential decreases due to screening and the exciton binding energy decreases. Another
manifestation of this is that the exciton radius increases and the absorption coefficient
decreases.

In Fig. 10.19, we show how the exciton binding energy changes as a function of
carrier density for a 100 Å GaAs/Al0.3Ga0.7As quantum well structure. Also shown in
Fig. 10.19 is the exciton radius as a function of carrier density for the same structure.
We can see that the exciton essentially “disappears” once the background carrier density
approaches 2–3 × 1011cm−2. This is a fairly low density and can be easily injected at
high speeds into a quantum well. Since the injected charge removes the exciton peak, the
absorption coefficient can be modulated rapidly by this process. We note that in addition
to the effect noted above, the injected carriers also renormalize the bandgap by shrinking
the gap somewhat. At the carrier concentrations of ∼ 1011cm−2, the screening effects
are, however, more dominant. This phenomenon has been used in creating electronic
devices which can modulate an optical signal by charge injection.

Another area of interest in exciton physics is the area of nonlinear effects. At
low optical intensity, the optical constants of the material are essentially independent
of the optical intensity. However, as the optical intensity is increased, excess carriers are
generated and these carriers affect the exciton properties. When the optical intensity
generates electron-hole pairs, the optical absorption is suppressed by phase space filling.
In the case of the free electron-hole pairs, this effect is simply due to the band filling
effects manifested in the product term fe(E)·fh(E) which we discussed when discussing
the gain in a laser.

A number of devices based on optical non-linearities have been proposed and
demonstrated. These devices have been used to demonstrate various logic operations.
Additionally, non-linear effects are used in characterization studies as discussed in Ap-
pendix B.

10.9 TECHNOLOGY ISSUES

The field of optics in general, and semiconductor optoelectronics in particular has bred
numerous important technologies in fields ranging from medicine to entertainment to
information processing. As noted in “Technology Issues” section in Chapter 9, semicon-
ductor optoelectronics has been exploited in communications, data storage, printing, and
display. Exciton based devices have been demonstrated to be able to carry out functions,
like modulation, logic applications, programmable transparencies, beam steering, etc.
However, apart from high speed modulation of lasers for optical communications, few
devices have found commercial applications. This may be partly due to stiff competition
from electronic devices which are less expensive (usually Si based), more reliable, and
use well-established fabrication technologies. In fact, dreams of optical multipurpose
computers based on optoelectronics is not likely to be fulfilled soon, if at all. However,
by coupling the best of photonics with electronics advanced new systems are emerging.
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10.10 PROBLEMS
10.1 Assume a simple parabolic density of states mass for the electrons and holes and
calculate the exciton binding energies in GaAs, In0.53Ga0.47As and InAs. What is the
exciton Bohr radius in each case?
10.2 Assume a Gaussian exciton linewidth of 1 meV half-width at half maximum and
plot the absorption coefficient due to the ground state exciton resonance in each of the
three semiconductors of Problem 1.
10.3 Assume a hydrogenic form of the ground state exciton function. Using the vari-
ational method, show that a 2D exciton has four times the binding energy of the 3D
exciton. Also calculate the in-plane Bohr radius of the 2D exciton.
10.4 Assume that the exciton radius aex scales roughly as inverse of the exciton binding
energy. Using the in-plane dependence of the exciton-envelope function as exp(−ρ/aex),
use the results of Fig. 10.8 to plot the well-size dependence of the exciton-peak absorp-
tion strength of the heavy-hole ground state exciton. Use a 4 meV (HWHM) Gaussian
width. In general, the linewidth may increase with decreasing well size.
10.5 Using the results of the simple perturbation theory calculate the electric field
dependence of the HH exciton emission energy in a 100 Å GaAs quantum well. How
does the position of the LH exciton (ground state) vary?
10.6 Design a GaAs quantum well (you may assume an infinite barrier) so that the
ground state exciton resonance is at 1.5 eV. Calculate the peak absorption coefficient
at this energy. If the quantum well width decreases by one monolayer, what is the
absorption coefficient at 1.5 eV? Assume that:

exciton radius aex = 80 Å
electron mass m∗

e = 0.067 m0

hole mass m∗
h = 0.45 m0

exciton halfwidth σ = 2.0 meV
GaAs bandgap Eg = 1.43 eV
1 monolayer dm& = 2.86 Å

Also assume that the exciton binding energy is 8.0 meV.
10.7 Consider a bulk GaAs electro-optic device on which an electric field is applied in
the z-direction. The field is switched between 0 and 105 V/cm. Calculate the length of
the device needed to produce a phase change of π/2 between the light waves polarized
along < 011̄ > and < 01̄1 >. The wavelength of the light is 1.3 µm.
10.8 Consider a 100 Å GaAs quantum well in which the heavy-hole exciton resonance
has a halfwidth of σ = 3 meV. A transverse electric field is switched between 0 and
60 kV/cm. Calculate the change in the absorption coefficient at a photon energy coin-
cident with the peak of the exciton at zero field. If the total length of the active region
is 2.0 µm, calculate the modulation depth that can be achieved (modulation depth =
Iph(F = 60 kV/cm)/Iph(F = 0). You may ignore the effect of the light hole exciton.
10.9 Consider a 100 Å In0.53Ga0.47As quantum well device in which the exciton
halfwidth is σ = 5 meV. An optical beam impinges on the device with an energy
10 meV below the zero field exciton resonance. The active length of the device is 3.0
µm. Calculate the minimum electric field needed to produce an optical intensity mod-
ulation of 2:1 relative to the zero field transmission intensity. Exciton radius may be
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taken as 120 Å in the well.
10.10 Assume that the absorption coefficient due to excitonic transitions is given ad-
equately by the exciton radius. Calculate the change in the peak of the absorption
coefficient as a function of free carriers in a 100 Å quantum well using the information
provided in this chapter. The exciton halfwidth is σ = 3 meV.
10.11 In a normal incidence GaAs/Al GaAs quantum well modulator based on Stark
effect, the substrate (GaAs) has to be removed. Discuss the reasons for this. Calculate
the minimum composition of In in a 100 Å InGaAs/AlGaAs quantum well so that the
substrate removal is not necessary.
10.12 Consider a 100 Å In0.2Ga0.8As quantum well (grown lattice matched on a GaAs
substrate) in which the ground state HH exciton at zero applied field is at 1.4 eV.
Estimate the position of the ground LH exciton. Note that the strain induced splitting
between HH and LH is 6 ε eV where ε is the lattice mismatch.
10.13 In problem 10.12, a transverse electric field of 105 V/cm is applied. Estimate the
change in the refractive index for the TE and TM polarized light at h̄ω = 1.3 eV. The
exciton halfwidth is σ = 3 meV and the exciton radius can be assumed to be 100 Å for
both the HH and LH excitons.
10.14 A 100 Å GaAs quantum well has a heavy-hole exciton resonance at 1.5 eV
with a halfwidth of 3 meV. Calculate the change in the refractive index produced by
a transverse electric field of 105 V/cm at a photon energy of 1.4 eV. Use the Kramers
Kronig relation and assume that the change in solely due to the change in the excitonic
effects. Consider both HH and LH excitons and assume that aex = 100 Å for both cases.
Consider the TE and TM polarized light separately.
10.15 In non-linear exciton “bleaching,” one needs approximately 5 × 1011 cm−2 e-h
pairs to cause the bleaching of the exciton. If the e-h recombination time is 1.0 ns, what
is the optical power density needed to cause bleaching in 100 Å quantum wells? The
absorption coefficient is 104 cm−1 for the impinging optical beam with energy 1.5 eV.
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Chapter
11

SEMICONDUCTORS
IN MAGNETIC

FIELDS

The general field of how semiconductor properties are modified in the presence of a
magnetic field is a very wide one. To do justice to the field, one would need to devote
several chapters to this area as we have done for electric field effects. However, it can be
argued that from a technology point of view the response of electrons in semiconductors
to electric fields and optical fields is more important. Magnetic field effects are primar-
ily used for material characterization, although there is growing interest in magnetic
semiconductors for device applications. In view of this fact we will provide an overview
of how electrons in semiconductors respond to magnetic fields in just one chapter. In
addition to a magnetic field, many important characterization techniques are carried
out in the presence of an electric field or an optical field. We will therefore also discuss
magneto-transport and magneto-optic properties. The general category of problems we
will examine are sketched in Fig. 11.1.

In Fig. 11.1 we broadly differentiate between the “free” or Bloch states in semi-
conductors and the electron-hole coupled states like excitons or bound states. The mag-
netic field greatly alters the nature of the electronic states which then manifests itself
in magneto-optic or magneto-transport phenomenon. It is important to realize that
in many cases the physical phenomenon can qualitatively alter, depending upon the
strength of the magnetic field. We will address the problem of electrons in the presence
of a magnetic field in two steps. The first one is based on semi-classical ideas where the
electron is treated as a point particle with the E vs k relation given by the bandstruc-
ture. In this case the magnetic field is assumed to be small enough that the concept of
the bandstructure, effective mass, velocity, etc., is retained. Such low fields are used in
experiments such as the Hall effect. The other case we will examine becomes important
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Figure 11.1: A schematic of the problems addressed in this chapter.

as the magnetic field increases. In this case the free electron states are no longer the
usual planewave-like states (unk exp(ik · r)), but are greatly modified. This results in
new energy levels, different density of states, etc., and has important consequences on
magneto-transport and magneto-optic phenomenon.

11.1 SEMICLASSICAL DYNAMICS OF ELECTRONS
IN A MAGNETIC FIELD

We will first consider free electrons in semiconductors and how a magnetic field influences
them. The magnetic field is assumed to be small so that the underlying picture of the
electronic bandstructure remains intact and the electrons are described by the k-vector.
The equation of motion is

dk

dt
=

F ext

h̄
(11.1)

which becomes for a magnetic field

dk

dt
=

e

h̄
v ×B (11.2)

We immediately see that the change in the k-vector is normal to B and also normal to
the velocity. The velocity itself is normal to the constant energy surface and is given by

vk =
1
h̄
∇kE(k) (11.3)

The magnetic field thus alters k along the intersection of the constant energy
surface and the plane perpendicular to the magnetic field as shown in Fig. 11.2. The
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Figure 11.2: (a) A schematic showing the orbit of an electron in a magnetic field. The electron
moves on a constant energy surface in a plane perpendicular to the magnetic field. (b) The
orbit of an electron (or hole) on a constant energy surface that is anisotropic.

constant energy surface can, of course, be quite simple as for the conduction band of
direct semiconductors or quite complex as for the valence bands. If k is the vector in
this plane of intersection and ρ is the position of the electron, we have

dk

dt
=

e

h̄
ρ̇×B (11.4)

where v = ρ̇ has a component, ρ̇⊥, perpendicular to B and a component, ρ̇‖, parallel
to B. Eqn. 11.4 shows that k̇ has a component, k̇⊥, perpendicular to B, only, while
k̇‖ = 0.

The value of ρ⊥(t) can be simply derived by taking a cross product of both
sides of Eqn. 11.4 with a unit vector B̂ parallel to the magnetic field. This gives

B̂ × k̇ =
eB

h̄

[
ρ̇− B̂

(
B̂ · ρ̇

)]
=

eB

h̄
ρ̇⊥ (11.5)

Integrating we get

ρ⊥(t) =
h̄

eB
k⊥(t) + π/2 rotation. (11.6)

where the 90◦ rotation is included since the cross product of a unit vector with a per-
pendicular vector simply gives the second vector rotated by 90◦. If the constant energy
surface is spherical, as shown in Fig. 11.2a, then the value of ρ‖(t) may be deter-
mined as well. Because no electric field is applied, the wavevector moves on a constant
energy surface, where ρ‖ = v‖ = 1/h̄B̂ · ∇kE(k) is constant. Thus, by integration,
ρ‖(t) = v‖ · t + ρ‖(0). If the constant v‖ is nonzero, the electron moves in a helical
trajectory under the application of a magnetic field.
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Figure 11.3: Two orbits of the electron at energies E and E + dE in the magnetic field.

Let us now consider the frequency of the electron around the constant energy
surface. We examine two orbits in k-space with energies E and E+dE as shown in Fig.
11.3. The k-space separation of the orbits is

δk =
dE

|∇kE|
=

δE

h̄ |vk|
=

δE

h̄ρ̇
(11.7)

The rate at which an electron moving along one of the orbits sweeps the annulus area
is given by

dk

dt
δk =

e

h̄2 |ρ̇×B| δE|ρ̇|
=

eB δE

h̄2 (11.8)

This rate is constant for constant δE and if we define by T , the time period of the orbit

δS = T × eB

h̄2 δE

= area of the annulus

=
dS

dE
· δE (11.9)

where S is the area in k-space of the orbit of the electron with energy E. Thus

T =
h̄2

eB

dS

dE
(11.10)

We can now define a cyclotron resonance frequency

ωc =
2π
T
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=
2πeB
h̄2

1
dS/dE

=
eB

mc
(11.11)

where we have introduced the cyclotron resonance mass mc as

mc =
h̄2

2π
dS

dE
(11.12)

The cyclotron resonance mass is a property of the entire orbit and may not be the same
as the effective mass in general. For a parabolic band we have

E =
h̄2k2

2m∗

or

S = πk2

=
2m∗πE

h̄2

and
dS

dE
=
2m∗π
h̄2 (11.13)

This gives
mc = m∗ (11.14)

For a more complex band this relation will be appropriately modified. For example, the
conduction band of indirect gap materials, such as Ge and Si can be represented by an
ellipsoidal constant energy surface

E(k) = h̄2

(
k2
x + k2

y

2mt
+

k2
z

2m&

)
(11.15)

where mt is the transverse mass and m& is the longitudinal mass. The velocity compo-
nents are now

vx =
h̄kx
mt

vy =
h̄ky
mt

vz =
h̄kz
m&

(11.16)

If we assume that the magnetic field lies in the equatorial plane of the spheroid
and is parallel to the kx axis, we get from the equation of motion

h̄
dkx
dt

= 0
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h̄
dky
dt

= eBvz

=
h̄eB

m&
kz

or
dky
dt

= ω&kz, with ω& =
eB

m&
(11.17)

Also,

h̄
dkz
dt

= −eBvy

= −h̄
eB

mt
ky

or
dkz
dt

= −ωtky, with ωt =
eB

mt
(11.18)

If we differentiate Eqn. 11.17 with respect to time we get

d2ky
dt2

= ω&
dkz
dt

(11.19)

Substituting for dkz/dt from Eqn. 11.18, we get

d2ky
dt2

+ ω&ωtky = 0 (11.20)

which is the equation of motion of a harmonic oscillator with frequency

ω0 = (ω&ωt)
1/2

=
eB

(m&mt)
1/2

(11.21)

It can be shown also that if B is parallel to kz, then the frequency is simply

ω0 = ωt

=
eB

mt
(11.22)

In general, if the magnetic field makes an angle θ with respect to the kz direction we
have for the cyclotron mass (

1
mc

)2

=
cos2 θ
m2
t

+
sin2 θ

mtm&
. (11.23)

Thus, by altering the magnetic field direction, one can probe various combinations ofm&

andmt. In the cyclotron resonance experiment, the cyclotron frequency can be measured
directly, thus allowing measuring of the carrier masses. Results of such measurements for
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Figure 11.4: Results of cyclotron resonance absorption in germanium at 4 K, at 24 GHz. The
static magnetic field is in a (110) plane at 60◦ from a (100) axis. Both electrons and holes are
produced by illumination. The peaks correspond to the cyclotron frequency coinciding with
24 GHz. (Adapted from G. Dresselhaus, A. F. Kip, and C. Kittel, Physical Review, Vol. 98,
368 (1955).)

Ge electrons and holes are shown in Fig. 11.4. In Example 11.1 we describe the cyclotron
resonance experiment—a very important experiment to obtain information on carrier
masses. From Fig. 11.4 we see that Ge has two hole masses. The three electron masses
result from different valleys and the orientation of the magnetic field with respect to
these masses.

EXAMPLE 11.1 In a cyclotron resonance experiment an rf electric field is present in a
direction perpendicular to the magnetic field, as shown in Fig. 11.5. When the rf frequency
equals the cyclotron resonance frequency, there is resonant absorption of energy by the carriers.
For absorption to occur we must also have ωcτ ≥ 1 where τ is the carrier scattering time.
Consider electrons in GaAs in a cyclotron resonance experiment where a 24 GHz rf field is
used. Calculate the magnetic field at which a resonance will occur. Also calculate the minimum
mobility needed for the experiment to be successful.

The B-field needed is given by the relation

B =
ωrfm

∗

e
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Figure 11.5: Arrangement of the magnetic field and an rf electric field during a cyclotron
resonant experiment.

=

(
24× 1010 × 2π rad/s

) (
0.067× 9.1× 10−31 kg

)
(1.6× 10−19 C)

= 0.574 T = 5.74 KGauss

For the resonance to be observable the scattering time has to be

τ ≥ 1

(24× 1010 × 2π rad/s) = 6.63× 10
−13 s

The mobility has to be

µ ≥ eτ

m∗ =

(
1.6× 10−19 C

) (
6.63× 10−13 s

)
(0.067× 9.1× 10−31 kg)

= 1.74 m2/V · s = 17400 cm2/V · s
The room temperature mobility of electrons in pure GaAs is ∼ 8500 cm2V ·s. Thus the sample
has to be cooled to ∼ 77 K to see the resonance.

11.1.1 Semiclassical Theory of Magnetotransport
We will now discuss the electronic system when there is a magnetic field and an electric
field present. The magnetic field is again assumed to be small so that it can be treated
as a small perturbation. The general formalism has already been discussed in Chapter 4,
Section 4.4 and we will not repeat that analysis again in this chapter. It is important to
point out that the semiclassical treatment is widely used to understand the Hall effect
which is one of the most important characterization techniques for semiconductors. In
Fig. 11.6 we show the configuration of the electric and magnetic fields in a typical Hall
effect experiment. We showed in Chapter 4 that the Hall mobility µH measured in the
presence of a magnetic field is related to the conductivity mobility µ by the following
relation

µH = rHµ (11.24)

where rH is the Hall factor and is given by

rH =
〈〈τ2〉〉
〈〈τ〉〉2 (11.25)
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Figure 11.6: A rectangular Hall sample of an n-type semiconductor.

where

〈〈τ〉〉 = 〈Eτ〉
〈E〉 (11.26)

and τ is the scattering time for various scattering processes. In particular, if it is possible
to represent the energy dependence of τ by

τ = τ0

(
E

kBT

)s

(11.27)

then, for a Maxwellian distribution, we have

rH =
Γ(2s+ 5/2)Γ(5/2)
[Γ(s+ 5/2)]2

(11.28)

where Γ is the Gamma function defined in Chapter 4. The conductivity tensor which
relates the current to the applied field

Ji = σij(B)Ej (11.29)

is given by (for small B-fields where only terms linear in B are retained)

σ(B) = σ0


 1 −µHB3 µHB2

µHB3 1 −µHB1

−µHB2 µHB1 1


 (11.30)

where σ0 is the conductivity in absence of the magnetic field.
As seen in Chapter 4, when we include higher order terms in the magnetic field,

we have

σxx = σyy = −
∫

d3k

(2π)3
∂f0

∂E

e2τv2
x

1 + (ωcτ)2
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σxy = −
∫

d3k

(2π)3
∂f0

∂E

e3v2
x

m∗
τ2

1 + (ωcτ)2
(11.31)

In the Hall experiment several quantities can be measured. These include the Hall
coefficient RH and the magneto-resistance given by

RH =
Fy
JxB

PH =
Fx
Jx

(11.32)

It is easy to check that for an n-type or p-type material the Hall coefficient is simply

RH = − 1
ne

n-type

=
1
pe

p-type (11.33)

where n and p are the carrier densities. For materials where electron and hole densi-
ties are both significant the Hall coefficient is more complicated. From the expressions
derived above it can be seen that the product of the Hall coefficient and resistivity is
just the Hall mobility. The Hall mobility thus obtained is independent of carrier con-
centration making Hall effect a very powerful transport measurement. However, it is
important to remember that Hall mobility is different from drift mobility (by the Hall
factor).

In Fig. 11.7 we show results from a classic paper of Debye and Conwell on
Hall measurements in n-type Ge. The samples are doped n-type at values ranging from
1012 cm−3 (sample A1, essentially undoped) to 2 × 1017 cm−3 (sample E). From Fig.
11.7a we can see how the carrier concentration changes as a function of temperature. The
freezeout, saturation, and intrinsic regimes are clearly seen. The Hall mobility obtained
by multiplying the Hall coefficient and resistivity for each sample is shown in Fig.
11.7c. We see that for a heavily-doped sample the mobility is essentially independent of
temperature, while for a lightly-doped sample the mobility increases as temperature is
lowered.

An important measurement that provides insight into the scattering processes
(their energy dependence) is magnetoresistance. It is important to include the 1+(ωcτ)2

term in the denominator of the conductivity tensor in evaluating magnetroresistance.
Making the approximation

1
1 + (ωcτ)2

∼= 1− (ωcτ)2

it can be shown that the change in resistivity as a function of magnetic field is

ρ(B)− ρ0

ρ0
=
∆ρ

ρ0
=

−∆σ

σ
=
(
eB

m∗

)2

(η − 1)ξ (11.34)
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doping as a function of temperature. (b) Measurements of resistivity. (c) Hall mobility (after
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where

η =

〈
Eτ3

〉 〈Eτ〉
〈Eτ2〉2

ξ =

〈
Eτ2

〉2

〈Eτ〉2 (11.35)

We see that if the scattering time has no energy dependence, ∆ρ is zero, i.e., the resis-
tivity of the sample has no magnetic field dependence. In general the scattering times
depend upon the carrier energy and the sample resistance increases as the magnetic
field is increased.

11.2 QUANTUM MECHANICAL APPROACH TO ELECTRONS IN A
MAGNETIC FIELD

We will now address the problem of electrons in a magnetic field by including the mag-
netic field energy in the Schrödinger equation. We will use the effective mass equation
to absorb the effect of the background crystal potential. The approach is, of course,
general and allows us to use the operator equivalence

− h̄2

2m
∇2 + V (r)⇒ − h̄2

2m∗∇2

provided there are no interband couplings. Here m∗ is the effective mass of a particular
band. The general Hamiltonian for the electrons is

H =
1
2m

(p− eA)2 + Vc(r)

This equation is now written as an effective mass equation for a band with effective
mass m∗ (assumed isotropic and parabolic for simplicity). The resulting equation is

1
2m∗

(
h̄

i
∇− eA

)2

ψ = Eψ (11.36)

where ψ(r) is now to be considered the envelope function which, when multiplied by
the zone edge function of the band, gives the full wavefunction. For example, as we have
discussed several times, the zone edge function of the conduction band state in the direct
gap materials is an s-type state. It is important to appreciate how we have simplified
Eqn. 11.36 versus how we treated the similar equation involving the electromagnetic
interaction with electrons in the semiconductor. In that problem which led to the photon
absorption, we did not apply the effective mass equation to the operator

1
2m∗

(
h̄

i
∇− eA

)2

+ Vc(r)

directly since the electromagnetic field does couple various bands. The effective mass
approach was only applied to the operator

− h̄2

2m
∇2 + Vc(r)

(
=

−h̄2

2m∗∇2

)
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We also note that the interaction of the spin of the electron with the magnetic
field is ignored at present. This interaction is gµBσ · B where σ is the spin operator,
µB = eh̄/(2m) is the Bohr magneton and the g-factor is related to the details of the
state (g = 2 for free electrons). This interaction is just added on to our solutions and
will be discussed later.

We write the vector potential in the gauge

A = (0, Bx, 0)

which gives a magnetic field in the z-direction

B = Bẑ

The equation to be solved is

∂2ψ

∂x2
+
(

∂

∂y
− ieBx

h̄

)2

ψ +
∂2ψ

∂z2
+
2m∗

h̄2 Eψ = 0 (11.37)

where all energies are to be measured from the bandedges. Since our Hamiltonian does
not involve y or z explicitly, the wavefunction can be written as

ψ(x, y, z) = exp {i (βy + kzz)}u(x) (11.38)

Denoting by

E
′
= E − h̄2

2m∗ k
2
z (11.39)

we get the equation for u(x) as

∂2u

∂x2
+

{
2m∗

h̄2 E
′ −

(
β − eB

h̄
x

)2
}

u = 0 (11.40)

We note that as in classical approach, the motion of the electron along the magnetic
field is unaffected. The motion in the x-y plane is given by the Harmonic oscillator like
equation

− h̄2

2m∗
∂2u(x)
∂x2

+
1
2
m∗

(
eB

m∗x− h̄β

m∗

)2

u(x) = E
′
u(x) (11.41)

This is the 1-dimensional Harmonic oscillator equation with a frequency eB/m∗

and centered around the point

x0 =
1
ωc

h̄β

m∗ (11.42)

The solution of this problem is

E
′
=
(
n+

1
2

)
h̄ωc (11.43)

and the total energy is

E =
(
n+

1
2

)
h̄ωc +

h̄2

2m∗ k
2
z (11.44)
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Figure 11.8: Solution of the Schrödinger equation in a magnetic field. The electron function
along, say, x-axis is that of a harmonic oscillator centered around a point x0.

The electron energy is quantized in the x-y plane and has the additional trans-
lational energy along the magnetic field. The schematic form of the wavefunction is
shown in Fig. 11.8.

Since the contributions to the energy from the x-y plane motion is so drastically
affected, it is important to understand what happens to the density of states of the
system. Consider a box of sides Lx, Ly, Lz. From the form of the wavefunction given
by Eqn. 11.38, it is clear that both kz and β are quantized in units of 2π/Lz and 2π/Ly
respectively. However, the energy of the electron has no β dependence so that all allowed
β values give rise to the same energy state (for constant kz value). However, the values
of β is not infinite. As noted above, the center of the wavefunction x0 must, of course,
remain inside the dimensions of one system, i.e.,

0 ≤ x0 ≤ Lx (11.45)

Thus, the number of allowed values for β are

p =
βmax

(2π/Ly)
(11.46)

where from Eqns. 11.42 and 11.45

βmax =
ωcLxm

∗

h̄
(11.47)

Thus, the degeneracy of a level is

p =
m∗ωcLxLy

2πh̄
(11.48)

One way to physically represent the effect of magnetic field is to use the schematic view
in Fig. 11.9 Focusing only on the kx-ky plane, in absence of the magnetic field, the kx,
ky points are good quantum numbers and the various points in Fig. 11.9a represent the
allowed states. In presence of the magnetic field, various kx, ky points condense into
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Figure 11.9: Quantization scheme for free electrons: (a) without magnetic field; and (b) in a
magnetic field.

points on circles which represent constant energy surfaces with energies h̄ωc/2, 3h̄ωc/2,
etc. This rearrangement of states does not, of course, alter the total number of states
in a macroscopic volume. This can be understood by examining the number of states in
the presence of the magnetic field per unit area. This number is

∂N

∂E
=

p

h̄ωc

=
LxLy
2π

m∗ωc
h̄2ωc

= LxLy
m

2πh̄2 (11.49)

This is the same as the 2-dimensional density of states in the x-y plane. Thus, on the
macroscopic energy scale the density of states is unaffected.

The levels that are produced for a given value of the integer n are called Landau
levels. In Fig. 11.10a we show how the bandstructure of the semiconductor gets modified
due to the magnetic field. We have Landau levels and only kz is a good quantum
number. The density of states of the 3-dimensional system is essentially given by the
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one-dimensional density of states derived in Chapter 2, weighted by the degeneracy
factor p. Since kz is still a good quantum number, the E vs. kz given the bandstructure
and the density of states. The various Landau levels are shown in Fig. 11.10.

In the 1-dimensional kz space the density of states is (for a particular Landau
level with energy En)

N1D(E) =
√
m∗(E − En)−1/2

√
2h̄

(11.50)

with the total density given by multiplying this by p and running the contribution from
all Landau levels with starting energies less than E,

N(E) =
1
4π2

(
2m∗

h̄2

)3/2

h̄ωc
∑
n

[
E −

(
n+

1
2

)
h̄ωc

]−1/2

(11.51)

The density of states is shown in Fig. 11.10b where we see singularities arising from
the quantization of the states. This change of the density of states due to the formation
of Landau levels has important effects on the physical properties of the system. As the
magnetic field is altered, the separation of the Landau level changes and the Fermi level
(for a fixed carrier concentration) passes through these sharp structures in the density
of states.

The treatment discussed above for 3-dimensional systems can be easily extended
to the 2-dimensional system where the effects of the magnetic field become even more
interesting. If we consider the magnetic field along the z-axis or the growth (confining)
axis, then kz is not a good quantum number so that not only are the x-y energies
quantized, but so are the z energies. This leads to the remarkable result that the density
of states becomes a series of δ-functions as shown in Fig. 11.11. The discrete energy levels
are now given by

En& = En +
(
&+

1
2

)
h̄eB⊥
m‖

+
eB2

‖
2m‖c2

[
(z̄)2 − (z2)

]
(11.52)

Here the last term represents the diamagnetic effect of the parallel (in-plane) magnetic
field which arises from first order perturbation theory using the perturbation Hamilto-
nian given by Eqn. 11.37.

B
′
=

e2A2

2mc2
(11.53)

In Eqn. 11.52, the En represent the subband level energies arising from the quantization
of the energy levels due to the confining potentials. Most experiments in 2D systems
are carried out with B‖ = 0.

The presence of δ-function like density of states which is broadened in real sys-
tems has some very profound effects on physical phenomenon in 2-dimensional systems.
The most well-known and Nobel prize winning effect is the quantum Hall effect which
will be discussed later.

EXAMPLE 11.2 Calculate the magnetic field needed to cause the splitting in Landau levels
in GaAs to become kBT at i) T = 4 K and ii) 300 K. The magnetic field at 4 K is given by
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Figure 11.10: (a) Effect of magnetic field on the bandstructure of a semiconductor. Only kz
is a good quantum number. The magnetic field produces quantization in the x-y plane leading
to Landau levels, The dashed curve is for zero field. (b) Density of states in a 3D system in
the presence of magnetic field. The density of states develops singularities due to quantization
in the plane perpendicular to the magnetic field. Also shown is the zero field density of states
for comparison.
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Figure 11.11: Singular density of states in an ideal 2D system in the presence of a magnetic
field.

(kBT = 0.00033 eV)

B =
∆Em∗

h̄e
=

(
0.00033× 1.6× 10−19 J

) (
0.067× 9.1× 10−31 kg

)
(1.05× 10−34 J · s) (1.6× 10−19 C)

= 0.19 T

At 300 K the field is 14.25 T. It is difficult to get magnetic field values much above 10 T in

most laboratories.

11.3 AHARONOV-BOHM EFFECT
In Chapter 8 we have considered quantum interference devices in which an electrical
signal (gate voltage) controls the interference effect. It is possible to control interference
by a magnetic field as well.

Let us consider the Schrödinger equation for an electron in presence of an
electromagnetic potential described by the vector potential A and scalar potential φ

1
2m

(−ih̄∇− eA)2 ψ + V ψ = Eψ (11.54)

where V = eφ. We assume that A and φ are time independent. In a region where the
magnetic field is zero we can write the solution of the problem in the form

ψ(x) = ψ0(x) exp

[
ie

h̄

∫ S(x)

A(x
′
) · ds′

]
(11.55)

where ψ0(x) satisfies the Schrödinger equation with the same value of φ but withA(x) =
0. The line integral in Eqn. 11.55 can be along any path as long as the end point S(x)
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is the point x and (∇ × A) is zero along the integral. Notice that this is essentially
equivalent to making the change

k → k − e

h̄
A

in the usual free electron wavefunction exp(ik · r)
To prove that Eqn. 11.55 satisfies the Schrödinger equation we use this solution

and evaluate

(−ih̄∇− eA)ψ = exp

[
ie

h̄

∫ S(x)

A(x
′
) · ds′

](−ih̄∇− eA(x))ψ0

+ ψ0(−ih̄)
(
ie

h̄
A(x)

)
= exp

[
ie

h̄

∫ S(x)

A(x
′
) · ds′

] (−ih̄∇ψ0
)

Similarly

(−ih̄∇− eA(x))2 ψ = exp

[
ie

h̄

∫ S(x)

A(x
′
) · ds′

] (−h̄2∇2ψ0
)

Thus, ψ(x) satisfies the Schrödinger equation with A �= 0, if ψ0(x) satisfies the Schrö-
dinger equation with A = 0, but with same V (x).

Let us now consider the problem described by Fig. 11.12. Here a beam of co-
herent electrons is separated into two parts and made to recombine at an interference
region. This is the double slit experiment discussed in Chapter 8, Section 8.4, except
now we have a region of magnetic field enclosed by the electron paths as shown. The
wavefunction of the electrons at the point where the two beams interfere is given by (we
assume that phase coherence is maintained)

ψ(x) = ψ0
1 exp

[
ie

h̄

∫ S(x)

path 1

A(x
′
) · ds′

]

+ ψ0
2 exp

[
ie

h̄

∫ S(x)

path 2

A(x
′
) · ds′

]
(11.56)

The intensity or the electron density is given by

I(x) = {ψ1(x) + ψ2(x)} {ψ1(x) + ψ2(x)}∗ (11.57)

If we assume that ψ0
1 = ψ0

2 , i.e. the initial electron beam has been divided
equally along the two paths, the intensity produced after interference is

I(x) ∝ cos
[
e

h̄

∮
A · ds

]
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Figure 11.12: A magnetic field can influence the motion of electrons even though it exists
only in regions where there is an arbitrarily small probability of finding the electrons. The
interference pattern of the electrons can be shifted by altering the magnetic field.

= cos
[
e

h̄

∫
area

B · n da

]

= cos
eφ

h̄
(11.58)

where we have converted the line integral over the path enclosed by the electrons to a
surface integral and used B = ∇×A. The quantity φ is the magnetic flux enclosed by
the two electron paths. It is interesting to note that even though the electrons never
pass through the B �= 0 region, they are still influenced by the magnetic field. From
Eqn. 11.58 it is clear that if the magnetic field is changed, the electron density will
undergo modulation. This phenomenon has been observed in semiconductor structures
as well as metallic structures.

EXAMPLE 11.3 As with any quantum interference effect a key attraction of the Aharonov-
Bohm effect is the possibility of its use in switching devices where a change in magnetic field
can change the state of a device from 0 to 1. Consider a device of area 20 µm ×20 µm through
which a magnetic field is varied. Calculate the field variation needed to switch the devices.

The flux “quanta” needed to switch from a constructive to destructive electron inter-
ference is

∆Φ =
πh

e

The magnetic field change needed for our device is

∆B =
πh

eA

=
π
(
1.05× 10−34 J s

)
(1.6× 10−19 C) (20× 10−6 m)2
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= 5.15× 10−6 T

This is an extremely small magnetic field making a device a very low power device. However,

it has not been easy to build practical circuits based on the Aharonov-Bohm effect so far.

11.3.1 Quantum Hall Effect
In Section 11.1.1 we have discussed the semiclassical theory of magnetotransport and
Hall effect. At low temperatures in high quality 2-dimensional systems Hall effect takes
on a rather unexpected form known as the quantum Hall effect. A two dimensional elec-
tron (or hole) gas can be created in the channel of a MOSFET or other heterostructure
transistors as shown in Fig. 11.13a. While the traditional Hall effect measurements are
done at very small magnetic fields, quantum Hall effect is observed under fairly high
magnetic fields. At such high fields Landau levels are formed with splittings that are
quite large.

In Chapter 4 we have discussed the conductivity tensor for an electronic system
in the presence of an electric field and a perpendicular field. We refer to Fig. 11.13b for
the geometry of the Hall effect. The general conductivity tensor is given by the relation
(we ignore the averaging details of the scattering time τ).

 Jx
Jy
Jz


 =

σ0

1 + (ωcτ)2


 1 −ωcτ 0

ωcτ 1 0
0 0 1 + (ωcτ)2




 F x

F y

F z


 (11.59)

where the cyclotron resonance frequency is eB/m∗. It is interesting to note that in the
high magnetic field limit (ωcτ � 1), one has

σxx ⇒ 0 (11.60)

The conductivity of a 2D system in the presence of a magnetic field can be written by
the surface conductivity tensor σ with components

σxx =
σ0

1 + (ωcτ)2

σxy =
−σ0 ωcτ

1 + (ωcτ)2
(11.61)

where σ0 is the conductivity in the absence of the magnetic field and is given by

σ0 =
ne2τ

m∗

where n is the density per unit area of the electrons.
The quantum Hall effect involves carrying out the usual Hall effect at very

low temperatures (where the scattering time τ is long). In the limit of ωcτ � 1, the
conductivity components become

σxx = 0

σxy =
−ne

B
(11.62)
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Figure 11.13: (a) Band profile and the location of the 2D electron gas used for quantum Hall
effect experiments. (b) The applied electric field and drift current orientation. (c) A schematic
of the positions of the various contacts used for quantum Hall effect.
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Figure 11.14: Results from the original quantum Hall effect carried out by K. von Klitzing,
G. Dorda, and M. Pepper. A magnetic field of 18 T is perpendicular tot he sample and mea-
surements area done at 1.5 K. A constant current of 1 µA is forced to flow between the source
and the drain. (After K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494
(1980).)

In Fig. 11.13c we show an arrangement of probes that allow one to measure the
Hall voltage VH and the voltage Vp in the channel direction. In the Hall configuration
the current in the y-direction is zero. The x-direction current density can then be shown
to have the value

Jx =

(
σxx +

σ2
xy

σyy

)
Fx

= σ(eff)Fx (11.63)

where σ(eff) is the effective conductance. In the limit where B is very large σxx =
σyy = 0 and the effective conductance becomes infinite. According to this result the
voltage drop Vp across the probes of Fig. 11.13c will go to zero at high magnetic fields.

In their classic experiment K. von Klitzing, G. Dorda, and M. Pepper observed
Hall effect in a MOSFET which was quite unexpected. The simple equations given
above provided a hint at an explanation, but they were quite inadequate. In Fig. 11.14
we see several interesting features: i) the Hall voltage and the probe potential Vp do
not have a monotonic behavior as the gate bias is altered (to change the sheet density),
but have rich features; ii) the Hall voltage has plateaus at certain values of gate bias
(i.e., sheet carrier densities); iii) the voltage across the probes becomes zero over the
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range where the Hall voltage shows plateaus. The most interesting observation is that
the Hall resistivity is found to have the value

ρH =
VH
Ix

=
h

νe2
=
25813

ν
Ω (11.64)

where ν is an integer. The value of the resistivity is so precise that quantum Hall effect
has become a standard for the determination of the fine structure constant.

In contrast to what is observed experimentally, if we were to simply use the
semiclassical Hall effect equations. We have from the semiclassical theory

Jx = JxLy = (σxxFx + σyyFy)Ly

=
ne

B
FyLy =

ne

B
Vp

and
ρH =

B

ne
(11.65)

Clearly the semiclassical approach does not explain the observations shown in Fig. 11.14.
Let us first consider a simplistic explanation of this phenomenon. Under strong

magnetic fields we consider the description of the electronic system in terms of the
Landau levels which are discrete in the 2D system as shown in Fig. 11.15a.

As the gate voltage is changed to fill the Landau levels, there will be a point
where one Landau level is completely full and the next one is completely empty. In this
case there can be no scattering of electrons. The condition for this to occur is from our
previous discussions

n = ν
eB

h
(11.66)

where ν is an integer. The Hall resistance at this point is

ρH =
B

ne

=
h

νe2
(11.67)

However a small change in gate bias i.e., the addition of a few electrons, will alter this
condition. Thus, on this basis one does not expect plateaus in the resistance.

A partial explanation of why the Hall conductivity has a plateau appears if we
examine the realistic density of states in a 2-dimensional system that has some defect
or disorder. As discussed in Chapter 8 and shown schematically in Fig. 11.15b the
density of states is not made up of δ-functions, but is broadened. Due to the disorder
present in the system, one expects extended and localized states as discussed in Chapter
8, Section 8.5. Thus, there is no reason that the Landau level will be filled (i.e., the
extended states part that conducts) at precise values of the electron concentrations. This
dilemma was addressed by Laughlin (1981). His arguments were based on arguments of
flux quantization discussed in the section on Aharonov-Bohm effect. Laughlin divided
the electronic states into extended and localized states where the localized states are
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Figure 11.15: A schematic of the density of states in a 2-dimensional electron system in the
presence of a high magnetic field. Case (a) is for an ideal system, while case (b) is for a real
system with some disorder.

unaffected by the magnetic field. The extended states enclose the magnetic flux and can
be affected by it. However, if the magnetic flux is altered by a flux quantum δφ = ch/e,
the extended states are identical to those before the flux quantum was added. Using
these arguments, Laughlin was able to show that plateaus should appear in the Hall
resistance with values precisely h/νe2 regardless of the disorder provided, of course, we
still had ωcτ � 1.

The quantum Hall effect has been found to be even more complex with the
observation of fractional quantum Hall effect. In experiments carried out at very high
magnetic fields and low temperatures, one observes the Hall resistance quantized in
units of 3h/e2 when the first Landau level is 1/3, 2/3, 2/5, 3/5, 4/5, 2/7 filled.

In these cases, the simple one electron picture of the Landau levels has broken
down and many-body description of the electrons is needed. This is an ongoing area of
research in condensed matter theory.
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Figure 11.16: (a) Bands in a semiconductor in the absence of a magnetic field. (b) Bandstruc-
ture in the presence of a magnetic field.

11.4 MAGNETO-OPTICS IN LANDAU LEVELS
We have seen that in cyclotron resonance experiments an rf electrical field causes tran-
sitions when the energy is h̄ωc. These energies are usually in the range of meV. Another
important transition can occur between Landau levels in the valence band and levels in
the conduction band. This effect, called the interband magnetooptic effect is very useful
in providing information on the electron-hole system properties.

In Fig. 11.16 we show schematically the effect of a magnetic field on the energy
bands of a semiconductor. The electron and hole levels are split into Landau levels, as
has been discussed, and the energies are given by

Ee = Ec + h̄ωce

(
&e +

1
2

)
+

h̄2k2
z

2m∗
e

Eh = Ev − h̄ωch

(
&h +

1
2

)
+

h̄2k2
z

2m∗
h

(11.68)

Here ωce and ωch represent the electron and hole cyclotron resonance frequencies,
respectively.

Interband magnetooptic transitions involve optical transitions across the band
between the same quantum number Landau level (i.e., &e = &h). The energy for the
transitions are

Emo = Eg +
h̄2k2

z

2µ
+
(
&+

1
2

)
h̄ωceh (11.69)

where µ is the reduced mass and ωceh = eB/µ.
The density of states in the bands in the presence of a magnetic field have sharp

resonances in 3D and 2D systems as shown in Figs. 11.10 and 11.11. As a result the
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absorption spectra shows sharp features which allows one to obtain information on the
electron-hole system.

The perturbation due to the electromagnetic radiation is

e

mc
(p− eAext) ·Aem (11.70)

where Aext is due to the applied magnetic field and Aem is due to the electromag-
netic field. Using the approach similar to the one used in Chapter 9 for band-to-band
transitions in the presence of an electromagnetic field, we get

α(h̄ω,B) =
πe2h̄

m2
0cnrε0

1
h̄ω

∑
all states

|a · P cv(B)|2 δ (Ec(B)− Ev(B)− h̄ω) (11.71)

where

a · P cv(B) =
∫

ψ∗
c (r,B) a · (p− eAext)ψv(r,B) d3r (11.72)

and ψc, ψv, Ec, Ev represent the band wavefunctions and energies in presence of the
magnetic field. To first order the effect of the magnetic field on the matrix element can
be easily seen by neglecting Aext in Eqn. 11.72 and using the effective mass equation
for the representation of the electronic states and the density of states. In the usual
approach of the effective mass theory, we may write

ψ(r,B) = F (r)ψn(kc, r) (11.73)

where F (r) is the ψ(x, y, z) given in Eqn. 11.38, where we had suppressed the bandedge
central cell function ψn(kc, r). The matrix elements are then in k-space

a · P cv(B) =
∫ [∑

k

Fc(k)ψc(k, r)

]∗
a · p


∑

k
′
Fv(k

′
)ψv(k

′
, r)


 d3r

=
∑
k,k

′
F ∗
c (k)Fv(k

′
) a · pcv(k) δ(k − k

′
) (11.74)

where k and k
′
are nearly equal because of the near zero photon momentum. We also

assume, as we did for the band-to-band transitions in Chapter 9, that P cv(k) has no
dependence on k and obtain the matrix elements, in terms of the real space wavefunction

a · P cv(B) = a ·M cv

∫
F ∗
cn′k′ (r) Fvnk(r) d3r (11.75)

We will assume that the bands are isotropic, in which case the envelope functions
for the harmonic oscillator problem are essentially orthonormal giving the selection rule

∆n = 0
∆k = 0 (11.76)
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The sum over the δ-function in Eqn. 11.74 gives us the joint density of states
of the electron-hole system. This joint density of states is simply

Ncv(E,B) =
2eB
h̄2 (2µ)

1/2
∑
n

[
E − Eg − h̄ωceh

(
n+

1
2

)]−1/2

(11.77)

where µ is the reduced mass and ωceh = eB/µ. The absorption coefficient now becomes

α(ω,B) =
πe2h̄

m2
0cnrε0

1
h̄ω

2eB
h2

(2µ)1/2 |a · pcv|2
∑
n

[
h̄ω − Eg − h̄ωceh

(
n+

1
2

)]−1/2

(11.78)
As with the density of states, the absorption profile has sharp structures. The

spacings between the singularities gives the reduced mass of the electron-hole system.
The results can be extended to the 2-dimensional case by following the method for the
2-D density of states. These density of states are now δ-function, as shown in Fig. 11.11,
which will be broadened by an appropriate linewidth.

11.5 EXCITONS IN MAGNETIC FIELD
We will now address the problem of excitons in a magnetic field. The studies of excitons
in semiconductors have been used to obtain accurate values of basic band parameters
such as effective mass and g-values and to obtain information on symmetry of the states.

We have seen how electrons described by “free” Bloch states are affected by
a magnetic field. What happens if the electrons are in a “bound” state? The exciton
represents the electron-hole bound state with an envelope function spread over ∼ 100 Å.
As we have seen in Chapter 10, the exciton problems can only be addressed analytically
under very simple approximations (3-dimensional, uncoupled valence bands). In the
presence of a magnetic field the problem becomes difficult to solve, especially if the
field is very high and perturbative techniques are invalid. Under high magnetic field
conditions where magnetic field energy approaches or exceeds the exciton binding energy,
variation methods are useful. We will discuss the case of uncoupled band exciton (i.e.,
light hole and heavy hole excitons are uncoupled) using a perturbation approach.

ψex(Kex, re, rh) =
∑
q

F (q,Kex) ψv(q, rh) ψc(−q +Kex, re) (11.79)

The equation for the Fourier transform of F (q,Kex) is{
1
2me

(pe − eA)2 +
1
2mh

(ph − eA)2 − e2

4πε |re − rh|
}
F (re, rh)

= EF (re, rh) (11.80)

where A is the vector potential due to the magnetic field. We reduce the problem to
the center of mass system by the transformation

R =
mere +mhrh

me +mh

r = re − rh
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and performing the transformation

F (re, rh) = exp
(
i
[
Kex − e

h
A

]
· R
)
Φ(r)

The relative motion equation is then defined by
 p2

2µ
+ e

(
1
mh

− 1
me

)
A · p+ e2

2µ
A ·A

− e2

4πεr
− 2eh̄

M
Kex ·A+

h̄2K2
ex

2M


Φ(r) = EΦ(r) (11.81)

Here µ is the electron-hole reduced mass andM is the total effective mass of the system.
Using the Lorentz gauge and writing

A =
1
2
B × r

the various magnetic field dependent terms of the Eqn. 11.81 take on the following
values:

• The second term in parentheses can be written as

e

2

(
1
mh

− 1
me

)
B ·L

which is the Zeeman term.

• The third term in parentheses is the diamagnetic operator,

e2

8µ
|B × r|2

• The fifth term depends upon the motion of the exciton and is given by

−eh̄

M
(Kex ×B · r)

and can be neglected due to its small value.

For optical transitions we are only interested in the m = 0 excitonic states (the
s-states) since, as discussed in Chapter 10, these are the only allowed transitions. The
equation then becomes{

p2

2µ
− e2

4πεr
+

e2B2

8µ
(x2 + y2)

}
φ(r) = Eφ(r) (11.82)

In order to define the relative strengths of the Coulombic and magnetic terms one defines
a parameter

γ =
h̄ωc
2Rex

(11.83)
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which is the ratio of the cyclotron energy and twice the exciton binding energy in the
absence of the magnetic field, Rcx. In terms of γ the equation for the exciton is{

−∇2 − 2
γ
+

γ2

4
(x2 + y2)

}
φ(r) = Eφ(r) (11.84)

where we have used Rex = µe4/
[
2h̄2(4πε)2

]
as the units of energy and the Bohr radius

aex = 4πεh̄2/µe2 as the unit of length. We note that the Zeeman term coming from the
electron and hole spins are not considered and can be simply added on to the solutions
later. This contribution is

geµ0Se ·B + ghµ0Sh ·B (11.85)

For small magnetic fields, one can treat the diamagnetic term as simply a per-
turbation and evaluate the effect on the excitonic states, assuming that there is no
mixing of the exciton states. One finds that first order perturbation theory gives

Eex(1s) = Rex

[
−1 + 1

2
γ2

]

Eex(2s) = Rex

[
−1
4
+ 7γ2

]
(11.86)

Magnetic field dependence of excitonic transitions is primarily done to shed light on the
nature of the excitonic state. From the shift in the excitonic resonances information on
the nature of the exciton wavefunction can be obtained.

11.6 MAGNETIC SEMICONDUCTORS AND SPINTRONICS
In traditional semiconductor devices, the density of spin up and spin down electrons is
the same unless a magnetic field is applied to select a particular state. The contacts used
to inject electrons also usually have no spin selectivity. However, it is possible to grow
magnetic semiconductors and to use ferromagnetic contacts to inject electrons with spin
selectivity. Notable examples of magnetic semiconductors are InGaAsMn, CdMnTe, Zn-
MnSe, and HgMnTe. These semiconductors, known as diluted magnetic semiconductors,
and their heterostructures with other semiconductors can now be fabricated and they
offer a unique opportunity for the combined studies of semiconductor physics and mag-
netism. There is a strong exchange interaction between the magnetic moments of the
magnetic ions and the spins of the band electrons giving rise to large Zeeman splittings.
In a heterostructure environment, the bandstructure can be tailored so that both the
electronic and magnetic properties can be tailored. The magnetic semiconductors are
fabricated by the usual epitaxial techniques like MBE or MOCVD and Mn is introduced
as an extra ingredient. The Mn composition is usually ≤ 20%.

In recent years there has been a growing interest in a field known as “spintron-
ics” (after spin and electronics). In conventional electronics, electron density is modu-
lated to create devices for digital and analog applications. In spintronics one modulates
the spin of electrons. As in quantum interference devices discussed in Chapter 8, such a
possibility promises very low power, high density devices. An important point to note
in spin dependent devices is that scattering mechanisms discussed in Chapters 5 and
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6 cause only very weak spin scattering. Thus an electron can maintain its spin value
for several microns (or even 100 microns at low temperature). However, this does not
mean that spin based transistors can function at high temperatures or for long channel
lengths. Non-spin altering scattering processes are still important in spintronic devices.

In our discussions on magnetic field effect on free carrier properties we have
largely ignored the electron spin. Of course, the spin orbit interaction is responsible for
the light-hole, heavy-hole bands and the various selection rules in optical transitions. The
main reason we have not worried about electron spin is that usually density of spin-up
and spin-down electrons is the same and the spin splitting in the presence of a magnetic
field is small. However, it is possible to prepare a semiconductor sample in a state where
electrons in the conduction band have a much higher density of spin-down electrons.
This can be done by using optical injection or electronic injection. Before discussing
the details of important issues in spintronics we will remind the reader of some basic
spin-magnetic field properties. Electrons (or other charged particles) interact with a
magnetic field via a magnetic moment which is written as

µs = −gµBS = γh̄S (11.87)

where S is the spin of the particle; g is known as the g-factor and characterizes the
particle. The constant µB is known as the Bohr magneton and has a value

µB =
eh̄

2m
(11.88)

The constant γ is called the gyromagnetic or magnetogyric ratio. The magnetic moment
associated with the spin then gives the usual term in the hamiltonian:

Hspin = −µs ·B (11.89)

11.6.1 Spin Selection: Optical Injection
To understand how electrons with preferential spin can be injected into a semiconduc-
tor, let us review how a magnetic field splits the conduction and valence band levels
accounting for spin. Including the spin and orbital angular momentum of the electronic
state, the perturbation due to a magnetic field is

∆E =
µB
h̄

〈L+ 2S〉 ·B (11.90)

where the 〈〉 brackets represent the expectation value of the orbital angular momentum
(L) and spin (S). It can be shown using quantum mechanics of angular momentum
states that (m is the total angular momentum along the B-field direction)

∆E = µBgmB

where g is the Landau factor given by

g = 1 +
j(j + 1) + S(S + 1)− &(&+ 1)

2j(j + 1)
(11.91)
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Figure 11.17: A schematic of how s (conduction bandedge) and p (valence bandedge) states
split as a result of an applied magnetic field.

It can be seen that for s-states (conduction bandedge states) g = 2 and for j = 3/2, & = 1
states (p-states near valence bandedge) g = 4/3.

In Fig. 11.17 we show the splitting of conduction and valence bandedge states
in a material like GaAs. Note that the splitting of the s-states is larger than the splitting
in the p-states. From Fig. 11.17 we can see how optical transitions using polarized light
can be used to preferentially create electrons with spin-down state. A right circular
polarized light beam causes a ∆m = 1 transition allowing electrons transferred to the
conduction band to have −1/2 spin. Such spin selection has been demonstrated in a
number of experiments. The selectivity can be enhanced by using quantum wells or
strained quantum wells where the light-hole heavy-hole splitting can be altered.

11.6.2 Spin Selection: Electrical Injection and Spin Transistor

It is possible to inject electrons or holes in a spin selected state using ferromagnetic
contacts. In Fig. 11.18a we show a spin-transistor in which spin selected electrons are
injected from an Fe contact acting as a source. The magnetized iron contact injects
electrons with spin selected by the magnetization field and maintain this spin state as
they travel throughout the device. The device operation will be discussed later in this
section.

In Fig. 11.18b we show how hole injection from a ferromagnetic semiconductor
(GaMnAs) can be used to inject spin selected holes into a quantum well of InGaAs.
These holes then combine with electrons injected from a “normal” n-type contact to
emit polarized light.
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Figure 11.18: (a) A schematic of a spin transistor in which electrons with a selected spin are
injected into a 2-dimensional channel. (b) Use of a ferromagnetic semiconductor injector to
select holes with prechosen spin for a light emission device.
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Figure 11.19: A schematic of the band profile of spin-up and spin-down electrons. At the
Fermi energy the k-vector for spin-up and spin-down electrons are different.

The spin transistor exploits quantum interference effects with two nuances: i)
spin select electrons can be injected into a transistor channel; ii) spin splitting of spin-
up and spin-down states causes the two spin state electrons to have a different k-vector
which can be controlled by a gate bias to create interference effects.

Using the geometry shown in Fig. 11.18a, electrons are injected into the 2-
dimensional channel with a spin polarized along the +x direction. These electrons may
be written in terms of the spin-up (positive z-polarized) and spin-down (negative z-
polarized) states

|x〉 → 1√
2
(| ↑〉+ | ↓〉) (11.92)

Now consider the possibility where the energy of the spin-up and spin-down electrons is
different as shown in Fig. 11.19. The splitting in the spin-up and spin-down states can
occur due to external magnetic fields or internal spin-orbit effects combined with lack
of inversion symmetry. These effects are strongest in narrow bandgap semiconductors
where the conduction band states are influenced by the p-type valence band states.

The position of the Fermi level is the same for the spin-up and spin-down states
as shown in Fig. 11.19. We have

EF = Ec −∆E +
h̄2k2(↓)
2m∗

= Ec +∆E +
h̄2k2(↑)
2m∗ (11.93)

As the electrons move down the channel the phase difference between spin-up and spin-
down electrons changes according to the usual wave propagation equation

∆θ = [k(↑)− k(↓)]L (11.94)
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where L is the channel length. The drain contact acts as a spin filter and only accepts
electron states with spin in the x-direction. Thus the current flows if ∆θ = 2nπ. Oth-
erwise the current value is lower. Thus the spin transistor essentially behaves as an
electrooptic modulator where the phase is controlled by the gate voltage which controls
EF .

In considering spin based devices for new electronic or optoelectronic devices
it has to be remembered that while electrons (holes) can maintain their spin states
over long distances, this does not directly translate into superior quantum interference
devices. If devices depend upon phase coherence, non-spin scattering events like defect
or phonon scattering can still degrade the device performance. However, a number of
novel devices are being considered where the electron spin state plays a dominant role
and these look very promising.

11.7 TECHNOLOGY ISSUES
As noted several times in this chapter, magnetic effects in semiconductors have been
extensively used to obtain information on bandstructure, scattering processes, carrier
type, and concentration, etc. Quantum Hall effect has been instrumental in obtaining
new understanding of many-body physics. However, although in theory, a number of
logic and memory devices could be based on magnetic effects, in practice, these devices
have not made it into the commercial world so far. Magnetic memories have, of course,
been part of information technology. However, these are not based on semiconductor
technology. The incorporation of ferromagnetic materials into semiconductor technology
has given hope that magnetic semiconductor devices will indeed pose a challenge to
traditional semiconductor devices. However, there are still many challenges—the biggest
one being traditional devices keep getting better!

An area that has received a great deal of attention as a possible source of new
technology is the area of spintronics (see, for example, “The Quest for the Spin Tran-
sistor,” Glenn Zorpette, IEEE Spectrum, December 2001). Advances in spin selective
injection of electrons, demonstration of long spin lifetimes and the marriage of ferromag-
netic and semiconductor materials have made the spin transistor a possibility. Whether
it leads to a viable technology is still not clear. However, it certainly is an exciting field!

11.8 PROBLEMS
Section 11.1
11.1 In a cyclotron resonance experiment done on electrons in Ge, it is found that when
the magnetic field orientation is varied the maximum and minimum cyclotron resonance
masses are 0.08 m0 and 0.36 m0. Calculate the transverse and longitudinal masses for
electrons.
11.2 Consider the data shown in Fig. 11.4. Verify that the carrier masses given in the
figure are correct.
11.3 The Hall mobility of a GaAs sample at 77 K is found to be 50000 cm2/V·s. Assume
that the mobility is dominated by acoustic phonon scattering. What is the drift mobility?
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11.4 Using the data plotted in Fig. 11.7 calculate the temperature dependence of the
carrier concentration and drift mobility in samples A and D. Assume that in sample
A the dominant scattering is acoustic phonon scattering and in sample D it is ionized
impurity scattering.
11.5 Use the data plotted in Fig. 11.7 to calculate the doping density and donor ion-
ization energy (use data for sample B).

Section 11.2
11.6 Plot the density of states of electrons in the conduction band of GaAs (in units of
eV−1 cm−3) at applied magnetic fields of: (i) 0; (ii) 5.0 T; and (iii) 10 T. The effective
mass of electrons is 0.067 m0.
11.7 Consider a two-dimensional electron gas in a 100 Å GaAs/AlGaAs quantum well
structure. Assume an infinite potential model with m∗

e = 0.067 m0 to calculate the
electronic properties. Plot the density of states of the system (up to 0.5 eV from the
bottom of the well) at (i) B = 0 and (ii) B = 10 T.
11.8 Consider a 100 Å GaAs/AlGaAs quantum well where the electron effective mass
is 0.067 m0. There are 1012 electron/cm2 in the well. At low temperatures, calculate
the magnetic field at which the Fermi level just enters the fourth Landau level of the
ground state sub-band.
11.9 Consider a GaAs conduction band quantum well in which the electron effective
mass is 0.067 m0. At what magnetic field is the separation between the first and second
Landau levels equal to kBT at 300 K?
11.10 The conduction band of Si is described by six equivalent valleys along (100),
(1̄00), (010), (01̄0), etc., directions. The effective mass in these valleys is given by
the longitudinal (along the k-direction of the valley) and transverse (perpendicular to
the direction in which the valley occurs) effective masses. In silicon these masses are
m∗
& = 0.98 m0,m

∗
t = 0.19 m0. Calculate the Landau level splitting of the lowest sub-

band formed in a Si MOS structure.
11.11 In order to observe Landau levels and related effects, the separation of the levels
should be comparable to (or larger than) the thermal energy kBT . Calculate the mag-
netic field needed to satisfy this condition in GaAs (m∗ = 0.067 m0) at 4 K, 77 K and
300 K. Repeat the calculations for the valence band (m∗ = 0.4 m0).
11.12 Consider a GaAs quantum well in which there are 1012 electrons cm−2. Plot the
position of the Fermi level and the Landau levels as a function of magnetic field at 4 K
as the field changes from 0 to 10 T. Only consider the Landau levels arising from the
ground state subband in the well.

Section 11.3
11.13 Discuss the role of scattering of electrons in the Aharonov-Bohm effect.
11.14 Consider a digital device based on the Aharonov-Bohm effect. The area enclosed
by the two arms of the device is 5 µm × 5 µm. Estimate the minimum switching energy
needed to switch the device from ON to OFF if the volume over which the B-field is to
be altered is 10−9 cm3.
11.15 In crystalline semiconductors the resistance of a sample increases as the mag-
netic field increases. Why does this occur? In amorphous materials, the resistance of a
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sample decreases (i.e., conductivity improves) as magnetic field increases. Provide some
reasons for this.

Section 11.4
11.16 Biaxial strain is known to alter the effective masses of holes (with little effect
on electron mass) for quantum well structures, as discussed in Chapter 3. Use the
calculations given in Fig. 3.18 for change in hole mass as a function of strain.

Calculate the positions of magneto-optic levels that would be observed in a
100 Å InxGa1−xAs/Al0.3Ga0.7 As quantum well as x goes from 0 to 0.2 at a field of
10 T. Only consider the E1-HH1 transitions. Assume any reasonable parameters for the
InGaAs well which is pseudomorphically on a GaAs substrate.
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Appendix

A

STRAIN IN
SEMICONDUCTORS

Incorporation of strain in heterostructures has become an accepted technique to modify
bandstructure. A number of important electronic and optoelectronic devices exploit
strain in their design. In Chapter 1 and Chapter 3 we have seen how strain epitaxy
occurs and how bandstructure is modified by strain. In this Appendix we will establish
the basic equations for stress-strain relations and strain energy in a semiconductor. We
will address the cubic structure, although similar treatment can be established for other
lattices.

A.1 ELASTIC STRAIN
In this section we will establish some basic expressions for strain in crystalline mate-
rials. We will confine ourselves to small values of strain. In order to define the strain
in a system we imagine that we have a set of ortho-normal vectors x̂, ŷ, ẑ in the un-
strained system. Under the influence of a uniform deformation these axes are distorted
to x′,y′,z′, as shown in Fig. A.1. The new axes can be related to the old one by

x′ = (1 + εxx) x̂+ εxy ŷ + εxz ẑ

y′ = εyxx̂ (1 + εyy) ŷ + εyz ẑ

z′ = εzxx̂+ εzy ŷ + (1 + εzz) ẑ (A.1)

The coefficients εαβ define the deformation in the system. The new axes are not orthog-
onal in general. Let us consider the effect of the deformation on a point r which in the
unstrained case is given by

r = xx̂+ yŷ + zẑ (A.2)
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Figure A.1: Effect of deformation on a coordinate system x, y, z.

After the distortion the new vector is given by

r′ = xx′ + yy′ = zz′ (A.3)

Note that by definition the coefficients x, y, z of the vector are unchanged. The displace-
ment of the deformation is then

R = r′ − r

= x (x′ − x̂) + y (y′ − ŷ) + z (z′ − ẑ) (A.4)

or

R = (xεxx + yεyx + zεzx) x̂
+ (xεxy + yεyy + zεzy) ŷ
+ (xεxz + yεyz + zεzz) ẑ (A.5)

or by defining quantities, u, v, w

R(r) = u(r)x̂+ v(r)ŷ + w(r)ẑ (A.6)

For a general non-uniform distortion one must take the origin of r close to the point
and define a position-dependent strain. In the small strain limit:

xεxx = x
∂u

∂x
; yεyy = y

∂v

∂y
; zεzz = z

∂w

∂z
, etc. (A.7)

Rather than using the εxx to describe the distortion we will use the strain components
which are defined as:

exx = εxx =
∂u

∂x
; eyy = εyy =

∂v

∂y
; ezz = εzz =

∂w

∂z
(A.8)
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The off-diagonal terms are:

exy = x′ · y′ ≈ εyx + εxy =
∂u

∂y
+

∂v

∂x
(A.9)

eyz = y′ · z′ ≈ εzy + εyz =
∂v

∂z
+

∂w

∂y
(A.10)

ezx = z′ · x′ ≈ εzx + εxz =
∂u

∂z
+

∂w

∂x
(A.11)

The off-diagonal terms define the angular distortions of the strain. It is useful to define
the net fractional change in the volume produced by the distortion. This quantity is
called dilation. The initially cubic volume of unity after distortion has a volume:

V ′ = x′ · (y′ × z′)

=

∣∣∣∣∣∣
1 + εxx εxy εxz
εyx 1 + εyy εyz
εzx εzy 1 + εzz

∣∣∣∣∣∣
∼= 1 + exx + eyy + ezz (A.12)

The dilation is then:

δ =
V ′ − V

V
≈ exx + eyy + ezz (A.13)

In order to produce a distortion in the crystalline unit cell, it is important to define the
stress components responsible for the distortion. The force acting on a unit area in the
solid is called stress and we can define the nine stress components Xx, Xy, Xz, Yx, Yy,
Yz, Zx, Zy, Zz. Here the capital letter indicates the direction of the force and the
subscript is the direction of the normal to the plane on which the stress is acting, as
shown in Fig. A.2. The number of stress components reduces to six if we impose the
condition on a cubic system that there is no torque in the system (i.e., the stress does
not produce angular acceleration). Then: Xy = Yx : Yz = Zy; Zx = Xz. We then have
the six independent components: Xx, Yy, Zz; Yz, Zx, Xy.

A.2 ELASTIC CONSTANTS
Elastic constants are defined through Hooke’s Law which states that for small distortion
the strain is proportional to the stress.

εxx = s11Xx + s12Yy + s13Zz + s14Yz + s15Zx + s16Xy ;
εyy = s21Xx + s22Yy + s23Zz + s24Yz + s25Zx + s26Xy ;
εzz = s31Xx + s32Yy + s33Zz + s34Yz + s35Zx + s36Xy ;
εyz = s41Xx + s42Yy + s43Zz + s44Yz + s45Zx + s46Xy ;
εzx = s51Xx + s52Yy + s53Zz + s54Yz + s55Zx + s56Xy ;
εxy = s61Xx + s62Yy + s63Zz + s64Yz + s65Zx + s66Xy (A.14)
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z

Figure A.2: Stress component Xx is a force applied in the x-direction to a unit area of a plane
whose normal lies in the x-direction; Xy is applied in the x-direction to a unit area of a plane
whose normal lies in the y-direction.

Conversely, the stress components are linear functions of the strain components:

Xx = c11exx + c12eyy + c13ezz + c14eyz + c15ezx + c16exy ;
Yy = c21exx + c22eyy + c23ezz + c24eyz + c25ezx + c26exy ;
Zz = c31exx + c32eyy + c33ezz + c34eyz + c35ezx + c36exy ;
Yz = c41exx + c42eyy + c43ezz + c44eyz + c45ezx + c46exy ;
Zx = c51exx + c52eyy + c53ezz + c54eyz + c55ezx + c56exy ;
Xy = c61exx + c62eyy + c63ezz + c64eyz + c65ezx + c66exy (A.15)

The 36 elastic constants can be reduced in real structures by invoking various symmetry
arguments. Let us examine the elastic energy of the system. The energy is a quadratic
function of the strain, and can then be written as

U =
1
2

6∑
λ=1

6∑
µ=1

c̃λµ eλ eµ (A.16)

where 1 = xx; 2 = yy; 3 = zz; 4 = yz; 5 = zx; 6 = xy. The c̃s are related to the cs
defined above.

The stress component is found by taking the derivative of U with respect to
the associated strain component.

Xx =
∂U

∂exx

≡ ∂U

∂e1

= c̃11e1 +
1
2

6∑
β=2

(c̃1β + c̃β1) eβ (A.17)
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3

x y

z

Figure A.3: Rotation by 2π/3 about the axis marked 3 changes x → y; y → z; z → x.

Note that we will always get the combination (c̃αβ + c̃βα) /2 in the stress-strain relations.
It follows that the elastic stiffness constants are symmetrical.

cαβ =
1
2
(c̃αβ + c̃βα)

= cβα (A.18)

Thus the 36 constants reduce to 21.
The number of force constants is further reduced if one examines the cubic

symmetries. We will show that for cubic systems, in the elastic energy U , the only
terms that occur are:

U =
1
2
c11

(
e2
xx + e2

yy + e2
zz

)
+ c44

(
e2
yz + e2

zx + e2
xy

)
+ c12 (eyyezz + ezzexx + exxeyy) (A.19)

Other terms of the form

(exxexy + . . .) , (eyzezx + . . .) , (exxeyz + . . .) , etc.

do not occur.
If one examines a cubic system, the structure has a 4-fold symmetry. Focus-

ing on the [111] and equivalent directions, if we rotate by 2π/3 we get the following
transformations: (see Fig. A.3)

x → y → z → x
−x → z → −y → −x
x → z → −y → x

−x → y → z → −x

(A.20)



A.2. Elastic Constants 483

The terms in the energy density must be invariant under these transformations. Note
that

exxexy → −exxex(−y) (A.21)

and therefore any term which is odd in any of the indices will vanish.

∂U

∂exx
= Xx

= c11exx + c12(eyy + ezz) (A.22)

comparing the various terms:

c12 = c13; c14 = c15 = c16 = 0 (A.23)

In Chapter 1 several useful references have been given which the reader can examine to
learn more about the elastic properties of materials.
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B

EXPERIMENTAL
TECHNIQUES

In this Appendix we will review several important experimental techniques that allow us
to determine structural, electronic, and optical properties of semiconductor structures.
The intent of this review is not to present details on these experimental techniques,
but to present the reader with an overview of what their capabilities are and what the
difficulties are.

B.1 HIGH RESOLUTION X-RAY DIFFRACTION
Diffraction experiments are essential tools to determine the structural quality of crys-
talline materials. These techniques allow one to measure the lattice parameters of crys-
tals and also provide information on structural imperfection. The basis for all diffraction
experiments is the Bragg law which in its simplest form is

2d sin θ = nλ (B.1)

where d is the spacing between identical planes, λ is the wavelength and θ is the diffrac-
tion angle. With cleverly designed experiments and sophisticated data analysis this
simple equation can form the basis of very detailed structural information. In Figure
B.1 we show a schematic of some important pieces of structural information that are
obtained from diffraction experiments. Of course, the diffraction experiments also reveal
information on lattice constants for bulk semiconductors.

• Lattice Mismatch: Growth of epilayers on substrates that have a lattice con-
stant different from the epilayers constant is becoming increasingly important. As
discussed in this chapter if the film is relaxed the epilayer will produce a shift ∆θ
in the diffraction pattern with respect to the substrate.
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(a) mismatch

(b) misorientation

(c) dislocation content

(d) mosaic spread

(e) curvature

(f) relaxation

(g) inhomogeneity

Figure B.1: A schematic of the kind of structural information one can obtain from X-ray
diffraction studies.
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If (af and as are the film and substrate lattice constants)

m =
af − as

as
=
∆a

as

we have
∆θ

θ
=
∆a

as
(B.2)

If the film is coherently strained the inplane lattice constant of the film fits the
substrate, while the out-of-plane constant is different. If m∗ is this misfit we have

m∗ =
∆θ

θ
=
∆a‖
as

(B.3)

• Tilt: In some film growth it is possible that the overlayer grows at a tilt with
respect to the substrate. This produces a shift of diffraction peaks with respect
to the peaks of the substrate. This shift ∆θ has nothing to do with misfit effects.
How does one distinguish a tilt splitting from a misfit splitting? The solution is
fairly simple—one first rotates the sample by 180◦ in its plane. The average value

∆θ =
(
∆θ0 +∆θ180

2

)
(B.4)

provides the splitting due to lattice effects (misfit). To find the tilt angle a mea-
surement is taken with a 90◦ rotation. We then have

∆θo = β cosω
∆θ90 = β cos(90 + ω) = −β sinω (B.5)

where β is the true tilt angle and ω is the splitting when the tilt angle is zero.
From these measurements β can be obtained.

• Dislocation Content: It is common to have dislocations in strained epitaxy.
These are commonly present in two regions—at the interface between the film and
the substrate and in the bulk of the film. Interface dislocations give measurable
shifts in the positions of the peaks in the diffraction measurements. It is then
possible to estimate the dislocation density from the net strain at the interface.
Dislocations in the bulk of the film lead to broadening of the diffraction peaks. This
broadening is due to the finite extent of crystalline regions between dislocations
and can be used to quantify dislocation densities.

• Mosaic and Curvature: A film may have a curvature which may extend over
small regions (forming a mosaic) or over the entire film. As a result of the curvature
the diffraction angle changes as one goes from one end of the beam to the other.
This produces a shift ∆θ which is related to the beam diameter. If D is the beam
diameter and R is the radius of the curvature

∆θ =
D

R
(B.6)

Other structural features listed in Fig. B.1 can also be quantified by X-ray diffrac-
tion studies.
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Figure B.2: A schematic of an X-ray double-crystal diffractometer. A high-quality crystal is
used to select an extremely coherent beam.

B.1.1 Double Crystal Diffraction
Double crystal diffraction is an extremely powerful measurement technique which is
often used to study very detailed aspects of crystalline materials. Due to its sensitivity,
it is often used to study heterostructures where it can detect small strain values, non-
epitaxial regions, and different thicknesses making up the heterostructure.

A typical setup for this technique is shown in Fig. B.2. An X-ray beam first
impinges on a high quality crystal from which it diffracts. The diffracted beam then
impinges on the sample. When the Bragg angles for the two crystals are identical, very
narrow diffraction peaks are observed. To obtain the rocking curves, which provide
information on the long-range structural order of the crystal, the specimen is rotated
by a small angle ω, and the differential beam intensity is recorded. High quality crystals
have peaks with widths of a few second of an arc. This technique is particularly useful
for epitaxial layers grown on a thick substrate. In general, for such cases, two diffraction
peaks are observed, one from the substrate and one form the epilayer. The difference
∆ω in the crystal setting angle for Bragg reflection of the substrate and layer has
two components, ∆θ and ∆φ. The difference in the lattice plane spacing ∆d/d for
corresponding lattice planes of layer and substrate causes a difference in Bragg angle
∆θ. The second component of ∆ω is the difference ∆φ in the inclination with the surface
of corresponding lattice planes of layer and substrate.

B.2 DRIFT MOBILITY AND HALL MOBILITY
We have seen from our discussion of carrier transport that when an electric field is
applied mobile carrier gas has a net drift velocity which is (at low fields) proportional
to the applied field. The drift mobility is a very important parameter playing a key role
in electronic devices. It also provides a window on various scattering processes in the
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material.
In addition to drift mobility we have discussed Hall mobility which is related

to the drift mobility by the Hall factor. Hall mobility is the outcome of an experiment
known as Hall effect. In addition to Hall mobility, Hall effect provides information on
mobile carrier density and type of charge (electrons or holes). As a result Hall effect is the
most common experiment carried out on semiconductors to determine transport related
parameters. However, it is important to emphasize that Hall mobility is different from
drift mobility. Depending upon which scattering mechanisms dominate, the difference
can be quite large.

B.2.1 Haynes-Shockley Experiment
The Haynes-Shockley experiment is used to obtain the velocity-field relation for minority
carriers in semiconductors. In the experiment a pulse of mobile charge s injected optically
or electrically and moves under a uniform electric field. In Fig. B.3 we show a schematic
of an experimental set-up for the Haynes-Shockley experiment. A constant electric field
is maintained in the semiconductor samples by applying a bias. A pulse generator (as
shown) or an optical signal injects a pulse of (minority) charge. The pulse drifts under
the influence of the electric field to the other and of the sample where it is detected
by an oscilloscope connected to the collector. The time delay of the pulse, td, and the
width of the pulse is measured. The drift velocity is simply given by

vd =
L

td
(B.7)

where L is the distance between the point of injections and the detection.
As the injected pulse propagates, it spreads into a Gaussian pulse. The pulse

width, as shown in Fig. B.3, provides information on the diffusion coefficient mobile
charge. The diffusion coefficient is related to ∆t by (after a detailed analysis)

D =
(∆tL)2

11t3d
(B.8)

where ∆t is the width of the pulse measured at points where the signal has fallen
to 1/e times the peak value. The expression for the diffusion coefficients is a good
approximation if there is negligible recombination of the minority charge during the
pulse propagation.

A more sophisticated approach that has been used to obtain velocity-field curves
in semiconductors is sketched in Fig. B.4a. The experimental set-up consists of an
electron gun which is capable of sending out an electron beam with energy of ∼ 10 kV.
The beam impinges on a semiconductor sample and generates a thin sheet of electron-
hole pairs. The incident electron beam is incident on the sample for 10−8 s and the
frequency of the pulse is∼ 1 µs. This conditions are established by appropriate sinusoidal
signals on the deflection plates as shown.

A typical sample could be a reverse biased Schottky barrier diode as shown in
Fig. B.4. There are several important issues to consider in sample preparation:
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Figure B.3: A schematic of the Haynes-Shockley measurement set-up. The pulse width ∆t
and the propagation time td provide information on diffusion constant and mobility.

• The metal Schottky barrier may need to be deposited on the high resistivity
semiconductor with a thin (∼ 200 Å) insulators such as SiOx. The insulator will
prevent any injection of carriers from the metal into the semiconductor. For the
same reason the Schottky diode is reverse biased.

• The sample is chosen to be intrinsic or highly resistive to ensure that the electric
field in the material is as uniform as possible. This allows the electron (or hole)
pulse to travel in a uniform field which can be altered by changing the bias on the
Schottky barrier.

We have seen from our discussion of electron transport in direct gap semiconductors
that there is a region of velocity-field curve where the differential resistance is negative.
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When the sample is biased at field where the differential resistance is negative a charge
fluctuation can grow in time and oscillations ca develop in the circuit. Having a high
resistivity material helps avoid these oscillations and the resulting non-uniform field
distributions.

The high energy electron beam generates an electron beam that propagates
through the sample. the traveling pulse of electrons induces a current in the oscilloscope.
In Fig. B.4b we show a typical pulse form that is detected. The pulse appears at time
0 and lasts for a time ttr = L/v where L is the thickness of the semiconductor and v is
the drift velocity. The pulse that is detected is not an abrupt square pulse, but has a
finite rise and fall time related to the capacitance and impedance of the Schottky barrier
structure.

As noted earlier, it is essential that the electric field in the sample remain
constant. A high resistivity sample helps achieve this goal. The use of short pulses also
helps in maintaining a uniform field. The pulses also allow one to correlate the output
signal to the input signal.

B.2.2 Hall Effect for Carrier Density and Hall Mobility
As we have seen above, it is possible to obtain drift mobility in semiconductor samples
by injecting a pulse of charge and observing its progress. One may wonder why one
doesn’t just measure the current flowing in a semiconductor and use the relation

Jx = neµFx (B.9)

If the field Fx can be measured, one can measure the mobility directly. A key difficulty
(in addition to obtaining an accurate value of the electric field) is the difficulty in finding
the carrier density. The Hall effect allows one to find the carrier density as well as the
Hall mobility in a single experimental set-up. Of course, one has to remember that Hall
mobility and drift mobility are different and are related by the Hall factor

µH = rHµ (B.10)

The Hall effect has been discussed in some detail in Chapter 11, so we will refer the
reader to that discussion.

B.3 PHOTOLUMINESCENCE (PL) AND EXCITATION PHOTO-
LUMINESCENCE (PLE)

Photoluminescence is one of the most widely used and useful optical techniques to
characterize semiconductors and their heterostructures. In the PL experiment a light
source with photon energies larger than the bandgap is used to create electron-hole pairs.
As shown in Fig. B.5a the electrons and holes thermalize by emitting phonons and reach
lower lying energies. Electrons and holes recombine, producing photons which are then
detected. Electrons and holes can recombine through a number of processes: i) In band-
to-band recombination electrons and holes recombine directly from the conduction and
valence bands; ii) Recombination after formation of “free” excitons; and iii) Excitons
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can be trapped by impurities such as donors and acceptors creating transitions from
donor-bound-excitons or acceptor-bound-excitons.

The emission spectrum is observed via a suitable detector. Various features of
the emission spectrum provide important information on structural and other physical
parameters of the sample being studied. PL experiments are usually done while varying
one or more of these conditions:

• Input identity: At low intensity the carriers thermalize to the lower lying states
and there is essentially no emission from the higher lying states. Impurity bound
excitons are quite prominent at low intensities. As the input intensity is increased
defect related transitions saturate (since there is a fixed number of defect sites)
and free excitons and higher level transitions (e.g., light hole excitons on higher
level subband transitions in quantum wells) can be observed.

• Temperature dependence: An important variable for PL studies is the sample tem-
perature. At low temperature phonon assisted scattering processes are suppressed
allowing the transitions to be relatively sharp. At low temperatures the width of
various excitonic transitions are determined by inhomogeneous broadening, i.e.,
local structural fluctuations. The band to band transitions emission is essentially
proportional to the electron occupation and the tail thus provides information on
electron temperature (usually hole masses are larger and electron properties deter-
mine the lineshape). As the sample temperature is raised transitions get broader
due to the addition of phonon related homogeneous broadening.

Figs. B.5b and B.5c show a spectrum in bulk GaAs and in a sample with
multiquantum wells. As can be seen from Fig. B.5c each quantum well produces its
own transition. The position of the transition correlates with the well width. As noted
in Fig. B.5a the width and structure in the exciton peaks provide information on the
structural quality of the heterointerfaces.

In Fig. B.6 we show a schematic of a typical PL apparatus. While in principle a
white light source can be used to excite a PL spectrum, in practice a laser with photon
energy above the effective bandgap of the sample is used. A high quality monochromator
is needed to resolve the various structure in the emission.

Excitation photoluminescence or PLE is a variation of PL which provides essen-
tially the same information as absorption spectrum In this approach the input photon
energy is varied over a range (making sure the source provides the same photon particle
current at all energies). The entire light output (i.e., photons of all energies) is now
collected. The plot of incident energy versus total output signal provides a curve that
is essentially the absorption spectrum of the sample. The reason is that the number of
electron-hole pairs generation rate at a photon energy h̄ω is simply given by

G = α(h̄ω)
Pop(h̄ω)

h̄ω
(B.11)

The e-h pairs thermalize and generate the optical signal which is proportional to α(h̄ω).
The brief discussion presented here on PL and PLE shows that the PL signal is

dominated by lower energy transitions while the PLE is proportional to the absorption
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Figure B.5: (a) A schematic showing how electrons and holes scatter from high energies to
thermalize. Various energies for excitonic and other features are shown. (b) A typical photolu-
minescence spectrum. (c) Photoluminescence from a multiquantum well sample.
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Figure B.6: Experimental setup for a typical photoluminescence measurement.

spectrum. In particular in samples with defects or disorder the defect related transitions
dominate the PL emission spectrum even though due to the weal oscillators strength
these transitions will not register on the PLE or the absorption spectrum. As shown
in Fig. B.7 there is a shift between the PL peak and the first (free exciton) peak of
the PLE signal. This shift is called the Stoke’s shift and provides useful information on
sample quality.

B.4 OPTICAL PUMP PROBE EXPERIMENTS
Pump probe techniques provide very useful information on carrier dynamics over a wide
range of electronic energies. As the name implies a pump beam is used to disturb (or
pump) a system. With a controlled delay time the system is then probed. In general,
the pump beam wavelength, λpump, and the probe beam wavelength, λprobe, can be
different. In many experiments the pump beam is monochromatic while the probe beam
is a white light source (i.e., it probes all wavelengths).

The key to a pump probe experiment is a short pulse laser source. Important
parameters of the source are:

• Pulse duration: This determines the time resolution of the experiment. Since
time duration of several scattering processes can be as small as 0.1 ps, it is nec-
essary to pulse with durations of 100 fs or less. In Fig. B.8a and B.8b we show
the autocorrelation traces of a high quality pulse in both time and wavelength
domain. A narrow time domain pulse will result in a broader wavelength domain
pulse.
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Figure B.7: A schematic of photoluminescence and excitation photoluminescence results. The
Stoke shift provides input into the quality of the sample.

• Pulse energy spectrum: The pulse energy determines which electronic levels
are examined in the experiment. In Fig. B.8b we show a typical spectrum for pump
beam. Ideally one should have as narrow a linewidth (∆E) as possible in the pump
beam. However, one has the uncertainty relation ∆E∆t ∼ h̄ which implies that if
the value of ∆E is too narrow, ∆t (pulse duration) will be large.

• Tunability: A tunable source would allow one to alter the initial conditions of
the experiment and perturb the electronic system at different points in energy.

• Repetition rate: The repetition rate determines how rapidly the data can be
collected. The repetition rate should not be so fast that the system is still disturbed
before the next pulse comes in. Also if the repetition rate is too slow the total
signal detected over time will be small and the sensitivity of the measurement will
suffer.

In Fig. B.9 we show a typical experimental setup for a pump-probe measure-
ment. The pump beam generates electrons and holes thus populating certain electronic
states. As a result of this population the absorption coefficient (probed by the probe
beam) is suppressed. We have

α(h̄ω, t) = α0(h̄ω)
[
1− fe (Ee, t)− fh

(
Eh, t

)]
(B.12)

The probe beam allows one to measure the differential transmission with and without
the pump pulse. The differential transmission is

∆T

T0
=

T − T0

T0
(B.13)

where T0 is the transmission in the absence of the pump pulse, while T is the transmis-
sion with the pump pulse. We have

T0(h̄ω) = exp {−α0(h̄ω)L}
T (h̄ω) = exp {−α(h̄ω, t)L} (B.14)
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This gives
∆T

T
= exp {α0L(fe − fh)} − 1 (B.15)

In the experiments an equal number of electrons and holes are produced. However, since
hole density of states are much larger than electron density of states we can make the
assumption that fh � fe. Moreover, the pump signal is usually weak and α0Lfe � 1.
With these assumptions

∆T (h̄ω, t)
T

∼ α0Lfe(Ee, t) (B.16)

Thus the probe allows us to see the evolution of fe as a function of time.
In Fig. B. 10 we show typical experimental results for experiments done on

GaAs. In this experiment electrons are generated at energies well above the bandedge
by the short pump pulse as shown. These “hot” carriers scatter and lose their initial
energy through phonon emission processes. As the carriers trickle down, the differential
transmission signal increases near bandedge energies. The various scattering processes
shown in Fig. B.10 can be probed by altering the pump beam energy. Thus electrons
can be placed in the Γ-valley or the higher L-valley (or X-valley) and the scattering
times can be studied.

In Fig. B.11 we show results for a quantum well system (a 100 Å GaAs/
Al0.3Ga0.7As structure). In Fig. B.11a we show the absorption spectra in the absence
of the pump beam. The results show the heavy hole and light hole peaks as well as the
band to band absorption. In Fig. B.11b we show the pump-probe results. Carriers are
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Figure B.9: Schematic of a pump-probe set-up.

injected 60 meV above the bandedge and their occupation is studied as a function of
time.



498 Appendix B: Experimental Techniques

0.9

0.7

0.5

0.3

0.1

−0.1
−40 0 40 80 120 160

Band edge

Energy (+ 1417 meV)

e − e

e − LO ph

Eg = 1.4 eV
Ph
ot
on300 meV for L

500 meV for X

L (or X) Γ

Γ L
(or X)

Pump GaAs bulk

1250 fs

650 fs

350 fs

250 fs

150 fs

1250 fs

50 fs

−50 fs

t = −150 fs
D
IF
FE
R
E
N
T
IA
L
T
R
A
N
SM

IS
SI
O
N

Figure B.10: (a) Schematic diagram of the various scattering processes in GaAs. The valence
band is simplified. (b) Differential transmission spectra for carrier relaxation studies in bulk
GaAs. The pump wavelength is indicated as the arrow.

1

0.8

0.6

0.4

0.2

0
−50 0 50 100 150

T = 300 K

meV (c +1500)

A
B
SO
R
PT
IO
N
C
O
E
FF
IE
IC
E
N
T
(a
u)

(a)

0.7

0.5

0.3

0.1

−0.1
−50 0 50 100 150

meV (+1523)

GaAs/AlGaAs
quantum wells

600 fs

300 fs

200 fs

50 fs

0 fs

−100 fs

∆
T
/T

0

0.2

0.4

0.6

Pump

(b)

Light hole exciton

Heavy hole exciton

Figure B.11: (a) Absorption spectrum of the GaAs/AlGaAs quantum well sample. (b) Low
temperature differential transmission spectra with the quantum well sample. The pump spec-
trum is shown at the bottom of the figure. Hot carriers with 60 meV excess energy are initially
generated.

.



Appendix

C

QUANTUM
MECHANICS:

USEFUL CONCEPTS

In this text we have used a number of very important quantum mechanics concepts
to understand the electronic and optoelectronic properties of semiconductor structures.
While this appendix cannot substitute for a text on quantum mechanics, the reader
may find it useful to review concepts he/she has learned. We will review the following
problems which are quite useful in semiconductor physics: i) Density of states in bulk and
lower dimensional systems; ii) time independent perturbation theory; iii) time dependent
perturbation theory and Fermi golden rule; and iv) numerical solution for electronic
bound states in an arbitrary shaped quantum well.

C.1 DENSITY OF STATES
We have seen that essentially all properties of semiconductors are related to the density
of states. Using the effective mass picture the Schrödinger equation for electrons can be
written as a “free’ electron problem with a background potential V0,

−h̄2

2m∗

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = (E − V0)ψ(r) (C.1)

A general solution of this equation is

ψ(r) =
1√
V
e±ik·r (C.2)

and the corresponding energy is

E =
h̄2k2

2m
+ V0 (C.3)
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where the factor 1√
V
in the wavefunction occurs because we wish to have one particle

per volume V or ∫
V

d3r | ψ(r) |2 = 1 (C.4)

We assume that the volume V is a cube of side L.
To obtain macroscopic properties independent of the chosen volume V , two

kinds of boundary conditions are imposed on the wavefunction. In the first one the
wavefunction is considered to go to zero at the boundaries of the volume, as shown in
Fig. C.1a. In this case, the wave solutions are standing waves of the form sin(kxx) or
cos(kxx), etc., and k-values are restricted to positive values:

kx =
π

L
,
2π
L

,
3π
L

· · · (C.5)

Periodic boundary conditions are shown in Fig. C.2b. Even though we focus our at-
tention on a finite volume V , the wave can be considered to spread in all space as we
conceive the entire space was made up of identical cubes of sides L. Then

ψ(x, y, z + L) = ψ(x, y, z)
ψ(x, y + L, z) = ψ(x, y, z)
ψ(x+ L, y, z) = ψ(x, y, z) (C.6)

Because of the boundary conditions the allowed values of k are (n are integers—
positive and negative)

kx =
2πnx
L

; ky =
2πny
L

; kz =
2πnz
L

(C.7)

If L is large, the spacing between the allowed k-values is very small. Also it is important
to note that the results one obtains for properties of the particles in a large volume
are independent of whether we use the stationary or periodic boundary conditions. It is
useful to discuss the volume in k-space that each electronic state occupies. As can be
seen from Fig. C.2, this volume is (in three dimensions)(

2π
L

)3

=
8π3

V
(C.8)

If Ω is a volume of k-space, the number of electronic states in this volume is

ΩV
8π3 (C.9)

The reader can verify that stationary and periodic boundary conditions lead to
the same density of states value as long as the volume is large.

Density of States for a Three-Dimensional System
The concept of density of states is extremely powerful, and important physical properties
in materials such as optical absorption, transport, etc., are intimately dependent upon
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Figure C.1: A schematic showing (a) the stationary boundary conditions leading to standing
waves and (b) the periodic boundary conditions leading to exponential solutions with the
electron probability equal in all regions of space.

this concept. Density of states is the number of available electronic states per unit vol-
ume per unit energy around an energy E. If we denote the density of states by N(E),
the number of states in a unit volume in an energy interval dE around an energy E
is N(E)dE. To calculate the density of states, we need to know the dimensionality of
the system and the energy versus k relation that the particles obey. We will choose the
particle of interest to be the electron, since in most applied problems we are dealing
with electrons. Of course, the results derived can be applied to other particles as well.
For the free electron case we have the parabolic relation

E =
h̄2k2

2m∗ + V0

The energies E and E + dE are represented by surfaces of spheres with radii
k and k + dk, as shown in Fig. C.3. In a three-dimensional system, the k-space volume
between vector k and k+dk is (see Fig. C.3a) 4πk2dk. We have shown in Eqn. C.9 that
the k-space volume per electron state is ( 2π

L )
3. Therefore, the number of electron states

in the region between k and k + dk is

4πk2dk

8π3
V =

k2dk

2π2
V
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Figure C.2: k-Space volume of each electronic state. The separation between the various
allowed components of the k-vector is 2π

L
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Denoting the energy and energy interval corresponding to k and dk as E and
dE, we see that the number of electron states between E and E + dE per unit volume
is

N(E) dE =
k2dk

2π2

Using the E versus k relation for the free electron, we have

k2dk =
√
2m∗3/2(E − V0)1/2dE

h̄3

and

N(E) dE =
m∗3/2(E − V0)1/2dE√

2π2h̄3
(C.10)

The electron can have a spin state h̄/2 or −h̄/2. Accounting for spin, the density of
states obtained is simply multiplied by 2

N(E) =
√
2m∗3/2(E − V0)1/2

π2h̄3 (C.11)

Density of States in Sub-Three-Dimensional Systems
In quantum wells electrons are free to move in a 2-dimensional space. The two-dimensional
density of states is defined as the number of available electronic states per unit area per unit en-
ergy around an energy E. Similar arguments as used in the derivation show that the
density of states for a parabolic band (for energies greater than V0) is (see Fig C.3b)

N(E) =
m∗

πh̄2 (C.12)

The factor of 2 resulting from spin has been included in this expression.
Finally, we can consider a one-dimensional system often called a “quantum

wire.” The one-dimensional density of states is defined as the number of available elec-
tronic states per unit length per unit energy around an energy E. In a 1D system or a
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By finding the k-space volume in an energy interval between E and E + dE, one can find the
number of allowed states.
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“quantum wire” the density of states is (including spin) (see Fig. 3.3c)

N(E) =
√
2m∗1/2

πh̄
(E − V0)−1/2 (C.13)

Notice that as the dimensionality of the system changes, the energy dependence
of the density of states also changes. As shown in Fig. C.4, for a three-dimensional
system we have (E−V0)1/2 dependence, for a two-dimensional system we have no energy
dependence, and for a one-dimensional system we have (E − V0)−1/2 dependence.

C.2 STATIONARY PERTURBATION THEORY
Few problems in quantum mechanics can be solved exactly and it is extremely important
to develop an understanding of important practical problems which cannot be solved
exactly. The perturbation (or approximation) methods are, therefore, of critical impor-
tance. In this section we will summarize some key results from stationary perturbation
theory. Details of the derivation can be found in most quantum mechanics books (e.g.,
L. I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968).

A general overview of the perturbation approach is shown in Fig. C.5. Consider
a Hamiltonian of the form

H = H0 +H
′

(C.14)

where the solutions of H0 are known and are given by

H0uk = Ekuk (C.15)

We seek the solution of the problem

Hψ = Eψ (C.16)

We are interested in solving for ψ and the eigenvalues of the full Hamiltonian, in terms
of the eigenfunctions and eigenvalues of the known Hamiltonian H0. The eigenfunction
ψ and the eigenvalue W are written in terms of a parameter λ

ψ = ψ0 + λψ1 + λ2ψ2 + λ3ψ3 + · · ·
W = W0 + λW1 + λ2W2 + λ3W3 + · · · (C.17)

where we replace H
′
by λH

′
in Eqn. C.14 and let λ go to zero. Then ψ0, ψ1, . . . and

W0,W1, . . . represent the various orders of corrections, due to the perturbation H
′
.

In general, the zero order state ψ0 could be either nondegenerate or degenerate. The
perturbation approach is different for the two cases. We shall discuss the results for both
cases.

C.2.1 Nondegenerate Case
The first order corrections to a state ψ0 = um (or |m〉 in the Dirac notation) are

W1 = 〈m|H ′ |m〉 (C.18)
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PERTURBATION APPROACH

The ‘‘difficult’’ problem
Hψ = Eψ

An ‘‘easy’’ problem
with known solutions
Houk = Ekuk
{uk, Ek} known

A perturbation H'

which is ‘‘small’’+

Perturbation solution

Wavefunction: ψ = ψ0 + λψ1 + λ2ψ2 + λ3ψ3 + ...

Energy: W =W0 + λW1 + λ2W2 + λ3W3 + ...

uk 1st order 2nd order 3rd order

correction correction correction
Ek

Approach is useful if the series can be truncated without serious error
after first few terms.

Figure C.5: A schematic of the genral approach used in perturbation theory.
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The correction to the wavefunction is

ψ1 =
∑
n

a(1)
n |n〉 (C.19)

where

eqnE.8a(1)
k =

〈k|H ′ |m〉
Em −Ek

for k �= m (C.20)

In second order we have

W2 =
∑
n

′ |〈n|H
′ |n〉|2

Em −En
(C.21)

The prime denotesm �= n. (H
′
is assumed to be hermetian.) The second order correction

to the wavefunction is given by

ψ2 =
∑
n

′a(2)
n un,

a(2)
m = 0 (C.22)

where

a
(2)
k =

∑
n

′ 〈k|H ′ |n〉〈n|H ′ |m〉
(Em −Ek)(Em −En)

− 〈k|H ′ |m〉〈m|H ′ |m〉
(Em −Ek)2

(C.23)

To second order we then have for the unperturbed level |m〉

W = Em + 〈m|H ′ |m〉+
∑
n

′ |〈m|H ′ |n〉|2
Em −En

ψ = um +
∑
k

′uk

[
〈k|H ′ |m〉
Em −Ek

(
1− 〈m|H ′ |m〉

Em −Ek

)

+
∑
n

′ 〈k|H ′ |n〉〈n|H ′ |m〉
(Em −Ek)(Em −En)

]
(C.24)

The wavefunction is not normalized now and one must renormalize it.

C.2.2 Degenerate Case
In the above derivation we have assumed that the initial state ψ0 = um is nondegenerate.
Let us now assume that um and u& are degenerate and have the same unperturbed
energy. Then the coefficient

a
(1)
k =

〈k|H ′|m〉
Em −Ek

(C.25)

causes difficulty unless 〈&|H ′ |m〉 = 0.
Let us consider the case where 〈&|H ′ |m〉 �= 0, so that our previous results are

not valid. We assume that H
′
breaks the degeneracy at some order of perturbation. The
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two nondegenerate states then approach a linear combination of um and u& as the value
of λ → 0. Let us write

ψ0 = amum + a&u&

W0 = Em

= E& (C.26)

The first order correction is given by

W1 =
1
2

(
〈m|H ′ |m〉+ 〈&|H ′ |&〉

)
± 1

2

[(
〈m|H ′ |m〉 − 〈&|H ′ |&〉

)2

+ 4|〈m|H ′ |&〉|2
]1/2

(C.27)

The two values of W1 are equal if

〈m|H ′ |m〉 = 〈&|H ′ |&〉

and

〈m|H ′ |&〉 = 0 (C.28)

If these are not satisfied, the degeneracy is lifted and the values of am and a& can be
obtained.

If the values of W1 obtained from Eqn. C.27 are the same, one must go to the
second order to see if degeneracy is lifted. The second order correction is given by the
eigenvalue equations(∑

n

′ |〈m|H ′ |n〉|2
Em −En

−W2

)
am +

∑
n

′ 〈m|H ′ |n〉〈n|H ′ |&〉
Em −En

a& = 0

∑
n

′ 〈&|H
′ |n〉〈n|H ′ |m〉
Em −En

am +

(∑
n

′ |〈&|H
′ |n〉|2

Em −En
−W2

)
a& = 0 (C.29)

The secular equation allows us to then determine W2. Unless

∑
n

′ |〈m|H ′ |n〉|2
Em −En

=
∑
n

′ |〈&|H
′ |n〉|2

Em −En
(C.30)

and ∑
n

′ 〈m|H ′ |n〉〈n|H ′ |&〉
Em −En

= 0 (C.31)

the degeneracy is lifted in second order.
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C.3 TIME DEPENDENT PERTURBATION THEORY AND
FERMI GOLDEN RULE

We have extensively used the time dependent perturbation theory to address the prob-
lem of scattering of electrons. The general Hamiltonian of interest is once again

H = H0 +H
′

where
H0uk = Ekuk

and Ek, uk are known. The effect of H
′
is to cause transitions between the states uk.

The time dependent Schrödinger equation is

ih̄
∂ψ

∂t
= Hψ (C.32)

The approximation will involve expressing ψ as an expansion of the eigenfunc-
tions un exp(−iEnt/h̄) of the unperturbed time dependent functions

ψ =
∑
n

an(t)une−iEnt/h̄ (C.33)

We write
ωkn =

Ek −En

h̄
(C.34)

We assume that initially the system is in a single, well-defined state given by

a
(0)
k = 〈k|m〉

= δkm (C.35)

To the first order we have at time t

a
(1)
k (t) =

1
ih̄

∫ t

−∞
〈k|H ′

(t
′
)|m〉 eiωkmt

′
dt

′
(C.36)

We choose the constant of integration to be zero since a
(1)
k is zero at time t → −∞,

when the perturbation is not present.
Consider the case where the perturbation is harmonic, except that it is turned

on at t = 0 and turned off at t = t0. Let us assume that the time dependence is given
by

〈k|H(t′)|m〉 = 2〈k|H ′
(0)|m〉 sinωt′ (C.37)

Carrying out the integration until time t ≥ t0 in Eqn. C.36, we get

a
(1)
k (t ≥ t0) = −〈k|H ′

(0)|m〉
ih̄

(
exp[(ωkm + ω)t0]− 1

ωkm + ω
− exp[(ωkm − ω)t0]− 1

ωkm − ω

)
(C.38)

The structure of this equation says that the amplitude is appreciable, only if the de-
nominator of one or the other term is practically zero. The first term is important
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Figure C.6: The ordinate is proportional to the probability of finding the system in a state k
after the perturbation has been applied to time t0.

if ωkm ≈ −ω, or Ek ≈ Em − h̄ω . The second term is important if ωkm ≈ ω or
Ek ≈ Em + h̄ω.

Thus, the first order effect of a harmonic perturbation is to transfer, or to
receive from the system, the quanta of energy h̄ω. If we focus on a system where |m〉
is a discrete state, |k〉 is one of the continuous states, and Ek > Em, so that only the
second term is important, the first order probability to find the system in the state k
after the perturbation is removed is

∣∣∣a(1)
k (t ≥ t0)

∣∣∣2 = 4|〈k|H ′
(0)|m〉|2 sin

2
[

1
2 (ωkm − ω)t0

]
h̄2(ωkm − ω)2

(C.39)

The probability function has an oscillating behavior as shown in Fig.C.6. The
probability is maximum when ωkm = ω, and the peak is proportional to t20. However,
the uncertainty in frequency ∆ω = ωkm − ω, is non-zero for the finite time t0. This
uncertainty is in accordance with the Heisenberg uncertainty principle

∆ω ∆t = ∆ω t0 ∼ 1 (C.40)

If there is a spread in the allowed values of (ωkm − ω), which may occur either
because the initial and/or final states of the electron are continuous, or because the
perturbation has a spread of frequencies ω, it is possible to define a scattering rate per
unit time. The total rate per unit time for scattering into any final state, is given by

Wm =
1
t0

∑
final states

∣∣∣a(1)
k (t ≥ t0)

∣∣∣2 (C.41)

If t0 is large, the sum over the final states only includes the final states where ωkm−h̄ω =
0, i.e., energy is conserved in the process.
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If we assume that |〈k|H ′ |m〉|2 does not vary over the (infinitesimally) small
spread in final states, we can write

x =
1
2
(ωkm − ω)t0 (C.42)

and use the integral ∫ ∞

−∞
x−2 sin2 x dx = π

to get

Wm =
2π
h̄

∑
final states

δ (h̄ωkm − h̄ω) |〈k|H ′ |m〉|2 (C.43)

This is the Fermi golden rule, which is used widely in our text. An identical expres-
sion occurs for scattering rate from fixed defects when Born approximation is used for
scattering.

In a given scattering problem, one has to pay particular attention to the con-
ditions under which the golden rule has been derived. The more important condition is
that the time of interaction of the pertubation be essentially infinite. If the interaction
time is finite, the δ-function of the Golden Rule changes over to the broadened function
of Fig.C.6. Thus, the energy conservation is not strictly satisfied and the final state of
the electron is not well-defined.

C.4 BOUND STATE PROBLEM: MATRIX TECHNIQUES
Matrix solving techniques are widely used in quantum mechanics. Such Eigenvalue
solvers are generally available at most computer centers. These libraries provide subrou-
tines which can be called to solve the matrix for both eigenvalues and eigenfunctions.

The equation to be solved is

HΨ = EΨ (C.44)

where H is an n× n matrix, E is an eigenvalue which can have n values, and Ψ and is
an n-dimensional vector. In general, the eigenfunction Ψ can be expanded in terms of
an orthonormal basis set {ψn}

Ψ =
∑
n

anψn (C.45)

A wavefunction Ψi is known when all the an’s are known for that function.
Substituting Eqn. C.45 in Eqn. C.44, multiplying successively by ψ∗

1 , ψ
∗
2 , · · · , ψ∗

n and
integrating, we get a set of equations



H11 −E H12 H13 · · · H1n

H21 (H22 −E) H23 · · · H2n

...

...
Hn1 Nn2 Hn3 · · · (Hnn −E)







a1ψ1

a2ψ2

...

...
anψn


 = 0 (C.46)
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Region of confinement of Ψ

0 L

Ψ(x)

Figure C.7: A potential profile in which a wavefunction is confined.

where

Hmn =
∫

ψ∗
m H ψn d3r (C.47)

This is the standard form of the eigenvalue problem.
The general Schrödinger equation (the approach can be used for the wave equa-

tion also)

− h̄2

2m
∇2Ψ+ VΨ = EΨ (C.48)

can be expressed in terms of a matrix equation. This approach is very useful if we
are looking for bound or quasi-bound states in a spatially varying potential V . Let us
consider the scalar Schrödinger equation (or the single band equation often used to
describe electrons in the conduction band). Let us assume that the eigenfunction we
are looking for is confined in a region L as shown in Fig.C.7. We divide this region
into equidistant & mesh points xi, each separated in real space by a distance ∆x. The
wavefunction we are looking for is now of the form

Ψ =
∑
n

anψn (C.49)

where ψn are simply functions at the mesh point which are normalized within the
interval centered at xn and are zero outside that interval.

We can also write the differential equation as a general difference equation

− h̄2

2m

[
Ψ(xi − 1)− 2Ψ(xi) + Ψ(xi + 1)

∆x2
+ VΨ

]
= EΨ (C.50)

Once again, substituting for the general wavefunction Eqn. C.26 and taking an outer
product with ψ1, ψ2, · · · , ψ&, we get a set of & equations (remember that we are assuming
a0 = a&+1 = 0, i.e., the wavefunction is localized in the space L) which can be written
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in the matrix form as


A(x1) B 0 · · · 0 0
B A(x2) B · · · 0 0
0 B A(x3) · · · 0 0

...

...
0 0 0 · · · B A(x&)







a1 ψ1

a2 ψ2

a3 ψ3

...

...
a& ψ&



= 0 (C.51)

with

A(xi) =
h̄2

m∆x2
+ V (xi)−E

B = − h̄2

2m∆x2

This & × & set of equations can again be solved by calling an appropriate sub-
routine from a computer library to get the eigenvalues En and wavefunctions ψn. In
general we will get & eigenvalues and eigenfunctions. The lowest lying state is the ground
state, while the others are excited states.
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D

IMPORTANT
PROPERTIES OF

SEMICONDUCTORS

The data and plots shown in this Appendix are extracted from a number of sources. A
list of useful sources is given below. Note that impact ionization coefficient and Auger
coefficients of many materials are not known exactly.

• S. Adachi, J. Appl. Phys., 58, R1 (1985).
• H.C. Casey, Jr. and M.B. Panish, Heterostructure Lasers, Part A, “Fundamental
Principles;” Part B, “Materials and Operating Characteristics,” Academic Press,
N.Y. (1978).

• Landolt-Bornstein, Numerical Data and Functional Relationship in Science and
Technology, Vol. 22, Eds. O. Madelung, M. Schulz, and H. Weiss, Springer-Verlog,
N.Y. (1987). Other volumes in this series are also very useful.

• S.M. Sze, Physics of Semiconductor Devices, Wiley, N.Y. (1981). This is an excel-
lent source of a variety of useful information on semiconductors.

• “World Wide Web;” A huge collection of data can be found on the Web. Several
professors and industrial scientists have placed very useful information on their
websites.
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LATTICE CONSTANTS AND BADGAPS OF SEMICONDUCTORS AT ROOM TEMPERATURE
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Figure D.1: Lattice constants and bandgaps of semiconductors at room temperature.
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Figure D.2: Lattice constants of several alloy systems.
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Semi- Type of Temperature Dependence
conductor Energy Gap 0 K 300 K of Energy Gap (eV)

Experimental
Energy Gap
Eg (eV)

AlAs Indirect 2.239 2.163 2.239 − 6.0 x 10 2/(T + 408)

GaP Indirect 2.338 2.261 2.338 − 5.771 x 10 2/(T + 372)

GaAs Direct 1.519 1.424 1.519 − 5.405 x 10 2/(T + 204)

GaSb Direct 0.810 0.726 0.810 − 3.78 x 10 2/(T + 94)

InP Direct 1.421 1.351 1.421 − 3.63 x 10 2/(T + 162)

InAs Direct 0.420 0.360 0.420 − 2.50 x 10 2/(T + 75)

InSb Direct 0.236 0.172 0.236 − 2.99 x 10 2/(T + 140)

Si Indirect 1.17 1.11 1.17 − 4.37 x 10 2/(T + 636)

Ge Indirect 0.66 0.74 0.74 − 4.77 x 10
−4T2/(T + 235)

Table D.1: Energy gaps of some semiconductors along with their temperature dependence.
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Material Electron Mass Hole Mass
(m0) (m0)

AlAs 0.1

AlSb 0.12 mdos = 0.98

GaN 0.19 mdos = 0.60

GaP 0.82 mdos = 0.60

GaAs 0.067 mlh = 0.082
mhh = 0.45

GaSb 0.042 mdos = 0.40

Ge ml = 1.64 mlh = 0.044
mt = 0.082 mhh = 0.28

InP 0.073 mdos = 0.64

InAs 0.027 mdos = 0.4

InSb 0.13 mdos = 0.4

Si ml = 0.98 mlh = 0.16
mt = 0.19 mhh = 0.49

Table D.2: Electron and hole masses for several semiconductors. Some uncertainty remains in
the value of hole masses for many semiconductors.
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Direct Energy Gap
Compound Eg (eV)

AlxIn1-x P 1.351 + 2.23x

AlxGa1-x As 1.424 + 1.247x

AlxIn1-x As 0.360 + 2.012x + 0.698x2

AlxGa1-x Sb 0.726 + 1.129x + 0.368x2

AlxIn1-x Sb 0.172 + 1.621x + 0.43x2

GaxIn1-x P 1.351 + 0.643x + 0.786x2

GaxIn1-x As 0.36 + 1.064x

GaxIn1-x Sb 0.172 + 0.139x + 0.415x2

GaPxAs1-x 1.424 + 1.150x + 0.176x2

GaAsxSb1-x 0.726 + 0.502x + 1.2x2

InPxAs1-x 0.360 + 0.891x + 0.101x2

InAsxSb1-x 0.18 + 0.41x + 0.58x2

Table D.3: Compositional dependence of the energy gaps of the binary III-V ternary alloys
at 300 K. (After Casey and Panish (1978).)
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BANDGAP (eV) MOBILITY AT 300 K (cm2/Vs)

SEMICONDUCTOR 300K ELECTRONS HOLES

C 5.47 800 1200

Ge 0.66 3900 1900

Si 1.12 1500 450

α-SiC 2.996 400 50

GaSb 0.72 5000 850

GaAs 1.42 8500 400

GaP 2.26 110 75

InSb 0.17 8000 1250

InAs 0.36 33000 460

InP 1.35 4600 150

CdTe 1.56 1050 100

PbTe 0.31 6000 4000

Table D.4: Bandgaps, electron, and hole mobilities of some semiconductors.
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Figure D.3: Velocity-Field relations for several semiconductors at 300 K.
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MATERIAL BANDGAP BREAKDOWN ELECTRIC

(eV) FIELD(V/cm)

BREAKDOWN ELECTRIC FIELDS IN SEMICONDUCTORS

GaAs 1.43 4 x 105

Ge 0.664 105

InP 1.34

Si 1.1 3 x 105

In0.53Ga0.47As 0.8 2 x 105

C 5.5 107

SiC 2.9 2−3 x 106

SiO2 9 107

Si3N4 5 107

Table D.5: Breakdown electric fields in some semiconductors.
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Figure D.4: Ionization rates for electrons and holes at 300 K versus reciprocal electric field
for Ge, Si, GaAs, In0.53Ga0.47 and InP. (Si, Ge results are after S.M. Sze, Physics of Semicon-
ductor Devices, John Wiley and Sons (1981); InP, GaAs, InGaAs results are after G. Stillman,
Properties of Lattice Matched and Strained Indium Gallium Arsenide, ed. P. Bhattacharya,
INSPEC, London (1993).
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MATERIAL b d dEg/dp Ξu
(eV) (eV) (10−12 eV cm2/dyne) (eV)

Si −1.50 300 K −3.40 300 K −1.41 300 K 9.2 295 K

Ge −2.20 300 K −4.40 300 K 5.00 300 K 15.9 297 K

AlSb −1.35 77 K −4.30 77 K −3.50 77 K 6.2 300 K

GaP −1.30 80 K −4.00 80 K −1.11 300 K 6.2 80 K

GaAs −2.00 300 K −6.00 300 K 11.70 300 K

GaSb −3.30 77 K −8.35 77 K 14.00 300 K

InP −1.55 77 K −4.40 77 K 4.70 300 K

InAs 10.00 300 K

InSb −2.05 80 K −5.80 80 K −16.00 300 K

Table D.6: Strain parameters of some semiconductors. The temperature is specified.
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Material Auger Coefficient
(cm6s−1)

Comments

In0.53Ga0.47As For a compilation of results in the
literature, see J. Shah in "Indium
GalliumArsenide," ed. P.
Bhattacharya, INSPEC, London
(1992).

~10−28 at 300 K

GaInAsP

GaInAsSb

~6 x 10−28 at Eg = 0.8 eV

at 300 K

~1.2 x 10−27 at Eg = 0.7 eV

at 300 K

~6 x 10−27 at Eg = 0.4 eV

at 300 K

Based on work of A. Sugimura,
Quantum Electronics, QE-18, 352
(1982).

Table D.7: Auger coefficients of some semiconductors. Considerable uncertainty still exists in
the Auger coefficients. The values given are only rough estimates.



Index

Absorption coefficient, 360
Absorption coefficient, in indirect

semiconductors, 364
Acceptor level, 94
Acoustic phonon, mobility, 262
Acoustic waves, 221
Affinity rule, 118
Aharonov–Bohm effect, 457
Alloy scattering, 243
Alloy, GaAs/AlAs, 113
Alloy, HgTe/CdTe, 116
Alloy, InAs/GaAs, 113
Alloy, InN/GaN,AlN, 114
Alloy, phase separated, 110
Alloy, random, 110
Alloy, scattering rate, 193
Alloy, Si/Ge, 117
Alloy, superlattice, 110
Auger coefficient, 210
Auger processes, 205, 382
Averaging procedures for scattering

time, 163

Balance equation, 174, 292
Ballistic transport, 290
Band, tailing, 101
Band lineups in heterostructures, 118
Bandedge, strain splitting of in SiGe

alloys, 138
Bandedge states, 68
Bandgap, narrowing, 101, 395
Bandgap, optical, 101
Bandgap, strain effects, 137
Bandgap, temperature

dependence of, 86
Bandstructure, effects on devices, 103
Bandstructure, in quantum wells, 119

Bandstructure, of AlAs, 83
of GaAs, 62, 67, 82
of Ge, 83
of nitrides, 84

Bandstructure, Kohn–Luttinger
formalism, 77

Bandstructure, k · p method for, 74
Bandstructure, of Si, 80
Bandstructure, of alloys, 111
Bandstructure, orthogonalized plane wave

(OPW) method for, 70
Bandstructure, pseudopotential method

for, 71
Bandstructure, self–assembled

structures, 140
Bandstructure, Slater–Koster

method for, 61
Bandstructure, spin–orbit effect, 62
Bandstructure in strained structures, 129
Bandstructure, strained SiGe, 138
Bandstructure, tight–binding method, 54
Bandstructure, valence band, in strained

quantum wells, 138
Bandstructure, valence, in quantum wells,

123, 138
Bandtail states, 101
Basis, 11
Binding energy of crystals, 218
Bloch function, 49
Bloch oscillations, 313
Bloch theorem, 47
Body centered cubic (bcc) lattice, 14
Boltzmann, transport equation, 153
Boltzmann, transport equation,

numerical techniques, 168
Bound state problem, 511
Bowing effect in alloys, 112



528 Index

Bragg’s law, 484
Breakdown, in devices, 296
Bridgeman technique, 2
Brillouin zone, 59
Bulk crystal growth, 2

Carrier, extrinsic, 95
Carrier, freezeout, 96
Carrier temperature, 174
Clebsch–Gordan coefficients, 65
Coherent structures, 27
Conduction bandedge states, 64
Conduction, hopping, 334
Critical thickness, 28
Crystal, binding, 218
Crystal growth, bulk, 2

epitaxial, 3
Crystal, restoring force, 219
Crystal structure, 10
Curie temperature, 40
Cutoff wavelength, 116
Cyclotron frequency, 443
Cyclotron mass, 445
Czochralski technique, 2

Defect, cross–section, 381
Defect, interstitial, 26
Defect, substitutional, 26
Defects, 24
Deformation potential theory, 129
Density of states, 84, 127
Density of states, effective, 86
Density of states, in 2D systems, 121,

127, 502
Density of states, in one dimension, 127,

502
Density of states, in semiconductors, 499
Density of states, in three dimensions,

84, 500
Diamond lattice, 15
Dielectric response, 182
Diffusion, coefficient, 172, 488
Diffusion processes, 155
Dislocation generation, 28
Dislocation content, 486

Disordered semiconductors, 324
extended states, 326
localized states, 326

Disordered system, transport, 329
Donor, energy levels, 92, 100
Doping, 92
Doping, heavy, 99

Effective charge, 227, 247
Effective mass, 76
Effective mass, conductivity, 94
Effective mass, equation, 77
Effective mass, in k · p method, 76
Effective mass, strain effects, 139
Elastic collisions, 160
Elastic constants, 480
Elastic strain, 478
Electric fields, built-in, from

strained epitaxy, 36, 143
Electro-optic effect, 421
Electron–electron scattering, 205
Electron–hole scattering, 198
Electrons, in a magnetic field,

quantum theory, 451
Electrons, in a magnetic field,

semiclassical dynamics, 441
Energy, elastic strain, 481
Epitaxial crystal growth, 3
Epitaxial regrowth, 9
Epitaxy, coherent, 27
Epitaxy, incoherent, 27
Epitaxy, lattice matched and

dislocations, 28
Equation of motion, for k, 50
Exciton, 403
Exciton, absorption in quantum

wells, 415
Exciton, absorption spectra, 408
Exciton, absorption spectra,

in GaAs, 413
Exciton, binding energy, 405
Exciton, broadening effects, 416

homogeneous, 416
inhomogeneous, 416

Exciton, Frenkel, 404
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Exciton, in magnetic field, 467
Exciton, in quantum wells, 413
Exciton, Mott, 404
Exciton, quenching, 432
Exciton, temperature dependence, 417
Extrinsic carriers, 95

Face centered cubic (fcc) lattice, 14
Fermi energy, 86
Fermi, Golden Rule, 509
Fermi–Dirac distribution, 86, 95
Ferroelectric materials, 39
Flux for crystal growth, 6
Free carriers, 95
Freezeout, carrier, 96

Gain in a semiconductor, 378
Group velocity, for lattice vibrations, 220

Hall, coefficient, 449
Hall, effect, 166, 460, 490
Hall, factor, 167, 447
Hall, mobility, 167, 447, 487
Haynes–Shockley experiment, 488
Heavy hole states, 69
Heterointerface polar charge, 35
Heterostructures, bandlineup, 118
Hexagonal close packed (hcp)

structure, 15
High symmetry points in k-space, 59
Holes, 53
Hole, effective mass, 53
Hole, energy, 53
Hole, equation of motion, 53
Hole, momentum, 53
Hopping conductivity, 334
Hysterisis loop for ferroelectrics, 39

Ideal surfaces, 22
Identical particle scattering, 201
Impact ionization, 212, 295
Impact ionization, coefficient, 296
Impact ionization, threshold, 212
Impurity, scattering, 194
InAs/GaAs dots, 31
Inelastic collisions, 162

Insulators, simple description, 51
Interband transitions, bulk

semiconductors, 359
Interband transitions, quantum wells, 361
Interface roughness, 23
Interface roughness, scattering, 196
Interfaces, 23
Interference, quantum, 323
Intervalley scattering, 251
Intraband transitions,

in quantum wells, 370
Intraband transitions, 370
Intrinsic carriers, 85, 89
Ionized impurity scattering, 181, 187

Joyce–Dixon approximation, 95

k-vector, significance of, 49
k · p method for bandstructure, 74
Kohn–Luttinger Hamiltonian, 77, 123
Kramers–Kronig relation, 350
Kubo formalism for transport, 330

Landau levels, density of states, 455
Landau levels, 454
Landau levels, magneto-optics, 465
Laser diode, 387
Laser, optical confinement, 389
Laser, threshold, 390
Lattice, 11
Lattice constant, for selected

semiconductors, 18
Lattice types, 11
Lattice vibrations, 219
Law of mass action, 88
Light emitting diode, 386
Light hole states, 69
Liquid phase epitaxy, 4
Localized states, 326, 464
Longitudinal optical phonons, 227
Lorentz gauge, 347

Magnetic semiconductors, 469
Magnetoresistance, 449
Magnetotransport, semiclassical

theory, 447
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Mass action, law of, 88
Material parameters, for transport in

Si and GaAs, 278
Maxwell equations, 346
Mesoscopic structures, 334
Metal-organic chemical vapor deposition

(MOCVD), 8
Metals, simple description, 51
Miller indices, 16
Mobility, 159
Mobility, edge, 326
Mobility, Hall, 166
Mobility, in GaAs, 189, 190, 262
Mobility, in Si, 190, 262
Mobility, in modulation doped

structures, 189
Mobility, in selected semiconductors, 264
Molecular beam epitaxy (MBE), 6
Monte Carlo method, 264
Monte Carlo, injection of carriers, 266
Monte Carlo, scattering times, 269
Monte Carlo, transport simulation, 264
Mott conductivity model, 332

Negative resistance, 318
in resonant tunneling, 318
in GaAs, 289

Newton’s equation of motion, 50
Nitrides, spontaneous polarization, 36

bandstructure, 84
optical properties, 431
piezoelectric effect, 37

Non–parabolic band, 212
Non–radiative processes, 381

Optical confinement, 389
Optical interband transitions, 358
Optical lattice vibrations, 221
Optical phonon, scattering, 245
Optical polarization, selection rules, 358
Optical processes, selection rules, 358
Orthogonalized plane wave method, 70

Perturbation theory, 504
Phonons, 223
Phonon, acoustic scattering, 243

Phonon, conservation laws for
scattering, 224

Phonon, dispersion, 222
Phonon, in heterostructures, 230
Phonon, interface, 230
Phonon, intervalley scattering rate, 251
Phonon, optical mode, 221
Phonon, optical scattering, 245
Phonon, polar optical, 225
Phonon, polar optical scattering, 246
Phonon scattering, 237
Phonon, scattering, intervalley, 251
Phonon, scattering, limits on

wavevectors, 238
Phonon, statistics, 223
Photon, absorption rate, 360
Photoluminescence, 490
Piezoelectric effect, 36, 144
Plasma, frequency, 253
Plasmon, scattering, 252
Polar charge at interfaces, 35, 144
Polar materials, 35, 431
Polar heterostructures, band profile, 143
Potential, screened Coulomb, 181
Poynting vector, 348
Pseudopotential method, 71

Quantum confined Stark effect, 426
Quantum dots, 126

optical transitions, 374
transport, 304

Quantum Hall effect, 460
Quantum interference, 323, 458
Quantum wells, 121, 123

bandstructure, 121, 123
optical transitions, 363
structure, 21
transport, 299

Quantum wire, 126
transport, 303

Radiative lifetime, 379
Radiative transitions,

recombination time, 376
Refractive index, 349
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Regrowth of crystals, 9
Relaxation time, alloy scattering, 193

approximation, 158
averaging procedure, 163
ionized impurity, 187

Resonant tunneling, 316
Resonant tunneling, current in

an RTD, 322
Restoring force, crystal, 219

Scattering, acoustic phonon, 243
Scattering, alloy, 193
Scattering, electron–electron, 205
Scattering, electron–hole, 198
Scattering, f and g in Si, 240
Scattering, identical particle, 201
Scattering, interface roughness, 196
Scattering, intervalley in GaAs, 251
Scattering, intervalley phonon, 251
Scattering, ionized impurity, 187
Scattering, phonon, 237
Scattering, plasmon, 252
Scattering, polar optical phonon, 246
Scattering, rate, acoustic phonon, 280
Scattering, rate, alloy, 277
Scattering, rate, intervalley, 280
Scattering, rate,

ionized impurity, 187, 274
Scattering, rate,

polar optical phonon, 277
Scattering, time, 158
Schockley, Read, Hall recombination, 381
Screened Coulomb potential, 181
Screening, length, 183
Screening, of impurity level, 99
Second quantization, phonons, 233

photons, 353
Selection rules, 358
Self-assembled structures, 30

bandstructure, 140
Self-scattering, 271
Semiconductor material properties, 514
Semiconductors, simple description, 51
Simple cubic lattice, 14
Soret, coefficient, 172

Spin–orbit coupling, 62
Spin–orbit splitting, 66
Spin selection, optical, 470

electrical, 471
Spintronics, 469
Split gate transistor, 325
Spontaneous emission rate, 355, 376
Spontaneous polarization, 37
Statistics, phonon, 223
Stimulated emission, 355
Strain, Hamiltonian, 129
Strain splitting of bandedge, in

SiGe alloys, 138
Strain tensor, for self-assembled dots, 33
Strain tensor, in epitaxy, 32
Strained heterostructures, 26, 138
Stranski Krastanow growth, 31
Superlattice structure, 21
Surfaces, ideal and real, 22
Surface reconstruction, 22

Temperature, electron in transport, 293
Tight binding matrix elements, 56
Tight binding method (TBM), 54
Tight binding method,

for the s-band, 57
Time of flight measurement, 488
Topics for a couse, xix
Transport, averaging procedures, 163
Transport, in GaAs and Si, 190
Transport, Hall, 165
Transport, high field, in GaAs, 288
Transport, high field in Si, 291
Transport, overview, 180
Transport, in quantum dots, 304
Transport, in quantum wells, 298
Transport, in quantum wires, 303
Transport, simulation by

Monte Carlo, 264
Transport, transient, electron

in GaAs, 290
Trapping, by deep levels, 381
Tunneling, in heterostructures, 320

Variable range hopping, 334



532 Index

Vector potential, 346
Vegard’s law, 111
Velocity overshoot, 290
Vertical transitions, 357
Vibration, crystal with diatomic

basis, 219
Virtual crystal approximation, 111
Volmer Weber growth, 31

X-ray diffraction, 484

Zener–Bloch oscillations, 313
Zinc–blende structure, 15
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